
HAL Id: hal-04384728
https://hal.science/hal-04384728

Submitted on 10 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A two-stage approach for tables extraction in invoices
Thomas Saout, Frédéric Lardeux, Frédéric Saubion

To cite this version:
Thomas Saout, Frédéric Lardeux, Frédéric Saubion. A two-stage approach for tables extraction in
invoices. The 35th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Nov
2023, Atlanta, France. pp.10-15, �10.1109/ICTAI59109.2023.00010�. �hal-04384728�

https://hal.science/hal-04384728
https://hal.archives-ouvertes.fr

A Two-stage Approach for Tables Extraction in
Invoices

Thomas Saout
Univ Angers, LERIA, and KaliConseil

F-49000 Angers, France
thomas.saout@etud.univ-angers.fr

Frédéric Lardeux
Univ Angers, LERIA,

F-49000 Angers, France
frederic.lardeux@univ-angers.fr

Frédéric Saubion
Univ Angers, LERIA,

F-49000 Angers, France
frederic.saubion@univ-angers.fr

Abstract—The automated analysis of administrative documents
is an important field in document recognition that is studied
for decades. Invoices are key documents among the documents
available in companies and public services. Most of the time,
invoices include data that are presented in tables. These tables
must be clearly identified to extract suitable information. In
this paper, we propose an approach that combines an image
processing-based estimation of the shape of the tables with a
graph-based representation of the document. We aim to precisely
identify different types of tables, including possible complex
layouts. We propose an experimental evaluation using a real case
application and a classic dataset.

Index Terms—Data extraction; invoice; graph-based represen-
tation

I. INTRODUCTION

Automated analysis of administrative documents, particu-
larly invoices, is a significant area of research in document
recognition. Commercial systems developed by companies like
ITESOFT and ABBYY address the complexity of automating
invoice processing. Invoices involve intricate administrative
procedures across departments such as accounting, logistics,
and the supply chain, requiring specific workflows.

Comprehensive invoice processing involves two essen-
tial steps: digitalization using Optical Character Recogni-
tion (OCR) techniques and information extraction to identify
crucial elements like identifiers, types, amounts, and dates
[1], [2] Overcoming these challenges often requires advanced
techniques such as machine learning. In summary, the primary
challenges in automated invoice processing are: handling lay-
out variability, training and rapid adaptation, minimizing user
tasks, efficient table detection and extraction.
Aim and Contribution

The main goal is to automate invoice processing, particu-
larly extracting crucial data from tables. This objective arises
from a practical use case within a comprehensive document
management system.

Our focus includes various types of information like loca-
tion, tables, dates, and actors (organizations or individuals)
mentioned in the invoice. These fields have been identified
based on analysis of multiple invoice models and the cur-
rent needs expressed by companies. In summary, important
invoice information (not restricted to) can be outlined : actors,
addressees, dates and tables. In this paper, we propose an inte-
grated approach to extract tabular information from invoices.

Our goal is to extract complete data, rather than specific
labels like ’total price’ or ’product description’, enabling
automated processing and storage in a dedicated database for
invoice information retrieval. In our dataset, tables may not
have precise boundaries using lines and may contain missing
information.

When analyzing an invoice, we identify two levels of table
detection. The first level involves visually detecting character-
istic shapes like vertical or horizontal lines. The second level,
referred to as the semantic level, involves identifying structural
organization based on the arrangement of information tokens
in rows and columns, even if there are no explicit graphical
boundaries. Our contribution consists of two main aspects.
Firstly, we present a comprehensive formalization of the
document using ordering relations, which enables more precise
processing using a graph-based model of the document’s struc-
ture. Secondly, we integrate visual analysis of the document
with this semantic structure to develop an efficient tool for
extracting tables.

II. RELATED WORK

Machine learning techniques, particularly classification,
have been widely employed for managing information in
scanned invoices. Ongoing research in this field focuses on
addressing challenges related to invoice identification, infor-
mation extraction, and table processing [1]. Initially, the task
involved identifying invoices from document sets [3] leading
to the development of models to facilitate their processing [4].

Once invoices are correctly scanned and identified, the
next crucial step is extracting relevant information from them.
Labeling techniques utilizing rules [5] and named entity recog-
nition (NER) using neural networks [6] have been applied
for this purpose. Since invoices have distinct structures and
text sequences, specific information extraction methods have
been proposed to consider these document characteristics.
For example, [7] employs a star graph to analyze token
neighborhoods within invoices.

Due to the unique structures of invoices, graph-based mod-
els that consider the geographical organization of the docu-
ment have proven to be relevant [8]. Tables are a predominant
structural element in most invoices, making table detection
a critical processing task [8]. Table processing is indeed
an old challenge [9]. This study primarily focuses on table

detection (identifying tabular structures within a document)
and extraction (presenting table data in a readable format),
which remain active research challenges [10].

Recent approaches [11] aim to detect the overall table
framework and extract its content, often utilizing neural net-
works for recognizing table structures in documents with large
training sets [12]. For more specific table types, characteristics
such as headers [13] are leveraged to improve performance.
Rule-based systems, which were early table extraction tech-
niques, can still be relevant [14].

Graph-based approaches have also been explored, such as
graph mining for table extraction using key fields [15]. In
[16], a graph convolutional network is employed, combining
position and text information, along with visual recognition to
predict the number of columns and lines accurately.

III. ORDERING RELATIONS FOR DOCUMENT
REPRESENTATION

A graph-based representation of the document has been pre-
viously explored [8]. Nevertheless, to address more complex
structures within the document, we establish multiple relations
that correspond to different abstraction levels. This section
aims to define these abstraction levels, enabling us to gradually
handle the document’s basic tokens and incorporate them into
more intricate structures. We introduce a model based on
ordering and partial ordering relations to precisely define the
relationships between the various pieces of information in our
documents. Moving forward, we consider a table to consist of
lines and columns. Note we will use the term ”line” or ”row”
indifferently in the following.

A. Basic alignment relations

Let us consider two tokens t1, t2 ∈ T, where T is the set of
tokens obtained after applying the OCR and the tokenization
processes. Each token ti is included in a box whose coordi-
nates are respectively Xti and Yti . We define two basic binary
relations on T.

rhorizontal(t1, t2) ⇔ (|Yt1 − Yt2 | < τY) (1)

rvertical(t1, t2) ⇔ (|Xt1 −Xt2 | < τX) (2)

Where τX and τY are two thresholds that are set to allow some
possible tolerance in the vertical and horizontal alignments of
the tokens.

Nevertheless, this approach has some limitations in the
presence of texts that are justified using central or right
alignments. Hence, we propose to use the interval, inspired by
[17]. We consider that there is an alignment relation as soon as
the interval of positions containing the first and last characters
of the tokens have an intersection. For a token ti ∈ T this
interval is denoted [Xti , endXti], since Xti was the position
on the X-axis of the first character. Hence, we get

rvertical(t1, t2) ⇔ Xt1 ∈ [Xt2 , endXt2] ∨
Xt2 ∈ [Xt1 , endXt1] (3)

Let us note that, due to the use of intervals, rhorizontal
and rvertical are not necessarily equivalence relations. Hence,
we may have rhorizontal(t1, t2) and rhorizontal(t2, t3) and,
due for instance to a progressive offset to the bottom of the
document, ¬rhorizontal(t1, t3). Hence, alignment relations are
computed using a dedicated algorithm that uses the coordinates
of the tokens that have been extracted from the tasks previ-
ously described. This algorithm handles the previous above-
mentioned cases to transform the relations into equivalence
relations using thresholds. For instance, it will decide that t1
and t2 will be on the same line while t3 belongs to the next
line.

Hence, these relations allow us to get an abstract of the
relative positions of the token, which is the relevant infor-
mation for extracting tables. Since these relations are now
equivalence relations, they induce equivalence classes between
tokens. Column and line labels can directly be obtained from
these equivalence classes, one label per class since we are
only interested in determining if tokens are on the same
line/column. Using the coordinates of the tokens, we assume
that we get a totally ordered set of line labels (L, <) and a
totally ordered set of column labels (C, <).

B. Ordering relations on tokens

We consider now that a document is a set of labeled tokens
T such that each token t ∈ T has a line label l(t) ∈ L and
a column label c(t) ∈ C. We use the total ordering relations
previously defined on labels to get partial ordering relations
on tokens.

Definition 1: Given the set of labeled tokens T we define
two partially ordered sets (T,⪯l) and (T,⪯c) where

• t ⪯l t
′ iff l(t) < l(t′) and c(t) = c(t′)

• t ⪯c t
′ iff c(t) < c(t′) and l(t) = l(t′)

We may now precisely define the concept of lines and
columns.

Definition 2 (Lines): A line is any subset L ⊆ T, such that
(L,⪯l) is a totally ordered set (linearly ordered). (L,⊆) is the
partially ordered set of all possible lines.

A full line is a subset L ⊆ L such that L is a maximal
element of (L,⊆). Note that if L is a full line then supl(L) ∈
L and infl(L) ∈ L.

Definition 3 (Column): A column is any subset C ⊆ T, such
that (C,⪯c) is a totally ordered set. (C,⊆) is the partially
ordered set of all possible columns.

A full column is a subset C ⊆ C such that C is a maximal
element of (C,⊆). Note that if C is a full column then
supc(C) ∈ L and infc(C) ∈ L.

C. Tables through different levels of abstraction

Hence, a table is a set of tokens composed of lines and
columns that share elements. Let us define a table ordering on
T as ⪯t= (⪯l ∪ ⪯c)

∗, i.e., the transitive closure of the union
of the two previous ordering relations on lines and columns.
Let us note that for two tokens t, t′ ∈ T, t ⪯t t

′ iff l(t) ≤ l(t′)
and c(t) ≤ c(t′).

Definition 4 (Table): A table is any subset T ⊆ T, such that
(T,⪯t) is a complete lattice. As a consequence table T ⊆ T
satisfies supt(T) ∈ T (its greatest element ⊤T) and inft(T) ∈
T (its least element ⊥T). A table can be then defined by these
two elements T = (⊥T ,⊤T).

As a consequence, in a table T , given any two tokens
t1, t2 ∈ T , supt({t1, t2}) and inft({t1, t2}) exist and consti-
tute the smallest sub-table T ′ = (supt({t1, t2}, inft({t1, t2})
that contains t1 and t2.

Let us consider (T,⊆) a partially ordered set of all possible
tables. A full table is a subset T ⊆ T such that T is a maximal
element of (T,⊆).

Definition 5 (Well-formed full table): A full table T is well-
formed iff:

• T can be partitioned into a set {L1, · · · , Ln} of full lines,
such that supt(T) = supl(Ln) and inft(T) = infl(L1)

• T can be partitioned into a set {C1, · · · , Cm} of full
columns, such that supt(T) = supc(Cn) and inft(T) =
infc(C1)

• ∀1 ≤ i ≤ n, 1 ≤ j ≤ m, |Li ∩ Cj | = 1

Since we want to detect general tables, with possibly
missing cells, we may turn any table into a well-formed full
table by adding empty cells, i.e. new tokens.

• Lines:

1) T cannot be partitioned into a set {L1, · · · , Ln}
since two lines Li and Lj intersect: each element
of Li ∩Lj is duplicated such that Li ∩Lj = ∅: add
then the corresponding ordering relations.

2) A line Li is not a full line. There exists t ∈ T
such that Li ∪ {t} is a full line. Add to each line
Lj , j ̸= i a new element tj such that {t}∪

⋃
j{tj} is

a full column. Add then the corresponding ordering
relations.

• Columns: same processes

Note that this repair process will be performed on an initial
set of tokens to get better candidate lines and columns to obtain
better tables from the documents.

At this stage, we have a clear model of lines, columns, and
possibly resulting tables. To reach a higher level of abstraction
and to manipulate lines and columns directly, we extend
our ordering relations to lines and columns. Let us consider
L+ ⊆ L (resp. C+ ⊆ C) the set of full lines (resp. columns).
According to the previous definitions, note that L+ and C+ are
partitions of T. We consider now the two orderings (C+,⪯c)
and (L+,⪯l) that are the canonical extensions of (T,⪯c) and
(T,⪯l). Note that here, because we consider full lines and full
columns separately, these orders are total orders. Searching
for a table corresponds to searching for a subset of lines and
columns. According to previous definitions, a table T can be
defined by a couple of sets T = (L,C), such that L ⊆ L+

and C ⊆ C+. The structure of the table is then defined by the
possible insertions between lines and columns (i.e. common
tokens).

D. From orders to graphs

Our formalism allows us to get a clear and general abstract
view of a table in a document, where information has been
grouped into basic tokens. Now, since we want to get oper-
ational tools for computing tables, we turn our orders into
a graph representation using the classic Hasse diagram (i.e.
transitivity is not represented to simplify the graph).

We consider a first directed graph (L+, EL where (li, lj) ∈
EL iff li <l lj and ∄lkL+, li <l lk <l lj . We consider a similar
graph (C+, EC for the columns with similar properties). We
add an undirected graph (L+ ∪C+, E∩ where [li, cj] ∈ E∩ iff
li ∩ cj ̸= ∅).

The final graph is thus a graph that gathers the three
previous graphs whose edges have different types according to
their semantics (lines and columns ordering or intersections)
(L+ ∪ C+, EL ∪ EC ∪ E∩). Using this graph representation,
a table corresponds to a particular sub-graph in the graph that
represents the whole document. This graph is processed by
a solver that is dedicated to sub-graph search [18], allowing
our different types of edges. Note that a table may contain
empty cells. Hence, we introduce possible empty nodes in
our graph representation. Now we have to introduce patterns
that correspond to general possible structures of tables that we
search for in our graph.

IV. SEARCH USING PATTERNS

Tables within a document can exhibit diverse formats, each
with specific requirements (such as a complete first row or
a specified corner cell). To represent these characteristics,
we employ graph patterns based on the earlier introduced
formalism. These patterns define sets of similar tables. The
search for valid tables in a graph based on a given pattern
involves solving a graph isomorphism problem, which is a
well-known NP-intermediate problem. The solution process
for this problem is described in detail in Section III-D.

A pattern represents a set of tables sharing the same
characteristics. The number of rows and columns is necessary
for pattern definition. Remind that according to Section III-D,
the graph corresponding to a pattern is built:

• Each line and column is represented by a vertex in the
pattern.

• Vertical and horizontal alignment relations are repre-
sented by directed arcs.

• The presence of a cell at the intersection of a row and
a column is represented by a non-directed edge between
the row vertex and the column vertex.

Figure 1 presents patterns with 4 lines and 4 columns
respectively represented by vertices A, B, C, D and E, F, G, H.
Each pattern is presented with its table diagram on the right
and its corresponding graph on the left. These four patterns
are issued from practical needs and correspond to common
patterns that are encountered in invoices. They have some
specific properties detailed below:

• Corner Left Top: We can see that an arc in the pattern
induces the presence of a token at the intersection of the

first line (from top to bottom) and the first column (from
left to right). No other common cell is required to be
shared by the remaining of the table.

• Full grid: This table corresponds to a well-formed full
table as formally defined in Section III-C.

• Missing cells: Some tables may contain empty cells.
This pattern shows that some alignment relations may be
missing. Nevertheless, such a table is still valid since it
can be completed into a full table by introducing empty
cells. In our graph model, we can generate a suitable
pattern for searching for such a table.

• Border Left Top: This pattern is based on the assumption
that there is less than one complete line to the top and
one complete column to the right in our table.

An undirected edge between a line and a column indicates
the requirement for a token at their intersection. However, the
absence of an edge does not necessarily mean the absence of
an intersection. In Figure 4’s corresponding table schemes, the
mandatory presence of a token is represented by a light grey
circle. In this scheme, lines are depicted as blue rectangles,
which may contain empty cells indicating the possible absence
of tokens at those locations. Similarly, columns are represented
by green rectangles, following the same principles.

Let us note that the pattern presented in Figure 1 can be
defined for any number of lines and columns, resulting in
vertices in our graph. These two parameters define the size
of the pattern. As already explained, searching for a pattern
in the whole document modeled as a graph corresponds to the
solving of a sub-graph isomorphism problem [18]. Given a
pattern type, our objective is to find the pattern of the largest
size, i.e. a maximal number of lines/columns. To achieve this
incremental pattern search, we use the algorithm proposed in
[18] to find a pattern with a size and, as long as no pattern
is found, we continue the search for progressively decreasing
the size of the pattern.

The graph-based approach for table identification can be
computationally intensive due to the complexity of the sub-
graph search problem. However, in certain cases where table
structures are clearly visible, the detection of horizontal and
vertical lines in the document can be a cost-effective method.
This detection can be accomplished using image processing
tools. By combining the accuracy of our graph-based ap-
proach with the efficiency of visual detection, we enhance
the robustness of our approach for processing various types of
documents.

To further enhance the information extracted from processed
documents, we propose integrating image processing tools.
The utilization of visual elements, such as lines, is not
employed in the approach that focuses on token placement.
The OpenCV library [19] is widely utilized for information
extraction from documents and offers various functionalities.
Among these, the line and contour-based methods are partic-
ularly suitable for our requirements. By applying a sequence
of treatments, such as RGB-to-Grayscale conversion, thresh-
olding, and bounding rectangle calculations, we can detect
graphical information effectively.

OpenCV provides us with local document information. We
have developed a tool that utilizes OpenCV’s data to extract
visually corresponding areas that may represent tables. We
use the output of OpenCV as a surrogate for evaluating the
likelihood of a table’s presence. We define several strategies
based on this approximation:

• Empty: No visual information is returned, so the docu-
ment is fully processed using the graph-based approach
to check for table presence.

• Area: An area is identified visually, but no additional
information is provided. Only this area is processed with
the graph-based approach.

• Column: An area is detected, and vertical lines help
identify columns. Only this area is processed with the
graph-based approach, with pre-defined column positions.

• Grid:An area is detected with a complete grid, allowing
table identification. Only this area is processed with the
graph-based approach, with pre-defined column and row
positions.

The strategy selection depends on the visual processing
result. The table detection quality remains consistent across
strategies, but computational time is minimized as visual pro-
cessing is negligible compared to the full document’s graph-
based approach.

The process we used for our experiments includes the use of
OpenCV, our OpenCV-based estimation tool, and our graph-
based approach. Figure 2 describes this process graphically.
The first step is OCR-independent since OpenCV and our
estimation tool only use graphical information. As already
mentioned, this step can be a surrogate function because
it allows us to characterize the area to be treated and its
associated features. The second step introduces more semantic
information, using tokens, and it is very dependent on the
quality of the OCR. The strategy of the graph-based approach
depends thus on the first step, involving more or less compu-
tational resources.

V. EXPERIMENTS

We use a typical dataset from literature for table extraction
sci-TSR introduced by [20]. This dataset is composed of
documents containing only tables. Note that our main goal is
not only to locate a table but to extract tables from complete
invoices. This point will be discussed later on. Note that,
since most of the methods are based on neural networks, this
dataset is decomposed into training and test subsets. For the
evaluation, we consider the test subset with 3000 tables.

Concerning our method, we consider different table extrac-
tion processes based on the different stages and strategies
previously defined. Running time is limited to 300 seconds
for each table. Since the choice of the pattern is an important
parameter, we have tested different patterns and, as expected,
there is no overall better pattern for all the instances. Hence,
we only use a pattern similar to the Border Left Top pattern
presented in Figure 1 since all tables matching Full grid
or Missing cells also match this pattern. Let us note that
we could use Corner Left Top that matches all tables also

Corner Left Top Full grid

Missing cells Border Left Top

Fig. 1. Different patterns for a 4× 4 table.

Fig. 2. The overall process of our approach.

recognized by the three other patterns. But this pattern induces
a high execution cost. Our proposed method encompasses five
versions, each aligned with a specific strategy (Empty, Area,
Column, Grid). We also consider here an additional version
called Autostrat, that uses OpenCV as a surrogate function to
intelligently determine the most suitable strategy.

We introduce an Oracle to showcase the optimal efficiencies
of our approach. The Oracle selects the best outcome from
each of our strategies, similar to how an end-user would
choose the most suitable table from a set of options. This
oracle reveals the limitations of our AutoStrat method. This
aspect could be improved thanks to a better classification
of documents. As part of our future endeavors, we plan to
introduce a learning method to enhance this classification

process.

In Table I, we provide a comparison between our methods
and state-of-the-art algorithms. The evaluation of the output
is classically performed using accuracy and recall measures
(e.g., see [20]). Basically, the accuracy evaluates the truth of
the extracted table (i.e., retrieved elements are correct) and
the recall evaluates the ability to retrieve expected elements.
Hence, documents need to be labeled to get their ground
truth. The classic F1 score combines recall and accuracy. For
our evaluation process, we also consider a method proposed
in [16]. This method counts the number of vertically and
horizontally aligned elements according to the intended table
to evaluate the accuracy of structure recognition.

We consider five methods based on deep learning (DL),
involving thus a training stage. Some of these methods are
based on graph structures (GraphBasedTSR and GFTE). The
other methods use DL coupled with dedicated techniques.
DeepDESRT is more data-driven. CATT-Net uses a conditional
attention network. TabStrucNet combines cell detection and
interaction modules to localize the cells and predict their row
and column. We consider also a rule-based method Tabby
(the references of the papers are given in Table I). Note that
for the other methods we report here the results presented in
the corresponding papers, since the codes were not available
or difficult to run to get same results (hence the alignment
measures are only available for GFTE) . The articles that
introduce these methods suggest conducting experiments on
a specific portion of the sci-TSR test subset without providing
precise details about the instances chosen. Here, for the sake of

fairness, we choose to analyze the entire test subset to prevent
any potential advantage of our method on specific subsets.

TABLE I
COMPARISONS ON THE SCI-TSR TEST SUBSET

horizontal
alignment

vertical
alignment

accuracy recall F1

Tabby [14] - - 0,914 0,91 0,912
GraphBasedTSR [12] - - 0,936 0,931 0,934
DeepDeSRT [21] No Code 0,898 0,897 0,897
CATT-Net [22] No Code 0,956 0,965 0,961
TabStrucNet [23] - - 0,927 0,913 0,92
GFTE [16] 0,954 0,922 - - -

Empty 0,782 0,819 0,852 0,681 0,736
Area 0,867 0,891 0,846 0,702 0,750
Column 0,775 0,802 0,782 0,583 0,641
Grid 0,740 0,755 0,724 0,529 0,584
AutoStrat 0,786 0,769 0,773 0,631 0,678
Oracle 0,940 0,944 0,933 0,834 0,871

Let us note that our rule-based approach achieves very inter-
esting results compared to trained neural networks. Autostrat is
not really efficient since the document includes a single table,
while a basic Area strategy seems to be the best choice here.
The surrogate function that helps us to handle full invoices
makes some errors on some documents here. Concerning our
approach, the recall score presents some limitations due to the
nature of the input documents. In fact poor recall scores are
due to 50 documents that reached timeout.

VI. CONCLUSION

Our method based on a graph representation and constraint-
based exploration process can be competitive with regard to
ML-based methods and it significantly reduces the need for
extensive training on large datasets (9000 in the training set
that we have considered). In a practical application of our
approach, we have tested our method on invoices that include
tables and other data. Clearly, table-dedicated methods such as
Tabby provide poor results compared to our solution on these
benchmarks.

REFERENCES

[1] H. T. Ha and A. Horák, “Information extraction from scanned invoice
images using text analysis and layout features,” Signal Process.
Image Commun., vol. 102, p. 116601, 2022. [Online]. Available:
https://doi.org/10.1016/j.image.2021.116601

[2] A. Hamdi, E. Carel, A. Joseph, M. Coustaty, and A. Doucet,
“Information extraction from invoices,” in ICDAR 2021, Proceedings,
Part II, ser. Lecture Notes in Computer Science, J. Lladós, D. Lopresti,
and S. Uchida, Eds., vol. 12822. Springer, 2021, pp. 699–714.
[Online]. Available: https://doi.org/10.1007/978-3-030-86331-9 45

[3] M. Köppen, D. Waldöstl, and B. Nickolay, “A system for the
automated evaluation of invoices,” in DAS 1996, ser. Series in Machine
Perception and Artificial Intelligence, J. J. Hull and S. L. Taylor, Eds.,
vol. 29. WorldScientific, 1996, pp. 223–241. [Online]. Available:
https://doi.org/10.1142/9789812797704 0012

[4] F. Cesarini, E. Francesconi, S. Marinai, J. Sheng, and G. Soda,
“Conceptual modelling for invoice document processing,” in DEXA,
R. R. W., Ed. IEEE Computer Society, 1997. [Online]. Available:
https://doi.org/10.1109/DEXA.1997.617381

[5] A. Dengel and B. Klein, “smartfix: A requirements-driven system
for document analysis and understanding,” in 5th DAS, ser. Lecture
Notes in Computer Science, D. P. Lopresti, J. Hu, and R. S. Kashi,
Eds., vol. 2423. Springer, 2002, pp. 433–444. [Online]. Available:
https://doi.org/10.1007/3-540-45869-7 47

[6] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep
learning for named entity recognition,” IEEE Trans. Knowl. Data
Eng., vol. 34, no. 1, pp. 50–70, 2022. [Online]. Available:
https://doi.org/10.1109/TKDE.2020.2981314

[7] V. P. D’Andecy, E. Hartmann, and M. Rusiñol, “Field extraction by
hybrid incremental and a-priori structural templates,” in 13th IAPR,
DAS 2018. IEEE Computer Society, 2018, pp. 251–256. [Online].
Available: https://doi.org/10.1109/DAS.2018.29

[8] F. Shafait and R. Smith, “Table detection in heterogeneous
documents,” in The Ninth IAPR, DAS 2010, D. S. D., V. G.,
D. P. L;, and P. N., Eds. ACM, 2010. [Online]. Available:
https://doi.org/10.1145/1815330.1815339

[9] R. Zanibbi, D. Blostein, and J. R. Cordy, “A survey of table
recognition,” Int. J. Document Anal. Recognit., 2004. [Online].
Available: https://doi.org/10.1007/s10032-004-0120-9

[10] L. Gao, Y. Huang, H. Déjean, J. Meunier, Q. Yan, Y. Fang, F. Kleber,
and E. M. Lang, “ICDAR 2019 competition on table detection and
recognition (ctdar),” in 2019 ICDAR. IEEE, 2019, pp. 1510–1515.
[Online]. Available: https://doi.org/10.1109/ICDAR.2019.00243

[11] T. Kashinath, T. Jain, Y. Agrawal, T. Anand, and S. Singh, “End-to-end
table structure recognition and extraction in heterogeneous documents,”
Appl. Soft Comput., vol. 123, p. 108942, 2022. [Online]. Available:
https://doi.org/10.1016/j.asoc.2022.108942

[12] E. Lee, J. Park, H. I. Koo, and N. I. Cho, “Deep-learning and
graph-based approach to table structure recognition,” Multim. Tools
Appl., vol. 81, no. 4, pp. 5827–5848, 2022. [Online]. Available:
https://doi.org/10.1007/s11042-021-11819-7

[13] S. C. Seth and G. Nagy, “Segmenting tables via indexing
of value cells by table headers,” in 12th ICDAR 2013.
IEEE Computer Society, 2013, pp. 887–891. [Online]. Available:
https://doi.org/10.1109/ICDAR.2013.181

[14] A. O. Shigarov, A. Altaev, A. A. Mikhailov, V. Paramonov, and E. A.
Cherkashin, “Tabbypdf: Web-based system for PDF table extraction,”
in ICIST 2018, Proceedings, ser. Communications in Computer and
Information Science, R. D. and G. Vasiljeviene, Eds., 2018. [Online].
Available: https://doi.org/10.1007/978-3-319-99972-2 20

[15] K. Santosh and A. Belaı̈d, “Pattern-based approach to table extraction,”
in Iberian Conference on Pattern Recognition and Image Analysis.
Springer, 2013, pp. 766–773.

[16] Y. Li, Z. Huang, J. Yan, Y. Zhou, F. Ye, and X. Liu, “Gfte: graph-
based financial table extraction,” in International Conference on Pattern
Recognition. Springer, 2021, pp. 644–658.

[17] B. Yildiz, K. Kaiser, and S. Miksch, “pdf2table: A method to extract
table information from pdf files,” in IICAI, 2005, pp. 1773–1785.

[18] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble, “When subgraph
isomorphism is really hard, and why this matters for graph databases,”
Journal of Artificial Intelligence Research, vol. 61, pp. 723–759, 2018.

[19] G. R. Bradski and V. Pisarevsky, “Intel’s computer vision library:
applications in calibration, stereo segmentation, tracking, gesture, face
and object recognition,” in CVPR 2000 (Cat. No. PR00662), vol. 2.
IEEE, 2000, pp. 796–797.

[20] Z. Chi, H. Huang, H.-D. Xu, H. Yu, W. Yin, and X.-L. Mao, “Com-
plicated table structure recognition,” arXiv preprint arXiv:1908.04729,
2019.

[21] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed, “Deepdesrt:
Deep learning for detection and structure recognition of tables in
document images,” in 2017 14th IAPR international conference on
document analysis and recognition (ICDAR), vol. 1. IEEE, 2017, pp.
1162–1167.

[22] B. Xiao, M. Simsek, B. Kantarci, and A. A. Alkheir, “Ta-
ble structure recognition with conditional attention,” arXiv preprint
arXiv:2203.03819, 2022.

[23] S. Raja, A. Mondal, and C. Jawahar, “Table structure recognition using
top-down and bottom-up cues,” in Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXVIII 16. Springer, 2020, pp. 70–86.

