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Abstract

This work presents a novel Variational
Neural Machine Translation (VNMT) ar-
chitecture with enhanced robustness prop-
erties, which we investigate through a de-
tailed case-study addressing noisy French
user-generated content (UGC) translation
to English. We show that the proposed
model, with results comparable or superior
to state-of-the-art VNMT, improves per-
formance over UGC translation in a zero-
shot evaluation scenario while keeping op-
timal translation scores on in-domain test
sets. We elaborate on such results by vi-
sualizing and explaining how neural learn-
ing representations behave when process-
ing UGC noise. In addition, we show that
VNMT enforces robustness to the learned
embeddings, which can be later used for
robust transfer learning approaches.

1 Introduction

The specificities of user-generated content (UGC)
leads to a wide range of vocabulary and gram-
mar variations (Foster, 2010; Seddah et al., 2012;
Eisenstein, 2013). These variations result in a
large increase of out-of-vocabulary words (OOVs)
in UGC corpora with respect to canonical parallel
training data and raise many challenges for Ma-
chine Translation (MT), all the more since com-
mon language variations found in UGC are actu-
ally productive (there will always be new forms
that will not have been seen during training).
This fact limits the pertinence of “standard” do-
main adaptation methods such as fine-tuning1 or
normalization techniques (Martı́nez Alonso et al.,
2016) and urges the development of robust ma-
chine translation models able to cope with out-

1As the fine-tuning data will only reflect a frozen state of
idiosyncrasies.

of-distribution (OOD) texts in a challenging zero-
shot scenario in which the target distribution is un-
known during training.

To address the problem raised by OOD texts,
an increasing number of works (Setiawan et al.,
2020; Schmunk et al., 2013; McCarthy et al.,
2020; Przystupa, 2020; Xiao et al., 2020) explore
the possibility to combine deep learning with la-
tent variable (LV) models, which are indeed able
to capture underlying structure information and to
model unobserved phenomena. The combination
of these models with neural networks was shown
to increase performance in several NLP tasks (Kim
et al., 2018). In this work, we focus on a specific
latent variable model for MT, Variational NMT
(VNMT) (Zhang et al., 2016) which has been
reported to have good performance and interest-
ing adaptability properties (Przystupa, 2020; Xiao
et al., 2020).

The goal of this work is twofold. First, we aim
to evaluate the performance of VNMT when trans-
lating a special kind of OOD texts: French social-
media noisy UGC. To account for the challenges
raised by the productive nature of UGC, we con-
sider a highly challenging zero-shot scenario and
assume that only canonical texts2 are available for
training the system. We hypothesize that, by lever-
aging on Variational NMT, latent models can build
more robust representations able to represent OOD
observations that are symptomatic of noisy UGC
and automatically map them to in-distribution in-
stances, which can be more easily translated.

Furthermore, to account for the diversity of
UGC phenomena, we introduce a new exten-
sion of VNMT that relies on Mixture Den-
sity Networks (Bishop, 1994) and Normalizing
Flows (Rezende and Mohamed, 2015). Intuitively,

2We consider the corpora generally used to train MT sys-
tems as “canonical” as they contain texts following the set
of standard grammatical and morphological source-language
rules.



each mixture component extracts an independent
latent space to represent the source sentence and
can potentially model different UGC specifici-
ties. Interestingly, extracting embeddings from
our zero-shot model that has never seen any UGC
data and using them in a classic transformer-based
NMT model leads to a stronger, more robust to
UGC noise model. This is in line with the regular-
izing character of VNMT (Zhang et al., 2016).

Our contributions can be summarized as fol-
lows:

• we study the performance, in a zero-shot sce-
nario, of VNMT models and evaluate their
capacity to translate French UGC into En-
glish, which resulted in a consistent improve-
ment of translation quality;

• we introduce a new model that uses state-of-
the-art transformer as the backbone of a vari-
ational inference network to produce robust
representation of noisy source sentences, and
whose results outperform strong VNMT and
non-latent baselines when translating UGC in
a zero-shot scenario. Specifically, our model
demonstrates a high robustness to noise while
not impacting in-domain translation perfor-
mance;

• by probing the learned latent representations,
we show the importance of using several la-
tent distributions to model UGC and the posi-
tive impact of the ability of VNMT models to
discriminate between noisy and regular sen-
tences while maintaining their representation
closer in the embedding space;

• we report evidence that our VNMT models
act as regularizers of their backbone models,
leading to more robust source embeddings
that can be later transferred with a relatively
high performance gain in our zero-shot UCG
translation scenario.

2 Background and related works

Variational Neural Machine Translation Vari-
ational Inference (VI) methods (Kingma and Ba,
2015) are generative architectures capable, from
a distributional perspective, of modeling the hid-
den structures that can be found in a corpus. In
a sequence-to-sequence MT task, where x and y
are respectively the source and target sentences,
VNMT (Zhang et al., 2016) architectures assume

there exists an hidden variable z modeling the im-
plicit structure (i.e. relations) between the bilin-
gual sentence pairs. In the context of UGC trans-
lation, we believe that this latent variable can cap-
ture the variations between a source sentence and
its canonical, normalized form, recovering its un-
derlying meaning and ensuring that the represen-
tation of the former is close to the representation
of the latter.

To make computations tractable, in spite of the
latent variable, VI combines a so-called varia-
tional posterior qϕ(z|x,y) that is chosen to ap-
proximate the true posterior distribution, with
prior p(z|x); and a neural decoder generative dis-
tribution, pθ(y|x, z), in charge of generating the
translation hypothesis conditioned on the latent
variable. Once the family of densities q is chosen,
the parameters of the two distributions are jointly
estimated to model the output y by looking for
the parameters (θ,ϕ) that maximizes the evidence
lower bound objective function:

log pθ(y) ≥ Eqϕ(z|x,y)[log pθ(y|x, z)]
−DKL[qϕ(z|x,y)||p(z|x)]

(1)

Normalizing Flows One of the major caveats
of variational methods is that choosing the prior
q(z) is a complicated process that requires some
a priori knowledge of the task. In practice, a nor-
mal distribution with fixed parameters (generally
µ = 0.0 and σ = 1.0) is often chosen due to the
simplicity of its re-parametrization for sampling.
However, such an assumption can be restrictive
when modeling more complex processes.

Regarding this issue, Rezende and Mohamed
(2015) propose to enhance variational methods
with Normalizing Flows (NF) (Tabak and Turner,
2013). A chain of normalizing flows is a series
of simple bijective functions automatically cho-
sen to extract a more suitable representation for
the task at hand from a random variable, by alle-
viating the restrictions of choosing a default fixed
prior. Concretely, a base distribution q0(z0), that
generates the initial latent codes, z0, undergoes
a series of invertible and smooth transformations
f : Rd → Rd, called flows. Then, the random
latent variables z are transformed to the random
variable z′ = f(z) after each flow:

q(z′) = q(z)

∣∣∣∣det∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det∂f∂z
∣∣∣∣−1

(2)



Finally, we can build an arbitrarily K-long
chain of fk transformations to generate the final
latent variables, zK , from the initial random vari-
ables, z0, which is drawn from the base distribu-
tion q0(z0) (often chosen to be N (0, 1)):

zK = fK ◦ ... ◦ f2 ◦ f1(z0)

ln(qK(zK)) = ln(q0(z0))−
K∑
k=1

ln

∣∣∣∣det ∂fk
∂zk−1

∣∣∣∣
(3)

In MT, normalizing flows were recently used to
improve VNMT models: Setiawan et al. (2020)
show that using them in an in-domain evalua-
tion setting results in an increase of +1.3 BLEU

points on the IWSLT’14 (De-En) and +0.2 BLEU

points on the WMT’18 (En-De); in a simulated
out-domain evaluation, NF still improve transla-
tion quality: adding NF to the model trained on
WMT’18 result in a +0.9 BLEU score improve-
ments than the baseline Transformer system and
+0.6 compared to the VNMT without using NF.

Mixture Density Networks Mixture Density
Networks (MDN) are another interesting general-
ization of variational encoding for modeling UGC.
By using MDN, the posterior distribution of the
current decoding step p(z|x,yt) is no longer ap-
proximated by a single variational distribution
qϕ(z|x,y1:t−1) but by a linear combination of
variational posteriors q̃mϕ (z|x,y1:t−1):

p(z|x,yt) =

M∑
m=1

αm(x,y1:t−1)· q̃m(z|x,y1:t−1)

(4)
where αm are known as the mixing coefficients.
Intuitively, an MDN can be interpreted as a com-
bination of M variational encoders. Our intuition
is that, since UGC contains a large number of
different kind of variations, covering very differ-
ent aspects ranging from morphology to phonet-
ics, including lexicon and sentence structure (Sed-
dah et al., 2012); by using several independent
VI components we can account for multiple UGC
phenomena. Thus, with an MDN, it is possible
that each component of the variational encoder is
able to model different UGC specificities, allow-
ing us to better process UGC as a whole. In the
past, MDN has been used to address sequence-to-
sequence generative tasks, such as SketchRNN
(Ha and Eck, 2018) and modeling of sequential
environment states in reinforcement learning (Ha
and Schmidhuber, 2018).

Gumbel-Softmax sampling Regarding the
mixing coefficients definition, we also explore
the use of a categorical probability distribution,
for which probabilities are calculated by the
network, such as in Ha and Eck (2018). Unlike
theirs, our supervised end-to-end training requires
backpropagating the error gradient through the
variational network via reparametrized sampling
(Kingma and Welling, 2014) which poses op-
timization challenges because of the discrete
random variables used as latent vector for cat-
egorical distributions. For this reason, we use
the reparametrization of this distribution via the
Gumbel-Softmax sampling (Jang et al., 2017;
Maddison et al., 2017), such that, the argmax
function is approximated by a softmax and
generates the relaxed one-hot encoded samples,
which correspond to the mixing coefficients:

αm =
exp(log(πm) + gm)/τ)∑M
j=1 exp((log(πj) + gj)/τ)

(5)

where gm...gM are i.i.d samples from the Gum-
bel(0,1) distribution (Gumbel, 1954; Maddison
et al., 2017), πi the probability associated to the m-
th MDN’s gaussian components, jointly generated
by neural networks along with the computations
of the corresponding parameters (µm, σm) for
m...M ; and τ the temperature parameter, which
controls variability of the sampling. When τ → 0,
the sampling exhibits a perfectly one-hot encoded
output, whereas, conversely, when τ → inf , the
distribution approaches an uniform one across all
the MDN’s components.

3 Extending Variational Methods for
Robust MT

Our model adopts a variational encoder-decoder
architecture inspired by SketchRNN (§2) that
uses an MDN on the decoder’s variational net-
work to model multiple and independent continu-
ous generative variational distributions. However,
unlike SketchRNN, we use a Transformer back-
bone for the encoder and the decoder and train our
model in a end-to-end manner on canonical par-
allel corpora. In the following, we will first de-
scribe the general architecture of our model, de-
noted multi-VNMT, and then detail the encoder
and decoder parameters.

General architecture Figure 1a represents the
architecture of our model. The input sentence is
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Figure 1: (a) VNMT-MDN architecture overview. (b) Directed graph of our encoder-decoder model varia-
tional inference. Dashed lines represent the variational approximation for the posterior distribution, and
solid lines stand for the generative models. The blue arrow depicts the generative networks for source-
side monolingual reconstruction distribution p(x|z).

first processed by a standard Transformer encoder,
the output of which is used by a Variational En-
coder enhanced with NF to predict a latent rep-
resentation of the input sentence. The latent rep-
resentation and the output of the last layer of the
Transformer encoder are combined using the gat-
ing mechanism of Setiawan et al. (2020).

This combined representation is then fed to the
decoder that has a similar architecture: it is made
of an “usual” Transformer decoder and a varia-
tional MDN that is sampled to obtain a prediction
that will be combined to the Transformer output
by (again) a gating mechanism.

The model can be trained in an end-to-end fash-
ion using the “reparametrization trick” of Kingma
and Welling (2014). In order to ensure that the es-
timated variances for the variational posteriors are
positive, we used the softplus activation function
(Zheng et al., 2015), as done in van den Berg et al.
(2018)’s implementation.

In addition, concerning the training of the de-
coder’s MDN, we compare two different ways to
compute the mixing coefficient: the first one con-
sists in a vanilla non-latent softmax, the second on
a relaxed categorical variational method that relies
on a Gumbel-Softmax sampling (§2).

The model has been implemented in
OpenNMT-py3 (Klein et al., 2018).

Encoder Our encoder backbone is the “stan-
dard” transformer of Vaswani et al. (2017), made
of 6-layered transformer layers each with 8 atten-
tion heads. the feed-forward layers have 2,048
parameters and the dimension of lexical embed-
dings is 512. The dimension of the encoder vari-

3https://github.com/josecar25/MDN-VNMT

ational network is 128. The network is extented
with 4-flows Normalizing Planar Flows (Rezende
and Mohamed, 2015).4

Following to Setiawan et al. (2020), we com-
bine the last Transformer layer output to the la-
tent vectors using a gating mechanism. We used a
feed-forward network to transform the represen-
tation of dimension 128 predicted by the varia-
tional network into a representation of size 512
that matches the Transformer representation di-
mension.

In Figure 1b, we show the Transformer and vari-
ational encoding latent state z as being estimated
(pθ(z|x)) approximating the posterior’s mean and
variance, both learned using the reparametrization
trick. In the figure, we can also observe how our
model’s encoder comprises the Transformer back-
bone and VI network.

Decoder As for the encoder, the first compo-
nent of the decoder is the “standard” Transformer
decoder of Vaswani et al. (2017) and uses the same
parameters as the Transformer encoder.

The Transformer decoder’s last layer output
is passed to a 128-component MDN, with train-
able parameters ϕ and π: ϕ encodes the mean
and variance of each multivariate gaussian com-
ponents; π contains the probabilities of the cate-
gorical distribution that generates the mixing co-
efficient for each component. Concisely, we esti-
mate a posterior as a series of M posteriors param-
eterized by ⟨ϕ, π⟩, i.e. q̃ϕ;πm (zdec|x,y1:t−1), con-
ditioned via the decoder’s Transformer, on both
the gated latent encoder’s output and previous pre-

4We used the implementation of https://github.
com/riannevdberg/sylvester-flows



Corpus #sentences #tokens ASL TTR #chars

train set
WMT 2.2M 64.2M 29.7 0.20 335
OpenSub. 9.2M 57.7M 6.73 0.18 428

test set
OpenSub. 11,000 66,148 6.01 0.23 111
newstest 3,003 68,155 22.70 0.23 111

Corpus #sents #tokens ASL TTR #chars

UGC test
PFSMB 777 13,680 17.60 0.32 116
MTNT 1,022 20,169 19.70 0.34 122

UGC blind
PFSMB 777 12,808 16.48 0.37 119
MTNT 599 8,176 13.62 0.38 127
4Square 1,838 18,234 9.92 0.22 109

Table 1: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-
Token Ratio, ASL for average sentence length and #chars for the number of different characters.

dicted tokens, y1:t−1. The MDN’s mixing coeffi-
cient (αm(x,y1:t−1)) network also takes the same
input and is computed separately, by either using a
fully-forward layer with softmax activation or the
relaxed categorical Gumbel distribution. Both net-
works computing q̃m and αm are jointly trained in
an end-to-end fashion, such that translation loss is
minimal for representations sampled from the re-
sulting mixture, obtained according to Equation 4.

4 Training models

All systems are trained using a batch size of 4,096
tokens using the Adam optimizer (Kingma and Ba,
2015) accumulating gradients every 2 steps, and
the Noam learning rate schedule (Vaswani et al.,
2017) with 8K warmup steps. Throughout train-
ing, learning rate attains a maximum of 7e−4 and
minimum of 1e−5. Both encoder and decoder
Transformers are trained using 0.1 dropout and
we employed 0.1 label smoothing (Szegedy et al.,
2016). Training for, at most, 300K training it-
erations on a single Nvidia V100 took about 40
hours to converge for the multi-VNMT models,
34 hours for VNMT-baseline and 28 hours for
the non-latent Transformer baseline. In order
to avoid posterior collapse, and as done in Seti-
awan et al. (2020), we use βC-VAE (Prokhorov
et al., 2019), with values β = 1 and C = 0.1.
Additionally, we used a Kullback-Leibler (KL)
annealing schedule of 100K iterations for train-
ing. We set a 10% probability of dropping the
target word (Bowman et al., 2016). We have cho-
sen, as initial experimental configuration, τ = 1.0
for the Gumbel-Softmax sampling temperature,
which was selected mainly aiming to avoid artifi-
cial gradient scaling during backpropagation (c.f.
Equation (5)). A beam of width 5 has been used
for evaluation.

5 Experiments

Datasets We train our different MT models on
two different French to English canonical par-
allel corpora: the first one is a subset of the
WMT corpus, i.e. Europarl (v7) and NewsCommen-
tary(v10) (Bojar et al., 2015) and the second one
is theOpenSubtitles’18 corpus (Lison et al.,
2018). We used BPE tokenization (Sennrich et al.,
2016) with 16K merge operations.

Detailed statistics on our corpora can be found
in Table 1.

UGC Test Sets To evaluate the different NMT
models, we consider two data sets of manually
translated UGC: MTNT (Michel and Neubig, 2018)
and the Parallel French Social Media Bank cor-
pus (PFSMB) (Rosales Núñez et al., 2019)5 which
extends the French Social Media Bank (Seddah
et al., 2012) with English translations. These two
data sets raise many challenges for MT systems:
they notably contain characters that have not been
seen in the training data (e.g. emojis), rare char-
acter sequences (e.g. inconsistent casing or user-
names) as well as many OOVs denoting URL,
mentions, hashtags or more generally named en-
tities (NE). Most of the time, sOOVs are exactly
the same in the source and target sentences.

We also consider the 4Square corpus (Be-
rard et al., 2019) as a blind test to validate our
conclusions. To analyze our neural representa-
tions (§7), we use a subset of the PFSMB, called
PMUMT, which contains 400 annotated and nor-
malized French to English UGC sentences (Ros-
ales Núñez et al., 2021).

Protocols Translation quality was evaluated us-
ing BLEU (Papineni et al., 2002) and chrF2
(Popovic, 2017) both computed by SACREBLEU

5https://gitlab.inria.fr/seddah/
parallel-french-social-mediabank



(Post, 2018) with the ‘intl’ tokenization, after
detokenizing the systems outputs.

In all the experiments we used the hyper-
parameters values reported by Vaswani et al.
(2017) and only choose the number of components
of the MDN and the dimension of the latent repre-
sentation on the validation set.6 Regarding the la-
tent dimension, we conducted the same study with
128, 256 and 512 dimensions, with 128 being the
best value. A beam of size 5 has been used for
evaluation.

6 Results

In this section we present the main MT results to
study MT performance of our methods.

MT Performance Our first experiment aims
to compare the performance of multi-VNMT,
the model we introduced in Section 3, to that
of a “vanilla” Transformer model and of a
state-of-the-art VNMT system using NF.7 The
first baseline, a non-latent NMT architecture,
Transformer, corresponds to our model with-
out its VI components (i.e. with only the Trans-
former encoder and decoder); the second baseline,
VNMT-baseline, corresponds to the equivalent
of our NF setup (featuring 4 Planar Flows) from
Setiawan et al. (2020).

Results achieved by these systems are reported
in Table 2. We computed the 95% statistical sig-
nificance by using a 1,000-samples bootstrapping,
as in Koehn (2004). It should first be noted that
the performances of the three systems we con-
sider are identical when they are evaluated on
in-domain data, whatever the evaluation measure
considered (no statistically significant difference
between the models). This observation highlights
one of the strength of the proposed method: con-
trary to fine-tuning (arguably the most common
method to adapt a system to a new domain) that of-
ten hurts performance on in-domain evaluation be-
cause of catastrophic forgetting (McCloskey and
Cohen, 1989), the improvement of the quality of
UGCs by the proposed method is not at the ex-
pense of the quality of translation of canonical
texts.

It also appears that, on out-of-domain text,
multi-VNMT, the approach proposed in this

6For the number of components we tested the following
values 8, 16, 32, 64, 128 and 256 and found the optimal value
to be 128.

7We re-implemented the system of Setiawan et al. (2020).

work, outperforms the standard Transformer
model as well as the state-of-the-art VNMT
model, supporting our hypothesis that considering
several variational inference components allows to
better capture all the variations that can be found
in UGC and will result in improved translation
quality. Interestingly, our system also performs
better than Transformer when evaluated on
out-domain canonical data and not only on UGC
data. It should be noted, however, that the gains
of our model are consistent but small and statisti-
cally significant mainly when translation quality is
evaluated with chrF2.

Ablation study To better understand the impact
of the different components of our model, we
conduct an ablation study whose results are re-
ported in Table 3. Overall, we obtain the best
BLEU scores across all test sets for the “full”
multi-VNMT model.

In particular, it appears that static latent rep-
resentation (z static in Table 3), where in-
stead of sampling from the learned distributions,
we retrieve their mean as output, show slightly bet-
ter BLEU scores when translating the MTNT with
the model trained on OpenSubtitles and the
newstest’14 test set with the model trained on
WMT (+0.1 improvement in the two cases). How-
ever, results are inconsistent for UGC test sets and
otherwise worse than those of the full model for
both in-domain and canonical OOD test sets for
our two training configurations. This might be ex-
plained by the lack of stochastic perturbations pro-
vided by the sampling step during training, leading
the model to lose generalization during evaluation.

It is also interesting to note that using a cat-
egorical variational version of the mixing coef-
ficients rather than the usual choice of comput-
ing them with a softmax improves translations
quality: the latter is only performing better for
the newstest’14 test set when training on the
OpenSubtitles corpus (π non-latent). Fol-
lowing the same trend, the WMT training data con-
figuration also show improvements when using the
Gumbel-Softmax version, for which +0.8 and +0.3
BLEU point improvement were obtained for both
the PFSMB and MTNT UGC testsets, respectively.

Posterior collapse We have computed the av-
erage KL divergence of the variational decoder’s
block (i.e. DKL (qϕ(z|x, y)||pθ(z|x)) on the en-
coder side) of multi-VNMT and its ablated ver-



WMT OpenSubtitles

PFSMB † MTNT † News⋄ OpenSubTest PFSMB † MTNT † News OpenSubTest ⋄ # params.
B

L
E

U Transformer 15.1 21.3 27.9 16.4 27.7 28.4 26.4 31.4 69M

VNMT-baseline 15.5 21.4 27.9 16.4 28.0 28.9 26.5 31.4 72M
multi-VNMT 16.0* 21.8 27.9 16.7* 28.4 29.2 26.4 31.5 77M

c
h
r
F
2 Transformer 37.8 45.1 54.4 38.6 46.9 48.3 52.6 48.9 69M

VNMT-baseline 38.3 45.1 54.6 38.6 47.6 49.2* 53.1* 48.9 72M
multi-VNMT 38.5* 45.5 54.6 39.0* 47.7* 49.6* 52.9* 49.0 77M

Table 2: BLEU and chrF2 test scores for our models. The † symbol indicates the UGC test sets,
and ⋄ in-domain test sets. Highest metric for each test set are in bold; scores significantly better than
Transformer (p < 0.05) are marked with a *.

WMT OpenSubtitles

PFSMB † MTNT † News⋄ OpenSubTest PFSMB † MTNT † News OpenSubTest ⋄ # params.

multi-VNMT 16.0 21.8 27.9 16.7 28.4 29.2 26.4 31.5 77M
π non-latent 15.8 21.0 27.8 16.4 28.1 28.5 26.6 31.3 77M
-NF 15.3 21.6 28.0 16.5 28.3 28.8 26.1 31.3 76M

Z STATIC 16.5 20.9 28.0 16.4 28.1 29.3 26.2 31.4 76M
-MDN 16.5 20.9 27.8 16.6 27.7 28.7 26.2 31.3 73M

Table 3: BLEU test scores our ablated variants. The † symbol indicates the UGC test sets, and ⋄ in-
domain test sets.

sion without the MDN module in an in-domain
setting. When trained (using the same KL an-
nealing schedule) on OpenSubtitles (resp.
WMT) this divergence is 0.21 (resp. 0.38) for
multi-VNMT and 0.15 (resp. 0.33) when remov-
ing the MDN block, suggesting that our proposed
architecture is less prone to suffer from the poste-
rior collapse phenomenon.

7 Analyzing Latent Representations

In this Section, we describe several experiments
aiming at understanding how multi-VNMT un-
covers more robust representations than the
VNMT baseline.

Impact of Noise in the Source First, to evalu-
ate the perturbations that the model suffers when
noise is present in the source, we measure the
cosine similarity between the representations of
the French noisy sentences and their normal-
ized version, taking advantage of the PMUMT
corpus (§5). More precisely, we compare the
source-side embeddings of the 400 original noisy
UGC sentences and their corresponding 400 fully-
normalized versions built by VNMT-baseline
and multi-VNMT. We observe that the average
cosine similarity between the noisy and normal-
ized learning representations of multi-VNMT is
0.36 compared to an average similarity of 0.26 for
the representations of VNMT-baseline, sug-

Figure 2: Distribution of cosine similarities be-
tween the representations of noisy and normal-
ized sentences of PMUMT built by the encoder of
VNMT-baseline and multi-VNMT.

gesting that the former provides more robust rep-
resentations of UGC than the latter, a conclusion
supported by the distribution of similarities shown
in Figure 2.

Noisy vs normalized data To complete the pre-
vious analysis, we have reported, in Figure 3,
the projection of the representations of noisy and
normalized sentences computed by t-SNE. We
can notice how both VNMT systems have a ten-
dency to separate noisy and normalized sentences
compared to Transformer, while both having
higher cosine similarity than the latter.



(a)
Transformer

(b)
VNMT-baseline

(c)
multi-VNMT

Figure 3: t-SNE projection of the encoder source
embeddings for noisy sentences and their normal-
ized versions.

PFSMB † MTNT † News OpenSub.⋄

Transformer 27.7 28.4 26.4 31.4

Pre-trained init. 29.0 28.2 26.2 31.3

Frozen embs. 28.4 28.9 26.8 31.3

Fine-tuned 28.4 28.9 26.5 31.4

Table 4: Using VNMT-learned embeddings for
transfer robust learned representations to the
Transformer. The † symbol indicates the UGC
test sets, and ⋄ in-domain test sets.

Transferring learning representations As dis-
cussed above, in Figure 3 we noticed that VNMT
seems to enforce noisy morphology modeling to
the Transformer’s embeddings in an implicit way.
This motivated us to study whether the informa-
tion in such learning representations can be used
by the Transformer backbone model and ben-
efit from improved robustness while removing the
direct latent space contribution, and notably, with
the same number of parameters and architecture
as Transformer. Thus, in Table 4, we re-
port BLEU scores for the Transformer model
trained on OpenSubtitles, by either initializ-
ing the VNMT-pretrained source-side embeddings
before training, or fine-tuning (FT) the system. We
have performed FT using the same data configura-
tion as in OpenSubtitles and continued train-
ing for 3 epochs from the Transformer model
in Table 2 while replacing the Transformer’s
source embeddings by their VNMT-learned ver-
sion’s weights.

Results in Table 4 provide evidence that VNMT
enforces more robust embeddings, which per-
form consistently better over the PFSMB UGC
test set compared to the baseline, the system
Frozen embs giving the most consistent results
over UGC. This system also achieves the best
newstest’14 canonical OOD test set in the
OpenSubtitles setup, while taking advantage
of an increased robustness to UGC. These results

PFSMB
(Blind)

MTNT
(Blind) 4Square

Transformer 19.7 25.0 21.9
+FT emb. 19.4 25.3 22.0

VNMT-baseline 20.0 25.3 22.0

multi-VNMT 20.0 26.4 22.5

Table 5: BLEU scores of our best systems on blind
test sets.

indicate that our VNMT model leads to embed-
dings that are more robust to noise even when used
in a classic transformer-based NMT baseline. An
interesting path of research would be to evaluate
these embeddings in other tasks and scenarios (e.g.
Cross lingual UGC Q&A).

8 Blind test sets scores

We evaluated our best performing model
(multi-VNMT trained on OpenSubtitles)
on the blind test sets described in § 5, translat-
ing another set of tests to assess whether our
approach proves useful for generalization over
different types of UGC. We have also included
the 4Square corpus (Berard et al., 2019) to
validate our VNMT system on other domain
of UGC (restaurant reviews). We also display
the results when using the VNMT-baseline
baseline and the Transformer model to assess
improvement of our proposed architecture. We
report such results in Table 5, where we can
see that, when translating our blind UGC test
sets, multi-VNMT consistently outperforms the
baselines. It is interesting to notice that, although
the in-domain performances for these 3 systems
are very similar (between 31.4 and 31.5 BLEU in
Table 2), the performance gap of blind UGC test
sets is larger, i.e. +0.8 BLEU in average compared
to the non-latent baseline.

9 Discussion

How MDN behaves under noise In Ap-
pendix A, we discuss how MDN components are
activated when translating canonical in-domain
and OOD texts, as well as UGC and normalized
UGC. In Figure 4 and Table 6 in the Appendix,
we show that noisy UGC activates MDN’s com-
ponents with low correlation to other OOD canon-
ical texts and even to its normalized version, which
implies that the distribution of the kernels’ mix-
ing coefficients is relatively among, the 4 test sets



considered, unique, i.e. relatively uncorrelated
from the activation of other canonical texts (in-
dom and OOD), when processing UGC. We can-
not conclude, however, whether this observation
is a consequence of the noise propagated through
the model’s networks, but the enhanced robust-
ness we witnessed in the translation results (much
better performance to UGC, while keeping on-
par or slightly better canonical (in-domain and
OOD) performance) suggests that these mixing
coefficients (that ultimately control the final de-
coding output) activate different variational poste-
riors (one per kernel) that can better process UGC.

Conclusions We introduced a novel VNMT ar-
chitecture that provides improved performance
and robustness over a state-of-the-art VNMT
model, specifically when translating French UGC.
An ablation study and blind test sets evaluation
validate our architecture choice in regards of ro-
bustness capabilities for such texts. In addition, by
exploring the learning representations trained by
our VNMT model, and through conducting trans-
fer learning experiments with such, we investi-
gate the robustness brought to UGC, and show
that VNMT enforces such property to the back-
bone model, bringing a promising avenue for more
robust pre-trained neural learning representations.
However, an open question arising from this work,
it is currently unclear if the performance gain we
observed is due to a better generalisation to distri-
butional shift or if it corresponds to a better adap-
tation to noise in the input. Future works will be
devoted to this question, which can be abstracted
away to study whether UGC idiosyncrasies are a
form of noise, some parts being learnable, or are
rather points to a new domain.
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laume Wisniewski. 2019. Comparison between
NMT and PBSMT performance for translating noisy
user-generated content. In Proceedings of the 22nd
Nordic Conference on Computational Linguistics,
pages 2–14, Turku, Finland. Linköping University
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A How do MDN’s components react to
UGC?

We proceeded to analyze and visualize how the
MDN mixture coefficients react when translating
our different test sets. In order to do so, in Figure 4
we report results for the canonical test sets, the
normalized PMUMT corpus, and its noisy original
UGC version. Each bar of the Wind Rose diagram
represents one of the 128 independent trained dis-
tributions’ mixture weights, which have been nor-
malized and scaled across the four graphics, and
where the 7th MDN component seems to be con-
sistently the one that drives most of the decoding
for the presented experiments. Furthermore, we
can notice that most mixing coefficients are, for
the most part, have around 50% probability of con-
tributing to the final inference mixture, despite not
enforcing this behavior with any specific method
(e.g. dropout). On the other hand, the visualization
suggests that both yellow (50-60%) and blue com-
ponents (30-40% of activation) are variable across
test sets, being very similar between PMUMT Norm
and OpenSubTest, which could indicate that the
mixture components are learning to encode differ-
ent types of texts, potentially working as an im-
plicit topic modeling module. Regarding the vi-
sualization when translating PMUMT Noisy, the
main MDN component identified above, seems
less important even when compared to the out-of-
domain newstest’14 set, which suggests that
the MDN uses more dense representations when
processing noisy texts.

In parallel, in Table 6 we display the covari-
ance of these coefficients’ distributions between
the combinations of their values when translating
different kind of texts, along with the standard de-
viation and sparsity to describe how the MDN’s
components behave.

Comparing the visualization in Figure 6, we
can notice how the noisy UGC PMUMT and the



out-of-domain newstest’14, diverge from the
in-domain OpenSubTest and normalized UGC
PMUMT corpus. This correlation is evidenced in
the results in Table 6, where PMUMT noisy has
the lowest score when compared to every other
corpus, even if its normalized version seems to
be the most correlated to the in-domain evalua-
tion. Specifically, PMUMT Noisy is the least cor-
related to in-domain OpenSubTest and out-of-
domain newstest’14 corpora, which points to
the MDN reacting differently to content domain
and UGC specificities in the noise; this observa-
tion is also supported by the associated figure. It
is also interesting to notice that, according to the
standard deviation and sparsity values, the active
MDN components are more dense and variable for
out-of-domain evaluation conditions, for the same
Gumbel sampling temperature value.



(a) PMUMT norm (b) PMUMT noisy

(c) OpenSubTest (d) newstest’14

Figure 4: Average MDN mixture weights for test sets of different natures.

PMUMT Noisy News OpenSubTest std. sparsity

PMUMT Norm 8.16 9.71 13.05 1.2e-3 0.387

PMUMT Noisy — 7.72 7.86 1.0e-3 0.382

News — — 9.42 1.1e-3 0.384

OpenSubTest — — — 1.1e-3 0.387

Table 6: Covariance between MDN mixture coefficients during inference for different types of test sets
and sparsity for each set. std. stands for the standard deviation.


