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Modélisation Mathématique et Analyse Numérique

FLUX RECONSTRUCTION METHOD FOR TIME-HARMONIC LINEAR
PROPAGATION PROBLEMS: 1D A PRIORI ERROR ANALYSIS

MATTHIAS RIVET!, SEBASTIEN PERNET? AND SEBASTIEN TORDEUX?

Abstract. The Flux Reconstruction (FR) method is well established for hyperbolic equations in
the Computational Fluid Dynamics field, but has barely been studied for electromagnetism. In this
article, we propose to describe the FR formulation for time-harmonic linear hyperbolic problems. In
particular, this formalism includes the Maxwell’s equations and the unidimensional wave equations, for
which the method is detailed. We then focus on the wave equations for incoming boundary conditions,
and prove the well-posedness of the associated FR method and quasi-optimal a priori error estimates,
which are explicit in terms of the flux correction polynomials and discretisation parameters. Numerical
experiments finally validate the main behaviours of the estimates, and confirm the good properties of
the method for the Maxwell problem.

Résumé. La méthode Fluz Reconstruction (FR) est largement établie pour les équations hyper-
boliques de la mécanique des fluides, mais n’a été encore que peu étudiée dans le cadre de ’électromagnétisme.
Dans cet article, nous nous proposons donc de décrire la formulation FR pour des probléemes hyper-
boliques linéaires harmoniques. Ce formalisme général contient en particulier le probleme de Maxwell

et I’équation des ondes unidimensionnelle, pour lesquelles la méthode est détaillée. Nous nous concen-
trons ensuite sur I’équation des ondes pour des conditions de bord entrantes, et prouvons le caractere
bien posé de la méthode FR associée, ainsi que des estimations d’erreur a priori quasi-optimales et
explicites en les polynémes de correction de flux et les parametres de discrétisation. Finalement, des
expériences numériques permettent de valider les principaux comportements de ces estimations, et
confirment les bonnes propriétés de la méthode pour les équations de Maxwell.
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INTRODUCTION

Electromagnetic waves propagation is a fundamental physical phenomenon at the heart of many science and
engineering fields: their numerical simulation therefore represents a considerable stake and has led to the de-
velopment and adaptation of numerous methods. In particular, the Finite Difference Method (FDM) [8,40,46]
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is the first approach which has been introduced to deal with Maxwell’s equations. Then, the search of high-
order methods gave rise to the Finite Element Method (FEM) [1,3,7,8,16,23,30], the Discontinuous Galerkin
(DG) [7,17,18,35] or the Boundary Element Method (BEM) [4, 38] for example: these classic approaches are
thus widely used in both academic and industrial contexts. This inexhaustive list of methods and articles em-
bodies the broad spectrum of strategies which have been considered to face time-harmonic problems, with two
main point of views: weak-formulations for DG and FEM in opposition to strong ones for FDM.

At the same time, the Computational Fluid Dynamics (CFD) community particularly focused on Finite Vol-
ume Method (FVM), which are commonly used in industrial configurations at relatively low order. The recent
increase in computational abilities has also elicited interest for high-order methods. This tends to accelerate
the spreading of the Flux Reconstruction (FR) method, which is the topic of this article, and of the DG ones,
which have intensively been studied for wave propagation problems. The FR method was first introduced by
Huynh [20] and relies on the strong formulation with a hyperbolic point of view: the solution and flux approx-
imations are searched as piecewise polynomial functions of degree k and k + 1 respectively. To take Boundary
Conditions (BCs) and continuity properties into account, the flux variables result from the use of correction
polynomial functions.

Such high-order methods relying on the strong formulation had particularly gained interest with the intro-
duction of the staggered-grid method [24], which was then extended to triangular cells by Liu et al. [26] and
renamed Spectral Difference (SD). Such a generalisation for FR has been introduced in [44] through a method
named Lifting Collocation Penalty: both methods were lately gathered under the denomination of Correction
Procedure via Reconstruction (CPR). As this article will only consider the classic framework of FR, we will stick
to this designation in what follows. Further developments were then led for Euler and Navier-Stokes equations
in 2 and 3 dimensions on various mesh types. More generally, a class of energy-stable schemes, referred as
Energy Stable Flux Reconstruction (ESFR) or Vincent-Castonguay-Jameson-Huynh (VCJH), tends to bring a
pertinent approach to the construction of high-order stable methods for these time-dependent problems [22,43].
Finally, entropy stability considerations start to be taken into account in recent studies [27]. The reader may
consult the reviews [21,45] for an overview of the main developments of the method up to 2015.

In terms of noteworthy properties, the FR method relies on a strong formulation which does not depend on
any quadrature rule and offers a generic way to create high-order accurate methods (by choosing different def-
initions for the flux correction polynomial functions). Moreover, classic methods can be retrieved with this
construction scheme in usually less sophisticated and expensive ways, such as particular SD and nodal DG
methods [20,44]: their good sparsity and conditioning properties can then be obtained in this framework. In
particular, the close relationships between a class of FR and filtered DG have been investigated by Allaneau
and Jameson [2], offering an alternative view of the stability criterion of Vincent et al [43]. Last but not least,
this formalism allows an easy understanding of the method effects (by being able to compute the flux correction
polynomial functions and their properties) while intrinsically respecting the hyperbolic structure of the equation.

The objective is then to adapt the FR approach to time-harmonic wave propagation problems. Indeed, due
to the non-linear properties of CFD equations, most of the FR developments have been realised in a time-
dependent context for transport, Euler and Navier-Stokes equations: to our knowledge, only a few adaptations
to the transient Maxwell equations have already been realised for transverse electric and magnetic waves [14,26],
and in the specific case of SD [37]. We will then detail the method in a general framework of time-harmonic
linear hyperbolic problems, which includes acoustic, elastic and electromagnetic wave equations. In particular,
this paper deals with both Maxwell’s equations and the 1D wave equations, for a Cartesian mesh. The question
of the well-posedness of the associated FR methods then naturally arises, which leads us to derive such condi-
tions for a specific case of the 1D wave equations, by leaning on the uncoupling property of one-way variables.
Moreover, while most of the theoretical study of the FR methods relies on Fourier (Von Neumann) analysis,
we derive a priori error estimates in Sobolev norms in this framework to explicit the impact of flux correction
polynomial functions on the method.
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This paper is organised as follows. We first introduce our two problems of interest, the time-harmonic 1D wave
equations and 3D Maxwell problem, in addition to a more general time-harmonic linear hyperbolic setting.
Section 2 describes the associated FR method and details the flux reconstruction procedure, in particular for
numerical traces obtained through a generic metric-based flux operator decomposition. Then, Section 3 specifies
the FR method we consider for both model problems. This introduction allows to derive a priori explicit error
estimates for the 1D wave equations with ingoing boundary conditions in Section 4. Finally, such estimates are
numerically illustrated in Section 5 and the FR implementation for Maxwell’s equations is validated in Section
6 thanks to classic exact solutions.

1. THE FR METHOD FOR A TIME-HARMONIC LINEAR HYPERBOLIC PROBLEM

This article focuses on two specific time-harmonic equations: the homogeneous 1D wave equations and the 3D
Maxwell problem, that we will briefly recall. We also introduce a general linear hyperbolic framework (including
these two cases) which will allow us to develop a generic description of the associated FR method.

1.1. Introduction of the problems of interest
First, we introduce the two problems on which we will focus and detail the FR, approach.

1.1.1. The homogeneous time-harmonic 1D wave equations
The first model problem we consider in this article is the 1D time-harmonic wave problem written in its
hyperbolic form. Its interest is purely theoretical and does not lie in its discretisation.
Problem 1.1 (Time-harmonic 1D wave problem). Let Q := [0,L] < R be an interval and £ > 0 be the
wavenumber. Find y = (u,v)T € [Hl(Q)]2 such that
do

iKYy + W 0 with ¢=F(y) inQ, (1)
x

equipped with Fourier-Robin Boundary Conditions (BCs) written as
u(0) — Z1v(0) = g1 and (L) + Zyv(L) = ga, (2)

0 -1

with the linear flux operator F = <_1 0

)7 Zl,ZQ S {Z eC : %(Z) > 0}, and (gl,gg) € C2.

Remark 1.2. The simplest way to obtain this system is to consider the time-harmonic solution Y = (U, V),
with U(z,t) = R (u(z)e™?) and V(z,t) = R (u(z)e™?), of the d’Alembert equation written in a hyperbolic way

oV 10U U 10V

— - - = — - —— = fi QxR

. (x,t) A (x,t) = 0 and . (x,t) e (x,t) = 0 for (x,t) € Q xR, (3)
equipped with the Fourier-Robin boundary conditions

U(0,t) — Z1V(0,t) = R (g1 exp(iwt)) and U(L,t) + ZoV(L,t) = R (g2 exp(iwt)), (4)

w
with w > 0 the angular frequency and ¢ > 0 the velocity, such that xk = —.
c

Remark 1.3. We recall that the 1D time-harmonic wave problem 1.1 is well-posed for Z;,Z, € {Z € C
R(Z) > 0}. It can be solved analytically by introducing y~ = u — v = ae™™** and y~ = u + v = " whose
amplitudes «, 8 are solutions of

(1+Z1) (0% + (1—Z1> 6 = 291, (5)
(1 — Zg)eiinl‘ o+ (1 + ZQ)GiHL ﬂ = 2g2,
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with the determinant 6 = 2cos(kL)(Z1 + Z2) + 2isin(kL)(1 + Z1Z5) # 0.
This decomposition will find its usefulness in the estimates proof of Section 4.

1.1.2. The time-harmonic 3D Maxwell problem

Then, we introduce the time-harmonic 3D Maxwell problem, as a more complex problem (not being in one

dimension anymore will call on a few subtleties): its importance for industrial problematics justifies the design
of adapted FR methods.
Let’s consider an orthogonal parallelepiped domain ©Q — R3, whose boundary is denoted as 0. The vacuum
permittivity and permeability are denoted as €y and pg, while the relative ones are respectively €, and .,
and we suppose they verify the conditions outlined in Section 4.2 of [30]. Then, in the absence of charges and
currents, the Maxwell problem for the electric and magnetic fields E and H takes the form

0B
V x E(Xa t) = _ai(xat)a
¥ (x,1) € Q x RY, ! (6)
oD
V x H(X, t) = 7(Xa t)7
ot
with, in the case of a linear and isotropic material,
D =¢ee,E and B = pou,H. (7)
We obtain the time-harmonic version by looking for E and H as
E(x,t) = Ey R (e(x) ¢*) and H(x,t) = Hy R (h(x) "), (8)

denoting their amplitudes as Ey and Hy = , /6—O Ep, the speed of light in a vacuum as ¢g = (g ,uo)_l/2 and the
Ho

w
wavenumber as K = —. This finally leads to the following normalised time-harmonic Maxwell equations that

co
we equip with impedance BCs.

Problem 1.4 (Time-harmonic Maxwell problem). Find the electromagnetic field E := (e, h) € [L? (Q)]6 s.t.

0p" 0V o7 _

ixME 0 in
1K + or + 2y + Ep m &z,
¢° =F°E, ¢'=F'E and ¢ =FE i, )
Y[noole + Zog vx[naglh =g on 09,

by denoting

I | 0
E = (exeyyezvhxvhyahz)Ta M = [033 M is]v

(10)

T R T I e I P Al

where Zyn € L®(0Q) denotes the positive boundary impedance that we suppose constant on each face, g €

[Lg(aﬂ)]3 and I and 03 stand for the identity and null matrices of C33.
The tangential component and trace of w are denoted on 052 as

’yt[l’lag]w =W — (W . ngQ) npn = (l’lag X W) X NpQ and Y x [l’lag]w =1Npn X W, (11)
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where ngq stands for the outgoing normal from the domain €.
The matrices associated to these operators for a vector n = (ny,ng, ng) are denoted as I'y[n] and I'y [n] with

0 —N3 no ) (TLQ)Q + (TL3)2 —NniNn2 —nins
Ty[n]=| n3 0 -m and Ty[n]=—(Tx[n])” = —n1Ng (n1)? + (n3)? —nang )
—N2 n1 0 —ning —na2ng (77,1)2 + (n2)2

(12)

such that one has y;[n]w = T'y[n]w and v« [n]w = 'y [n]w.
Theorem 1.5 (Monk). Problem 1.4 is well-posed for g € L2(09)), with

2 2 3

L2(3Q) = {we [L2(00)]” : w-naq = o}. (13)

Proof. By referring to Theorem 4.17 of [30], Q, €., u, and Zaq all satisfy its conditions of application, which
ensures the well-posedness of the problem. O

1.2. The abstract hyperbolic setting

After developing the two specific systems on which we will specify the FR method, we propose a framework
for general linear hyperbolic problems.
Let p,q € N* and Q c RP be a p-hyperrectangular domain, whose 2p faces are denoted as (693)%[[1’2])]].

For a given Right Hand Side (RHS) 1 € [L2 (Q)]q and k > 0, we consider a time-harmonic hyperbolic system

ik IM = in 14
wMy+ 5= (14

governing the primal variable y : Q — CY related to dual variables ¢/ : Q — C9, for j € [1,p], by the flux
operator FJ/ € R%9 as

¢ =Fly. (15)
In this paper, we suppose that M € R%? denotes a symmetric positive definite metric operator and that the FJ
are all symmetric, which implies the classical hyperbolic hypothesis that F[¢] = & F! +- - -+, F? is diagonizable
in R for any £ € RP.
We assume this equation is equipped with boundary conditions

By = Bysc, (16)

for boundary operator B : 02 — C%4 and field ypc € [LQ((?Q)]Q, which finally leads to the frequency problem:

Problem 1.6 (p-dimensional time-harmonic hyperbolic problem). Find y € [L2 (Q)]q such that we have

LPPY -
KMy + Y 22 = inQ  with ¢/ =Fiy, Vjel[lpl,
y j;a%_ ¥ ¢ y, Vijellp] an
By = Bygc on 09Q.

Remark 1.7. We highlight the fact this part does not aim at giving general conditions on M, (F7) je[1,p] and
B to ensure the well-posedness of Problem 1.6 (even if it has specifically been done for both Problems 1.1 and
1.4). This general presentation presupposes they are all given (as well as flux correction polynomial functions
and a numerical trace computation definition, as detailed in Subsection 2.3), and it will introduce the associated
FR formulation.
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1.3. Admissible boundary conditions through flux operator decomposition
In this subsection, we precise some generic boundary conditions leading to a uniquely solvable Problem 1.6.
Definition 1.8. For a boundary face of normal naq, let’s introduce a symmetric positive definite surface metric
M e R%4 and consider the generalised eigenvalue problem
F[nso]w = AMw, (18)
where we recall that F[¢] = &FL + -+ + ¢, FP for any £ € RP. This leads to the decomposition
F[nsq] = MPAP ™, (19)

for a real diagonal matrix A € R%9 of eigenvalues, and a matrix P € R%? of eigenvector coordinates.
Then, we can introduce the decomposition of F[nasq] into positive and negative parts as

Fnao] = F5[noo] + Fig[nae]  with  FZ[nao] = MPATP™!  and  Fg[ns] = MPA™P™' (20)

where AT (respectively A~) denotes the positive (respectively strictly negative) part of A.

Thus, most of the BCs can be written in terms of the incoming flux as
By = F3;[neely = Bysc, (21)

which will be illustrated in Section 3 for our two model problems.

Remark 1.9. In particular, the definition B = F& [naq] falls within the framework of the admissible BCs for

Friedrichs systems [11,13], and it is possible to show the solution uniqueness of the associated Problem 1.6 by
leaning on the unique continuation theorem.

2. FR METHOD PRINCIPLE: A STRONG POLYNOMIAL PDE

After defining the general hyperbolic framework, one naturally would like to introduce the discrete counterpart
of (17). The approximations yn and ¢y, of the primal and dual variables are then defined, for a given mesh, by:

Find yn € Vh k such that we have in every cell of the mesh

P o) ) )

ikMyp + —fh —n  with ¢ =Fiy,, Vjel[lp], (22)
> .
j=1 %

where Vj, x stands for a piecewise discontinuous polynomial function space defined on the mesh, and %y, is a
piecewise polynomial approximation of the RHS . This formulation is unfortunately ill-posed since it contains
neither information on the solution continuity nor the boundary conditions.

The idea of the FR method (as initially introduced by Huynh [20]) is to introduce a non-trivial extension FJ of
the flux operator F’ to piecewise polynomial functions. This leads to the FR formulation:

Problem 2.1 (Discrete problem). Find yn € Vi k such that we have in every cell of the mesh

~ 7

p . ~ .
ikMyn + > —4n with & =Fy, Vjel[lp] (23)
j=1

9Pn
— 0%

Thus, this section is devoted to the introduction of the mesh, the approximation space Vp x and the flux
operator extension F7.
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(1) Main mesh characteristics (11) Faces and strips

F1GURE 1. Mesh introduction in the case p = 2.

2.1. Mesh characterisation

We introduce a p-hyperrectangular domain @ < RP and a direction-wise uniform mesh (see Figure 1i) whose
cells Ky, are numbered by a multiindex n = (1;) jep1,p] € N with

p

p p
- | ey - | o , S
Q= j|:|1[o,L]], Ko=[[t, N= j|:|1[[1,N]}], b, =X, 0 X010 X =nhy =2 (24)

j=1

Definition 2.2. We introduce the set F/ = (FiF> e of faces which are orthogonal to e; (see Figure 1ii)
nFeNy

o= e x P J It o ox P
Fap =l X0 X Inf_1 X {an} X Inf“ X oo X Ingv (25)

being numbered by n’" € N}, with
NL =1, N1] x -+ x [1,N;_1] x [0, N;] x [1, Njsa] x --- x [1, N,]. (26)

Then, in order to shorten the notations, we also introduce dedicated notations to specific behaviours relative
to a chosen direction j € [1, p].

Definition 2.3 (Direction-wise notations). For all a,b€ N*, a,b € [N*]” and x = (z1,...,2,) € RP, we denote
X\j = (21, .. yLj—1yLj415--- Jp) € Rp*la [[avb]]\j = [a,b]\{s},
[[37 b]] = H [[aj’7 bjlﬂ C Np7 and [[a, b]]\J = H [[ajlabj']] (e Np_l. (27)
J'€[1,p] J'ell,ply;

Finally, the following definition makes it easy to refer to the cells adjacent to the one of interest.
Definition 2.4. For any ¢ = (c1,...,¢,) € NP, let /"1 denote the shifted vector along direction j

(',j’il = (C]_7 sy Cj—1,C4 + 1;0j+17 e -acp)' (28)
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2.2. Primal and dual variable approximations

In this subsection, we define the function spaces for the approximation of the primal variable y € [L2(Q)]q
and the dual variables ¢’ € [L2(Q)]" satisfying (17), i.e.

- 09 ‘ 20001
> - =% —inMye [L2()]". (29)
j=1 "7

The primal variable y is approximated by a piecewise multivariate polynomial function yn € Vn k.

Definition 2.5 (Primal approximation space). We introduce the discrete primal approximation space (in 1 and ¢

dimensions) of complex valued piecewise multivariate polynomial functions of degree at most k = (kj)j e[Lp] € NP
in each variable
Vhi = {w € LQ(Q) :VneWN, w|Kn € Qk(Kn)} and Vhk = [Vh7k]q, (30)
where
Q(Kn) = wel?(Ky) : w(x) = Y. amx™, ameC with  x™ = [ (z)™. (31)

me[0,k] Jel1,p]

Definition 2.6. We also introduce the space H(Ty,) of piecewise H! functions on the mesh, which will give us
a general framework for further estimates

H'(Th) = {wel?*(Q) : VneN, wk, e H (Kn)}. (32)

This allows, for any n € N and w € [H!(75)]%, to denote its restriction to Ky as wy := w|k, € [H}(Kq)]"

» )
o¢? ~
Since E ai € [L2(Q)]q, it is natural to look for the dual variable approximation ¢y, as a continuous
7
j=1 J

function in the direction e;. This introduces the space

Q) = {w eL(@) : Vi e [LN]y, ulg eC” (s{q\j)} (33)
of functions which are continuous on every strip Sfj\j of direction j defined by (see Figure 1ii)

J 1 coox P1 ) J+1 ox P
Sh, =l X x 0 x [0, L] < Br 0 > x 1D (34)

Thus, with the aim of having all the terms of (23) with the same polynomial degree, each dual variable ¢/ will
be approximated by ¢ € W4 |, with:

Definition 2.7 (Dual approximation spaces). For a direction j € [1, p], we introduce the discrete dual approxi-
mation space of complex valued piecewise multivariate polynomial functions of degree at most k7! € N? in each
variable, and continuous in direction e;

Wi = Voo 0 [CUQ)]* with K = (ko, ... kj1 by + 1 k4, k) € NP, (35)
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Finally, the idea of the FR method is to approximate the solution (primal variable), the fluxes (dual variable)
and the RHS by piecewise polynomials which solve the initial PDE on each cell K, for n e A/

O
7

p
iKMynn + ), = (Mnx¥),, , (36)
j=1

Zj

where Il x : [LQ(Q)]q — Vhk denotes a projection from [LQ(Q)]q to the discrete space Vhk, whose choice
belongs to the user (such as the L2-projection or an interpolation on a set of points for example).

2.3. Local approximation of the fluxes

The flux operator F/ is a local linear operator. It can naturally be extended to Vi, x and associates to the
approximation yp of the primal variable an approximation ¢y, of the dual variable given by

#i = Flyp. (37)

Yet, the FR formulation relies on a nontrivial and nonlocal extension Fi Vhk — W{l’k, Yn — (]3{1 of the flux
operator F7 which is obtained by perturbing it as

F/ = F/ + 6F. (38)

through a polynomial correction of the flux ¢{1 at the interfaces which will be detailed in this Subsection.
Moreover, so as to ensure the consistency of the method, we will only consider perturbations which vanish for
the exact solution, meaning that

SFJ(y) = 0 for the exact solution y. (39)

First, as yn and qb{1 may be discontinuous across interfaces, we need to introduce their 'direct’ traces on any
face from the neighbouring cells (two cells in the case of an internal interface, and one otherwise), as illustrated
in Figure 2.

Definition 2.8 (Direct traces). Let F € 7 be an internal face orthogonal to e; such that F = K1 n Kp.
The direct traces of yn and ¢, on F (respectively ’just after’ and ’just before’ it) are defined by

YIJ:,F(X\j) = Yhn (%) and d’;lt _F [y;;F] 7
VxeF, l | "
Yurp(Xy) = Yhni (x)  and ¢y =F [Y}T,F] .

In particular, YyilF» d){li; € [Qk\j (F)]q, and this definition naturally extends to boundary interfaces.

Then, as we want to impose the BCs and the continuity of the flux approximation along the interfaces, we
introduce flux numerical traces on them: the flux on both sides of the faces will be corrected to fit with these
values and thus be single-valued on these interfaces (as illustrated in Figure 2).

Therefore, Definitions 2.9 and 2.11 will introduce generic ways to define such flux numerical traces on internal
and boundary faces, even if absolutely general methods could be used.

First, for an internal face F € F7, we presuppose the reader is able to give a decomposition of F/ that will divide
the influence of both sides in terms of the flux numerical trace.

Definition 2.9 (Internal flux numerical traces). Let F € 77 be an internal face orthogonal to e;. Assume the
following decomposition of the directional flux operator: F/ = F/~ + F/. The numerical trace y¢¢3, of the
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FIGURE 2. Illustration of the piecewise discontinuous flux in direction 1, ¢f, = Flyy, with its
direct and numerical traces, for p = 2 and k = (2, 1).

reconstructed flux (,5{1 on F is defined by:
Wy, = [yﬁ,p] +FI [yﬁ,p] ; (41)

where y;iF were introduced in Definition 2.8. In particular, 'ypcgfl € [Qk\j (F)]q.

Remark 2.10. As detailed in Subsection 1.3 and illustrated in Section 3, such a decomposition can be obtained
by solving a generalised eigenvalue problem for a given symmetric positive definite matrix Me R%4, taking F/~
and F7 as the associated positive and negative parts of F/ (see [19] for example). Moreover, one classically
makes the choice M = M for the internal interfaces.

In the same idea, such a numerical trace has to be defined on the boundary faces to take the BCs into
account. To do so, we presuppose the reader is able to express the incoming flux with respect to a given surface
metric.

Definition 2.11 (Boundary flux numerical traces). Let us consider a direction j € [1, p], a boundary face F € F7
orthogonal to e;, with n € A/ the index of its neighbouring cell and s € [1,2p] the index of the corresponding
boundary interface, such that F = K, n 0€.

Moreover, we denote the incoming and outgoing directions as id and od, which stand for — and <« (respectively
«— and —) if n; = 1 (respectively n; = N;). Furthermore, is stands for the internal side of the boundary,
corresponding to + (respectively —) if n; = 1 (respectively n; = Nj;).

Finally, we suppose that, for this face F, we are given a decomposition of the directional flux operator F/ =
F7~ + FJ, such that the BC can be written as

Fiidy — of  on F, (42)
where gF : F — im (F7:%4),

This allows to define a flux numerical trace polynomial r¢j, € [Qx, (F)]” on F in the same way as (41), by
replacing the incoming (and then undefined) component thanks to the previous expression:

Yy, = B [yise] + 1 [87], (43)
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where H;kv : [L2(F)]q — [Qk\j (F)]q stands for a given projection on multivariate polynomial functions defined
on F.

Remark 2.12. We highlight the fact that Definitions 2.9 and 2.11 offer specific ways to define the flux numerical
traces in the consistency framework of (39): for both the equations of Subsection 1.1, their applications will be
detailed in Section 3. Yet, they are not the only consistent possibilities, let alone the only choice to define a FR
method. .

Indeed, one may choose completely general ways to define ¢, on internal and boundary faces (not even
ensuring consistency), and Definition 2.13 will still allow to define the associated FR formulation.

Finally, in any case, neither well-posedness nor convergence properties of the FR method are naturally ensured:
this paper will prove them only for the specific Problem 4.4, and it is not destined to characterise a class of flux
numerical traces that should be used for a general problem.

This finally allows to define the flux approximation gg{l To do so, we impose the flux numerical traces at
each interface thanks to flux correction polynomial functions of degree k; + 1: this will satisfy the expected
continuity and polynomial degree properties.

Definition 2.13 (Flux approximation). For j € [1,p], let’s introduce two polynomials P, P7~ e Qy 1([0,1])
such that

{pw(o) = 1, P7(1) = 0, (44)

Pi=(0) = 0, P (1) = 1.
We define (]3{1 as the perturbation of (;5{1 = Flyy, € Vi x whose values at any interface F € F7 of normal e;
match the numerical trace polynomial functions ¢y, thanks to corrections realised by PJ = and P,
More precisely, let’s consider a cell n € N and its two faces along e;, respectively F™ = Fil ;-1 and F~ =FJ on
the "left” and 'right’ (in the j-th direction). Thus, we define ¢y, ,, as

Vx € Kn, ¢, (%) = @], (%) + 8+ (%) + 80— (), (45)

where the perturbations from the ’left’ and ’right’ interfaces (in the j-th direction) are respectively
et (X) = (W’F+ bh — ﬂL) (xy) P*7(%;) and Opr (%) = (WF— bn — {1;7) (x\j) PP7(;),  (46)

oy
where z; = X5, 4

+ h;Z; (see Figure 3).

Remark 2.14. One will observe that Definition 2.13 naturally ensures the increase to k; + 1 of the flux
polynomial degree with respect to z;, in addition to the continuity with respect to the j-th component (as the
values at the interfaces of normal e; are then single-valued with the numerical trace polynomials):

Vo' e N, VxeFle, & 1r(X) = & ey (%) = VF]-FJ{I(X\J-). (47)

This allows to complete the introduction of the Flux Reconstruction method with the strong polynomial
equation (36), the flux numerical traces vr¢j, definition (with the examples of Definitions 2.9 and 2.11, or a
general choice) and the flux approximation Definition 2.13: in any cell K, with n € N, we get

~

20
. h.n . 7 ] — «—

iKMYhn + . (Mpxtp), with &, =, + e T (48)
i=1 ni-

Remark 2.15. We highlight the fact we did not introduce any set of solution points, as it is used to being
done in classic definitions of the FR method (see [20,44]). Such nodes are usually used as collocation points,
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T2

X1 20 h_2 €1 20 E
R h1
(1) Flux correction in direction 1 (11) Flux correction in direction 2

FIcure 3. Mlustration, for p = 2 and k = (2,1), of the flux correction with the numerical
traces, with respect to direct flux approximation: qS%l € Vh,(3,1) and ¢fl € Vh,(2,2)-

where the polynomial equation (48) is evaluated: the approximate solution is then reconstructed thanks to
Lagrange polynomials. Yet, in this linear case, it has been shown thewe solution nodes have no influence on the
method [20,41] (without paying attention to the RHS projection which may depend on it, especially in case of
interpolation), which avoids their introduction and additional notations.

Remark 2.16. The Spectral Difference (SD) method can be seen as a specific case of the FR approach

in this linear framework [20]. Indeed, for each direction j, let’s consider a set of k; 4+ 2 distinct flux
points {:Eg”, .. ,’x‘fjjﬂ} < [0,1] such that :’z?g’] =0 and ifjil = 1, with the associated Lagrange polynomials

(ﬁlF’j )l 0411 Thus, by considering the specific flux correction polynomials
€[0,k;+1

P2 =L and PP =L7 ), 49
0 kj+1

the associated FR formulation allows to retrieve the SD one. Similarly to Remark 2.15, SD definitions (see
[24,26]) rely on sets of solution points which have no influence in this linear case: they are only introduced as
collocation points for the numerical implementation. '
Equivalently, in this case, ¢j, can be defined as the unique element of Vy, y,.1 such that its restriction ¢{1,n to
any K, is equal to:

* Ve 1(5{1 on Ffl ;1 (the ’left’ interface in the j-th direction).

nd=
e ¢ on the internal faces of the cell associated to the flux points, defined by

1 j—1 ~JF i+1
(In1 X e X Iﬁlj_l X {hj (nj -1+ )} X I{l‘;+1 X e X |gp (50)

)ze[u,/cj]] '
* Ve (5{1 on F (the right’ interface in the j-th direction).

3. APPLICATION OF THE FR APPROACH TO THE PROBLEMS OF INTEREST

We will then specify the applications of Definitions 2.9 and 2.11 to the Problems 1.1 and 1.4: this will allow
to characterise the FR methods we introduce for them.
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3.1. The FR formulation for the 1D wave equations

Note 3.1. In the case of a single dimension, we will abandon the superscript of the direction j and the faces,
reduced to a single point, will directly be referred as their number nf" € [0, N] (see (51)). Moreover, as the cells
K, and intervals |,, are identical, we will only refer to I,, in this Subsection.

We take back Problem 1.1. Then, giving the set of numerical traces at the interfaces

(2 0) regomy &
the corrected flux (see (45) and (46)) can be expressed on any |, for n € [1, N, as
Brn = Grn + (’Yn—l(zh - ¢h,n(Xn—1)) P+ (’Yn(zh - ¢h,n(Xn)) Py, (52)
where P> and Py~ stand for the transported versions of the flux correction polynomial functions on I,,:
Veel, P (x)=P~ (&) and P (z)=P~(Z) where x= X, 1+ hZ. (53)

Then, the last thing we need to completely define the FR method is the computation of these numerical traces.
To do so, as mentioned in Remark 2.10, let’s diagonalize the flux operator F with respect to M = Is:

F—PAP~! with P= G _11> and A= (_01 ?) (54)

Thus, we introduce the flux operator decomposition as the positive and negative parts of F

1/1 -1 0 0
— _ +p-—1 _ - : + —
F = PATP = 2(_1 1) with A (0 1), )
55
F- = PA P! = -1 -1 ith A~ = -1 0
= = o\l 1) W™ = \o o)

which allows to define the flux numerical traces for internal faces according to Definition 2.9.

Concerning the boundaries, we refer to Subsection 1.3: we will highlight a surface metric M whose associated
decomposition of the flux operator F encompasses the BCs (2). Indeed, one has, for given complex values
Zy # 0 and Yy = (Zo)il # 0:

~ ~ 12 _ 1/2
F = MQAQ71 with M = <Y0b Z00> and Q = <((}Z/§))1/2 (g())])_/g > ) (56)

which allows to introduce

~ 1/Y, -1 ~ 1/-Y, -1
o +o-1_ ~ (Yo < = Ql=:Z 0
5 - MaatQ - (_1 Z@) and Fg = MQA™Q ! = - (_1 —Z0> . (57)

Then, replacing (Zy, Yo) by (Z1,Y1) and (Z3,Y2) for the left and right boundaries respectively (and denoting

~ ~

the associated surface metrics as M; and Ms) that we suppose to be non-zero, one has

F2 y(0) = 91 zfl — Yi[u(0) = Z1v(0) — 1] _ 0 >  u(0) — Z1v(0) = g1,
() ()

-4 () — (MOZOE) 0 iz
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Thus, the framework of Definition 2.11, with F2 , F< and (58), allows to take the BCs into account, and
I"Il I”I2
then defines an associated numerical trace.

Remark 3.2 (BCs for Dirichlet and Neumann conditions). Finally, one will note that the previous condition
does not allow to take into account Dirichlet (Z; = 0) and Neumann (Y; = 0) conditions. To solve this
limitation, let’s first highlight that (55) leads, on the left and right boundaries respectively, to

I N A N R 1-Y: 0 ..
Fa = 2[( 0 1+Zl)F * ( 0o 1-z)F |
. 1[1-Y 0 N, 1+Y, 0\ ..
o = 2[( 0 1—22)F - ( 0 1+ZQ)F ]

which allows to rewrite the BCs (58) as the expression of the incoming natural flux in terms of the reflection of
the outgoing one:

(59)

— _ > T— . _ g1 1 — _ 7R1 0
F~y(0) =R7Fy(0)+ G; with Gy Z1+1< 1) and R —( 0 Rl),

1 R 0 (60)
«— _ — : _ g2 - — __ — 2
Foy(L)=R“F~y(L) + Gy with Gg = 7, 11 <_1> and R™ = ( 0 Rg) ,
. Z1—1 Zy—1 . . . . .
with R; = and Ry = the classic expressions of the reflection coefficients at normal incidence.
Z1+1 Zs+1

Moreover, replacing the undefined term of Definition 2.9 with these rewritings allows to define a numerical trace
in more general conditions.

3.2. The FR formulation for the 3D Maxwell problem

In what follows, we suppose that ¢, and p, are constant in the whole domain (which is a subcase of the more
general hypotheses of Problem 1.4).
In the framework of Subsection 2.3, we finally need to define the numerical traces. To do so, we consider the
same mechanism as the one introduced in Subsection 3.1: the idea is to diagonalize each flux operator with
respect to the scalar product induced by M (defined in (10)), before using their positive and negative parts as
a decomposition. For example, we have F* = MP?A*(P*)~!, with

0 0 0 0 0 (e,) 112
e 0 @) o o o
" 0 (gr)—1/2 0 _(ET)—I/Q 0 0 N —cly 05 0g
P= -1/2 and A= | 0y clp 02| (61)
0 0 0 0 (pr) 0
0 (1 )—1/2 0 (1 )—1/2 0 0 05 0, 0,
(NT)71/2 TO (MT)71/2 TO 0 0

where A” is the diagonal matrix composed of the eigenvalues, while P* is made of the eigenvector coordinates.

The speed is also denoted as ¢ = .
VErHr
Thus, we introduce the flux operator decomposition F* = F*»™ + F¥ as its positive and negative parts.
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This leads to F*~ = MP?A®+(P?)~! and F*~ = MP*A%~ (P*)~! with

( 0, 0, 0,
_ 1 (YTle;] —Txles] .
T,— T AT,+ zy\—-1 _ - t|Cz x [ Cz T+ _
F MP*A®*(P*) 5 (I‘x[ex] 2T, [es] with A 0 cly 05,
0, 05 0y
(62)
—cly 0y O
o 1 (~YT[es] —Tyxles] . B N
T, — T AT, x 1 — - t1Cx X | Cx z,— _
F MP*A (P ) 2 < I‘x[ew] —Z]._‘t[ei] with A 02 02 02 s
02 02 O

where Z =, JE7 and Y = Z~1 stand for the internal impedance and admittance, and I't[e, ] and Iy [e,] denote
Er

the matrices respectively associated to the operators v;[e,] and yx[e.] (see (12)). This allows to define the flux
numerical traces for internal faces according to Definition 2.9, in a similar way to classic ones [15,29].

Then, for the boundaries, we introduce a surface metric M whose associated decomposition will allow to take
into account the BCs, as detailed in Subsection 1.3. Thus, for given values Zy > 0, Yy = (Zo)~! > 0 and the
surface metric

NT ZY()ETIg 03
M = ( 03 ZOYMTI3> (63)

the generalised eigenvalue problem leads to the decomposition F* = FEV/’I_’ + F%’I‘_ with

T,— 1 YOFt [em] _FX [ea:] T, 1 _YOFt [ez] _FX [ea:]
F27 =~ d F2& = . 64
Mo ( Loe. Zolfe]) ™ Foo =3\ Dofed  ~Zilife.] ()
Then, considering left and right boundary faces of respective outgoing normals nyg = —e, and npg = e, and

their impedance Zpn and admittance Yoo = (ZaQ)_l that we suppose strictly positive (with the associated
surface metric Mpq), one has

— 1 (Yo [—e,
2 E 9 ( j%xt[[_ez]]) g < yl-esle+ Zogyx[—e]h =g,

Moq
fe] (65)
« g_ L1 [(-Ysli[e, _
Fu. . E= 5 ( Tyle.] )8 Vilesle + Zoavx[es]h = g,

where we use the fact that g € L?(0€2) implies that g = v4[e.]g = v:[—e.]g on these boundary faces.
Thus, the framework of Definition 2.11 allows to take the BCs into account, and then defines an associated
numerical trace. Similar considerations can be applied for the y and z axes.

Remark 3.3 (BCs for perfect conductor conditions). Finally, one will note that the previous condition does

not allow to take into account perfect electric (Zsn = 0) and magnetic (Yzq = 0) conductor conditions. To
solve this limitation, let’s first highlight that (62) leads, on left and right boundaries respectively, to

e L[ [(14+YeZ 0 . 1—-YZ 0 T,
Foe = 3 0 1+YZsq A 0 1-YZaq) F ’

Pl = 2[( 0 lYZ(;Q)F +( 0 1+YZg)F |

(66)
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which allows to rewrite the BCs (65) as the expression of the incoming natural flux (associated to M) in terms
of the reflection of the outgoing one:

. [N A YI‘t [767«] 7RI3 03
F>7E=R7”F>»“E+G™ th G7=——-— ’ d R~ =
* b Zoa+ 72 (‘Fx[_ex] & an 03 RI3)’
T,—E _ —pr,— «— : — Z _Yrt[ez] «— _R13 03
F E=RF E+G with G = m < F>< [ez] g and R = 03 RI3 )
(67)
Zoq — 24

with the classic expression of the reflection coefficient at normal incidence R = Moreover, replacing

Zoo + 2
the undefined term of Definition 2.9 with these rewritings allows to define a numerical trace in more general
conditions.

Remark 3.4. These numerical traces can also be obtained by considering a 1D Riemann solver or an upwinding
mechanism (see respectively 2.3.2 and 2.3.3 from [39]). For the latter, the idea to look for the numerical trace
as a linear combination of output traces from the neighbouring cells of the face (associating a virtual cell out
of  in the boundary case).

4. A PRIORI ERROR ESTIMATES AND WELL-POSEDNESS CHARACTER

After detailing the construction of the Flux Reconstruction method, we focus on the homogeneous 1D time-
harmonic wave Problem 4.4, with the numerical traces introduced in Subsection 3.1 and incoming BCs.
Thus, this Section is devoted to show the well-posedness of the associated FR formulation, in addition to explicit
a priori error estimates.

4.1. Main results

First, we detail the problem on which we focus, before summarising the main results.

Conjecture 4.1. For the rest of the paper, we assume the flux correction polynomials P~ and P are of
degrees exactly k + 1 and that the parameters are such that

k+1 k+1
Z (PP (0) (=ish) 20 and Y. (PP (1) (k)T £ 0, (68)
1=0 =0

where (P~)" and (P<)") denote the I** derivatives of P~ and P respectively.

Remark 4.2. We highlight the fact that:

1. For any given flux correction polynomial functions P~ and P*, by introducing the real polynomials of
degrees k + 1

k+1 k+1
Z PYY0)x! and T Z PO ) xt, (69)

kE+1
Conjecture 4.1 may be refuted for at most {—i_J values of kh (which is the maximum number of their

couples of non-zero conjugated purely imaginary roots).

2. Condition (68) is verified for h small enough, as (P”)(kﬂ) (0) # 0 and (P“)(kﬂ) (1) #0.

3. All the numerical tests that we have implemented (for various flux correction polynomial functions,
polynomial orders, domain lengths and wavenumbers) have verified this condition (see Subsection 5.1).
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Claim 4.3. In what follows, we restrict the study to the homogeneous case ¥ = (0,0) with the Boundary
Conditions associated to Z3 = 1 and Zy = 1, the numerical traces associated to (55) and (58), and flux
correction polynomial functions of degrees exactly k + 1 verifying Conjecture 4.1:

Problem 4.4. Find y;, = (up,vp) € Vi i and qgh € W), i, such that for all n € [1, N]

da)/h,n
dx

1KY h,n + =0 inl,, (70)

associated to the Boundary Conditions

{U(Xo) - v(Xo) = g1,
(71)

u(Xny) + o(Xn) = go,
and the flux numerical traces from Subsection 3.1.

Just before presenting the error estimates, we introduce two semi-norms for which they are developed.

Definition 4.5. For w € H'(7,) and w € [Hl(ﬁl)]2 (see (32)), we define the semi-norms |w|, and |w|, by

N-1 N-1

[wl2 = Jwr(Xo)* + D [[wlal” + lox(Xn)P and w2 = [wi(Xo)* + X [[Wlal* + lwn(Xn), (72)
n=1 n=1

where we have denoted the modulus and the usual euclidean norm on C? as | - | and the jumps of w and w as

Vnel,N—1], [w]n=wn1(Xpn)—wn(Xyn) and [W]n = whi1(Xn) — Wi (Xn). (73)

Moreover, the semi-norms |w|; , and |wl; 5, denote the broken H' semi-norms as

|w|1h—2f|wn ()P dz  and |w|1h—2f|wn (@) da. (74)

n=1

Finally, we denote the L2-norm on Q as |w(o = ||w|r2(0) and [w]o = |[W]r2(q)

Thus, we can introduce the main result, which ensures the well-posedness of the FR approach, in addition
to explicit asymptotic estimates of the error.

Theorem 4.6. For kL fized and xh verifying Conjecture 4.1, the Flux Reconstruction formulation associated
to Problem 4.4 is well-posed.
Moreover, for kh small enough, we have the following estimates of the error €, =y — yn (for the norms
introduced in Definition 4.5):

@) e < (kL) (kh)**+1 (Clg1f* + Colgal?),
@) Jenls < w71 (kL) (kh)**2 (Czloi|* + Cizlo2l?), (75)
(@ii) lenli, < & (kL) (sW)*  (Cplol* + Cinlgal?) .
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where the notation A < B means that there exists a constant C' > 0, independent of k, h, k and L, such that
we have A < B C. Moreover, we have the explicit expressions of the constants

N P L s (w2l o _ o
) Tl b T 112 H T2
) ) and , (76)
S co _ IBEP+3(sL)ACP o _ lorl
T Lz T, 7 H e
which depend on
1 1
L = f P~ (z)dz  and A, = J P (2) dz,
0 0
B = P and By = [P )
) k L2(0,1) k L2(0,1) (77)
R I L
§ (=) L2(0,1) o F (P) L2(0,1)
[ i = (PO end T, = ()Y ().

Remark 4.7. One will note that Theorem 4.6 ensures quasi-optimal convergence orders, such as DG methods
[10,31] (as it will be highlighted in the numerical Section 5). In particular, this behaviour is allowed by the
regularity of the exact solution y (see Remark 4.10). Moreover, the dependencies are explicit in terms of the flux
correction polynomial functions, the number of wavelengths in the domain «L, and the size of a cell relatively
to a wavelength xh.

Finally, the dependence of the estimate (i7) on xL highlights two asymptotic behaviours in VL and (HL)3/ 2,
according to the value of Ay, and then the flux correction polynomial functions (see Subsection 5.5).

4.2. Proof of the well-posedness result and error estimates

In what follows, we will detail the proof of Theorem 4.6. It will mainly rely on the introduction of one-
way variables, for which the associated approximations and errors verify local strong equations. Then, error
estimates will be derived going from one cell to its neighbour, and propagating the error along it in an iterative
process: summing up on all the cells will thus allow to conclude.

4.2.1. Strong equations for the one-way variables

The interest of the Flux Reconstruction approach is that strong equations can be derived on each interval
for the approximation of the solution, and then for the local error.
First, in every cell |,,, we define local flux correction polynomial functions P> and P;~ thanks to the reference
flux correction polynomial functions P~ and P< (see Definition 2.13) as

Veel, P (x)=P~(Z) and P (z)=P(Z) with z=X,_1+hZ. (78)

Then, to drastically simplify the continuous and discrete systems, we decompose the solution in the one-way
variables

—

y =u—v and Yy~ =u-+v, (79)
with their discrete counterparts
Y, =up—vp and Yy = up + vp. (80)

Remark 4.8. In agreement with the BCs (71), we introduce the virtual values out of the boundaries

Yno(Xo) =91 and  y; v (XN) = g0 (81)
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Then, these changes of variables allow to decouple the systems of Problems 1.1 and 4.4.

Proposition 4.9 (One-way reformulation). y— and y~ are solutions of

. W)V @) = —isy @)y [ @)V @) = sy (@),
g “L{yﬂ%> o d{ywxw — (82)

while v, and y;~ are solutions of

Vi) (@) = —inyi, (@) + [y Tar (P (),
Vne[l,N], Vael, o & 4 (83)
«— - «— «— —\ (1
vin) @) = sy @) = I Te (P (@),
where we recall the jump of w e H'(T,) at any interface is denoted as
Vne[0,N], [wln = wnt1(Xn) — wa(Xy). (84)

Proof. Equation (82) is derived from (1) with Z; = Zs = 1 and the definition (79) of 4~ and y* .
Equation (83) is due to the strong equation (70) verified by yj, the definition (80) of y;,” and y;,, and the

following expressions of the interface corrections (which rely on the flux numerical trace operators defined
thanks to (55) and (58)):

e For an internal interface nf" € [1, N — 1], one obtains

~ - - nt ~ + VplnF
ot i — b1 (Xpr) = 1( bin =] ) and e dh — bnr (Xr) = — (Huh ol ) (85)

2 [[uh — 'Uh]]nF 2 [[uh + 'Uh]]nF

e For the boundary interfaces, one obtains by referring to Remark 4.8

~ 1 (—[un —vn]o ~ 1 ([un +vn]n
Yodn — ¢n1(Xo) = 5 and  yN@nr — dpN(XN) = —5 ) (86)
2 [un —vnlo 2 \ [un +vn]n
which can be seen as the direct application of (85) with fictive cells associated to the BCs.
O
Remark 4.10. We highlight the fact that the exact solutions of (82) can be easily obtained as
VeeQ y~(x) = gre @ X0 and  y () = goe @ XN, (87)
which ensures that y € [C*(Q)]°.
Proposition 4.11 (Strong error equations in one-way variables). The one-way errors
e =y —yn and g =y —yp (88)
satisfy the strong local equations
— (1) . — — — (1)
(5i0) @ = —ikepn(@) + [T (P (@),
Vne[l,N],Vzel,, ) (89)

inei () = [en 1o (P (2),

=
E]
N—
—
8
&
Il

and the boundary conditions
eno(Xo) =0 and e, v 1 (Xn)=0. (90)
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Proof. Equation (89) is due to (82), (83) and the continuity of > and y*~, while (90) relies on (81) and (87). O

4.2.2. Well-posedness of the one-way discrete problem and local error estimates

In this Subsection, we will focus on the propagating errors, to derive preliminary local estimates. The proofs
will only be detailed for €;,”, as similar steps can be followed for ¢j,.

We begin with the proof that y;,> and y;~ are well defined on each interval if Conjecture 4.1 is verified, and
we detail a bound on the error jump realised on €;” and ;" at the interface between two cells.

Proposition 4.12. In the framework of Conjecture 4.1, the one-way variables y;,” and y;  are well-defined in
Vi1 and the error jumps are bounded as

V’I’LE[[O,N—H], |[[Eh]] | \anhk: |T | (|Eh,n(Xn)|+|gl|)7
(kh)k+1 (91)
Vne [[LN]]’ |[[€h ]] | Hhk? | | (|€h,n+1(X’ﬂ)|+|g2|)7
k+1
where we denote the derivatives at 0 and 1 of the reference flux correction polynomial functions as
vielok+1], T = (P70 and T =PV (), (92)
. ()00 735 ()0 |75,
kh)~™ T kh)~ T
Cshk = Thr1 kil and Cshk = Tpr1 ak ) (93)
Z (—ikh)™ Z (irh)™
1=0 1=0
with the asymptotic behaviour
thﬁig’)+ L and o, hj& L (94)

Proof. First, let’s consider an interval n € [1, N] for which we suppose y;°, ;(Xy—1) is well-defined (which is
the case for n = 1, as y;°,(Xo) = g1).
By differentiating (83) [ — 1 times, we obtain for [ € [1,k + 1]

g (l) . — (l_l) — — —
() (Xnm1) = =ik (i) (Xmt) + (Wi (Xnmt) = Y1 (Xanm)) (P (Xn), (95)
and by induction

l
(i) (Xuz1) = (=im)! g (K1) + (7 (Xamt) = gino1 (X)) D (=im) =™ (P7) ™ (K1) (96)

m=1

Thus, the last thing we need to characterise the polynomial function y;’, (of degree at most k) is the expression

o
of y;, . (Xn-1), as the derivatives ((%ﬂ) (Xn1)> can be deduced from (96). To do so, by taking
le[[1,k]
(k+1)
I =k + 1 in this equation and as (y;’n> (Xn—1) =0, we get
+
(R4 K] 0 (Xt) =3l (X)) 2 ()27 (B (X) =0 (97)

The definition (78) of transported flux correction polynomial functions leads to

Vme[0,k+1], Vael,, (P)™ (@) =h"P)™ () with z=X,_,+h, (98)
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and by using the fact that T;”> = P~ (0) = 1, (97) can be rewritten as

k+1 k+1
D O Dy E Rt o e} ©9)
1=0 =1
k1
where we recall that T, = (P%)(l) (0), for I € [0,k + 1]. Conjecture 4.1 ensures that 2 (—ich)™' T # 0:
1=0
)
Y (Xn_1), and then all the derivatives ((yfn) (Xn_1)> , are well-defined with respect to y;,”, 1 (Xn—1).
1e[0,k]

The local solution approximation yj,”, being a polynomial function of degree at most k, it is then perfectly de-
termined. Global well-posedness is deduced by induction.
Concerning the jump estimates, we can write

= y}?,n71(Xn—1)
[T = . (100)

D (—ikh) Ty

=0

Artificially introducing y~ (X, —1) = gie”*%n-1 (see (87)) to make Enn1(Xn-1) = (U~ — Y1) (Xn-1)
appear, we get
— — yH(Xn_l) - 6}?717 (Xn—l)
[en D1 = =i Tn-1 = — ol : (101)
2, (—ish) " T

=0

where we have used the continuity of y~ at x = X,,_1.
Then, the triangular inequality and the definition (93) of @,k lead to

R . (kh)F+! R
37T < e S (] s (X)) (102)
k+1

Finally, the asymptotic behaviour of o, , results from 7,7, # 0, as P~ is of degree k + 1 (see Claim 4.3). 0O

Proposition 4.12 is the key argument to propagate the error estimate between two consecutive cells.
The next Proposition estimates |¢;,, (X,,)| and |ef,, | (X»)|, respectively at the right and left sides of each cell
(see Figure 4).

Proposition 4.13. In the framework of Conjecture 4.1, the propagation of the error on each interval leads to
— — n «— «— N—n
¥ n e [0,N], |5h,n(Xn)| < [(1 + %h,k) - 1] lg1]  and |5h,n+1(Xn)| < [(1 + %h,k) - 1] lg2|, (103)

where we denote, thanks to the definition (93) of o}, , and agg,

th,k = Oérch,k |Tﬁh | (Kh)kJrl and ’YKh,k = anh,k |T<7h ‘ (Kh)khq-a (104)
k+1 k+1
1 o 1 o

Jo =1+ f PP (@) Az and TS =1 —J (P (1= 7) e dz. (105)

0 0

with the asymptotic behaviour

e = O((kh)"? d Yo = O((kh)"2). 106
Vih,k . ((“ ) ) an Yih,k b0+ ((’f ) ) (106)
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Proof. By considering a variation of parameters on the differential equation (89) solved by ¢;,”, we get
vV n e [1,N], E;T,n(Xn) = [[[ah_’]]n,lJ,:,’L + Eh_:nq(Xn—l)] e irh

where we have denoted, and simplified thanks to the change of variable = hZ + X,,—; and (98)
. 1 . ~
Jo =1+ f (P (z) e @=Xn1) dgp = 1 + f (PP (3) M7 a4z,
[

K
0

n

Thus, triangular inequality and Proposition 4.12 lead to

[ehon (Xn)| < (L4 Yk ) €071 (Xn—)| + Yk |91,

where we have used the definition (104) of 7,7 ;.
Thus, by considerations on an arithmetico-geometric sequence, we obtain

Ve [0, N —1], (lep,(Xn)l +lo1l) < A+ 700" (leno(Xo)l + lg1) ,

and (90) allows to conclude.
Finally, the asymptotic behaviour of Yyeh,k COMeES out of Remark 4.14 and Lemma 4.15.

Remark 4.14. We highlight two specific behaviours of 7,3 , and v, , with respect to
1 1
- =f P~ (3) di and  Ap - J P (3) da.
0 0

Indeed, by using Lemma 4.15, one has:
o If A;” # 0 and A}~ # 0, then .7 , and v, ;. can be rewritten as

— > — |A;| h k+2 d «— < “«— |A(]:| h k+2
Yeh,k = anh,kﬂnh,k T (kh) an Veh,k = O‘nh,klgnh,k T (kh) )
T4 pst

where we denote | |
— kh — rh

= d — 1“whl

rh,k |AZ|I€h an Bnh,k |A?‘I€h7

with the asymptotic behaviour

8., — 1 and (5, — 1.
rh.k kh—0t rh.k xkh—0*

e Otherwise, by using the asymptotic behaviour (94) of a;, ; and «, 4, one has

ek =, O((R)) and A = O((kh)*).

kh—07t kh—07t

Lemma 4.15. We have the asymptotic estimates

T = —iACKh+0 ((kh)?) and Jg, = , A sh+ 0 ((kh)?).

Kkh—0 Kkh—0
Proof. Let’s first note that

f (PP (@) d2 = P~ (1) — P™(0) = —1,
0

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)
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which allows to rewrite J_; as

23

1
= =f (P=)V (@) (1) aa. (118)
0
By writing /% — 1 o ikhZ + O ((kh)?) for Z € [0,1], an integration by parts leads to
1 1
= ish [—J P~ () dE+ [z P @)];] +J PP (@) O ((kh)?) da. (119)
Kh— 0 0
According to the fact that P~ (1) = 0 and the definition (111) of A;>, we get
1
irh [— J P~ @) e+ [z P (@)]3] _ ikhAp. (120)
0
Finally, a Cauchy-Schwarz inequality ensures that, for kh small enough
PR 2 > M
P z) O ((kh dz < (kh P . 121
| 0@ 0 () aa < |y, (121)
O
1072 1072
I I
2| . 2| |
1 7 1 ﬁz ./\/_/\/ 7
0 f OWW% <JO<A<
~1 — . —1f — .
— R(e, — R(ey)
— S(e) — S(e)
2 =gl | 2 =gl
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x x

() &5~

FIGURE 4. Visualisation of €} and ¢; along 2 for L = 1, N = 10, the parameters of Table 1
and configuration SD_CLo (see Section 5): error ’absorption’ in each cell and global accumula-

tion with propagation towards right and left respectively.

4.2.3. Global error estimates in the one-way framework

Note 4.16. For the rest of this Section, we recall that the notation A < B means that there exists a constant

C > 0, independent of k, h, k and L, such that we have A < B C.

Moreover, the following estimates will be derived in an asymptotic regime, for kh small enough,

which ensures

that Conjecture 4.1 is verified (see Remark 4.2): all the local estimates of Subsection 4.2.2 are then valid.

This finally leads to a bound on the jump at each interface, and then on the weak semi-norm | - |5.
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Proposition 4.17. The jump error at any internal interface is bounded, for kh small enough, by

(Hh)k +1 (/ih)kJrl
Vnelo,N—=1], |l ]l = T 1] and |[g} Tnsal = T 921, (122)
k+1
which ensures the following bounds of the semi-norm of propagating errors
2 ( h)2k+1 ) ( )2k+1 )
len |2 < (WD) s o and |72 < (L) S5 192l (123)
Tt T3 |
Proof. First, by merging Propositions 4.12 and 4.13, we directly get
(kh)**! S yn
Vne[L,N 1], [[e; ]nl < aghp s (1 + Yehr) 911 (124)
Tt
k+1

Yet, as N = Lh™! and by using the asymptotic behaviour (106) of Yyeh.k> one has for any n e [1, N —1]

T+ i) =, 1+0 ((kL)(kh)* 1), (125)

which justifies the bound of (122) for xh small enough, with the asymptotic behaviour (94) of Qb ke
Moreover, recalling that N = Lh™!, we have

& kL &
g Lt va) ™ = T O ((RLP(sh)Y), (126)

which implies, for kh small enough, that

N-1 K oh)E+1 2
S ELE =, |0 )| [ G ] (127

For the boundary terms, we have thanks to (90)

len1 (Xo)|* = Il Tol?, (128)

and according to Proposition 4.13

v (XM = [0((RL)(sh)**) |ga]] (129)

Finally, by recalling the definition (72) of |¢;”|q, the right boundary term can be neglected for kh small enough:
this gives the expected semi-norm bounding as a,j, , has limit 1 as kh tends to 0t. (|

Then, let’s consider the L2 norm of the error.
Proposition 4.18. We have the following bound of the L2 norm of the error for kh small enough

|Bi’|? + 3(sL)%| 4|

. |Bi 1> + 5(kL)?| A5 |
len’llo < T,

T l?

(k )2k+2|gl|2 and Hsﬂ‘g <L (k h)2k+2|g2|27 (130)

el

where we denote
B, = HP_>HL2(O,1) and  Bj~ = HP<_HL2(O,1)' (131)
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Proof. Let’s take back the expression of ¢, obtained by variation of parameters: for any n € [1, N], we have

€T
Vael, e ,(r)= [HE;ﬂn1 (1 +j (P:)(l) (t) pir(t=Xn_1) dt) + gh_:"l(an)l e ir(@=Xn_1) (132)
anl

Thus, by triangular and Young’s inequalities, one has

Vne[l,N], |l

20, S K (0) (23" To-1 | + 2l 1 (Xn-1)]%, (133)

where we have denoted

2

da. (134)

K= (h) = J. 14 JX (P)D (1) ent=—Xn0) g

Then, by using Propositions 4.13 and 4.17 and Lemma 4.19, we obtain for kh small enough

B I?
Tt l?

— — n— 2
¥ne LN, e ltzq,) s h [ (Kh)42 + (1 + 950" = 1) ] g1 % (135)

Thus, by summing over n from 1 to N = Lh™!, we obtain

—|2
el = | s (™42 4 n il (136)
k+1
where we have denoted N
— — n— 2
Sehk = Z [(1 + Vehok) t— 1] . (137)

n=1
Finally, reporting Lemma 4.20 in this bounding gives the expected estimate for kh small enough:
o If A;> # 0, we obtain the expected estimate.
e Otherwise, l“LS;,’%,C can be absorbed by the other term, and the estimate is still valid (with A, = 0).

O
Lemma 4.19. For any n € [1, N], we have the bound
. 2
K;(h) = J 1+ J (PN (1) e t=Xn-0) qt| da < 65, 1| By 2, (138)
In Xn—1
where we denote )
1 zZ
o= 1+|B;|—2f f (PO @) (¢ 1) ar| a2, (139)
o |Jo
with the asymptotic behaviour
S —> 1. (140)

Proof. First, let’s observe that K’ (h) is independent of n, as the the changes of variable z = hZ + X,,_; and
t = hi + X,,—1 and (98) ensure that

2
dz (141)

1 z
1+ J (P~ (7) e ap
0

K (h) = hJ

0
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that we denote K (h) for the rest of the proof. Then, let’s note that
v zelo,1], f PV @) dF = P (3) - 1, (142)
0
which allows to rewrite K (h) as

2
dz. (143)

K~(h) =h f 1 Po(3) + f P~V (7) (emh? - 1) 7

0

Thus, Young’s inequality allows to separate the bounding of K (h) in two terms which will be treated separately

2

1 zZ
K= (h) < h|By 2 +hf0 JO PV @) (7 1) a7 a (144)

Focusing on the second term denoted as M~ (h), the Cauchy-Schwarz inequality leads, for kh small enough, to

2
P_’ (1 (7) (ei”’h’?— ) dr| dz < k%R? H (P™) o) (145)
L2(0,1)
: : NN M~ (h :
Finally, by introducing 4,7, , = 1 + ﬁ7 this allows to conclude. O
k
Lemma 4.20. Since N = Lh™', we have the following asymptotic estimate
— N 1 n—1 1 2 _ (K’L)S |‘/4;>|2 h 2k+1 h 2k+1 146
khk = Z:] + Yeng) = 1] hoor 3 |Tk+1|2(K ) + 0 ((kh) ). (146)
Proof. We develop the expression of S
& (1 + )2 =1 1+ =1 L
hk = Z (L7 ) =20+ 7 )" + 1] = ’ + (147)

g 2% + ()? Vi h
and realise series expansions of the different terms using the fact that, for kh small enough, Vihik S (kh)k+2.
O
Finally, a similar estimate can be derived for the H!-broken semi-norm.
Proposition 4.21. We have the following bound of the H'-broken semi-norm of the error for kh small enough

—>| | <—|2

9217, (148)

67 B < /(L) (wh)* 1<

7 |2| gil* and e [E), < m(KL)(sR)™
k+1

T2

where we denote

Cy = H(P”)(l) (149)

and C’,sz(PF)(l)

L2(0,1) L2(0,1)

Proof. Let’s take back the differential equation verified by ¢;” on each cell

Vne[l,N], Vael, (e.)" (@) = —irer (@) + [T (B) D (@). (150)
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Thus, we obtain by triangular and Young’s inequalities

2 2

— (1) — — —\ (1
YnelLNL )|, € Alerltae, + T | (151)
Yet, (98) ensures that
1

Py — o | (P 152
[ = [P0 L (152)

and summing over n from 1 to N = h~'L with the jump estimate of Proposition 4.17 leads to

L)(kh)? 2

— 2 < 2| .— 2+ (H‘ H P*) (1) 2. 153
|Eh |1,h S K ||€h HO K ‘Tk__:_1|2 ( ) 12(0,1) ‘gl‘ ( )

Finally, the L2-broken norm estimate of Proposition 4.18 allows to neglect the first term when xh is small
enough, and then to conclude. O

4.2.4. FR formulation well-posedness and global error estimates

Finally, we gather the precedent results to prove Theorem 4.6.

Proof. Proposition 4.12 ensures that y;” and y;~ are well-defined on each interval, in the framework of Conjecture
4.1. Then, by inverting their definitions (80), we get
Yo ~ Ynm

— + «—
e R Yy (154)

1,N "
Vnel[l,N], up, 5 7 5

which ensures that yy, is also uniquely defined in Vj, 4.
Concerning the error estimates, the proof is exactly the same in the three cases, and we will then only present
it for (i), the semi-norm |- 5.
By definition, we have
lenl? = lu—unlZ + v — o2, (155)

and by using the definition (88) of ;> and ¢}, we obtain thanks to the triangular and Young’s inequalities

lenl? < len +en 24l — ez
) ) (156)
S e ls +len I5
Thus, Proposition 4.17 allows to conclude.
Similarly, Proposition 4.18 is used for (ii), while Proposition 4.21 corresponds to (iii). O

5. NUMERICAL VALIDATIONS FOR THE TIME-HARMONIC 1D WAVE EQUATIONS
After the introduction of the error estimates of Theorem 4.6, this section will aim at illustrating them through
numerical experiments.

L
To do so, we take back Problem 4.4 in a domain Q = [0, L], with a uniform mesh of N € N* cells of size h = —.

In all the following experiments, we consider the parameters summarised in Table 1 with uniform polynomial
degree k and flux correction polynomial functions in all the cells.

Concerning the flux correction polynomial functions, we will focus on symmetrical couples’ of degree exactly
k + 1 (as proposed in [20,44]), in that

Vael0,1], P (z) = P~ (1 —a), (157)
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K ‘ 91 ‘ 92
27 [ 2.3 +0.40 | —1.2

TABLE 1. Common characteristics to the different simulation configurations.

which avoids asymmetrical behaviours for waves coming from the left and the right. Indeed, exchanging the
BCs will have no effect on the solution precision and no direction will be favored. Moreover, referring to the
constants of (77), this implies

A = A= 1A Be = B[ =B |, Co =07 =[C | and Ty = T3] = [Tl (158)

where Ay, By, Cy and Ty 1 are referred as 'flux correction polynomial constants’. Similarly, the ’estimate
constants’ of (76) will be denoted as C, = C;> = C5~ and so on.
In particular, the numerical experiments will be realised for four different families, for which P~ is defined as:

e The first Lagrange polynomial associated to the Chebyshev-Lobatto nodes

Tr — :chLO

1 l
CLo . — .
Vie[0,k+1], 7™ = 3 (1 — cos (k n 17r>) and Vzel0,1], P7(z) = le[[ll k|+1]]$gL° 0T (159)

According to Remark 2.16, the associated FR formulation can then be seen as a SD one in this config-
uration: it will then be referred as SD_CLo.

e The first Lagrange polynomial associated to the Internal Gauss nodes (leG)le[[07k+1]].
(xlIG)le[[Lk]] are defined as the roots of the Legendre polynomial of degree k (translated to [0, 1]), referred

as Pr9°", while #{¢ = 0 and #{, = 1. This then leads to

N r—al¢
le[[1,k+1]
Similarly to the previous case, the associated FR formulation will be referred as SD_IG.
e The right Radau polynomial of degree k + 1 defined as
— _ pRadau _ (_1)k+1 Legendre Legendre
Vael0,1], P7(x) = P " (z) = Y P (x) — P, (x)) . (161)

In particular, it is orthogonal to all the polynomial functions of degree at most £ — 1, denoted as
Pr—1([0,1]). The associated FR formulation will then be referred as F'R_Radau.
In this linear configuration, this method can also be seen as a nodal DG formulation using the same
flux numerical traces [2,20].

e The G2 polynomial (according to Huynh’s original denomination in [20]) of degree k + 1 defined as

E+1 _pog
Paau
2%k +1 F

Vxel0,1], P~ (x) = PC2 (x) k PRadau gy 4 (z). (162)

T2k 41 Kl

In particular, it is orthogonal to all the polynomial functions of Py_2([0,1]) and verifies (P,Sfl)(l) (1) =
0. The associated FR formulation will then be referred as FR_G2.

Remark 5.1. One will note that in the case k = 0, the flux correction polynomial functions must be defined as
Veel0,1], P7(z)=1—2 and P~ (z)=ux, (163)

because of (44). Then, we will only focus on the cases k > 1 for which the four families differ.
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First, this Section will numerically verify Conjecture 4.1 for these flux correction polynomial functions of dif-
ferent degrees. Then, it will present the evolution of the associated estimate constants before illustrating error
behaviours relatively to various parameters: a study of the h-convergence, an overview of the k-convergence
and a focus on the xkL-dependence.

5.1. Numerical validation of Conjecture 4.1

As highlighted in the proof Subsection 4.2, the well-posedness of the FR method relies on Conjecture 4.1.
We will then numerically verify it for the four families of flux correction polynomial functions.

k| SD_CLo | SDIG | FR_Radau | FR-G2

1] 0.37 +0.33 0.38 + 0.33i 0.33 + 0.24i 0.5 + 0.5i

2015+ 0.251| 036 [ 0.17 + 0.24i| _ 0.33 0.16 + 0.181 | 0.27 018 + 027 | 0.38
3([0.08 + 0.181 | 0.24 £ 0.11 || 0.09 + 0.17i | 0.22 % 0.08i || 0.1 + 0.14i | 0.19 £ 0.061 || 0.1 % 0.19i | 0.23 + 0.098

TABLE 2. Numerical approximation of the roots of polynomial T~ for the different flux cor-
rection polynomial families and polynomial degrees k € [1, 3].

To do so, Table 2 presents the roots of the polynomial T (defined in (69)) for the different flux correction
families and various polynomial degrees k: the key point is that none of them is purely imaginary.

Indeed, according to Remark 4.2, the Conjecture is verified if and only if (—iﬁ;h)fl and (Z'lih)71 are not roots of
T~ and T respectively. Moreover, as correction symmetry (157) implies that 7 (X) = T (—X) and none
of them admits a purely imaginary root, the FR method is well-posed for any mesh in these configurations.
We also insist on the fact that all the numerical experiments we intended have fallen within the framework of
the Conjecture 4.1.

5.2. Flux correction polynomial constants

We present in Table 3 the evolution of the constants Ay, By, C) and T1 according to the polynomial degree
k, for the four flux correction polynomial families we introduced.

SD_CLo SD_IG FR_Radau FR_G2

Ay, | Bk | Co [Tir | A [ B [ Co [Tira [Ac ] Be [ Ck | Tisa || Ac [ B | Ck | Thna

0.17 0371153 | 4 017037153 | 4 0.0]0.37]2.0 6 0.33 | 045 | 1.15 2

5.56x1072 [ 0.27 | 2.19 | 32 0.0 028|241 | 36 0.010.29| 3.0 60 0.0 1029|219 | 24

3.33x1072[0.21 | 2.88 ] 384 || 0.0 [0.23[3.36| 480 || 0.0 0.25[ 4.0 840 0.0 |0.24|3.21| 360

| N =] &

2.0x1072 [ 0.18 [ 3.57 [ 6144 || 0.0 | 0.2 [4.33 [ 8400 | 0.0 [0.22 5.0 [ 15120 || 0.0 | 0.21 | 4.22 | 6720

TABLE 3. Evolution of the flux correction polynomial constants for the different flux correction
families and polynomial degrees k € [1,4].

In particular, one will note the decreasing behaviours of Ay and By, while C, and Tj; show an opposite be-
haviour. Thus, the constants C, and Cp2 will naturally decrease (and then improve their respective convergence
constants) with k, while the behaviour of Cy: will depend on the considered correction.

Moreover, an important remark is that the value of Ay for SD_IG, FR_Radau and FR_.G2 is 0 for k > 2 (due
to their orthogonality properties to polynomial spaces). Coming back to the definition (76) of Cy2 and Remark
4.7, one will then expect them to show a v/kL-dependence for their |}, estimate (see Subsection 5.5).
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5.3. h-convergence: mesh refinement influence

In this Subsection, we focus on the h-convergence of the method. Then, we fix the value L = 1 and we make
the number of cells N = Lh~! vary: the objective is to highlight the behaviour of the method for different
polynomial orders k when the mesh is refined.

For a given error norm |e;| (along the three ones we introduced in Definition 4.5) and a cell number N > 2,
the estimate of the convergence rate ry is given thanks to the error norm values for N + 1 cells, respectively
denoted |ep|n+1, as

_ logyo(len|n+1) —logio(len|n-1) (164)

logyo(IV + 1) — log;o(N — 1)

Then, Tables 4, 5 and 6 present the values of ry and the relative error norms |ep|7%, [en[5e and |en|]%
respectively (with respect to the norm of the exact solution), when the mesh is refined.
In accordance with the estimates (75) of Theorem 4.6, quasi-optimal convergence orders are shown for the three
error estimates when xh tends to 0.
Moreover, we highlight the fact that the SD_CLo and FR_G2 method have shown inferior abilities to FR_Radau
in this harmonic framework, as it had already been observed for CFD problems [5,42].

SD_CLo SD_IG FR_Radau FR_G2
k| N lenls” [ rw enlt? | rw lenlr | rw enlt | 7N
5 0.55 -0.99 0.55 -0.99 0.37 -1.21 0.88 -0.36
1|22 || 6.9x1072 |-1.51| 6.9%x1072 |-1.51 | 4.49x10~2 |-1.49 0.15 -1.55
100 || 7.02x1073 | -1.51 || 7.02x1073 | -1.51 || 4.65x1073 | -1.5 | 1.43x1072 | -1.52
5 [[9.64x1072 [ -2.45 || 8.37x1072 | -2.41 || 4.98x10~% |-2.39 0.13 -2.39

2| 22 || 2.42x1073 | -2.5 || 2.14x1073 | -2.5 || 1.28x1073 | -2.5 || 3.21x1073 | -2.5
100 || 5.48x1075 | -2.5 || 4.87x107° | -2.5 || 2.92x107° | -2.5 || 7.31x107° | -2.5
5 1.0x1072 [-344 [ 7.95x1072 [ -3.43 || 4.54x10~2 | -3.43 || 1.06x10~2 | -3.43
3122 || 5.74x107° | -3.5 || 4.59x107° | -3.5 || 2.62x107° | -3.5 || 6.12x107° | -3.5
100 || 2.87x1077 | -3.5 || 2.3x1077 | -3.5 || 1.31x1077 | -3.5 | 3.06x10~7 | -3.5
5 7.9%x107% [ -4.45 || 5.75x107% [ -4.45 || 3.2x10~% |-4.45 || 7.18x107* | -4.44
4] 22 | 1.02x1076 | 4.5 || 7.49%x1077 | -4.5 || 4.16x1077 | -4.5 | 9.37x10"7 | -4.5
100 || 1.13x1079 | -4.5 | 8.24x10710 | 4.5 || 4.58%x10710 | -4.5 || 1.03x1072 | -4.5

TABLE 4. Evolution of the relative error |ej,|7¢ according to the number of mesh cells N and
the polynomial degree k.

5.4. k-convergence: polynomial degree influence

Then, we focus on the k-convergence of the method. Then, we fix the values L = 1 and N = 4, and we make
the polynomial degree k vary: the objective is to highlight the behaviour of the method, depending on the flux
correction polynomial functions, when k increases.

Then, Figure 5 presents the relative values of the errors |en|i%!, e/ and [en|(% respectively, when the
polynomial degree evolves. One will note comparable behaviours, as the error decreases in similar ways for all
the flux correction polynomial families, as it could be expected.

5.5. kL-dependence of the errors

Finally, we focus on the error dependence on kL: the objective is to highlight the behaviour of the method
when the number of wavelengths in the domain becomes larger and larger.
So as to get comparable experiments in this subsection, we fix the number of degrees of freedom (dof) per

wavelength, Ngor/n = 277(:;1), to a constant value Ng,7/» = 600. Then, x = 27 is let constant, while various
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SD_CLo SD.IG FR_Radau FR_G2
k|l N lenls™ | r~ lenls™ | r~ lenls™ | r~ lenlls™ | r~
5 0.26 -1.59 0.26 -1.59 0.13 -2.15 0.61 -0.71
1] 22 | 1.48x1072 | -2.02 || 1.48x1072 |-2.02 || 5.12x1072 | -2.06 || 5.32x1072 | -2.0
100 || 7.01x10~% | -2.01 || 7.01x10~* | -2.01 || 2.41x10~* | -2.0 || 2.55x10~3 | -2.0
5 2.3x107% [-3.13 || 1.77x1072 |-3.23 || 9.79x1073 |-3.05 || 3.1x10=2 | -3.3
21 22 || 2.48x107% | -3.02 || 1.8x10™* |-3.02| 1.14x10* | -3.0 || 2.9x10~* |-3.04
100 || 2.6x1076 | -3.0 1.9x1076 | -3.0 || 1.21x107% | -3.0 || 3.03x107% | -3.0
5 [ 1.59x1073 [-3.98 || 1.21x1073 [ -4.01 || 7.41x10~* | -3.98 || 1.66x103 | -4.03
3122 | 4.24%x107% | -4.0 | 3.22x1076 | -4.0 | 1.99x1076 | -4.0 || 4.42x107% | -4.0
100 || 9.88x107° | -4.0 || 7.54%x107° | -4.0 || 4.68x107° | -4.0 || 1.03x1078 | -4.0
5 | 9.76x107° [-4.99 || 7.55x107° [ -4.98 || 4.61x107° [-4.98 || 9.6x10~> |-4.98
41 22 || 5.89x107% | -5.0 || 4.62x107® | -5.0 || 2.82x107® | -5.0 || 5.88x10~® | -5.0
100 || 3.03x10~ 11 | -5.01 || 2.38x10~ 11 | -5.0 || 1.46x10~ ' | -5.0 || 3.03x10~* | -5.0

TABLE 5. Evolution of the relative error |5 according to the number of mesh cells N and
the polynomial degree k.

SD_CLo SD_IG FR_Radau FR_G2
k| N enlis | v~ e’ [ v~ lenli% | N EIE
5 0.56 -0.84 0.56 -0.84 0.41 -0.93 0.89 -0.3
1| 22 0.12 -1.06 0.12 -1.06 || 9.51x1072 | -1.0 0.2 -1.19
100 || 2.43x1072 | -1.01 || 2.43x10~2 | -1.01 || 2.09%x10~2 | -1.0 | 3.81x10~2 | -1.05
5 0.11 -2.05 0.11 -1.99 || 7.66x1072 | -1.93 0.15 -2.02
21 22 | 5.64x1073 | -2.01 || 5.45x1073 | -2.0 || 4.07x1073 | -2.0 || 7.45%x1072 | -2.0
100 || 2.71x107* | -2.0 || 2.64x107* | -2.0 || 1.97x107* | -2.0 || 3.6x10™* | -2.0
5 | 1.48x1072 [ -2.98 || 1.36x1072 | -2.95 || 9.23x1073 | -2.95 || 1.73x10~2 | -2.95
3|22 || 1.75%x107% | -3.0 || 1.63x10™* | -3.0 || 1.11x10™* | -3.0 || 2.07x107* | -3.0
100 || 1.86x107% | -3.0 || 1.74x107% | -3.0 | 1.18x107% | -3.0 || 2.21x107% | -3.0
5 |[1.43x1073]-3.97 [ 1.26x1073 | -3.96 || 8.09x10~% [ -3.96 || 1.53x10~3 | -3.96
41 22 | 3.87x1076| 4.0 || 3.43x107% | -4.0 || 2.2x1076 | -4.0 || 4.17x1076 | -4.0
100 || 9.07x107° | -4.0 || 8.04x107% | -4.0 | 5.15x1079 | -4.0 || 9.78x107° | -4.0

TABLE 6. Evolution of the relative error |ep |79

the polynomial degree k.

according to the number of mesh cells N and

values of L will be considered and the corresponding number of mesh cells are computed as N = Ny, r/ )\WL_H)
(which are integers for x = 27 and the following choices of L € {0.1, 1,10}).
For a given error norm |ep| and a domain length L (and the corresponding cell number N > 2), the estimate of

the dependence rate ry, is given thanks to the error norm values for N + 1 cells (corresponding to L + 6L with

S — 2mlktl)

N1 ), respectively denoted |ep|r+s1, as

_ logy(lenlr+sr) —logio(len]r—sr) (165)
logyo(L + 0L) —log,o(L — 6L)

Then, Tables 7, 8 and 9 present the values of r;, and the non-relative error norms |ey|a, |enfo and |ep|1,n

respectively, when the domain size is increased, while the number of dof per wavelength is kept constant.
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FIGURE 5. Evolution of the relative errors according to the polynomial degree k for the four
flux correction families: SD_CLo (x), SDIG (+), FR_Radau (*) and FR_G2 (*).

SD_CLo SD_IG FR_Radau FR_G2
k] L lenls [ 71 lenls [ o lenle [ re lenls [ o
0.1 [ 1.12x1073 [ 0.5 || 1.12x1073 [ 0.5 || 7.43x10°* J 0.5 || 2.23x10°3 | 0.5
1| 1.0 || 3.53x1073 | 0.5 || 3.53x1073 | 0.5 || 2.35x1073 | 0.5| 7.1x1073 | 0.51
10.0 || 1.14x1072 | 0.52 || 1.14x1072 | 0.52 || 7.43x1073 | 0.5 | 2.39x1072 | 0.56
0.1 || 8.04x107% | 0.5 || 7.15x107% | 0.5 | 4.29x10°% [ 0.5 || 1.07x107° | 0.5
21 1.0 || 2.54x107% | 0.5 || 2.26x107° | 0.5 || 1.36x107° | 0.5 || 3.39x107° | 0.5
10.0 || 8.07x107° | 0.5 || 7.15x107° | 0.5 || 4.29%x107° | 0.5 || 1.07x10~* | 0.5
0.1 || 5.76x107% | 0.5 || 4.61x1078 | 0.5 || 2.63x10=% [ 0.5 || 6.15x10°8 | 0.5
31 1.0 | 1.82x1077 | 0.5 || 1.46x10°7 | 0.5 || 8.33x107% | 0.5 | 1.94x10~7 | 0.5
10.0 || 5.77x1077 | 0.5 || 4.61x1077 | 0.5 || 2.63x10~7 | 0.5 || 6.15x10~7 | 0.5
0.1 [[4.12x1071° ] 0.5 |[ 3.01x10~ | 0.5 || 1.67x10719 [ 0.5 || 3.77x1071° | 0.5
41 1.0 1.3x1079 | 0.5 || 9.53x10719 | 0.5 || 5.29%x1071° | 0.5 || 1.19x107° | 0.5
10.0 || 4.12x1072 | 0.5 || 3.01x1079 | 0.5 || 1.67x107° | 0.5 | 3.77x10~° | 0.5

TABLE 7. Evolution of the non-relative error |€} |, according to the domain size L, for a constant
number of dof per wavelength.

In accordance with the estimates (75) of Theorem 4.6, Remark 4.7 and the flux correction polynomial constants

of Table 3, different behaviours can be highlighted:

e Tables 7 and 9 show a v/ kL-dependence of |e,|; and |ey|1,, on the number of wavelengths in the domain

for all the flux correction polynomial families.
e For |ex|o, two cases can be detailed.

First, if Ay = 0 (for FR_Radau, and SD_IG and FR_G2 when k > 2), the same +/sL-dependence is
observed. On the contrary, if A, > 0 (for SD_CLo), the v/kL-dependence only happens when xL tends
to 0, while having kL diverging to +oo implies a (/{L)3/ 2_dependence. Moreover, this transition seems
to happen for larger values of L when the polynomial degree k increases.

Finally, the estimates (75) highlight the potential interest of flux correction polynomial functions for which

A = 0, as their dependence on the number of wavelengths in the domain is optimised.
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SD_CLo SD_IG FR_Radau FR_G2
k| L lenlo | 7z lenllo | 7L lenlo | 1 lenllo | 7L
0.1 || 2.38x107° [0.53 ] 2.38x107° [ 053 || 1.57x107° [ 0.5 || 5.97x10~° [ 0.57
1] 1.0 || 1.44x107* | 1.23 || 1.44x10~* | 1.23 || 4.96x107° | 0.5 | 5.25x10~* | 1.38
10.0 | 3.9x1073 | 1.5 || 3.9x107% | 1.5 || 1.59%x10™* | 0.53 || 1.56x1072 | 1.5
0.1 || 1.52x1077 [ 051 || 1.4x10~7 | 0.5 || 8.88x10=% | 0.5 [ 2.22x10~7 | 0.5
21 1.0 || 6.02x1077 | 0.86 || 4.41x10~7 | 0.5 || 2.81x10~7 | 0.5 | 7.02x10°7 | 0.5
10.0 || 1.16x107° | 1.48 || 1.41x107% | 0.52 || 8.88x10~7 | 0.5 || 2.26x107% | 0.54
0.1 [|9.94x10719 ] 0.5 [ 8.75x10~0 | 0.5 || 5.42x10719 | 0.5 1.2x1079 | 0.5
31 1.0 || 3.62x1072 | 0.75 || 2.77x1079 | 0.5 || 1.71x107° | 0.5 || 3.79x10~° | 0.5
10.0 || 5.78x1078 | 1.47 || 8.75x1072 | 0.5 | 5.42x1079 | 0.5 || 1.2x107% | 0.5
0.1 || 6.59%x1072 ] 0.5 [ 5.63x10~" | 0.5 || 3.43x10712 | 0.5 [ 7.15x10~2 | 0.5
41 1.0 || 2.26x1071 | 0.65 || 1.78x10~ | 0.5 || 1.09x10~'1 | 0.5 || 2.26x10~ | 0.5
10.0 || 2.82x10710 | 1.5 || 5.63x10~* | 0.5 | 3.44x10~* | 0.51 || 7.15x10~ ' | 0.5

TABLE 8. Evolution of the non-relative error |epllo according to the domain size L, for a
constant number of dof per wavelength.

SD_CLo SD_IG FR_Radau FR_G2
k|l L lenlin | 1L lenlin | L lenlin | 7L lenlin | 7L
0.1 [[2.95x1072 ] 0.5 [[2.95x1072] 0.5 [[2.57x1072[0.5 [[ 4.47x1072] 0.5
1| 1.0 ||9.37x1072| 0.5 || 9.37x1072 | 0.5 | 8.14x1072 | 0.5 0.14 0.52
10.0 0.31 0.55 0.31 0.55 0.26 0.5 0.52 0.65
0.1 [[2.49x10=*| 0.5 [[2.43x10~*| 0.5 || 1.82x107% [ 0.5 [ 3.32x10~% | 0.5
21 1.0 || 7.88x107* | 0.5 || 7.7x107* | 0.5 || 5.75%x10™* | 0.5 || 1.05x1072 | 0.5
10.0 || 2.52x1073 | 0.51 || 2.43x1073 | 0.5 || 1.82x1073 | 0.5 || 3.32x1073 | 0.5
0.1 [2.03x107%] 0.5 || 1.9%x107% | 0.5 || 1.29x107% | 0.5 || 2.41x10=% | 0.5
31 1.0 | 6.42x107% | 0.5 || 6.0x107% | 0.5 || 4.08x107% | 0.5 || 7.64x107% | 0.5
10.0 || 2.04x107° | 0.51 || 1.9x107® | 0.5 || 1.29x107° | 0.5 || 2.41x107° | 0.5
0.1 [[1.61x1078] 0.5 [ 1.43x1078 | 0.5 || 9.17x107° [ 0.5 | 1.74x1078 | 0.5
4] 1.0 || 5.1x107® | 0.5 || 4.52x107% | 0.5 || 2.9x107® | 0.5 | 5.5x1078 | 0.5
10.0 || 1.62x1077 | 0.5 || 1.43x1077 | 0.5 || 9.17x1078 | 0.5 || 1.74x10~7 | 0.5

TABLE 9. Evolution of the non-relative error |ey|;, according to the domain size L, for a
constant number of dof per wavelength.

6. TIME-HARMONIC 3D MAXWELL PROBLEM: ERROR ANALYSIS THROUGH NUMERICAL
EXPERIMENTS

Finally, we come back to the Maxwell Problem 1.4. Contrary to the 1D wave problem, we did not derive
a priori error estimates for this case. Yet, we present numerical results for the implementation of the FR
formulation associated to the numerical traces introduced in Remark 3.3 of Subsection 3.2.
We consider a domain = [0, L]3, with a uniform mesh of N cells of size h = % in each direction. In all the
following experiments, we consider the parameters summarised in Table 10 with uniform polynomial degree k
and flux correction polynomial functions in all the cells and every direction (even if direction-wise choices could
have been made). Finally, we take back the four flux correction polynomial families introduced in Section 5 to
compare their influence in this 3D configuration.

Moreover, we consider impedance boundary conditions associated to an exact solution E.,, = (€czq, Nera) Of
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I Kpw | e | by I Pa | X
1] 1] 1 | 2Y%x(1,-1,0)](0,0,1) | —27%/2(1,1,0) | 27V/2(1,—1,0.) | —0.5(1,1,1)

TABLE 10. Common characteristics and parameters of the different simulation configurations.

the Maxwell problem, which leads to:
g = Mt€eza + Zoo Moo X Ytheza on 0L, (166)

and the numerical approximation Ey, is thus compared to E.., thanks to the error €, = E.;o — Ep.
Finally, we consider two different exact solutions, whose parameters are summarised in Table 10:

e A Plane Wave defined by
VxeQ, ecpa(x)= epweik’)w‘x and  hego(x) = hpweik”“"x, (167)
where kp,, X €y = —kprhyy and Ky X Dy = Kepepy,.

e An electric dipole of dipole moment P4 and position X, defined in the framework of the dipole ap-
proximation [25] by

Cova(X) e%MK—l—m+ﬁ)&x@xﬂﬂd<;+TyP&ﬁ}

4y r2 r
VxeQ, B (168)
e~ ik
h = —— 4+ ) (XxP
eaa(¥) dqr ( P ) (% xP),
X
where we denote r = ||x — Xg4| and X = ¢
T

Thus, we focus on the h-convergence of the formulation. We fix all the parameters and we make the number

of cells in each direction, IV, vary: the goal is to highlight the effect of mesh refinement on the error ey,.
Moreover, the convergence rate is evaluated in a similar way as in Subsection 5.3 (see (164)).
Tables 11 and 12 present the relative L2-norm error |ey5¢, for the two exact solutions, when the number of
cells per direction increases. For all the flux correction polynomial functions and polynomial degrees k, it shows
an asymptotic quasi-optimal behaviour, as it was previously proved in the 1D case, and highlights properties
of a high-order method. Moreover, the flux correction polynomial family hierarchy seems to be the same as in
the 1D wave equations case: FR_Radau clearly presents the best abilities in these contexts.

Remark 6.1. One will note that the finest mesh refinements are not presented for the highest polynomial
degrees in Tables 11 and 12: this is due to the fact these cases imply a prohibitive memory cost (due to the
direct resolution of the linear system) which prevented us from computing the associated results.

CONCLUSION

We introduced a Flux Reconstruction method in the framework of generic time-harmonic linear hyperbolic
problems, for Cartesian meshes of hyperrectangular domains. It relies on the piecewise polynomial approxima-
tion of the solution and fluxes, thanks to interface corrections to impose boundary conditions and flux continuity.
Such perturbations are realised thanks to user-dependent flux correction polynomial functions, whose choice al-
lows to recover some classical methods (as nodal Discontinuous Galerkin or Spectral Difference). A general flux
numerical trace definition through flux operator decomposition is also detailed, and the associated FR methods
have been specified for the homogeneous 1D time-harmonic wave equations and the 3D Maxwell problem.
Then, we focused on the 1D wave equations with ingoing boundary conditions, for which well-posedness con-
ditions of the associated FR method have been derived. This also allowed to determine quasi-optimal a priori
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SD_CLo SD_IG FR_Radau FR_G2
k| lenls® | rN lenls® | ra lenls™ | rn lenls®™ | r~
0.29 -1.42 0.29 -1.42 0.19 -1.82 0.54 -0.69
1 0.12 -1.83 0.12 -1.83 || 6.77x1072 | -2.03 0.31 -1.37
3.91x1072 | -1.97 | 3.91x1072 | -1.97 || 2.04x102 | -2.03 0.12 -1.84

221x1072 | -1.98 || 2.21x1072 | -1.98 || 1.14x1072 | -2.02 || 6.8x1072 | -1.92
8.87x1073 | -1.99 || 8.87x1073 | -1.99 || 4.54x1073 | -2.01 || 2.78x1072 | -1.97
3.34x1073 | -2.0 || 3.34x1073 | -2.0 || 1.7x1073 | -2.0 || 1.06x1072 | -1.98
3.82x1072 [ -2.88 | 3.33x1072 | -2.93 [ 2.12x1072 ] -2.97 |[ 5.19x10°2 | -2.84
8.47x1073 | -2.97 || 7.24x1073 | -3.0 || 4.62x1073 | -2.99 || 1.14x102 | -2.98
1.47%x1073 | -2.99 || 1.24x1073 | -3.0 || 7.97x107* | -2.99 || 1.97x1073 | -2.99
6.21x107% | -2.99 || 5.25x107% | -3.0 || 3.37x107% | -3.0 || 8.34x10~% | -2.99
1.57x107% | -3.0 || 1.33x10~% | -3.0 || 8.5x107° | -3.0 || 2.11x10~%* | -2.99
3.52x1072 [ -3.88 || 3.02x1073 | -3.93 || 1.92x1073 | -3.95 || 4.06x10=3 | -3.9
4.73x107% | -3.95 || 4.0x10~* | -3.97 || 2.53x107* | -3.98 || 5.44x10~* | -3.95
4.58x107° | -3.98 || 3.86x107° | -3.99 || 2.42x 1075 | -3.99 || 5.28x10~? | -3.98
1.45%107% | -3.99 || 1.23x107° | -3.99 || 7.68x107% | -4.0 || 1.68x1075 | -3.99
2.7x107% | -4.9 [ 2.25x107% [ -4.92 || 1.41x10~* [ -4.95 || 2.83x10~* | -4.9
2.16x107° | -4.96 || 1.79x107° | -4.97 || 1.11x107° | -4.98 || 2.27x107° | -4.96
1.16x1076 | -4.99 || 9.6x10~7 | -4.99 || 5.94%x10~7 | -4.99 || 1.22x1076 | -4.98

N\
— e g— [SCRE
CuwhouwgoowE DG o ow|=

TABLE 11. Evolution of the relative error |ep |5 according to the number of mesh cells N for
the Plane Wave.

SD_CLo SD_IG FR_Radau FR_G2
EIN Jenls”™ | r~ lenls™ | ra lenls®™ | N lenls®™ | r~
3 0.26 -1.42 0.26 -1.42 0.17 -1.83 0.5 -0.67
1|5 0.11 -1.82 0.11 -1.82 || 6.16x1072 | -2.04 0.29 -1.37
9 || 3.61x1072 | -1.97 || 3.61x1072 | -1.97 || 1.85x1072 | -2.03 0.11 -1.85
12 [] 2.04x1072 | -1.98 || 2.04x1072 | -1.98 || 1.04x1072 | -2.02 || 6.37x1072 | -1.92
19 || 8.19%1073 | -1.99 || 8.19x1073 | -1.99 || 4.11x1073 | -2.01 || 2.6x1072 | -1.97
31| 3.08x1072 | -2.0 || 3.08x1073 | -2.0 || 1.54x1073 | -2.0 || 9.87x10~3 | -1.99
3 |3.67x1072]-2.86 | 3.15x1072 | -2.91 || 2.01x1072 | -2.96 || 4.9x10~2 | -2.82
215 || 815x1073 | -2.97 || 6.86x1073 | -2.99 || 4.39x1073 | -2.98 || 1.08x10~2 | -2.98
9 || 1.41x1073 | -2.99 || 1.18x1073 | -2.99 || 7.58x10~* | -2.99 || 1.87x1073 | -2.99
12 [ 5.96x107* | -3.0 | 4.99%x107% | -2.99 || 3.2x10~* | -3.0 || 7.89x10* | -2.99
19 || 1.5x107* | -3.0 || 1.26x107% | -2.99 || 8.08x107° | -3.0 || 2.0x10~% | -2.99
3 [[3.75x1073 [-3.85 || 3.2x1073 | -3.9 | 2.05x1073 | -3.93 || 4.29x1073 | -3.87
315 || 5.08x107% | -3.94 || 4.27x107%* | -3.96 || 2.7x107* | -3.98 || 5.79x107* | -3.94
9 || 4.94x107° | -3.98 || 4.13x107° | -3.98 || 2.6x107° | -3.99 || 5.63x107° | -3.97
12| 1.57x107% | -3.99 || 1.31x1075 | -3.99 || 8.23x107% | -3.99 || 1.79%x 107> | -3.98
3 [[3.42x107% | -4.86 || 2.85x10~* [ -4.89 || 1.79x10~* | -4.93 || 3.56x10~* | -4.87
4| 5 || 2.76x107° | -4.95 || 2.28x107° | -4.96 || 1.42x107° | -4.97 || 2.88x107° | -4.95
9 || 1.48%x1076 | -4.98 || 1.23%x1076 | -4.98 || 7.57x1077 | -4.99 || 1.55%x1076 | -4.98

TABLE 12. Evolution of the relative error ey |3 according to the number of mesh cells N for
the dipole.
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error estimates in the asymptotic limit for various error norms, with explicit expressions of the constants in
terms of the polynomial degree, flux correction polynomials, wavenumber, domain length and mesh properties.
Numerical experiments were realised for some classical flux correction polynomial families, and confirmed the
expected behaviours of the estimates in terms of the mesh refinement, polynomial degree and dependence on
the number of wavelengths in the domain.

Finally, the FR method has been implemented for the 3D time-harmonic Maxwell problem. Even if a priori
estimates were not derived in this case, numerical experiments highlighted quasi-optimal orders for two different
actual solutions and allow to expect this method to show interesting properties for wave equations.

The presented approach relied on the possibility to uncouple the 1D wave equations thanks to the one-way
variables, and further developments may be needed to extend this work to general boundary conditions or
heterogeneous materials: in case this strong framework would not be applicable anymore, one could contem-
plate classic methodology for the associated weak formulation. The same remark holds in the 3D framework of
the Maxwell problem, for which it seems difficult to introduce uncoupling variables (which would rely on the
simultaneously diagonalisable character of the flux operators).

Furthermore, optimisations may be applied to such a method: one can think about Domain Decomposition
Methods [9,12, 28] or static condensation [34] as for example Hybrid Discontinuous Galerkin (HDG) [6,32, 33]
or Hybrid High Order (HHO) [31,36], allowing to reduce the amount of degrees of freedom.

This work allowed to explicit the influence of the error norms with respect to the flux correction polynomial
functions and discretisation parameters. Numerically, the Radau polynomials (corresponding to a nodal DG
method) led to the best results in both these time-harmonic frameworks, in comparison with the SD and G2
corrections. Then, the explicit character of the 1D estimates allows to get a glimpse of the possibility to optimise
their constants according to the flux correction polynomial, which will be investigated in further work in order
to define an ’optimised’ FR scheme.
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