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Abstract

We consider a two-player zero-sum game with random linear constraints whose
distributions are known to belong to moments based uncertainty sets. We show
that a saddle point equilibrium problem is equivalent to a primal-dual pair of
second-order cone programs.

Keywords: Distributionally robust chance constraints, Zero-sum game, Saddle

point equilibrium, Second-order cone program.

1. Introduction

A two-player zero-sum game is defined using a single payoff function where
one player plays the role of maximizer and another player plays the role of min-
imizer. More commonly, a zero-sum game is introduced with a payoff matrix
where the rows and the columns are the actions of player 1 and player 2, respec-
tively. A saddle point equilibrium (SPE) is the solution concept to study the
zero-sum games and it exists in the mixed strategies [I]. Dantzig and later Adler
showed the equivalence between linear programming problems and two-player
zero-sum games [2] B]. Charnes [4] generalized the zero-sum game considered in

[1] by introducing linear inequality constraints on the mixed strategies of both
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the players and called it a constrained zero-sum game. An SPE of a constrained
zero-sum game can be obtained from the optimal solutions of a primal-dual pair
of linear programs [4]. Singh and Lisser [5] considered a stochastic version of
constrained zero-sum game considered by Charnes [4] where the mixed strategies
of each player are restricted by random linear inequality constraints which are
modelled using chance constraints. When the random constraint vectors follow
a multivariate elliptically symmetric distribution, the zero-sum game problem
is equivalent to a primal-dual pair of second-order cone programs(SOCPs) [5].

Nash equilibrium is the generalization of SPE and it is used as a solution
concept for the general-sum games. Under certain conditions on payoff functions
and strategy sets there always exists a Nash equilibrium [6]. The general-sum
games under uncertainties are considered in the literature [7 [8, [0 10, TT] which
capture both risk neutral and risk averse situations.

In this paper, we consider a more general two player zero-sum game as
compared to [5]. Unlike in [5], the strategy set of each player is defined by
a compact polyhedral set which is further restricted by some random linear
inequalities and the information on the distribution of the random constraint
vectors is not exactly known. We consider two different uncertainty sets based
on the partial information on the mean vectors and covariance matrices of the
random constraint vectors. We show that there exists an SPE of the game Z,,
and an SPE problem is equivalent to a primal-dual pair of SOCPs.

The rest of the paper is organized as follows. The definition of a distri-
butionally robust zero-sum game is given in Section Section [3| presents the
reformulation of distributionally robust chance constraints as second order cone
constraints under two different uncertainty sets. Section[d]outlines a primal-dual

pair of SOCPs whose optimal solutions constitute an SPE of the game.

2. The model

We consider a two player zero-sum game where each player has continuous
strategy set. Let C1 € RE1xm (2 ¢ RE2xn gl ¢ RE1 and d? € RX2. We
consider X = {z e R™ |Clz =d',2 >0} and Y = {y e R" | C?y = d?,y > 0}



as the strategy sets of player 1 and player 2, respectively. We assume that X
and Y are compact sets. Let u : X X Y — R be a payoff function associated to
the zero-sum game and we assume that player 1 (resp.player 2) is interested in
maximizing (resp. minimizing) u(zx,y) for a fixed strategy y (resp. x) of player
2 (resp. player 1). For a given strategy pair (z,y) € X x Y, the payoff function
u(z,y) is given by

u(z,y) =27 Gy + gTz + h'y, (2.1)

where G € R™*" g € R™ and h € R™. The first term of results from the
interaction between both the players whereas the second and third term repre-
sents the individual impact of player 1 and player 2 on the game, respectively.
The strategy sets are often restricted by random linear constraints which are
modelled using chance constraints. The chance constraint based strategy sets
appear in many practical problems, e.g., risk constraints in portfolio optimiza-
tion [12]. In this paper, we consider the case where the strategies of player 1

satisfy the following random linear constraints,
(ap)Tx <b, k=1,2,...,p, (2.2)
whilst the strategies of player 2 satisfy the following random linear constraints
(aH)Ty>07, 1=1,2,...,q. (2.3)

Let J; = {1,2,...,p} and I3 = {1,2,..., ¢} be the index sets for the constraints
of player 1 and player 2, respectively. For each k € J; and [ € Js, the vectors aj,
and al2 are random vectors defined on a probability space (Q2, F,P). We consider
the case where the only information we have about the distributions of a and
a? is that they belong to some uncertainty sets D} and D7, respectively. The
uncertainty sets D}C and ’.DZQ, are constructed based on the partially available
information on the distributions of a} and a?, respectively. Using the worst
case approach, the random linear constraints (2.2)) and can be formulated
as distributionally robust chance constraints given by

inf P((ap)Tx<bl)>ai, VkeT, 2.4
F%Hel% ((ak) T > k) Z O 1 (2.4)



and

inf P((—a})Ty < —b?) >a?, V1e,, 2.5
Fﬁlng (( a;) y < l)—al 2 (2.5)
where aj and o} are the confidence levels of player 1 and player 2 for kth

1

and [th constraints, respectively. Therefore, for a given a! = (aj)kes, and

a? = (a})ieg,, the feasible strategy sets of player 1 and player 2 are given by

Sl = {x e X| Fgggip{(a}c)% <bl}>al, Vke 51}7 (2.6)
and
2 . 2\T 2 2
2, = {y €V| dnf P((-a})Ty <} 2o, Vi 32}. (2.7)

We call the zero-sum game with the strategy set Sél for player 1 and the strategy
set Siz for player 2 as a distributionally robust zero-sum game. We denote this
game by Z,. A strategy pair (z*,y*) € S}, x 52 is called an SPE of the game
Zy at a = (al,a?) € [0,1]7 x [0,1]9, if

u(z,y*) <u(z”,y") <u(z*,y), Va e St ye Siz.

als
3. Reformulation of distributionally robust chance constraints

We consider two different uncertainty sets based on the partial information
about the mean vectors and covariance matrices of the random constraint vec-
tors ay, i = 1,2, k € J;. For each uncertainty set, distributionally robust chance

constraints (2.4) and (2.5) are reformulated as second-order cone constraints.

8.1. Moments based uncertainty sets
For each player ¢, ¢ = 1,2, we consider the case where the mean vector
and covariance matrix of the random vector aj, for all k € J; are known to
belong to polytopes U, i and Uz:;; , respectively. We consider polytopes U pi =
Conv(ply, e, -, iy and UEZ = Conv(Z},,5%,,...,3%,,), where E}lgj =0,
j=1,2,...M; Conv denotes the convex hull and Z};j > 0 implies that E};j is
a positive definite matrix. For each i = 1,2, and k € J;, the uncertainty set for
the distribution of af is defined by
Ep; [a}] € Ui

Dj, (k> Tk) = § Fr |

; (3.1)



where F Fi and COVFz are expectation and covariance operator under probabil-
ity distribution F}, respectively. The uncertainty set is considered in [13].
As for the second uncertainty set, we consider the case where the mean vector
of aff lies in an ellipsoid of size 7};1 > 0 centered at ,uff and the covariance matrix
of a lies in a positive semidefinite cone defined with a linear matrix inequality.

It is defined by

. NT . . .

if, 0 i i <EF [aj] — /‘L}L€> (Z;c) (EF [aj] — Mc) < Ve

Di(py> Xy) = Fy § . . * )
COVi [af] = 7 %i

(3.2)

where E}; > 0 and 7,22 > 0; for the given matrices By and Bs, By = Bs implies

that By — Bj is a positive semidefinite matrix. The uncertainty set (3.2]) is

considered in [I4].

3.2. Second-order cone constraint reformulation

We show that the distributionally robust chance constraints (2.4)) and (2.5

are equivalent to second-order cone constraints for the uncertainty sets defined

by and .

Lemma 3.1. For each i = 1,2, and k € J;, let the distribution F} of random
vector afc, lies in uncertainty set ch (u};, E}C) defined by (3.1). Then, the con-
straints (2.4) and (2.5) are equivalent to (3.3) and (3.4), respectively, given

by
1
(67 1 .
(k)" 4 [ T ISh) 2l < bR Y i =12, M, k€D, (33)
k
2
(o7 1 .
—(uij)Ter,/1ika2|\(zij)zy|| < b3, Vi=1,2,....,M, k€Jy. (3.4)
k

PROOF. Based on the structure of uncertainty set (3.1)), (2.4) can be written as

inf inf P{a)Tz<bl>al,
(1, T)eU} FleD(p,x) {( k) = k}— k

where

D(p1,%) = { FL [Brplak] = 5, COVialai] = 2},



and
ullc = {(/J/7E) ‘/”' € U/J}C72 € UZ%}

The bound of one-sided Chebyshev inequality can be achieved by a two-point
distribution given by equation (2) of [15]. Therefore, we have

T 1 1_1+7@’ if ple <b,
inf  Pi(ag) z<by;= (=Ts2)
gt | B{(ad)e < b))

0, otherwise.

For the case u’x > b}c,

inf  Plalz <bil =0,
FreD(u,x) {anw < bi)

which makes constraint (2.4)) infeasible for any oy > 0. Therefore, for z € St
the condition u”z < b}, always holds and the constraint (2.4) is equivalent to

1
inf 1-— > al
weews 1+ (pTz — b2/ (@Tse) ~ °F

which can be reformulated as

min (b,lC — uTx)

cu 1

o > [k (3.5)
max VzTXz 1—ay

EEUE}C

The above inequality (3.5]) can be reformulated as (3.3]). Similarly, we can show
that (2.5)) is equivalent to (3.4]). O

Lemma 3.2. For each i = 1,2, and k € J;, let the distribution F,z of random
vector a};, lies in the uncertainty set D}; (u}&Zi) defined by (3.2). Then, the
constraints (2.4) and (2.5) are equivalent to (3.6) and (3.7), respectively, given
by

al 1
()" + (\/ ekt \/%%1> |Ehre]<oh vien,  @o)
a? 1
—(ui)Ty+<,/1_’;vi\/sz+\/vzl> |0ty < vren 6



PROOF. Based on the structure of the uncertainty set (3.2), the constraint (2.4

can be written as

inf inf  Platz <bil>ai,
(1,2)eUl FLeD(p,x) {ae < b} = o
where
D(p1, ) = { F} [y lak] = 1, COViya}] = 3 }
and

W= {0 (= )T (517 (=) <ok B <ok}

Using the similar arguments as in the Lemma the constraint (2.4) is equiv-

alent to
by + vi(z) - ap (3.8)
ve(z) \V1=al’ '
where
min —p 'z
vi(z) =4 * (3.9)

st (u—pb) " (SH) 7 (= nb) <k,

max 2T Yz
)

s.t. X< 71%22/1«

v(x) =

Let 8 > 0 be a Lagrange multiplier associated with the constraint of opti-
mization problem (3.9). By applying the KKT conditions, the optimal solution

L 1 Vb She ; i-
of (3.9) is given by p = pi + Nz and the associated Lagrange multi

1
b Therefore, the corresponding optimal value

e
vi(z) = —(up) T — /vi /2T Siz. Since, uTSu < uTyl,Siu for any u € R™,
then, va(x) = vjo2TXiz. Therefore, using (3.8), (2.4) is equivalent to (3.6)).
Similarly, we can show that (2.5) is equivalent to (3.7). O

plier is given by 8 =

The reformulation of feasible strategy sets (2.6) and (2.7)) for uncertainty
sets (3.1) and (3.2) can be written as
Shu = {we X | (uh) e + wog | (Sh)dall B, V=12, M, ken},
(3.10)



and

S2e = {y €Y | =d) Ty + rag () Byl < =87, Vi = 1.2, M, 1€ 0.
(3.11)

Foreachi=1,2, k€ J;, if Kai =4/ i‘—(’;k, (3.10) and (3.11)) represent the refor-
mulations of (2.6) and (2.7) under uncertainty set defined by (3.1)), respectively.
For each i = 1,2, k € J;, if kos = ( lf—’&};\/yiz + 'y,il), and M =1, (3.10)
and ([3.11]) represent the reformulations of (2.6]) and (2.7) under uncertainty set

defined by (3.2), respectively.
We assume that the strategy sets (3.10)) and (3.11)) satisfy the strict feasibility

condition given by Assumption [3.3]

Assumption 3.3. 1. There exists an x € Sil such that the inequality con-

straints of S}, defined by (8.10) are strictly satisfied.

2. There exists any € SZQ such that the inequality constraints of SZZ defined

by (3.11)) are strictly satisfied.

The conditions given in Assumption [3.3] are Slater’s condition which are suffi-
cient for strong duality in a convex optimization problem. We use these condi-

tions in order to derive equivalent SOCPs for the zero-sum game Z,.

4. Existence and characterization of saddle point equilibrium

In this section, we show that there exists an SPE of the game Z, if the
distributions of the random constraint vectors of both the players belong to the
uncertainty sets defined in Section [3.1] We further propose a primal-dual pair

of SOCPs whose optimal solutions constitute an SPE of the game Z,,.

Theorem 4.1. Consider the game Z, where the distributions of the random
constraint vectors az, kel;,i=1,2, belong to the uncertainty sets described in

Section . Then, there exists an SPE of the game for all o € (0,1)P x (0,1)9.



PROOF. Let o € (0,1)P x (0,1)?. For uncertainty sets described in Section [3.1]
it follows from Lemma and Lemma that the strategy sets Sil and Sig
are given by and (B.11), respectively. It is easy to see that S!, and 52,
are convex and compact sets. The function u(x,y) is a bilinear and continuous

function. Hence, there exists an SPE from the minimax theorem [IJ.

4.1. Equivalent primal-dual pair of second-order cone programs

From the minimax theorem [I], (z*,y*) is an SPE for the game Z, if and

only if
x* € argmax min u(x,y), (4.1)
IGSl yES
y* € argmin max u(x,y). (4.2)

yes?, €S,
We start with problem min cg2 max,egqr u(2,y). The inner optimization
@ @

problem max,e g1 u(x,y) can be equivalently written as

max 2L Gy + g7z + hly

z,th
st (i) —a gy —rar |tk +06 >0, Vi=1,2...,M, k€,
(i) ty; — (Bh,;) 2z =0,Vji=12...,M, ke,

(iii) C'ex = d*, ©, >0, Vr=1,2,...,m. (4.3)

M
Let Al = (A}c ) eRMP, 5l eR™forallk €9y, j =1,2... M, and
J) j=1,keT, J
vt € RE1 be the Lagrange multipliers of constraints (i), (i), and equality con-
straints given in (¢i¢) of (4.3]), respectively. Then, the Lagrangian dual problem
of the SOCP (4.3) can be written as
M
min max {xTGy +g"r+hTy+ Z Z {A,lw-( - xT,u,lw- — Kql Ht}”H + b,lc)

A1>0, 5i I vl x>0, 15,1C j ke, j=1
, , e
1
+ 0k (thy = (B1,)%2)] + 01T (@ - ')}

= min {max x (Gy - Z Z )\,”pkj Ek])% 5%) —(CHT! +g)

A120,6; v kedy j=1
+szax (5MT% Ak]||tm||>+hTy+ Td1+zz>\kgsz
ked; j=1 ki e



The inner maximization problems in the above Lagrangian dual problem will

be unbounded unless we have the following dual constraints

M
Gy— "> (Mhgmky+ (k) 0k;) — (€)W +g <0,

keJy j=1

St il kA V€T, j=1,2... M.
k.j 5k,

Under Assumption the Lagrangian dual problem of (4.3)) has zero duality
gap [16]. Therefore, the problem min, cg2 max,cg1 u(z,y) is equivalent to the

following SOCP

min hTy—I- le—l—ZZ)\;”bk

L8 AL
Y, Vs Ok s kedy j=1

)Gy~ Z (b + (552 68,) = (CYTvt + g <o,

keJdy j=1
(1) — (i) "y + ra2l(SF) 2wl < =07, Vi =1,2,...,M, [ €0,
(#1) (105511 < Kot Mgy Moy 20, VEET, j=1,2..., M,
(iv) C?y=d?, y,>0,Vs=1,2,...,n. (4.4)

Similarly, problem max,c s, min, s2, u(z,y) is equivalent to the following

SOCP

s e G S

L i 1€Js j=1

M
st. (i) GTa — Z Z (AL ui + (S25)2 6,) — (CHTV? + h >0,

1€Jz j=1
(i1) ()2 + fior I(Sh) 2]l < bR, ¥V j=1,2,.... M, k€T,
(#40) 1107511 < Ka2ATjo AT; 20,V 1 €Ty, j=1,2,.. M
(iv) Clz =d', 2, >0, Vr=1,2,...,m. (4.5)

It follows from the duality theory of SOCPs that (4.4)) and (4.5) form a primal-
dual pair [16].

Remark 4.2. For each i = 1,2, and k € J;, if Kai = \|ToaT a7 s and | .
represent the primal-dual pair of SOCPs for the uncertainty sets deﬁned by .
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For each i = 1,2, and k € J;, if Kai = <,/1a:’:}i€\/'y,@2 + ’y,il) and M =1,
(4.4) and (4.5) represent the primal-dual pair of SOCPs for the uncertainty set
defined by (3.2)).

Next, we show that the equivalence between the optimal solutions of (4.4)-(4.5)
and an SPE of the game Z,.

Theorem 4.3. Consider the zero-sum game Z, where the feasible strategy sets
of player 1 and player 2 are given by (3.10) and (3.11), respectively. Let As-
sumption[3.5 holds. Then, for a given o € (0,1)P x (0,1)4, (z*,y*) is an SPE of
the game Z,, if and only if there exists (v1*, (515})1%]” A and (v, (512;-)57]-, AZ*)
such that (y*, v, (64 )k, M) and (x*,v%*, (67%)1,4, \**) are optimal solutions

of (4.4) and (4.5), respectively.

PROOF. Let (z*,y*) be an SPE of the game Z,. Then, z* and y* are the solu-
tions of ([4.1) and (4.2), respectively. Therefore, there exists (1, (037 )k,j, A™)
and (12, (6ﬁ§)l,j, A?*) such that (y*, v'*, (‘%Tj)k,ja A) and (z*, v%*, (512;)17j, A2*)
are optimal solutions of (4.4) and (4.5 respectively.

Let (y*,v'*, (6,ij‘j)k)j, A) and (z*,v%*, (62;)1,]-, A?*) be optimal solutions of
(#-4) and (4.5), respectively. Under Assumption [3.3] ([4.4) and (4.5) are strictly
feasible. Therefore, strong duality holds for primal-dual pair (4.4)-(4.5). Then,
we have

M M
g ' + () A+ Y D AT =hTy + () d DY b (4.6)
l€Je j=1 keJdy j=1
Consider the constraint (i) of ([4.4) at optimal solution (y*,v"*, (64% )k, A'*)
and multiply it by =7, where z € Sél. Then, by using Cauchy-Schwartz in-
equality, we have
M
2T Gy* + gTa + hTy* <hTy* + (™) Td + Z Z )x,lcfjb,lg, VoeSh . (47)
kedy j=1
Similarly, we have

M
TGy + g7 + hTy > gTa* + () Td? + Z Z)\i’;b?, Vyesi,. (4.8)
€13 j=1

11



Take x = x* and y = y* in (4.7)) and (4.8]), then from (4.6]), we get

M M

U(.’L‘*,y*) _ hTy*+(V1*)Td1+ Z ZAll:Jbllg _ 9T$*+(V2*)Td2+z Z)\lQ;le
keJy j=1 l€Jz j=1

(4.9)

It follows from (4.7)), (4.8]), and (4.9) that (z*,y*) is an SPE of the game Z,. O
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