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Introduction

The specificities of user-generated content (UGC) leads to a wide range of vocabulary and grammar variations [START_REF] Foster | cba to check the spelling": Investigating parser performance on discussion forum posts[END_REF][START_REF] Seddah | The french social media bank: a treebank of noisy user generated content[END_REF][START_REF] Eisenstein | What to do about bad language on the internet[END_REF]. These variations result in a large increase of out-of-vocabulary words (OOVs) in UGC corpora with respect to canonical parallel training data and raise many challenges for Machine Translation (MT), all the more since common language variations found in UGC are actually productive (there will always be new forms that will not have been seen during training). This fact limits the pertinence of "standard" domain adaptation methods such as fine-tuning1 or normalization techniques [START_REF] Héctor | From noisy questions to Minecraft texts: Annotation challenges in extreme syntax scenario[END_REF] and urges the development of robust machine translation models able to cope with out-of-distribution (OOD) texts in a challenging zeroshot scenario in which the target distribution is unknown during training.

To address the problem raised by OOD texts, an increasing number of works [START_REF] Setiawan | Variational neural machine translation with normalizing flows[END_REF][START_REF] Schmunk | Sentiment analysis: Extracting decision-relevant knowledge from ugc[END_REF][START_REF] Arya | Addressing posterior collapse with mutual information for improved variational neural machine translation[END_REF][START_REF] Przystupa | Investigating the impact of normalizing flows on latent variable machine translation[END_REF][START_REF] Xiao | Wat zei je? detecting out-of-distribution translations with variational transformers[END_REF] explore the possibility to combine deep learning with latent variable (LV) models, which are indeed able to capture underlying structure information and to model unobserved phenomena. The combination of these models with neural networks was shown to increase performance in several NLP tasks [START_REF] Kim | A tutorial on deep latent variable models of natural language[END_REF]. In this work, we focus on a specific latent variable model for MT, Variational NMT (VNMT) [START_REF] Zhang | Variational neural machine translation[END_REF] which has been reported to have good performance and interesting adaptability properties [START_REF] Przystupa | Investigating the impact of normalizing flows on latent variable machine translation[END_REF][START_REF] Xiao | Wat zei je? detecting out-of-distribution translations with variational transformers[END_REF].

The goal of this work is twofold. First, we aim to evaluate the performance of VNMT when translating a special kind of OOD texts: French socialmedia noisy UGC. To account for the challenges raised by the productive nature of UGC, we consider a highly challenging zero-shot scenario and assume that only canonical texts2 are available for training the system. We hypothesize that, by leveraging on Variational NMT, latent models can build more robust representations able to represent OOD observations that are symptomatic of noisy UGC and automatically map them to in-distribution instances, which can be more easily translated.

Furthermore, to account for the diversity of UGC phenomena, we introduce a new extension of VNMT that relies on Mixture Density Networks [START_REF] Bishop | Mixture density networks[END_REF] and Normalizing Flows [START_REF] Jimenez | Variational inference with normalizing flows[END_REF]. Intuitively, each mixture component extracts an independent latent space to represent the source sentence and can potentially model different UGC specificities. Interestingly, extracting embeddings from our zero-shot model that has never seen any UGC data and using them in a classic transformer-based NMT model leads to a stronger, more robust to UGC noise model. This is in line with the regularizing character of VNMT [START_REF] Zhang | Variational neural machine translation[END_REF].

Our contributions can be summarized as follows:

• we study the performance, in a zero-shot scenario, of VNMT models and evaluate their capacity to translate French UGC into English, which resulted in a consistent improvement of translation quality;

• we introduce a new model that uses state-ofthe-art transformer as the backbone of a variational inference network to produce robust representation of noisy source sentences, and whose results outperform strong VNMT and non-latent baselines when translating UGC in a zero-shot scenario. Specifically, our model demonstrates a high robustness to noise while not impacting in-domain translation performance;

• by probing the learned latent representations, we show the importance of using several latent distributions to model UGC and the positive impact of the ability of VNMT models to discriminate between noisy and regular sentences while maintaining their representation closer in the embedding space;

• we report evidence that our VNMT models act as regularizers of their backbone models, leading to more robust source embeddings that can be later transferred with a relatively high performance gain in our zero-shot UCG translation scenario.

Background and related works

Variational Neural Machine Translation Variational Inference (VI) methods [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] are generative architectures capable, from a distributional perspective, of modeling the hidden structures that can be found in a corpus. In a sequence-to-sequence MT task, where x and y are respectively the source and target sentences, VNMT [START_REF] Zhang | Variational neural machine translation[END_REF] architectures assume there exists an hidden variable z modeling the implicit structure (i.e. relations) between the bilingual sentence pairs. In the context of UGC translation, we believe that this latent variable can capture the variations between a source sentence and its canonical, normalized form, recovering its underlying meaning and ensuring that the representation of the former is close to the representation of the latter.

To make computations tractable, in spite of the latent variable, VI combines a so-called variational posterior q ϕ (z|x, y) that is chosen to approximate the true posterior distribution, with prior p(z|x); and a neural decoder generative distribution, p θ (y|x, z), in charge of generating the translation hypothesis conditioned on the latent variable. Once the family of densities q is chosen, the parameters of the two distributions are jointly estimated to model the output y by looking for the parameters (θ, ϕ) that maximizes the evidence lower bound objective function:

log p θ (y) ≥ E q ϕ (z|x,y) [log p θ (y|x, z)] -D KL [q ϕ (z|x, y)||p(z|x)] (1) 
Normalizing Flows One of the major caveats of variational methods is that choosing the prior q(z) is a complicated process that requires some a priori knowledge of the task. In practice, a normal distribution with fixed parameters (generally µ = 0.0 and σ = 1.0) is often chosen due to the simplicity of its re-parametrization for sampling. However, such an assumption can be restrictive when modeling more complex processes. Regarding this issue, [START_REF] Jimenez | Variational inference with normalizing flows[END_REF] propose to enhance variational methods with Normalizing Flows (NF) [START_REF] Tabak | A family of nonparametric density estimation algorithms[END_REF]. A chain of normalizing flows is a series of simple bijective functions automatically chosen to extract a more suitable representation for the task at hand from a random variable, by alleviating the restrictions of choosing a default fixed prior. Concretely, a base distribution q 0 (z 0 ), that generates the initial latent codes, z 0 , undergoes a series of invertible and smooth transformations f : R d → R d , called flows. Then, the random latent variables z are transformed to the random variable z ′ = f (z) after each flow:

q(z ′ ) = q(z) det ∂f -1 ∂z ′ = q(z) det ∂f ∂z -1 (2) 
Finally, we can build an arbitrarily K-long chain of f k transformations to generate the final latent variables, z K , from the initial random variables, z 0 , which is drawn from the base distribution q 0 (z 0 ) (often chosen to be N (0, 1)):

z K = f K • ... • f 2 • f 1 (z 0 ) ln(q K (z K )) = ln(q 0 (z 0 )) - K k=1 ln det ∂f k ∂z k-1
(3) In MT, normalizing flows were recently used to improve VNMT models: [START_REF] Setiawan | Variational neural machine translation with normalizing flows[END_REF] show that using them in an in-domain evaluation setting results in an increase of +1.3 BLEU points on the IWSLT'14 (De-En) and +0.2 BLEU points on the WMT'18 (En-De); in a simulated out-domain evaluation, NF still improve translation quality: adding NF to the model trained on WMT'18 result in a +0.9 BLEU score improvements than the baseline Transformer system and +0.6 compared to the VNMT without using NF.

Mixture Density Networks Mixture Density Networks (MDN) are another interesting generalization of variational encoding for modeling UGC. By using MDN, the posterior distribution of the current decoding step p(z|x, y t ) is no longer approximated by a single variational distribution q ϕ (z|x, y 1:t-1 ) but by a linear combination of variational posteriors qm ϕ (z|x, y 1:t-1 ):

p(z|x, y t ) = M m=1
α m (x, y 1:t-1 )• qm (z|x, y 1:t-1 )

(4) where α m are known as the mixing coefficients. Intuitively, an MDN can be interpreted as a combination of M variational encoders. Our intuition is that, since UGC contains a large number of different kind of variations, covering very different aspects ranging from morphology to phonetics, including lexicon and sentence structure [START_REF] Seddah | The french social media bank: a treebank of noisy user generated content[END_REF]; by using several independent VI components we can account for multiple UGC phenomena. Thus, with an MDN, it is possible that each component of the variational encoder is able to model different UGC specificities, allowing us to better process UGC as a whole. In the past, MDN has been used to address sequence-tosequence generative tasks, such as SketchRNN [START_REF] Ha | A neural representation of sketch drawings[END_REF] and modeling of sequential environment states in reinforcement learning [START_REF] Ha | Recurrent world models facilitate policy evolution[END_REF].

Gumbel-Softmax sampling Regarding the mixing coefficients definition, we also explore the use of a categorical probability distribution, for which probabilities are calculated by the network, such as in [START_REF] Ha | A neural representation of sketch drawings[END_REF]. Unlike theirs, our supervised end-to-end training requires backpropagating the error gradient through the variational network via reparametrized sampling (Kingma and Welling, 2014) which poses optimization challenges because of the discrete random variables used as latent vector for categorical distributions. For this reason, we use the reparametrization of this distribution via the Gumbel-Softmax sampling [START_REF] Jang | Categorical reparameterization with gumbel-softmax[END_REF][START_REF] Maddison | The concrete distribution: A continuous relaxation of discrete random variables[END_REF], such that, the arg max function is approximated by a softmax and generates the relaxed one-hot encoded samples, which correspond to the mixing coefficients:

α m = exp(log(π m ) + g m )/τ ) M j=1 exp((log(π j ) + g j )/τ ) (5) 
where g m ...g M are i.i.d samples from the Gumbel(0,1) distribution [START_REF] Julius | Statistical theory of extreme values and some practical applications; a series of lectures[END_REF][START_REF] Maddison | The concrete distribution: A continuous relaxation of discrete random variables[END_REF], π i the probability associated to the mth MDN's gaussian components, jointly generated by neural networks along with the computations of the corresponding parameters (µ m , σ m ) for m...M ; and τ the temperature parameter, which controls variability of the sampling. When τ → 0, the sampling exhibits a perfectly one-hot encoded output, whereas, conversely, when τ → inf, the distribution approaches an uniform one across all the MDN's components.

Extending Variational Methods for Robust MT

Our model adopts a variational encoder-decoder architecture inspired by SketchRNN ( §2) that uses an MDN on the decoder's variational network to model multiple and independent continuous generative variational distributions. However, unlike SketchRNN, we use a Transformer backbone for the encoder and the decoder and train our model in a end-to-end manner on canonical parallel corpora. In the following, we will first describe the general architecture of our model, denoted multi-VNMT, and then detail the encoder and decoder parameters. first processed by a standard Transformer encoder, the output of which is used by a Variational Encoder enhanced with NF to predict a latent representation of the input sentence. The latent representation and the output of the last layer of the Transformer encoder are combined using the gating mechanism of [START_REF] Setiawan | Variational neural machine translation with normalizing flows[END_REF]. This combined representation is then fed to the decoder that has a similar architecture: it is made of an "usual" Transformer decoder and a variational MDN that is sampled to obtain a prediction that will be combined to the Transformer output by (again) a gating mechanism.

The model can be trained in an end-to-end fashion using the "reparametrization trick" of [START_REF] Diederik | Autoencoding variational bayes[END_REF]. In order to ensure that the estimated variances for the variational posteriors are positive, we used the softplus activation function [START_REF] Hao Zheng | Improving deep neural networks using softplus units[END_REF], as done in van den Berg et al. (2018)'s implementation.

In addition, concerning the training of the decoder's MDN, we compare two different ways to compute the mixing coefficient: the first one consists in a vanilla non-latent softmax, the second on a relaxed categorical variational method that relies on a Gumbel-Softmax sampling ( §2).

The model has been implemented in OpenNMT-py 3 [START_REF] Klein | Opennmt: Neural machine translation toolkit[END_REF].

Encoder Our encoder backbone is the "standard" transformer of [START_REF] Vaswani | Attention is all you need[END_REF], made of 6-layered transformer layers each with 8 attention heads. the feed-forward layers have 2,048 parameters and the dimension of lexical embeddings is 512. The dimension of the encoder vari-3 https://github.com/josecar25/MDN-VNMT ational network is 128. The network is extented with 4-flows Normalizing Planar Flows (Rezende and Mohamed, 2015). 4Following to [START_REF] Setiawan | Variational neural machine translation with normalizing flows[END_REF], we combine the last Transformer layer output to the latent vectors using a gating mechanism. We used a feed-forward network to transform the representation of dimension 128 predicted by the variational network into a representation of size 512 that matches the Transformer representation dimension.

In Figure 1b, we show the Transformer and variational encoding latent state z as being estimated (p θ (z|x)) approximating the posterior's mean and variance, both learned using the reparametrization trick. In the figure, we can also observe how our model's encoder comprises the Transformer backbone and VI network.

Decoder As for the encoder, the first component of the decoder is the "standard" Transformer decoder of [START_REF] Vaswani | Attention is all you need[END_REF] and uses the same parameters as the Transformer encoder.

The Transformer decoder's last layer output is passed to a 128-component MDN, with trainable parameters ϕ and π: ϕ encodes the mean and variance of each multivariate gaussian components; π contains the probabilities of the categorical distribution that generates the mixing coefficient for each component. Concisely, we estimate a posterior as a series of M posteriors parameterized by ⟨ϕ, π⟩, i.e. qϕ;π m (z dec |x, y 1:t-1 ), conditioned via the decoder's Transformer, on both the gated latent encoder's output and previous pre- 

Training models

All systems are trained using a batch size of 4,096 tokens using the Adam optimizer (Kingma and Ba, 2015) accumulating gradients every 2 steps, and the Noam learning rate schedule [START_REF] Vaswani | Attention is all you need[END_REF] with 8K warmup steps. Throughout training, learning rate attains a maximum of 7e-4 and minimum of 1e-5. Both encoder and decoder Transformers are trained using 0.1 dropout and we employed 0.1 label smoothing [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF]. Training for, at most, 300K training iterations on a single Nvidia V100 took about 40 hours to converge for the multi-VNMT models, 34 hours for VNMT-baseline and 28 hours for the non-latent Transformer baseline. In order to avoid posterior collapse, and as done in Setiawan et al. ( 2020), we use β C -VAE [START_REF] Prokhorov | On the importance of the Kullback-Leibler divergence term in variational autoencoders for text generation[END_REF], with values β = 1 and C = 0.1. Additionally, we used a Kullback-Leibler (KL) annealing schedule of 100K iterations for training. We set a 10% probability of dropping the target word [START_REF] Samuel | Generating sentences from a continuous space[END_REF]. We have chosen, as initial experimental configuration, τ = 1.0 for the Gumbel-Softmax sampling temperature, which was selected mainly aiming to avoid artificial gradient scaling during backpropagation (c.f. Equation ( 5)). A beam of width 5 has been used for evaluation.

Experiments

Datasets We train our different MT models on two different French to English canonical parallel corpora: the first one is a subset of the WMT corpus, i.e. Europarl (v7) and NewsCommentary(v10) [START_REF] Bojar | Findings of the 2015 workshop on statistical machine translation[END_REF] and the second one is theOpenSubtitles'18 corpus [START_REF] Lison | Opensubtitles2018: Statistical rescoring of sentence alignments in large, noisy parallel corpora[END_REF]. We used BPE tokenization [START_REF] Sennrich | Neural machine translation of rare words with subword units[END_REF] with 16K merge operations. Detailed statistics on our corpora can be found in Table 1.

UGC Test Sets

To evaluate the different NMT models, we consider two data sets of manually translated UGC: MTNT [START_REF] Michel | MTNT: A testbed for machine translation of noisy text[END_REF] and the Parallel French Social Media Bank corpus (PFSMB) (Rosales Núñez et al., 2019)5 which extends the French Social Media Bank [START_REF] Seddah | The french social media bank: a treebank of noisy user generated content[END_REF] with English translations. These two data sets raise many challenges for MT systems: they notably contain characters that have not been seen in the training data (e.g. emojis), rare character sequences (e.g. inconsistent casing or usernames) as well as many OOVs denoting URL, mentions, hashtags or more generally named entities (NE). Most of the time, sOOVs are exactly the same in the source and target sentences.

We also consider the 4Square corpus (Berard et al., 2019) as a blind test to validate our conclusions. To analyze our neural representations ( §7), we use a subset of the PFSMB, called PMUMT, which contains 400 annotated and normalized French to English UGC sentences (Rosales [START_REF] Carlos | Understanding the impact of UGC specificities on translation quality[END_REF].

Protocols Translation quality was evaluated using BLEU [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] and chrF2 [START_REF] Popovic | chrf++: words helping character n-grams[END_REF] both computed by SACREBLEU [START_REF] Post | A call for clarity in reporting BLEU scores[END_REF] with the 'intl' tokenization, after detokenizing the systems outputs.

In all the experiments we used the hyperparameters values reported by [START_REF] Vaswani | Attention is all you need[END_REF] and only choose the number of components of the MDN and the dimension of the latent representation on the validation set. 6 Regarding the latent dimension, we conducted the same study with 128, 256 and 512 dimensions, with 128 being the best value. A beam of size 5 has been used for evaluation.

Results

In this section we present the main MT results to study MT performance of our methods.

MT Performance Our first experiment aims to compare the performance of multi-VNMT, the model we introduced in Section 3, to that of a "vanilla" Transformer model and of a state-of-the-art VNMT system using NF. 7 The first baseline, a non-latent NMT architecture, Transformer, corresponds to our model without its VI components (i.e. with only the Transformer encoder and decoder); the second baseline, VNMT-baseline, corresponds to the equivalent of our NF setup (featuring 4 Planar Flows) from [START_REF] Setiawan | Variational neural machine translation with normalizing flows[END_REF].

Results achieved by these systems are reported in Table 2. We computed the 95% statistical significance by using a 1,000-samples bootstrapping, as in [START_REF] Koehn | Statistical significance tests for machine translation evaluation[END_REF]. It should first be noted that the performances of the three systems we consider are identical when they are evaluated on in-domain data, whatever the evaluation measure considered (no statistically significant difference between the models). This observation highlights one of the strength of the proposed method: contrary to fine-tuning (arguably the most common method to adapt a system to a new domain) that often hurts performance on in-domain evaluation because of catastrophic forgetting [START_REF] Mccloskey | Catastrophic interference in connectionist networks: The sequential learning problem[END_REF], the improvement of the quality of UGCs by the proposed method is not at the expense of the quality of translation of canonical texts.

It also appears that, on out-of-domain text, multi-VNMT, the approach proposed in this work, outperforms the standard Transformer model as well as the state-of-the-art VNMT model, supporting our hypothesis that considering several variational inference components allows to better capture all the variations that can be found in UGC and will result in improved translation quality. Interestingly, our system also performs better than Transformer when evaluated on out-domain canonical data and not only on UGC data. It should be noted, however, that the gains of our model are consistent but small and statistically significant mainly when translation quality is evaluated with chrF2.

Ablation study To better understand the impact of the different components of our model, we conduct an ablation study whose results are reported in Table 3. Overall, we obtain the best BLEU scores across all test sets for the "full" multi-VNMT model.

In particular, it appears that static latent representation (z static in Table 3), where instead of sampling from the learned distributions, we retrieve their mean as output, show slightly better BLEU scores when translating the MTNT with the model trained on OpenSubtitles and the newstest'14 test set with the model trained on WMT (+0.1 improvement in the two cases). However, results are inconsistent for UGC test sets and otherwise worse than those of the full model for both in-domain and canonical OOD test sets for our two training configurations. This might be explained by the lack of stochastic perturbations provided by the sampling step during training, leading the model to lose generalization during evaluation.

It is also interesting to note that using a categorical variational version of the mixing coefficients rather than the usual choice of computing them with a softmax improves translations quality: the latter is only performing better for the newstest'14 test set when training on the OpenSubtitles corpus (π non-latent). Following the same trend, the WMT training data configuration also show improvements when using the Gumbel-Softmax version, for which +0.8 and +0.3 BLEU point improvement were obtained for both the PFSMB and MTNT UGC testsets, respectively.

Posterior collapse

We have computed the average KL divergence of the variational decoder's block (i.e. D KL (q ϕ (z|x, y)||p θ (z|x)) on the encoder side) of multi-VNMT and its ablated ver- sion without the MDN module in an in-domain setting. When trained (using the same KL annealing schedule) on OpenSubtitles (resp. WMT) this divergence is 0.21 (resp. 0.38) for multi-VNMT and 0.15 (resp. 0.33) when removing the MDN block, suggesting that our proposed architecture is less prone to suffer from the posterior collapse phenomenon.

Analyzing Latent Representations

In this Section, we describe several experiments aiming at understanding how multi-VNMT uncovers more robust representations than the VNMT baseline.

Impact of Noise in the Source First, to evaluate the perturbations that the model suffers when noise is present in the source, we measure the cosine similarity between the representations of the French noisy sentences and their normalized version, taking advantage of the PMUMT corpus ( §5). More precisely, we compare the source-side embeddings of the 400 original noisy UGC sentences and their corresponding 400 fullynormalized versions built by VNMT-baseline and multi-VNMT. We observe that the average cosine similarity between the noisy and normalized learning representations of multi-VNMT is 0.36 compared to an average similarity of 0.26 for the representations of VNMT-baseline, sug- gesting that the former provides more robust representations of UGC than the latter, a conclusion supported by the distribution of similarities shown in Figure 2.

Noisy vs normalized data To complete the previous analysis, we have reported, in Figure 3, the projection of the representations of noisy and normalized sentences computed by t-SNE. We can notice how both VNMT systems have a tendency to separate noisy and normalized sentences compared to Transformer, while both having higher cosine similarity than the latter. Transferring learning representations As discussed above, in Figure 3 we noticed that VNMT seems to enforce noisy morphology modeling to the Transformer's embeddings in an implicit way. This motivated us to study whether the information in such learning representations can be used by the Transformer backbone model and benefit from improved robustness while removing the direct latent space contribution, and notably, with the same number of parameters and architecture as Transformer. Thus, in Table 4, we report BLEU scores for the Transformer model trained on OpenSubtitles, by either initializing the VNMT-pretrained source-side embeddings before training, or fine-tuning (FT) the system. We have performed FT using the same data configuration as in OpenSubtitles and continued training for 3 epochs from the Transformer model in Table 2 while replacing the Transformer's source embeddings by their VNMT-learned version's weights.

Results in Table 4 provide evidence that VNMT enforces more robust embeddings, which perform consistently better over the PFSMB UGC test set compared to the baseline, the system Frozen embs giving the most consistent results over UGC. This system also achieves the best newstest'14 canonical OOD test set in the OpenSubtitles setup, while taking advantage of an increased robustness to UGC. These results Table 5: BLEU scores of our best systems on blind test sets.

indicate that our VNMT model leads to embeddings that are more robust to noise even when used in a classic transformer-based NMT baseline. An interesting path of research would be to evaluate these embeddings in other tasks and scenarios (e.g. Cross lingual UGC Q&A).

Blind test sets scores

We evaluated our best performing model (multi-VNMT trained on OpenSubtitles) on the blind test sets described in § 5, translating another set of tests to assess whether our approach proves useful for generalization over different types of UGC. We have also included the 4Square corpus [START_REF] Berard | Machine translation of restaurant reviews: New corpus for domain adaptation and robustness[END_REF] to validate our VNMT system on other domain of UGC (restaurant reviews). We also display the results when using the VNMT-baseline baseline and the Transformer model to assess improvement of our proposed architecture. We report such results in Table 5, where we can see that, when translating our blind UGC test sets, multi-VNMT consistently outperforms the baselines. It is interesting to notice that, although the in-domain performances for these 3 systems are very similar (between 31.4 and 31.5 BLEU in Table 2), the performance gap of blind UGC test sets is larger, i.e. +0.8 BLEU in average compared to the non-latent baseline.

Discussion

How MDN behaves under noise In Appendix A, we discuss how MDN components are activated when translating canonical in-domain and OOD texts, as well as UGC and normalized UGC. In Figure 4 and A How do MDN's components react to UGC?

We proceeded to analyze and visualize how the MDN mixture coefficients react when translating our different test sets. In order to do so, in Figure 4 we report results for the canonical test sets, the normalized PMUMT corpus, and its noisy original UGC version. Each bar of the Wind Rose diagram represents one of the 128 independent trained distributions' mixture weights, which have been normalized and scaled across the four graphics, and where the 7th MDN component seems to be consistently the one that drives most of the decoding for the presented experiments. Furthermore, we can notice that most mixing coefficients are, for the most part, have around 50% probability of contributing to the final inference mixture, despite not enforcing this behavior with any specific method (e.g. dropout). On the other hand, the visualization suggests that both yellow (50-60%) and blue components (30-40% of activation) are variable across test sets, being very similar between PMUMT Norm and OpenSubTest, which could indicate that the mixture components are learning to encode different types of texts, potentially working as an implicit topic modeling module. Regarding the visualization when translating PMUMT Noisy, the main MDN component identified above, seems less important even when compared to the out-ofdomain newstest'14 set, which suggests that the MDN uses more dense representations when processing noisy texts.

In parallel, in Table 6 we display the covariance of these coefficients' distributions between the combinations of their values when translating different kind of texts, along with the standard deviation and sparsity to describe how the MDN's components behave.

Comparing the visualization in Figure 6, we can notice how the noisy UGC PMUMT and the out-of-domain newstest'14, diverge from the in-domain OpenSubTest and normalized UGC PMUMT corpus. This correlation is evidenced in the results in Table 6, where PMUMT noisy has the lowest score when compared to every other corpus, even if its normalized version seems to be the most correlated to the in-domain evaluation. Specifically, PMUMT Noisy is the least correlated to in-domain OpenSubTest and out-ofdomain newstest'14 corpora, which points to the MDN reacting differently to content domain and UGC specificities in the noise; this observation is also supported by the associated figure. It is also interesting to notice that, according to the standard deviation and sparsity values, the active MDN components are more dense and variable for out-of-domain evaluation conditions, for the same Gumbel sampling temperature value. 

Figure 1 :

 1 Figure 1: (a) VNMT-MDN architecture overview. (b) Directed graph of our encoder-decoder model variational inference. Dashed lines represent the variational approximation for the posterior distribution, and solid lines stand for the generative models. The blue arrow depicts the generative networks for sourceside monolingual reconstruction distribution p(x|z).

Figure 2 :

 2 Figure 2: Distribution of cosine similarities between the representations of noisy and normalized sentences of PMUMT built by the encoder of VNMT-baseline and multi-VNMT.

Figure 3

 3 Figure 3: t-SNE projection of the encoder source embeddings for noisy sentences and their normalized versions.

  (a) PMUMT norm (b) PMUMT noisy (c) OpenSubTest (d) newstest'14

Figure 4 :

 4 Figure 4: Average MDN mixture weights for test sets of different natures.

Table 1 :

 1 Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-Token Ratio, ASL for average sentence length and #chars for the number of different characters.dicted tokens, y 1:t-1 . The MDN's mixing coefficient (α m (x, y 1:t-1 )) network also takes the same input and is computed separately, by either using a fully-forward layer with softmax activation or the relaxed categorical Gumbel distribution. Both networks computing qm and α m are jointly trained in an end-to-end fashion, such that translation loss is minimal for representations sampled from the resulting mixture, obtained according to Equation4.

	Corpus	#sentences #tokens	ASL TTR #chars	Corpus	#sents #tokens	ASL TTR #chars
	train set					UGC test			
	WMT	2.2M	64.2M	29.7 0.20	335	PFSMB	777	13,680 17.60 0.32	116
	OpenSub.	9.2M	57.7M	6.73 0.18	428	MTNT	1,022	20,169 19.70 0.34	122
						UGC blind			
	test set					PFSMB	777	12,808 16.48 0.37	119
	OpenSub.	11,000	66,148	6.01 0.23	111	MTNT	599	8,176 13.62 0.38	127
	newstest	3,003	68,155 22.70 0.23	111	4Square	1,838	18,234	9.92 0.22	109

Table 2 :

 2 MTNT † News ⋄ OpenSubTest PFSMB † MTNT † News OpenSubTest ⋄ # params. BLEU and chrF2 test scores for our models. The † symbol indicates the UGC test sets, and ⋄ in-domain test sets. Highest metric for each test set are in bold; scores significantly better than Transformer (p < 0.05) are marked with a *.

					WMT				OpenSubtitles
	Transformer VNMT-baseline PFSMB † BLEU 15.1 15.5 multi-VNMT 16.0*	21.3 21.4 21.8	27.9 27.9 27.9	16.4 16.4 16.7*	27.7 28.0 28.4		28.4 28.9 29.2	26.4 26.5 26.4	31.4 31.4 31.5	69M 72M 77M
	chrF2	Transformer VNMT-baseline multi-VNMT	37.8 38.3 38.5*		45.1 45.1 45.5	54.4 54.6 54.6	38.6 38.6 39.0*	46.9 47.6 47.7*		48.3 49.2* 49.6*	52.6 53.1* 52.9*	48.9 48.9 49.0	69M 72M 77M
					WMT				OpenSubtitles
			PFSMB † MTNT † News ⋄ OpenSubTest	PFSMB † MTNT † News OpenSubTest ⋄	# params.
	multi-VNMT	16.0	21.8	27.9		16.7	28.4	29.2	26.4	31.5	77M
		π non-latent	15.8	21.0	27.8		16.4	28.1	28.5	26.6	31.3	77M
		-NF	15.3	21.6	28.0		16.5	28.3	28.8	26.1	31.3	76M
		Z STATIC	16.5	20.9	28.0		16.4	28.1	29.3	26.2	31.4	76M
		-MDN	16.5	20.9	27.8		16.6	27.7	28.7	26.2	31.3	73M

Table 3 :

 3 

BLEU test scores our ablated variants. The † symbol indicates the UGC test sets, and ⋄ indomain test sets.

Table 4 :

 4 PFSMB † MTNT † News OpenSub. ⋄ Using VNMT-learned embeddings for transfer robust learned representations to the Transformer. The † symbol indicates the UGC test sets, and ⋄ in-domain test sets.

	Transformer	27.7	28.4	26.4	31.4
	Pre-trained init.	29.0	28.2	26.2	31.3
	Frozen embs.	28.4	28.9	26.8	31.3
	Fine-tuned	28.4	28.9	26.5	31.4

Table 6

 6 

	in the Appendix,

Table 6 :

 6 Covariance between MDN mixture coefficients during inference for different types of test sets and sparsity for each set. std. stands for the standard deviation.

		PMUMT Noisy News OpenSubTest	std.	sparsity
	PMUMT Norm	8.16	9.71	13.05	1.2e-3 0.387
	PMUMT Noisy	-	7.72	7.86	1.0e-3 0.382
	News	-	-	9.42	1.1e-3 0.384
	OpenSubTest	-	-	-	1.1e-3 0.387

As the fine-tuning data will only reflect a frozen state of idiosyncrasies.

We consider the corpora generally used to train MT systems as "canonical" as they contain texts following the set of standard grammatical and morphological source-language rules.

We used the implementation of https://github. com/riannevdberg/sylvester-flows

https://gitlab.inria.fr/seddah/ parallel-french-social-mediabank

For the number of components we tested the following values 8, 16, 32, 64, 128 and 256 and found the optimal value to be 128.

We re-implemented the system of[START_REF] Setiawan | Variational neural machine translation with normalizing flows[END_REF].
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