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Abstract

We consider a two-player zero-sum game with random linear constraints whose

distributions are known to belong to moments based uncertainty sets. We show

that a saddle point equilibrium problem is equivalent to a primal-dual pair of

second-order cone programs.

Keywords: Distributionally robust chance constraints, Zero-sum game, Saddle

point equilibrium, Second-order cone program.

1. Introduction

A two-player zero-sum game is defined using a single payoff function where

one player plays the role of maximizer and another player plays the role of min-

imizer. More commonly, a zero-sum game is introduced with a payoff matrix

where the rows and the columns are the actions of player 1 and player 2, respec-

tively. A saddle point equilibrium (SPE) is the solution concept to study the

zero-sum games and it exists in the mixed strategies [1]. Dantzig and later Adler

showed the equivalence between linear programming problems and two-player

zero-sum games [2, 3]. Charnes [4] generalized the zero-sum game considered in

[1] by introducing linear inequality constraints on the mixed strategies of both
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the players and called it a constrained zero-sum game. An SPE of a constrained

zero-sum game can be obtained from the optimal solutions of a primal-dual pair

of linear programs [4]. Singh and Lisser [5] considered a stochastic version of

constrained zero-sum game considered by Charnes [4] where the mixed strategies

of each player are restricted by random linear inequality constraints which are

modelled using chance constraints. When the random constraint vectors follow

a multivariate elliptically symmetric distribution, the zero-sum game problem

is equivalent to a primal-dual pair of second-order cone programs(SOCPs) [5].

Nash equilibrium is the generalization of SPE and it is used as a solution

concept for the general-sum games. Under certain conditions on payoff functions

and strategy sets there always exists a Nash equilibrium [6]. The general-sum

games under uncertainties are considered in the literature [7, 8, 9, 10, 11] which

capture both risk neutral and risk averse situations.

In this paper, we consider a more general two player zero-sum game as

compared to [5]. Unlike in [5], the strategy set of each player is defined by

a compact polyhedral set which is further restricted by some random linear

inequalities and the information on the distribution of the random constraint

vectors is not exactly known. We consider two different uncertainty sets based

on the partial information on the mean vectors and covariance matrices of the

random constraint vectors. We show that there exists an SPE of the game Zα

and an SPE problem is equivalent to a primal-dual pair of SOCPs.

The rest of the paper is organized as follows. The definition of a distri-

butionally robust zero-sum game is given in Section 2. Section 3 presents the

reformulation of distributionally robust chance constraints as second order cone

constraints under two different uncertainty sets. Section 4 outlines a primal-dual

pair of SOCPs whose optimal solutions constitute an SPE of the game.

2. The model

We consider a two player zero-sum game where each player has continuous

strategy set. Let C1 ∈ RK1×m, C2 ∈ RK2×n, d1 ∈ RK1 and d2 ∈ RK2 . We

consider X = {x ∈ Rm | C1x = d1, x ≥ 0} and Y = {y ∈ Rn | C2y = d2, y ≥ 0}
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as the strategy sets of player 1 and player 2, respectively. We assume that X

and Y are compact sets. Let u : X × Y → R be a payoff function associated to

the zero-sum game and we assume that player 1 (resp.player 2) is interested in

maximizing (resp. minimizing) u(x, y) for a fixed strategy y (resp. x) of player

2 (resp. player 1). For a given strategy pair (x, y) ∈ X × Y , the payoff function

u(x, y) is given by

u(x, y) = xTGy + gTx+ hT y, (2.1)

where G ∈ Rm×n, g ∈ Rm and h ∈ Rn. The first term of (2.1) results from the

interaction between both the players whereas the second and third term repre-

sents the individual impact of player 1 and player 2 on the game, respectively.

The strategy sets are often restricted by random linear constraints which are

modelled using chance constraints. The chance constraint based strategy sets

appear in many practical problems, e.g., risk constraints in portfolio optimiza-

tion [12]. In this paper, we consider the case where the strategies of player 1

satisfy the following random linear constraints,

(a1k)
Tx ≤ b1k, k = 1, 2, . . . , p, (2.2)

whilst the strategies of player 2 satisfy the following random linear constraints

(a2l )
T y ≥ b2l , l = 1, 2, . . . , q. (2.3)

Let I1 = {1, 2, . . . , p} and I2 = {1, 2, . . . , q} be the index sets for the constraints

of player 1 and player 2, respectively. For each k ∈ I1 and l ∈ I2, the vectors a
1
k

and a2l are random vectors defined on a probability space (Ω,F,P). We consider

the case where the only information we have about the distributions of a1k and

a2l is that they belong to some uncertainty sets D1
k and D2

l , respectively. The

uncertainty sets D1
k and D2

l , are constructed based on the partially available

information on the distributions of a1k and a2l , respectively. Using the worst

case approach, the random linear constraints (2.2) and (2.3) can be formulated

as distributionally robust chance constraints given by

inf
F 1

k∈D1
k

P
(
(a1k)

Tx ≤ b1k
)
≥ α1

k, ∀ k ∈ I1, (2.4)
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and

inf
F 2

l ∈D2
l

P
(
(−a2l )

T y ≤ −b2l
)
≥ α2

l , ∀ l ∈ I2, (2.5)

where α1
k and α2

l are the confidence levels of player 1 and player 2 for kth

and lth constraints, respectively. Therefore, for a given α1 = (α1
k)k∈I1 and

α2 = (α2
l )l∈I2 , the feasible strategy sets of player 1 and player 2 are given by

S1
α1 =

{
x ∈ X| inf

F 1
k∈D1

k

P{(a1k)Tx ≤ b1k} ≥ α1
k, ∀ k ∈ I1

}
, (2.6)

and

S2
α2 =

{
y ∈ Y | inf

F 2
l ∈D2

l

P{(−a2l )
T y ≤ −b2l } ≥ α2

l , ∀ l ∈ I2

}
. (2.7)

We call the zero-sum game with the strategy set S1
α1 for player 1 and the strategy

set S2
α2 for player 2 as a distributionally robust zero-sum game. We denote this

game by Zα. A strategy pair (x∗, y∗) ∈ S1
α1 × S2

α2 is called an SPE of the game

Zα at α = (α1, α2) ∈ [0, 1]p × [0, 1]q, if

u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y), ∀ x ∈ S1
α1 , y ∈ S2

α2 .

3. Reformulation of distributionally robust chance constraints

We consider two different uncertainty sets based on the partial information

about the mean vectors and covariance matrices of the random constraint vec-

tors aik, i = 1, 2, k ∈ Ii. For each uncertainty set, distributionally robust chance

constraints (2.4) and (2.5) are reformulated as second-order cone constraints.

3.1. Moments based uncertainty sets

For each player i, i = 1, 2, we consider the case where the mean vector

and covariance matrix of the random vector aik for all k ∈ Ii are known to

belong to polytopes Uµi
k
and UΣi

k
, respectively. We consider polytopes Uµi

k
=

Conv(µi
k1, µ

i
k2, . . . , µ

i
kM ) and UΣi

k
= Conv(Σi

k1,Σ
i
k2, . . . ,Σ

i
kM ), where Σi

kj ≻ 0,

j = 1, 2, . . .M ; Conv denotes the convex hull and Σi
kj ≻ 0 implies that Σi

kj is

a positive definite matrix. For each i = 1, 2, and k ∈ Ii, the uncertainty set for

the distribution of aik is defined by

Di
k

(
µi
k,Σ

i
k

)
=

F i
k

∣∣∣ EF i
k

[
aik
]
∈ Uµi

k

COVF i
k
[aik] ∈ UΣi

k

 , (3.1)
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where EF i
k
and COVF i

k
are expectation and covariance operator under probabil-

ity distribution F i
k, respectively. The uncertainty set (3.1) is considered in [13].

As for the second uncertainty set, we consider the case where the mean vector

of aik lies in an ellipsoid of size γi
k1 ≥ 0 centered at µi

k and the covariance matrix

of aik lies in a positive semidefinite cone defined with a linear matrix inequality.

It is defined by

Di
k(µ

i
k,Σ

i
k) =

F i
k

∣∣∣∣∣∣
(
EF i

k
[aik]− µi

k

)⊤ (
Σi

k

)−1
(
EF i

k
[aik]− µi

k

)
≤ γi

k1,

COVF i
k
[aik] ⪯ γi

k2Σ
i
k

 ,

(3.2)

where Σi
k ≻ 0 and γi

k2 > 0; for the given matrices B1 and B2, B1 ⪯ B2 implies

that B2 − B1 is a positive semidefinite matrix. The uncertainty set (3.2) is

considered in [14].

3.2. Second-order cone constraint reformulation

We show that the distributionally robust chance constraints (2.4) and (2.5)

are equivalent to second-order cone constraints for the uncertainty sets defined

by (3.1) and (3.2).

Lemma 3.1. For each i = 1, 2, and k ∈ Ii, let the distribution F i
k of random

vector aik, lies in uncertainty set Di
k

(
µi
k,Σ

i
k

)
defined by (3.1). Then, the con-

straints (2.4) and (2.5) are equivalent to (3.3) and (3.4), respectively, given

by

(µ1
kj)

Tx+

√
α1
k

1− α1
k

||(Σ1
kj)

1
2x|| ≤ b1k, ∀ j = 1, 2, . . . ,M, k ∈ I1, (3.3)

− (µ2
kj)

T y +

√
α2
k

1− α2
k

||(Σ2
kj)

1
2 y|| ≤ −b2k, ∀ j = 1, 2, . . . ,M, k ∈ I2. (3.4)

Proof. Based on the structure of uncertainty set (3.1), (2.4) can be written as

inf
(µ,Σ)∈U1

k

inf
F 1

k∈D(µ,Σ)
P
{
(a1k)

Tx ≤ b1k
}
≥ α1

k,

where

D(µ,Σ) =
{
F 1
k

∣∣∣EF 1
k
[a1k] = µ,COVF 1

k
[a1k] = Σ

}
,
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and

U1
k =

{
(µ,Σ)

∣∣∣µ ∈ Uµ1
k
,Σ ∈ UΣ1

k

}
.

The bound of one-sided Chebyshev inequality can be achieved by a two-point

distribution given by equation (2) of [15]. Therefore, we have

inf
F 1

k∈D(µ,Σ)
P
{
(a1k)

Tx ≤ b1k
}
=


1− 1

1+
(µT x−b1

k
)2

(xT Σx)

, if µTx ≤ b1k,

0, otherwise.

For the case µTx > b1k,

inf
F 1

k∈D(µ,Σ)
P
{
a1kx ≤ b1k

}
= 0,

which makes constraint (2.4) infeasible for any α1 > 0. Therefore, for x ∈ S1
α1

the condition µTx ≤ b1k always holds and the constraint (2.4) is equivalent to

inf
(µ,Σ)∈U1

k

1− 1

1 + (µTx− b1k)
2/(xTΣx)

≥ α1
k,

which can be reformulated as

min
µ∈U

µ1
k

(
b1k − µTx

)
max

Σ∈U
Σ1
k

√
xTΣx

≥

√
α1
k

1− α1
k

. (3.5)

The above inequality (3.5) can be reformulated as (3.3). Similarly, we can show

that (2.5) is equivalent to (3.4). □

Lemma 3.2. For each i = 1, 2, and k ∈ Ii, let the distribution F i
k of random

vector aik, lies in the uncertainty set Di
k

(
µi
k,Σ

i
k

)
defined by (3.2). Then, the

constraints (2.4) and (2.5) are equivalent to (3.6) and (3.7), respectively, given

by

(µ1
k)

Tx+

(√
α1
k

1− α1
k

√
γ1
k2 +

√
γ1
k1

)∥∥∥(Σ1
k

) 1
2 x
∥∥∥ ≤ b1k, ∀ k ∈ I1, (3.6)

− (µ2
k)

T y +

(√
α2
k

1− α2
k

√
γ2
k2 +

√
γ2
k1

)∥∥∥(Σ2
k

) 1
2 y
∥∥∥ ≤ −b2k ∀ k ∈ I2. (3.7)
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Proof. Based on the structure of the uncertainty set (3.2), the constraint (2.4)

can be written as

inf
(µ,Σ)∈Ũ1

k

inf
F 1

k∈D(µ,Σ)
P
{
a1kx ≤ b1k

}
≥ α1

k,

where

D(µ,Σ) =
{
F 1
k

∣∣∣EF 1
k
[a1k] = µ,COVF 1

k
[a1k] = Σ

}
and

Ũ1
k =

{
(µ,Σ)

∣∣∣(µ− µ1
k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1

k1, Σ ⪯ γ1
k2Σ

1
k

}
.

Using the similar arguments as in the Lemma 3.1, the constraint (2.4) is equiv-

alent to

b1k + v1(x)√
v2(x)

≥

√
α1
k

1− α1
k

, (3.8)

where

v1(x) =


min
µ

−µTx

s.t.
(
µ− µ1

k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1

k1,

(3.9)

v2(x) =


max
Σ

xTΣx

s.t. Σ ⪯ γ1
k2Σ

1
k.

Let β ≥ 0 be a Lagrange multiplier associated with the constraint of opti-

mization problem (3.9). By applying the KKT conditions, the optimal solution

of (3.9) is given by µ = µ1
k +

√
γ1
k1Σ

1
kx√

xTΣ1
kx

and the associated Lagrange multi-

plier is given by β =

√
xTΣ1

kx

4γ1
k1

. Therefore, the corresponding optimal value

v1(x) = −(µ1
k)

Tx −
√

γ1
k1

√
xTΣ1

kx. Since, u
TΣu ≤ uT γ1

k2Σ
1
ku for any u ∈ Rn,

then, v2(x) = γ1
k2x

TΣ1
kx. Therefore, using (3.8), (2.4) is equivalent to (3.6).

Similarly, we can show that (2.5) is equivalent to (3.7). □

The reformulation of feasible strategy sets (2.6) and (2.7) for uncertainty

sets (3.1) and (3.2) can be written as

S1
α1 =

{
x ∈ X | (µ1

kj)
Tx+ κα1

k
||(Σ1

kj)
1
2x|| ≤ b1k, ∀ j = 1, 2, . . . ,M, k ∈ I1

}
,

(3.10)
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and

S2
α2 =

{
y ∈ Y | −(µ2

lj)
T y + κα2

l
||(Σ2

lj)
1
2 y|| ≤ −b2l , ∀ j = 1, 2, . . . ,M, l ∈ I2.

}
.

(3.11)

For each i = 1, 2, k ∈ Ii, if καi
k
=

√
αi

k

1−αi
k

, (3.10) and (3.11) represent the refor-

mulations of (2.6) and (2.7) under uncertainty set defined by (3.1), respectively.

For each i = 1, 2, k ∈ Ii, if καi
k
=

(√
αi

k

1−αi
k

√
γi
k2 +

√
γi
k1

)
, and M = 1, (3.10)

and (3.11) represent the reformulations of (2.6) and (2.7) under uncertainty set

defined by (3.2), respectively.

We assume that the strategy sets (3.10) and (3.11) satisfy the strict feasibility

condition given by Assumption 3.3.

Assumption 3.3. 1. There exists an x ∈ S1
α1 such that the inequality con-

straints of S1
α1 defined by (3.10) are strictly satisfied.

2. There exists an y ∈ S2
α2 such that the inequality constraints of S2

α2 defined

by (3.11) are strictly satisfied.

The conditions given in Assumption 3.3 are Slater’s condition which are suffi-

cient for strong duality in a convex optimization problem. We use these condi-

tions in order to derive equivalent SOCPs for the zero-sum game Zα.

4. Existence and characterization of saddle point equilibrium

In this section, we show that there exists an SPE of the game Zα if the

distributions of the random constraint vectors of both the players belong to the

uncertainty sets defined in Section 3.1. We further propose a primal-dual pair

of SOCPs whose optimal solutions constitute an SPE of the game Zα.

Theorem 4.1. Consider the game Zα where the distributions of the random

constraint vectors aik, k ∈ Ii, i = 1, 2, belong to the uncertainty sets described in

Section 3.1. Then, there exists an SPE of the game for all α ∈ (0, 1)p × (0, 1)q.
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Proof. Let α ∈ (0, 1)p × (0, 1)q. For uncertainty sets described in Section 3.1,

it follows from Lemma 3.1 and Lemma 3.2 that the strategy sets S1
α1 and S2

α2

are given by (3.10) and (3.11), respectively. It is easy to see that S1
α1 and S2

α2

are convex and compact sets. The function u(x, y) is a bilinear and continuous

function. Hence, there exists an SPE from the minimax theorem [1].

4.1. Equivalent primal-dual pair of second-order cone programs

From the minimax theorem [1], (x∗, y∗) is an SPE for the game Zα if and

only if

x∗ ∈ argmax
x∈S1

α1

min
y∈S2

α2

u(x, y), (4.1)

y∗ ∈ argmin
y∈S2

α2

max
x∈S1

α1

u(x, y). (4.2)

We start with problem miny∈S2
α2

maxx∈S1
α1

u(x, y). The inner optimization

problem maxx∈S1
α1

u(x, y) can be equivalently written as

max
x,t1k,j

xTGy + gTx+ hT y

s.t. (i) − xTµ1
k,j − κα1

k

∥∥t1k,j∥∥+ b1k ≥ 0, ∀ j = 1, 2 . . . ,M, k ∈ I1,

(ii) t1k,j −
(
Σ1

k,j

) 1
2 x = 0, ∀ j = 1, 2 . . . ,M, k ∈ I1,

(iii) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (4.3)

Let λ1 =
(
λ1
k,j

)M
j=1,k∈I1

∈ RMp, δ1k,j ∈ Rm for all k ∈ I1, j = 1, 2 . . .M , and

ν1 ∈ RK1 be the Lagrange multipliers of constraints (i), (ii), and equality con-

straints given in (iii) of (4.3), respectively. Then, the Lagrangian dual problem

of the SOCP (4.3) can be written as

min
λ1≥0, δ1k,j , ν1

max
x≥0, t1k,j

{
xTGy + gTx+ hT y +

∑
k∈I1

M∑
j=1

[
λ1
k,j

(
− xTµ1

k,j − κα1
k

∥∥t1k,j∥∥+ b1k
)

+ (δ1k,j)
T
(
t1k,j −

(
Σ1

k,j

) 1
2 x
)]

+ (ν1)T (d1 − C1x)
}

= min
λ1≥0,δ1k,j ,ν

1

[
max
x≥0

xT
(
Gy −

∑
k∈I1

M∑
j=1

(
λ1
k,jµ

1
k,j +

(
Σ1

k,j

) 1
2 δ1k,j

)
− (C1)T ν1 + g

)

+
∑
k∈I1

M∑
j=1

max
t1k,j

(
(δ1k,j)

T t1k,j − κα1
k
λ1
k,j

∥∥t1k,j∥∥)+ hT y + (ν1)T d1 +
∑
k∈I1

M∑
j=1

λ1
k,jb

1
k

]
.
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The inner maximization problems in the above Lagrangian dual problem will

be unbounded unless we have the following dual constraints

Gy −
∑
k∈I1

M∑
j=1

(
λ1
k,jµ

1
k,j +

(
Σ1

k,j

) 1
2 δ1k,j

)
− (C1)T ν1 + g ≤ 0,

||δ1k,j || ≤ κα1
k
λ1
k,j ,∀ k ∈ I1, j = 1, 2 . . . ,M.

Under Assumption 3.3, the Lagrangian dual problem of (4.3) has zero duality

gap [16]. Therefore, the problem miny∈S2
α2

maxx∈S1
α1

u(x, y) is equivalent to the

following SOCP

min
y, ν1, δ1k,j , λ1

k,j

hT y + (ν1)T d1 +
∑
k∈I1

M∑
j=1

λ1
k,jb

1
k

s.t. (i) Gy −
∑
k∈I1

M∑
j=1

(
λ1
k,jµ

1
k,j +

(
Σ1

k,j

) 1
2 δ1k,j

)
− (C1)T ν1 + g ≤ 0,

(ii) − (µ2
lj)

T y + κα2
l
||(Σ2

lj)
1
2 y|| ≤ −b2l , ∀ j = 1, 2, . . . ,M, l ∈ I2,

(iii) ||δ1k,j || ≤ κα1
k
λ1
k,j , λ1

k,j ≥ 0, ∀ k ∈ I1, j = 1, 2 . . . ,M,

(iv) C2y = d2, ys ≥ 0, ∀ s = 1, 2, . . . , n. (4.4)

Similarly, problem maxx∈S1
α1

miny∈S2
α2

u(x, y) is equivalent to the following

SOCP

max
x, ν2, δ2l,j , λ2

l,j

gTx+ (ν2)T d2 +
∑
l∈I2

M∑
j=1

λ2
l,jb

2
l

s.t. (i) GTx−
∑
l∈I2

M∑
j=1

(
λ2
l,jµ

2
l,j +

(
Σ2

l,j

) 1
2 δ2l,j

)
− (C2)T ν2 + h ≥ 0,

(ii) (µ1
kj)

Tx+ κα1
k
||(Σ1

kj)
1
2x|| ≤ b1k, ∀ j = 1, 2, . . . ,M, k ∈ I1,

(iii) ||δ2l,j || ≤ κα2
l
λ2
l,j , λ2

l,j ≥ 0, ∀ l ∈ I2, j = 1, 2, . . .M

(iv) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (4.5)

It follows from the duality theory of SOCPs that (4.4) and (4.5) form a primal-

dual pair [16].

Remark 4.2. For each i = 1, 2, and k ∈ Ii, if καi
k
=

√
αi

k

1−αi
k

, (4.4) and (4.5)

represent the primal-dual pair of SOCPs for the uncertainty sets defined by (3.1).
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For each i = 1, 2, and k ∈ Ii, if καi
k
=

(√
αi

k

1−αi
k

√
γi
k2 +

√
γi
k1

)
and M = 1,

(4.4) and (4.5) represent the primal-dual pair of SOCPs for the uncertainty set

defined by (3.2).

Next, we show that the equivalence between the optimal solutions of (4.4)-(4.5)

and an SPE of the game Zα.

Theorem 4.3. Consider the zero-sum game Zα where the feasible strategy sets

of player 1 and player 2 are given by (3.10) and (3.11), respectively. Let As-

sumption 3.3 holds. Then, for a given α ∈ (0, 1)p×(0, 1)q, (x∗, y∗) is an SPE of

the game Zα if and only if there exists (ν1∗, (δ1∗k,j)k,j , λ
1∗) and (ν2∗, (δ2∗l,j)l,j , λ

2∗)

such that (y∗, ν1∗, (δ1∗k,j)k,j , λ
1∗) and (x∗, ν2∗, (δ2∗l,j)l,j , λ

2∗) are optimal solutions

of (4.4) and (4.5), respectively.

Proof. Let (x∗, y∗) be an SPE of the game Zα. Then, x
∗ and y∗ are the solu-

tions of (4.1) and (4.2), respectively. Therefore, there exists (ν1∗, (δ1∗k,j)k,j , λ
1∗)

and (ν2∗, (δ2∗l,j)l,j , λ
2∗) such that (y∗, ν1∗, (δ1∗k,j)k,j , λ

1∗) and (x∗, ν2∗, (δ2∗l,j)l,j , λ
2∗)

are optimal solutions of (4.4) and (4.5) respectively.

Let (y∗, ν1∗, (δ1∗k,j)k,j , λ
1∗) and (x∗, ν2∗, (δ2∗l,j)l,j , λ

2∗) be optimal solutions of

(4.4) and (4.5), respectively. Under Assumption 3.3, (4.4) and (4.5) are strictly

feasible. Therefore, strong duality holds for primal-dual pair (4.4)-(4.5). Then,

we have

gTx∗ + (ν2∗)T d2 +
∑
l∈I2

M∑
j=1

λ2∗
l,jb

2
l = hT y∗ + (ν1∗)T d1 +

∑
k∈I1

M∑
j=1

λ1∗
k,jb

1
k. (4.6)

Consider the constraint (i) of (4.4) at optimal solution (y∗, ν1∗, (δ1∗k,j)k,j , λ
1∗)

and multiply it by xT , where x ∈ S1
α1
. Then, by using Cauchy-Schwartz in-

equality, we have

xTGy∗ + gTx+ hT y∗ ≤ hT y∗ + (ν1∗)T d1 +
∑
k∈I1

M∑
j=1

λ1∗
k,jb

1
k, ∀ x ∈ S1

α1
. (4.7)

Similarly, we have

x∗TGy + gTx∗ + hT y ≥ gTx∗ + (ν2∗)T d2 +
∑
l∈I2

M∑
j=1

λ2∗
l,jb

2
l , ∀ y ∈ S2

α2
. (4.8)
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Take x = x∗ and y = y∗ in (4.7) and (4.8), then from (4.6), we get

u(x∗, y∗) = hT y∗+(ν1∗)T d1+
∑
k∈I1

M∑
j=1

λ1∗
k,jb

1
k = gTx∗+(ν2∗)T d2+

∑
l∈I2

M∑
j=1

λ2∗
l,jb

2
l .

(4.9)

It follows from (4.7), (4.8), and (4.9) that (x∗, y∗) is an SPE of the game Zα. □
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