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We consider a two-player zero-sum game with random linear constraints whose distributions are known to belong to moments based uncertainty sets. We show that a saddle point equilibrium problem is equivalent to a primal-dual pair of second-order cone programs.

Introduction

A two-player zero-sum game is defined using a single payoff function where one player plays the role of maximizer and another player plays the role of minimizer. More commonly, a zero-sum game is introduced with a payoff matrix where the rows and the columns are the actions of player 1 and player 2, respectively. A saddle point equilibrium (SPE) is the solution concept to study the zero-sum games and it exists in the mixed strategies [START_REF] Neumann | On the theory of games[END_REF]. Dantzig and later Adler showed the equivalence between linear programming problems and two-player zero-sum games [START_REF] Adler | The equivalence of linear programs and zero-sum games[END_REF][START_REF] Dantzig | A proof of the equivalence of the programming problem and the game problem[END_REF]. Charnes [START_REF] Charnes | Constrained games and linear programming[END_REF] generalized the zero-sum game considered in [START_REF] Neumann | On the theory of games[END_REF] by introducing linear inequality constraints on the mixed strategies of both Email addresses: vikassingh@iitd.ac.in (Vikas Vikram Singh), abdel.lisser@l2s.centralesupelec.fr (Abdel Lisser), monika@iiitd.ac.in (Monika Arora)

the players and called it a constrained zero-sum game. An SPE of a constrained zero-sum game can be obtained from the optimal solutions of a primal-dual pair of linear programs [START_REF] Charnes | Constrained games and linear programming[END_REF]. Singh and Lisser [START_REF] Singh | A second-order cone programming formulation for zero sum game with chance constraints[END_REF] considered a stochastic version of constrained zero-sum game considered by Charnes [START_REF] Charnes | Constrained games and linear programming[END_REF] where the mixed strategies of each player are restricted by random linear inequality constraints which are modelled using chance constraints. When the random constraint vectors follow a multivariate elliptically symmetric distribution, the zero-sum game problem is equivalent to a primal-dual pair of second-order cone programs(SOCPs) [START_REF] Singh | A second-order cone programming formulation for zero sum game with chance constraints[END_REF].

Nash equilibrium is the generalization of SPE and it is used as a solution concept for the general-sum games. Under certain conditions on payoff functions and strategy sets there always exists a Nash equilibrium [START_REF] Debreu | A social equilibrium existence theorem[END_REF]. The general-sum games under uncertainties are considered in the literature [START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF][START_REF] Singh | Existence of Nash equilibrium for chanceconstrained games[END_REF][START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF][START_REF] Shen | Games with distributionally robust joint chance constraints[END_REF][START_REF] Singh | An equivalent mathematical program for games with random constraints[END_REF] which capture both risk neutral and risk averse situations.

In this paper, we consider a more general two player zero-sum game as compared to [START_REF] Singh | A second-order cone programming formulation for zero sum game with chance constraints[END_REF]. Unlike in [START_REF] Singh | A second-order cone programming formulation for zero sum game with chance constraints[END_REF], the strategy set of each player is defined by a compact polyhedral set which is further restricted by some random linear inequalities and the information on the distribution of the random constraint vectors is not exactly known. We consider two different uncertainty sets based on the partial information on the mean vectors and covariance matrices of the random constraint vectors. We show that there exists an SPE of the game Z α and an SPE problem is equivalent to a primal-dual pair of SOCPs.

The rest of the paper is organized as follows. The definition of a distributionally robust zero-sum game is given in Section 2. Section 3 presents the reformulation of distributionally robust chance constraints as second order cone constraints under two different uncertainty sets. Section 4 outlines a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game.

The model

We consider a two player zero-sum game where each player has continuous

strategy set. Let C 1 ∈ R K1×m , C 2 ∈ R K2×n , d 1 ∈ R K1 and d 2 ∈ R K2 . We consider X = {x ∈ R m | C 1 x = d 1 , x ≥ 0} and Y = {y ∈ R n | C 2 y = d 2 , y ≥ 0}
as the strategy sets of player 1 and player 2, respectively. We assume that X and Y are compact sets. Let u : X × Y → R be a payoff function associated to the zero-sum game and we assume that player 1 (resp.player 2) is interested in maximizing (resp. minimizing) u(x, y) for a fixed strategy y (resp. x) of player 2 (resp. player 1). For a given strategy pair (x, y) ∈ X × Y , the payoff function u(x, y) is given by

u(x, y) = x T Gy + g T x + h T y, (2.1) 
where G ∈ R m×n , g ∈ R m and h ∈ R n . The first term of (2.1) results from the interaction between both the players whereas the second and third term represents the individual impact of player 1 and player 2 on the game, respectively.

The strategy sets are often restricted by random linear constraints which are modelled using chance constraints. The chance constraint based strategy sets appear in many practical problems, e.g., risk constraints in portfolio optimization [START_REF] Ji | Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints[END_REF]. In this paper, we consider the case where the strategies of player 1 satisfy the following random linear constraints,

(a 1 k ) T x ≤ b 1 k , k = 1, 2, . . . , p, (2.2) 
whilst the strategies of player 2 satisfy the following random linear constraints (a 2 l ) T y ≥ b 2 l , l = 1, 2, . . . , q.

(2.3)

Let I 1 = {1, 2, . . . , p} and I 2 = {1, 2, . . . , q} be the index sets for the constraints of player 1 and player 2, respectively. For each k ∈ I 1 and l ∈ I 2 , the vectors a 1 k and a 2 l are random vectors defined on a probability space (Ω, F, P). We consider the case where the only information we have about the distributions of a 1 k and a 2 l is that they belong to some uncertainty sets D 1 k and D 2 l , respectively. The uncertainty sets D 1 k and D 2 l , are constructed based on the partially available information on the distributions of a 1 k and a 2 l , respectively. Using the worst case approach, the random linear constraints (2.2) and (2.3) can be formulated as distributionally robust chance constraints given by inf

F 1 k ∈D 1 k P (a 1 k ) T x ≤ b 1 k ≥ α 1 k , ∀ k ∈ I 1 , (2.4) 
and inf

F 2 l ∈D 2 l P (-a 2 l ) T y ≤ -b 2 l ≥ α 2 l , ∀ l ∈ I 2 , (2.5) 
where α 1 k and α 2 l are the confidence levels of player 1 and player 2 for kth and lth constraints, respectively. Therefore, for a given α 1 = (α 1 k ) k∈I1 and α 2 = (α 2 l ) l∈I2 , the feasible strategy sets of player 1 and player 2 are given by

S 1 α 1 = x ∈ X| inf F 1 k ∈D 1 k P{(a 1 k ) T x ≤ b 1 k } ≥ α 1 k , ∀ k ∈ I 1 , (2.6) 
and

S 2 α 2 = y ∈ Y | inf F 2 l ∈D 2 l P{(-a 2 l ) T y ≤ -b 2 l } ≥ α 2 l , ∀ l ∈ I 2 . (2.7)
We call the zero-sum game with the strategy set S 1 α 1 for player 1 and the strategy set S 2 α 2 for player 2 as a distributionally robust zero-sum game. We denote this game by Z α . A strategy pair (x * , y

* ) ∈ S 1 α 1 × S 2 α 2 is called an SPE of the game Z α at α = (α 1 , α 2 ) ∈ [0, 1] p × [0, 1] q , if u(x, y * ) ≤ u(x * , y * ) ≤ u(x * , y), ∀ x ∈ S 1 α 1 , y ∈ S 2 α 2 .

Reformulation of distributionally robust chance constraints

We consider two different uncertainty sets based on the partial information about the mean vectors and covariance matrices of the random constraint vec-

tors a i k , i = 1, 2, k ∈ I i .
For each uncertainty set, distributionally robust chance constraints (2.4) and (2.5) are reformulated as second-order cone constraints.

Moments based uncertainty sets

For each player i, i = 1, 2, we consider the case where the mean vector and covariance matrix of the random vector a i k for all k ∈ I i are known to belong to polytopes U µ i k and U Σ i k , respectively. We consider polytopes

U µ i k = Conv(µ i k1 , µ i k2 , . . . , µ i kM ) and U Σ i k = Conv(Σ i k1 , Σ i k2 , . . . , Σ i kM )
, where Σ i kj ≻ 0, j = 1, 2, . . . M ; Conv denotes the convex hull and Σ i kj ≻ 0 implies that Σ i kj is a positive definite matrix. For each i = 1, 2, and k ∈ I i , the uncertainty set for the distribution of a i k is defined by

D i k µ i k , Σ i k =    F i k E F i k a i k ∈ U µ i k COV F i k [a i k ] ∈ U Σ i k    , (3.1) 
where E F i k and COV F i k are expectation and covariance operator under probability distribution F i k , respectively. The uncertainty set (3.1) is considered in [START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF]. As for the second uncertainty set, we consider the case where the mean vector of a i k lies in an ellipsoid of size γ i k1 ≥ 0 centered at µ i k and the covariance matrix of a i k lies in a positive semidefinite cone defined with a linear matrix inequality. It is defined by

D i k (µ i k , Σ i k ) =    F i k E F i k [a i k ] -µ i k ⊤ Σ i k -1 E F i k [a i k ] -µ i k ≤ γ i k1 , COV F i k [a i k ] ⪯ γ i k2 Σ i k    , (3.2) 
where Σ i k ≻ 0 and γ i k2 > 0; for the given matrices B 1 and

B 2 , B 1 ⪯ B 2 implies that B 2 -B 1 is a positive semidefinite matrix. The uncertainty set (3.2) is considered in [14].

Second-order cone constraint reformulation

We show that the distributionally robust chance constraints (2.4) and (2. 

(µ 1 kj ) T x + α 1 k 1 -α 1 k ||(Σ 1 kj ) 1 2 x|| ≤ b 1 k , ∀ j = 1, 2, . . . , M, k ∈ I 1 , (3.3) 
-(µ 2 kj ) T y + α 2 k 1 -α 2 k ||(Σ 2 kj ) 1 2 y|| ≤ -b 2 k , ∀ j = 1, 2, . . . , M, k ∈ I 2 . (3.4)
Proof. Based on the structure of uncertainty set (3.1), (2.4) can be written as inf

(µ,Σ)∈U 1 k inf F 1 k ∈D(µ,Σ) P (a 1 k ) T x ≤ b 1 k ≥ α 1 k ,
where

D(µ, Σ) = F 1 k E F 1 k [a 1 k ] = µ, COV F 1 k [a 1 k ] = Σ , and 
U 1 k = (µ, Σ) µ ∈ U µ 1 k , Σ ∈ U Σ 1 k .
The bound of one-sided Chebyshev inequality can be achieved by a two-point distribution given by equation ( 2) of [START_REF] Rujeerapaiboon | Chebyshev inequalities for products of random variables[END_REF]. Therefore, we have inf

F 1 k ∈D(µ,Σ) P (a 1 k ) T x ≤ b 1 k =        1 - 1 1+ (µ T x-b 1 k ) 2 (x T Σx) , if µ T x ≤ b 1 k , 0, otherwise.
For the case µ

T x > b 1 k , inf F 1 k ∈D(µ,Σ) P a 1 k x ≤ b 1 k = 0,
which makes constraint (2.4) infeasible for any α 1 > 0. Therefore, for x ∈ S 1 α1 the condition µ T x ≤ b 1 k always holds and the constraint (2.4) is equivalent to inf

(µ,Σ)∈U 1 k 1 - 1 1 + (µ T x -b 1 k ) 2 /(x T Σx) ≥ α 1 k ,
which can be reformulated as min

µ∈U µ 1 k b 1 k -µ T x max Σ∈U Σ 1 k √ x T Σx ≥ α 1 k 1 -α 1 k . ( 3.5) 
The above inequality (3.5) can be reformulated as (3.3). Similarly, we can show that (2.5) is equivalent to (3.4). □ Lemma 3.2. For each i = 1, 2, and k ∈ I i , let the distribution F i k of random vector a i k , lies in the uncertainty set D i k µ i k , Σ i k defined by (3.2). Then, the constraints (2.4) and (2.5) are equivalent to (3.6) and (3.7), respectively, given by

(µ 1 k ) T x + α 1 k 1 -α 1 k γ 1 k2 + γ 1 k1 Σ 1 k 1 2 x ≤ b 1 k , ∀ k ∈ I 1 , (3.6) 
-(µ 2 k ) T y + α 2 k 1 -α 2 k γ 2 k2 + γ 2 k1 Σ 2 k 1 2 y ≤ -b 2 k ∀ k ∈ I 2 . (3.7)
Proof. Based on the structure of the uncertainty set (3.2), the constraint (2.4) can be written as inf

(µ,Σ)∈ Ũ1 k inf F 1 k ∈D(µ,Σ) P a 1 k x ≤ b 1 k ≥ α 1 k ,
where

D(µ, Σ) = F 1 k E F 1 k [a 1 k ] = µ, COV F 1 k [a 1 k ] = Σ and Ũ1 k = (µ, Σ) µ -µ 1 k ⊤ Σ 1 k -1 µ -µ 1 k ≤ γ 1 k1 , Σ ⪯ γ 1 k2 Σ 1 k .
Using the similar arguments as in the Lemma 3.1, the constraint (2.4) is equiv-

alent to b 1 k + v 1 (x) v 2 (x) ≥ α 1 k 1 -α 1 k , (3.8) 
where

v 1 (x) =      min µ -µ T x s.t. µ -µ 1 k ⊤ Σ 1 k -1 µ -µ 1 k ≤ γ 1 k1 , (3.9) 
v 2 (x) =      max Σ x T Σx s.t. Σ ⪯ γ 1 k2 Σ 1 k .
Let β ≥ 0 be a Lagrange multiplier associated with the constraint of optimization problem (3.9). By applying the KKT conditions, the optimal solution of (3.9) is given by µ

= µ 1 k + √ γ 1 k1 Σ 1 k x √ x T Σ 1 k x
and the associated Lagrange multiplier is given by β =

x T Σ 1 k x 4γ 1 k1
. Therefore, the corresponding optimal value

v 1 (x) = -(µ 1 k ) T x -γ 1 k1 x T Σ 1 k x. Since, u T Σu ≤ u T γ 1 k2 Σ 1 k u for any u ∈ R n , then, v 2 (x) = γ 1 k2 x T Σ 1 k x.
Therefore, using (3.8), (2.4) is equivalent to (3.6). Similarly, we can show that (2.5) is equivalent to (3.7). □

The reformulation of feasible strategy sets (2.6) and (2.7) for uncertainty sets (3.1) and (3.2) can be written as

S 1 α 1 = x ∈ X | (µ 1 kj ) T x + κ α 1 k ||(Σ 1 kj ) 1 2 x|| ≤ b 1 k , ∀ j = 1, 2, . . . , M, k ∈ I 1 , (3.10) 
and For We assume that the strategy sets (3.10) and (3.11) satisfy the strict feasibility condition given by Assumption 3.3.

S 2 α 2 = y ∈ Y | -(µ 2 lj ) T y + κ α 2 l ||(Σ 2 lj ) 1 2 y|| ≤ -b 2 l , ∀ j = 1, 2, . . . , M, l ∈ I 2 . . (3.11) For each i = 1, 2, k ∈ I i , if κ α i k = α i k 1-α i k , ( 3 
each i = 1, 2, k ∈ I i , if κ α i k = α i k 1-α i k γ i k2 + γ i k1 ,

Assumption 3.3.

1. There exists an x ∈ S 1 α 1 such that the inequality constraints of S 1 α 1 defined by (3.10) are strictly satisfied.

2. There exists an y ∈ S 2 α 2 such that the inequality constraints of S 2 α 2 defined by (3.11) are strictly satisfied.

The conditions given in Assumption 3.3 are Slater's condition which are sufficient for strong duality in a convex optimization problem. We use these conditions in order to derive equivalent SOCPs for the zero-sum game Z α .

Existence and characterization of saddle point equilibrium

In this section, we show that there exists an SPE of the game Z α if the distributions of the random constraint vectors of both the players belong to the uncertainty sets defined in Section 3.1. We further propose a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game Z α . Theorem 4.1. Consider the game Z α where the distributions of the random constraint vectors a i k , k ∈ I i , i = 1, 2, belong to the uncertainty sets described in Section 3.1. Then, there exists an SPE of the game for all α ∈ (0, 1) p × (0, 1) q .

Proof. Let α ∈ (0, 1) p × (0, 1) q . For uncertainty sets described in Section 3.1, it follows from Lemma 3.1 and Lemma 3.2 that the strategy sets S 1 α 1 and S 2 

Equivalent primal-dual pair of second-order cone programs

From the minimax theorem [START_REF] Neumann | On the theory of games[END_REF], (x * , y * ) is an SPE for the game Z α if and only if

x * ∈ arg max

x∈S 1 α 1 min y∈S 2 α 2 u(x, y), (4.1) 
y * ∈ arg min y∈S 2 α 2 max x∈S 1 α 1 u(x, y). (4.2) 
We start with problem min y∈S 2 α 2 max x∈S 1 α 1 u(x, y). The inner optimization problem max x∈S 1 α 1 u(x, y) can be equivalently written as max

x,t 1 k,j x T Gy + g T x + h T y s.t. (i) -x T µ 1 k,j -κ α 1 k t 1 k,j + b 1 k ≥ 0, ∀ j = 1, 2 . . . , M, k ∈ I 1 , (ii) t 1 k,j -Σ 1 k,j 1 2 x = 0, ∀ j = 1, 2 . . . , M, k ∈ I 1 , (iii) C 1 x = d 1 , x r ≥ 0, ∀ r = 1, 2, . . . , m. (4.3) 
Let

λ 1 = λ 1 k,j M j=1,k∈I1 ∈ R M p , δ 1 k,j ∈ R m for all k ∈ I 1 , j = 1, 2 .
. . M , and ν 1 ∈ R K1 be the Lagrange multipliers of constraints (i), (ii), and equality constraints given in (iii) of (4.3), respectively. Then, the Lagrangian dual problem of the SOCP (4.3) can be written as

min λ1≥0, δ 1 k,j , ν 1 max x≥0, t 1 k,j x T Gy + g T x + h T y + k∈I1 M j=1 λ 1 k,j -x T µ 1 k,j -κ α 1 k t 1 k,j + b 1 k + (δ 1 k,j ) T t 1 k,j -Σ 1 k,j 1 2 x + (ν 1 ) T (d 1 -C 1 x) = min λ1≥0,δ 1 k,j ,ν 1 max x≥0 x T Gy - k∈I1 M j=1 λ 1 k,j µ 1 k,j + Σ 1 k,j 1 2 δ 1 k,j -(C 1 ) T ν 1 + g + k∈I1 M j=1 max t 1 k,j (δ 1 k,j ) T t 1 k,j -κ α 1 k λ 1 k,j t 1 k,j + h T y + (ν 1 ) T d 1 + k∈I1 M j=1 λ 1 k,j b 1 k .
The inner maximization problems in the above Lagrangian dual problem will be unbounded unless we have the following dual constraints

Gy - k∈I1 M j=1 λ 1 k,j µ 1 k,j + Σ 1 k,j 1 2 δ 1 k,j -(C 1 ) T ν 1 + g ≤ 0, ||δ 1 k,j || ≤ κ α 1 k λ 1 k,j , ∀ k ∈ I 1 , j = 1, 2 . . . , M.
Under Assumption 3.3, the Lagrangian dual problem of (4.3) has zero duality gap [START_REF] Boyd | Convex Optimization[END_REF]. Therefore, the problem min y∈S 2 α 2 max x∈S 1 α 1 u(x, y) is equivalent to the following SOCP min Similarly, problem max x∈S 1 α 1 min y∈S 2 α 2 u(x, y) is equivalent to the following SOCP max

y, ν 1 , δ 1 k,j , λ 1 k,j h T y + (ν 1 ) T d 1 + k∈I1 M j=1 λ 1 k,j b 1 k s.t. (i) Gy - k∈I1 M j=1 λ 1 k,j µ 1 k,j + Σ 1 k,j 1 2 δ 1 k,j -(C 1 ) T ν 1 + g ≤ 0, (ii) -(µ 2 lj ) T y + κ α 2 l ||(Σ 2 lj ) 1 2 y|| ≤ -b 2 l , ∀ j = 1, 2, . . . , M, l ∈ I 2 , (iii) ||δ 1 k,j || ≤ κ α 1 k λ 1 k,j , λ 1 k,j ≥ 0, ∀ k ∈ I 1 , j = 1, 2 . . . , M, (iv) 
x, ν 2 , δ 2 l,j , λ 2 l,j g T x + (ν 2 ) T d 2 + l∈I2 M j=1 λ 2 l,j b 2 l s.t. (i) G T x - l∈I2 M j=1 λ 2 l,j µ 2 l,j + Σ 2 l,j 1 2 δ 2 l,j -(C 2 ) T ν 2 + h ≥ 0, (ii) (µ 1 kj ) T x + κ α 1 k ||(Σ 1 kj ) 1 2 x|| ≤ b 1 k , ∀ j = 1, 2, . . . , M, k ∈ I 1 , (iii) ||δ 2 l,j || ≤ κ α 2 l λ 2 l,j , λ 2 l,j ≥ 0, ∀ l ∈ I 2 , j = 1, 2, . . . M (iv) C 1 x = d 1 , x r ≥ 0, ∀ r = 1, 2, . . . , m. (4.5) 
It follows from the duality theory of SOCPs that (4.4) and (4.5) form a primaldual pair [START_REF] Boyd | Convex Optimization[END_REF].

Remark 4.2. For each i = 1, 2, and k For each i = 1, 2, and k Next, we show that the equivalence between the optimal solutions of (4.4)-(4.5)

∈ I i , if κ α i k = α i k 1-α i k , (4 
∈ I i , if κ α i k = α i k 1-α i k γ i k2 + γ i
and an SPE of the game Z α .

Theorem 4.3. Consider the zero-sum game Z α where the feasible strategy sets of player 1 and player 2 are given by (3.10) and (3.11), respectively. Let Assumption 3.3 holds. Then, for a given α ∈ (0, 1) p × (0, 1) q , (x * , y * ) is an SPE of the game Z α if and only if there exists (ν 1 * , (δ 1 * k,j ) k,j , λ 1 * ) and (ν 2 * , (δ 2 * l,j ) l,j , λ 2 * ) such that (y * , ν 1 * , (δ 1 * k,j ) k,j , λ 1 * ) and (x * , ν 2 * , (δ 2 * l,j ) l,j , λ 2 * ) are optimal solutions of (4.4) and (4.5), respectively.

Proof. Let (x * , y * ) be an SPE of the game Z α . Then, x * and y * are the solutions of (4.1) and (4.2), respectively. Therefore, there exists (ν 1 * , (δ 1 * k,j ) k,j , λ 1 * ) and (ν 2 * , (δ 2 * l,j ) l,j , λ 2 * ) such that (y * , ν 1 * , (δ 1 * k,j ) k,j , λ 1 * ) and (x * , ν 2 * , (δ 2 * l,j ) l,j , λ 2 * ) are optimal solutions of (4.4) and (4.5) respectively. Let (y * , ν 1 * , (δ 1 * k,j ) k,j , λ 1 * ) and (x * , ν 2 * , (δ 2 * l,j ) l,j , λ 2 * ) be optimal solutions of (4.4) and (4.5), respectively. Under Assumption 3. Consider the constraint (i) of (4.4) at optimal solution (y * , ν 1 * , (δ 1 * k,j ) k,j , λ 1 * ) and multiply it by x T , where x ∈ S 1 α1 . Then, by using Cauchy-Schwartz inequality, we have (4.9)

It follows from (4.7), (4.8), and (4.9) that (x * , y * ) is an SPE of the game Z α . □

Lemma 3 . 1 .

 31 [START_REF] Singh | A second-order cone programming formulation for zero sum game with chance constraints[END_REF] are equivalent to second-order cone constraints for the uncertainty sets defined by (3.1) and (3.2). For each i = 1, 2, and k ∈ I i , let the distribution F i k of random vector a i k , lies in uncertainty set D i k µ i k , Σ i k defined by (3.1). Then, the constraints (2.4) and (2.5) are equivalent to (3.3) and (3.4), respectively, given by

  .10) and(3.11) represent the reformulations of (2.6) and (2.7) under uncertainty set defined by (3.1), respectively.

  and M = 1, (3.10) and (3.11) represent the reformulations of (2.6) and (2.7) under uncertainty set defined by (3.2), respectively.

α 2 areα 1 and S 2 α 2 are

 22 given by (3.10) and(3.11), respectively. It is easy to see that S 1 convex and compact sets. The function u(x, y) is a bilinear and continuous function. Hence, there exists an SPE from the minimax theorem[START_REF] Neumann | On the theory of games[END_REF].
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 2 = d 2 , y s ≥ 0, ∀ s = 1, 2, . . . , n. (4.4)

. 4 )

 4 and (4.5) represent the primal-dual pair of SOCPs for the uncertainty sets defined by (3.1).

k1 and M = 1 ,( 4 . 4 )

 144 and (4.5) represent the primal-dual pair of SOCPs for the uncertainty set defined by (3.2).

  3, (4.4) and (4.5) are strictly feasible. Therefore, strong duality holds for primal-dual pair (4.4)-(4.5). Then, we haveg T x * + (ν 2 * ) T d 2 + l∈I2 M j=1 λ 2 * l,j b 2 l = h T y * + (ν 1 * ) T d 1 +

xb 2 lb 1 k

 21 T Gy * + g T x + h T y * ≤ h T y * + (ν 1 * ) T d 1 + x * T Gy + g T x * + h T y ≥ g T x * + (ν 2 * ) T d 2 + , ∀ y ∈ S 2 α2 . (4.8)Take x = x * and y = y * in (4.7) and (4.8), then from (4.6), we getu(x * , y * ) = h T y * + (ν 1 * ) T d 1 + = g T x * + (ν 2 * ) T d 2 +
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