
HAL Id: hal-04384657
https://hal.science/hal-04384657v1

Preprint submitted on 10 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flux reconstruction method for time-harmonic linear
propagation problems: 1D a priori error analysis

Matthias Rivet, Sébastien Pernet, Sébastien Tordeux

To cite this version:
Matthias Rivet, Sébastien Pernet, Sébastien Tordeux. Flux reconstruction method for time-harmonic
linear propagation problems: 1D a priori error analysis. 2023. �hal-04384657�

https://hal.science/hal-04384657v1
https://hal.archives-ouvertes.fr


Mathematical Modelling and Numerical Analysis Will be set by the publisher

Modélisation Mathématique et Analyse Numérique

FLUX RECONSTRUCTION METHOD FOR TIME-HARMONIC LINEAR

PROPAGATION PROBLEMS: 1D A PRIORI ERROR ANALYSIS

Matthias Rivet1, Sébastien Pernet2 and Sébastien Tordeux3

Abstract. The Flux Reconstruction (FR) method is well established for hyperbolic equations in
the Computational Fluid Dynamics field, but has barely been studied for electromagnetism. In this
article, we propose to describe the FR formulation for time-harmonic linear hyperbolic problems. In
particular, this formalism includes the Maxwell’s equations and the unidimensional wave equations, for
which the method is detailed. We then focus on the wave equations for incoming boundary conditions,
and prove the well-posedness of the associated FR method and quasi-optimal a priori error estimates,
which are explicit in terms of the flux correction polynomials and discretisation parameters. Numerical
experiments finally validate the main behaviours of the estimates, and confirm the good properties of
the method for the Maxwell problem.

Résumé. La méthode Flux Reconstruction (FR) est largement établie pour les équations hyper-
boliques de la mécanique des fluides, mais n’a été encore que peu étudiée dans le cadre de l’électromagnétisme.
Dans cet article, nous nous proposons donc de décrire la formulation FR pour des problèmes hyper-
boliques linéaires harmoniques. Ce formalisme général contient en particulier le problème de Maxwell
et l’équation des ondes unidimensionnelle, pour lesquelles la méthode est détaillée. Nous nous concen-
trons ensuite sur l’équation des ondes pour des conditions de bord entrantes, et prouvons le caractère
bien posé de la méthode FR associée, ainsi que des estimations d’erreur a priori quasi-optimales et
explicites en les polynômes de correction de flux et les paramètres de discrétisation. Finalement, des
expériences numériques permettent de valider les principaux comportements de ces estimations, et
confirment les bonnes propriétés de la méthode pour les équations de Maxwell.
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Introduction

Electromagnetic waves propagation is a fundamental physical phenomenon at the heart of many science and
engineering fields: their numerical simulation therefore represents a considerable stake and has led to the de-
velopment and adaptation of numerous methods. In particular, the Finite Difference Method (FDM) [8,40,46]
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is the first approach which has been introduced to deal with Maxwell’s equations. Then, the search of high-
order methods gave rise to the Finite Element Method (FEM) [1, 3, 7, 8, 16, 23, 30], the Discontinuous Galerkin
(DG) [7, 17, 18, 35] or the Boundary Element Method (BEM) [4, 38] for example: these classic approaches are
thus widely used in both academic and industrial contexts. This inexhaustive list of methods and articles em-
bodies the broad spectrum of strategies which have been considered to face time-harmonic problems, with two
main point of views: weak-formulations for DG and FEM in opposition to strong ones for FDM.

At the same time, the Computational Fluid Dynamics (CFD) community particularly focused on Finite Vol-
ume Method (FVM), which are commonly used in industrial configurations at relatively low order. The recent
increase in computational abilities has also elicited interest for high-order methods. This tends to accelerate
the spreading of the Flux Reconstruction (FR) method, which is the topic of this article, and of the DG ones,
which have intensively been studied for wave propagation problems. The FR method was first introduced by
Huynh [20] and relies on the strong formulation with a hyperbolic point of view: the solution and flux approx-
imations are searched as piecewise polynomial functions of degree k and k ` 1 respectively. To take Boundary
Conditions (BCs) and continuity properties into account, the flux variables result from the use of correction
polynomial functions.
Such high-order methods relying on the strong formulation had particularly gained interest with the intro-
duction of the staggered-grid method [24], which was then extended to triangular cells by Liu et al. [26] and
renamed Spectral Difference (SD). Such a generalisation for FR has been introduced in [44] through a method
named Lifting Collocation Penalty: both methods were lately gathered under the denomination of Correction
Procedure via Reconstruction (CPR). As this article will only consider the classic framework of FR, we will stick
to this designation in what follows. Further developments were then led for Euler and Navier-Stokes equations
in 2 and 3 dimensions on various mesh types. More generally, a class of energy-stable schemes, referred as
Energy Stable Flux Reconstruction (ESFR) or Vincent-Castonguay-Jameson-Huynh (VCJH), tends to bring a
pertinent approach to the construction of high-order stable methods for these time-dependent problems [22,43].
Finally, entropy stability considerations start to be taken into account in recent studies [27]. The reader may
consult the reviews [21,45] for an overview of the main developments of the method up to 2015.
In terms of noteworthy properties, the FR method relies on a strong formulation which does not depend on
any quadrature rule and offers a generic way to create high-order accurate methods (by choosing different def-
initions for the flux correction polynomial functions). Moreover, classic methods can be retrieved with this
construction scheme in usually less sophisticated and expensive ways, such as particular SD and nodal DG
methods [20, 44]: their good sparsity and conditioning properties can then be obtained in this framework. In
particular, the close relationships between a class of FR and filtered DG have been investigated by Allaneau
and Jameson [2], offering an alternative view of the stability criterion of Vincent et al [43]. Last but not least,
this formalism allows an easy understanding of the method effects (by being able to compute the flux correction
polynomial functions and their properties) while intrinsically respecting the hyperbolic structure of the equation.

The objective is then to adapt the FR approach to time-harmonic wave propagation problems. Indeed, due
to the non-linear properties of CFD equations, most of the FR developments have been realised in a time-
dependent context for transport, Euler and Navier-Stokes equations: to our knowledge, only a few adaptations
to the transient Maxwell equations have already been realised for transverse electric and magnetic waves [14,26],
and in the specific case of SD [37]. We will then detail the method in a general framework of time-harmonic
linear hyperbolic problems, which includes acoustic, elastic and electromagnetic wave equations. In particular,
this paper deals with both Maxwell’s equations and the 1D wave equations, for a Cartesian mesh. The question
of the well-posedness of the associated FR methods then naturally arises, which leads us to derive such condi-
tions for a specific case of the 1D wave equations, by leaning on the uncoupling property of one-way variables.
Moreover, while most of the theoretical study of the FR methods relies on Fourier (Von Neumann) analysis,
we derive a priori error estimates in Sobolev norms in this framework to explicit the impact of flux correction
polynomial functions on the method.
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This paper is organised as follows. We first introduce our two problems of interest, the time-harmonic 1D wave
equations and 3D Maxwell problem, in addition to a more general time-harmonic linear hyperbolic setting.
Section 2 describes the associated FR method and details the flux reconstruction procedure, in particular for
numerical traces obtained through a generic metric-based flux operator decomposition. Then, Section 3 specifies
the FR method we consider for both model problems. This introduction allows to derive a priori explicit error
estimates for the 1D wave equations with ingoing boundary conditions in Section 4. Finally, such estimates are
numerically illustrated in Section 5 and the FR implementation for Maxwell’s equations is validated in Section
6 thanks to classic exact solutions.

1. The FR method for a time-harmonic linear hyperbolic problem

This article focuses on two specific time-harmonic equations: the homogeneous 1D wave equations and the 3D
Maxwell problem, that we will briefly recall. We also introduce a general linear hyperbolic framework (including
these two cases) which will allow us to develop a generic description of the associated FR method.

1.1. Introduction of the problems of interest

First, we introduce the two problems on which we will focus and detail the FR approach.

1.1.1. The homogeneous time-harmonic 1D wave equations

The first model problem we consider in this article is the 1D time-harmonic wave problem written in its
hyperbolic form. Its interest is purely theoretical and does not lie in its discretisation.

Problem 1.1 (Time-harmonic 1D wave problem). Let Ω :“ r0, Ls Ă R be an interval and κ ą 0 be the

wavenumber. Find y “ pu, vqT P
“

H1pΩq
‰2

such that

iκy `
dϕ

dx
“ 0 with ϕ “ Fpyq in Ω, (1)

equipped with Fourier-Robin Boundary Conditions (BCs) written as

up0q ´ Z1vp0q “ g1 and upLq ` Z2vpLq “ g2, (2)

with the linear flux operator F “

ˆ

0 ´1
´1 0

˙

, Z1, Z2 P tZ P C : ℜpZq ą 0u, and pg1, g2q P C2.

Remark 1.2. The simplest way to obtain this system is to consider the time-harmonic solution Y “ pU, V q,
with Upx, tq “ ℜ

`

upxqeiωt
˘

and V px, tq “ ℜ
`

upxqeiωt
˘

, of the d’Alembert equation written in a hyperbolic way

BV

Bx
px, tq ´

1

c

BU

Bt
px, tq “ 0 and

BU

Bx
px, tq ´

1

c

BV

Bt
px, tq “ 0 for px, tq P Ω ˆ R, (3)

equipped with the Fourier-Robin boundary conditions

Up0, tq ´ Z1V p0, tq “ ℜ pg1 exppiωtqq and UpL, tq ` Z2V pL, tq “ ℜ pg2 exppiωtqq , (4)

with ω ą 0 the angular frequency and c ą 0 the velocity, such that κ “
ω

c
.

Remark 1.3. We recall that the 1D time-harmonic wave problem 1.1 is well-posed for Z1, Z2 P tZ P C :
ℜpZq ą 0u. It can be solved analytically by introducing yÑ “ u ´ v “ αe´iκx and yÐ “ u ` v “ βeiκx whose
amplitudes α, β are solutions of

#

p1 ` Z1q α ` p1 ´ Z1q β “ 2g1,

p1 ´ Z2qe´iκL α ` p1 ` Z2qeiκL β “ 2g2,
(5)
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with the determinant δ “ 2 cospκLqpZ1 ` Z2q ` 2i sinpκLqp1 ` Z1Z2q ‰ 0.
This decomposition will find its usefulness in the estimates proof of Section 4.

1.1.2. The time-harmonic 3D Maxwell problem

Then, we introduce the time-harmonic 3D Maxwell problem, as a more complex problem (not being in one
dimension anymore will call on a few subtleties): its importance for industrial problematics justifies the design
of adapted FR methods.
Let’s consider an orthogonal parallelepiped domain Ω Ă R3, whose boundary is denoted as BΩ. The vacuum
permittivity and permeability are denoted as ϵ0 and µ0, while the relative ones are respectively ϵr and µr,
and we suppose they verify the conditions outlined in Section 4.2 of [30]. Then, in the absence of charges and
currents, the Maxwell problem for the electric and magnetic fields E and H takes the form

@ px, tq P Ω ˆ R`,

$

’

&

’

%

∇ ˆ Epx, tq “ ´
BB

Bt
px, tq,

∇ ˆ Hpx, tq “
BD

Bt
px, tq,

(6)

with, in the case of a linear and isotropic material,

D “ ϵ0ϵrE and B “ µ0µrH. (7)

We obtain the time-harmonic version by looking for E and H as

Epx, tq “ E0 ℜ
`

epxq eiωt
˘

and Hpx, tq “ H0 ℜ
`

hpxq eiωt
˘

, (8)

denoting their amplitudes as E0 and H0 “

c

ϵ0
µ0

E0, the speed of light in a vacuum as c0 “ pϵ0 µ0q´1{2 and the

wavenumber as κ “
ω

c0
. This finally leads to the following normalised time-harmonic Maxwell equations that

we equip with impedance BCs.

Problem 1.4 (Time-harmonic Maxwell problem). Find the electromagnetic field E :“ pe,hq P
“

L2pΩq
‰6

s.t.

$

’

’

’

’

&

’

’

’

’

%

iκME `
Bϕx

Bx
`

Bϕy

By
`

Bϕz

Bz
“ 0 in Ω,

ϕx “ FxE, ϕy “ FyE and ϕz “ FzE in Ω,

γtrnBΩse ` ZBΩ γˆrnBΩsh “ g on BΩ,

(9)

by denoting

E “ pex ey, ez, hx, hy, hzq
T
, M “

„

εrI3 03

03 µrI3

ȷ

,

Fx “

„

03 ´Γˆrexs

Γˆrexs 03

ȷ

, Fy “

„

03 ´Γˆreys

Γˆreys 03

ȷ

and Fz “

„

03 ´Γˆrezs

Γˆrezs 03

ȷ

,

(10)

where ZBΩ P L8pBΩq denotes the positive boundary impedance that we suppose constant on each face, g P
“

L2pBΩq
‰3

and I3 and 03 stand for the identity and null matrices of C3,3.
The tangential component and trace of w are denoted on BΩ as

γtrnBΩsw “ w ´ pw ¨ nBΩq nBΩ “ pnBΩ ˆ wq ˆ nBΩ and γˆrnBΩsw “ nBΩ ˆ w, (11)
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where nBΩ stands for the outgoing normal from the domain Ω.
The matrices associated to these operators for a vector n “ pn1, n2, n3q are denoted as Γtrns and Γˆrns with

Γˆrns “

»

–

0 ´n3 n2

n3 0 ´n1

´n2 n1 0

fi

fl and Γtrns “ ´ pΓˆrnsq
2

“

»

–

pn2q2 ` pn3q2 ´n1n2 ´n1n3

´n1n2 pn1q2 ` pn3q2 ´n2n3

´n1n3 ´n2n3 pn1q2 ` pn2q2

fi

fl ,

(12)
such that one has γtrnsw “ Γtrnsw and γˆrnsw “ Γˆrnsw.

Theorem 1.5 (Monk). Problem 1.4 is well-posed for g P L2
t pBΩq, with

L2
t pBΩq “

!

w P
“

L2pBΩq
‰3

: w ¨ nBΩ “ 0
)

. (13)

Proof. By referring to Theorem 4.17 of [30], Ω, ϵr, µr and ZBΩ all satisfy its conditions of application, which
ensures the well-posedness of the problem. □

1.2. The abstract hyperbolic setting

After developing the two specific systems on which we will specify the FR method, we propose a framework
for general linear hyperbolic problems.
Let p, q P N˚ and Ω Ă Rp be a p-hyperrectangular domain, whose 2p faces are denoted as pBΩsqsPJ1,2pK.

For a given Right Hand Side (RHS) ψ P
“

L2pΩq
‰q

and κ ą 0, we consider a time-harmonic hyperbolic system

iκMy `

p
ÿ

j“1

Bϕj

Bxj
“ ψ in Ω, (14)

governing the primal variable y : Ω Ñ Cq related to dual variables ϕj : Ω Ñ Cq, for j P J1, pK, by the flux
operator Fj P Rq,q as

ϕj “ Fjy. (15)

In this paper, we suppose that M P Rq,q denotes a symmetric positive definite metric operator and that the Fj

are all symmetric, which implies the classical hyperbolic hypothesis that Frξs “ ξ1F
1`¨ ¨ ¨`ξpF

p is diagonizable
in R for any ξ P Rp.
We assume this equation is equipped with boundary conditions

By “ ByBC , (16)

for boundary operator B : BΩ Ñ Cq,q and field yBC P
“

L2pBΩq
‰q
, which finally leads to the frequency problem:

Problem 1.6 (p-dimensional time-harmonic hyperbolic problem). Find y P
“

L2pΩq
‰q

such that we have

$

’

&

’

%

iκMy `

p
ÿ

j“1

Bϕj

Bxj
“ ψ in Ω with ϕj “ Fjy, @ j P J1, pK,

By “ ByBC on BΩ.

(17)

Remark 1.7. We highlight the fact this part does not aim at giving general conditions on M, pFjqjPJ1,pK and
B to ensure the well-posedness of Problem 1.6 (even if it has specifically been done for both Problems 1.1 and
1.4). This general presentation presupposes they are all given (as well as flux correction polynomial functions
and a numerical trace computation definition, as detailed in Subsection 2.3), and it will introduce the associated
FR formulation.
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1.3. Admissible boundary conditions through flux operator decomposition

In this subsection, we precise some generic boundary conditions leading to a uniquely solvable Problem 1.6.

Definition 1.8. For a boundary face of normal nBΩ, let’s introduce a symmetric positive definite surface metric
ĂM P Rq,q and consider the generalised eigenvalue problem

FrnBΩsw “ λĂMw, (18)

where we recall that Frξs “ ξ1F
1 ` ¨ ¨ ¨ ` ξpF

p for any ξ P Rp. This leads to the decomposition

FrnBΩs “ ĂMPΛP´1, (19)

for a real diagonal matrix Λ P Rq,q of eigenvalues, and a matrix P P Rq,q of eigenvector coordinates.
Then, we can introduce the decomposition of FrnBΩs into positive and negative parts as

FrnBΩs “ FÑ
ĂM

rnBΩs ` FÐ
ĂM

rnBΩs with FÑ
ĂM

rnBΩs “ ĂMPΛ`P´1 and FÐ
ĂM

rnBΩs “ ĂMPΛ´P´1, (20)

where Λ` (respectively Λ´) denotes the positive (respectively strictly negative) part of Λ.

Thus, most of the BCs can be written in terms of the incoming flux as

By “ FÐ
ĂM

rnBΩsy “ ByBC , (21)

which will be illustrated in Section 3 for our two model problems.

Remark 1.9. In particular, the definition B “ FÐ
ĂM

rnBΩs falls within the framework of the admissible BCs for

Friedrichs systems [11, 13], and it is possible to show the solution uniqueness of the associated Problem 1.6 by
leaning on the unique continuation theorem.

2. FR Method principle: a strong polynomial PDE

After defining the general hyperbolic framework, one naturally would like to introduce the discrete counterpart
of (17). The approximations yh and ϕj

h of the primal and dual variables are then defined, for a given mesh, by:

Find yh P Vh,k such that we have in every cell of the mesh

iκMyh `

p
ÿ

j“1

Bϕj
h

Bxj
“ ψh with ϕj

h “ Fjyh, @ j P J1, pK, (22)

where Vh,k stands for a piecewise discontinuous polynomial function space defined on the mesh, and ψh is a
piecewise polynomial approximation of the RHS ψ. This formulation is unfortunately ill-posed since it contains
neither information on the solution continuity nor the boundary conditions.

The idea of the FR method (as initially introduced by Huynh [20]) is to introduce a non-trivial extension rFj of
the flux operator Fj to piecewise polynomial functions. This leads to the FR formulation:

Problem 2.1 (Discrete problem). Find yh P Vh,k such that we have in every cell of the mesh

iκMyh `

p
ÿ

j“1

B rϕj
h

Bxj
“ ψh with rϕj

h “ rFjyh @ j P J1, pK. (23)

Thus, this section is devoted to the introduction of the mesh, the approximation space Vh,k and the flux

operator extension rFj .
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Figure 1. Mesh introduction in the case p “ 2.

2.1. Mesh characterisation

We introduce a p-hyperrectangular domain Ω Ă Rp and a direction-wise uniform mesh (see Figure 1i) whose
cells Kn are numbered by a multiindex n “ pnjqjPJ1,pK P N with

Ω “

p
ź

j“1

r0, Ljs, Kn “

p
ź

j“1

Ijnj
, N “

p
ź

j“1

J1, NjK, Ijnj
“ rXj

nj´1, X
j
nj

s, Xj
n “ nhj , hj “

Lj

Nj
. (24)

Definition 2.2. We introduce the set F j “

´

Fj
nF

¯

nF PN j
F

of faces which are orthogonal to ej (see Figure 1ii)

Fj
nF “ I1nF

1
ˆ ¨ ¨ ¨ ˆ Ij´1

nF
j´1

ˆ

!

Xj

nF
j

)

ˆ Ij`1

nF
j`1

ˆ ¨ ¨ ¨ ˆ Ip
nF
p
, (25)

being numbered by nF P N j
F with

N j
F “ J1, N1K ˆ ¨ ¨ ¨ ˆ J1, Nj´1K ˆ J0, NjK ˆ J1, Nj`1K ˆ ¨ ¨ ¨ ˆ J1, NpK. (26)

Then, in order to shorten the notations, we also introduce dedicated notations to specific behaviours relative
to a chosen direction j P J1, pK.

Definition 2.3 (Direction-wise notations). For all a, b P N˚, a,b P rN˚s
p
and x “ px1, . . . , xpq P Rp, we denote

xzj “ px1, . . . , xj´1, xj`1, . . . , xpq P Rp´1, Ja, bKzj “ Ja, bKztju,

Ja,bK “
ź

j1PJ1,pK

Jaj1 , bj1K Ă Np, and Ja,bKzj “
ź

j1PJ1,pKzj

Jaj1 , bj1K Ă Np´1. (27)

Finally, the following definition makes it easy to refer to the cells adjacent to the one of interest.

Definition 2.4. For any c “ pc1, . . . , cpq P Np, let cj,˘1 denote the shifted vector along direction j

cj,˘1 “ pc1, . . . , cj´1, cj ˘ 1, cj`1, . . . , cpq. (28)
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2.2. Primal and dual variable approximations

In this subsection, we define the function spaces for the approximation of the primal variable y P
“

L2pΩq
‰q

and the dual variables ϕj P
“

L2pΩq
‰q

satisfying (17), i.e.

p
ÿ

j“1

Bϕj

Bxj
“ ψ ´ iκMy P

“

L2pΩq
‰q

. (29)

The primal variable y is approximated by a piecewise multivariate polynomial function yh P Vh,k.

Definition 2.5 (Primal approximation space). We introduce the discrete primal approximation space (in 1 and q
dimensions) of complex valued piecewise multivariate polynomial functions of degree at most k “ pkjqjPJ1,pK P Np

in each variable

Vh,k “
␣

w P L2pΩq : @ n P N , w|Kn P QkpKnq
(

and Vh,k “ rVh,ks
q
, (30)

where

QkpKnq “

$

&

%

w P L2pKnq : wpxq “
ÿ

mPJ0,kK

αmxm, αm P C

,

.

-

with xm “
ź

jPJ1,pK

pxjqmj . (31)

Definition 2.6. We also introduce the space H1pThq of piecewise H1 functions on the mesh, which will give us
a general framework for further estimates

H1pThq “
␣

w P L2pΩq : @ n P N , w|Kn P H1pKnq
(

. (32)

This allows, for any n P N and w P
“

H1pThq
‰q
, to denote its restriction to Kn as wn :“ w|Kn P

“

H1pKnq
‰q
.

Since
p
ÿ

j“1

Bϕj

Bxj
P
“

L2pΩq
‰q
, it is natural to look for the dual variable approximation rϕj

h as a continuous

function in the direction ej . This introduces the space

C0
j pΩq “

"

w P L2pΩq : @ nzj P J1,NKzj , w|Sj
nzj

P C0
´

Sjnzj

¯

*

(33)

of functions which are continuous on every strip Sjnzj
of direction j defined by (see Figure 1ii)

Sjnzj
“ I1n1

ˆ ¨ ¨ ¨ ˆ Ij´1
nj´1

ˆ r0, Ljs ˆ Ij`1
nj`1

ˆ ¨ ¨ ¨ ˆ Ipnp
. (34)

Thus, with the aim of having all the terms of (23) with the same polynomial degree, each dual variable ϕj will

be approximated by rϕj
h P Wj

h,k, with:

Definition 2.7 (Dual approximation spaces). For a direction j P J1, pK, we introduce the discrete dual approxi-
mation space of complex valued piecewise multivariate polynomial functions of degree at most kj,1 P Np in each
variable, and continuous in direction ej

Wj
h,k “ Vh,kj,1 X

“

C0
j pΩq

‰q
with kj,1 “ pk0, . . . , kj´1, kj ` 1, kj`1, . . . , kpq P Np. (35)
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Finally, the idea of the FR method is to approximate the solution (primal variable), the fluxes (dual variable)
and the RHS by piecewise polynomials which solve the initial PDE on each cell Kn, for n P N

iκMyh,n `

p
ÿ

j“1

B rϕj
h,n

Bxj
“ pΠh,kψqn , (36)

where Πh,k :
“

L2pΩq
‰q

Ñ Vh,k denotes a projection from
“

L2pΩq
‰q

to the discrete space Vh,k, whose choice

belongs to the user (such as the L2-projection or an interpolation on a set of points for example).

2.3. Local approximation of the fluxes

The flux operator Fj is a local linear operator. It can naturally be extended to Vh,k and associates to the

approximation yh of the primal variable an approximation ϕj
h of the dual variable given by

ϕj
h “ Fjyh. (37)

Yet, the FR formulation relies on a nontrivial and nonlocal extension rFj : Vh,k Ñ Wj
h,k, yh ÞÑ rϕj

h of the flux

operator Fj which is obtained by perturbing it as

rFj “ Fj ` δFj . (38)

through a polynomial correction of the flux ϕj
h at the interfaces which will be detailed in this Subsection.

Moreover, so as to ensure the consistency of the method, we will only consider perturbations which vanish for
the exact solution, meaning that

δFjpyq “ 0 for the exact solution y. (39)

First, as yh and ϕj
h may be discontinuous across interfaces, we need to introduce their ’direct’ traces on any

face from the neighbouring cells (two cells in the case of an internal interface, and one otherwise), as illustrated
in Figure 2.

Definition 2.8 (Direct traces). Let F P F j be an internal face orthogonal to ej such that F “ Knj,´1 X Kn.

The direct traces of yh and ϕj
h on F (respectively ’just after’ and ’just before’ it) are defined by

@ x P F,

$

’

&

’

%

y`
h,Fpxzjq “ yh,n pxq and ϕj,`

h,F “ Fj
”

y`
h,F

ı

,

y´
h,Fpxzjq “ yh,nj,´1 pxq and ϕj,´

h,F “ Fj
”

y´
h,F

ı

.
(40)

In particular, y˘
h,F, ϕ

j,˘
h,F P

“

Qkzj
pFq

‰q
, and this definition naturally extends to boundary interfaces.

Then, as we want to impose the BCs and the continuity of the flux approximation along the interfaces, we
introduce flux numerical traces on them: the flux on both sides of the faces will be corrected to fit with these
values and thus be single-valued on these interfaces (as illustrated in Figure 2).
Therefore, Definitions 2.9 and 2.11 will introduce generic ways to define such flux numerical traces on internal
and boundary faces, even if absolutely general methods could be used.

First, for an internal face F P F j , we presuppose the reader is able to give a decomposition of Fj that will divide
the influence of both sides in terms of the flux numerical trace.

Definition 2.9 (Internal flux numerical traces). Let F P F j be an internal face orthogonal to ej . Assume the

following decomposition of the directional flux operator: Fj “ Fj,Ñ ` Fj,Ð. The numerical trace γF rϕ
j
h of the
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0
1

2 0

1

2

x1

h1

x2

h2

ϕ1
h

ϕ1,´
h,F1

p1,2q

ϕ1,`
h,F1

p1,2q

γF1
p1,2q

rϕ1
h

Figure 2. Illustration of the piecewise discontinuous flux in direction 1, ϕ1
h “ F1yh, with its

direct and numerical traces, for p “ 2 and k “ p2, 1q.

reconstructed flux rϕj
h on F is defined by:

γF rϕ
j
h “ Fj,Ñ

”

y´
h,F

ı

` Fj,Ð
”

y`
h,F

ı

, (41)

where y˘
h,F were introduced in Definition 2.8. In particular, γF rϕ

j
h P

“

Qkzj
pFq

‰q
.

Remark 2.10. As detailed in Subsection 1.3 and illustrated in Section 3, such a decomposition can be obtained

by solving a generalised eigenvalue problem for a given symmetric positive definite matrix ĂM P Rq,q, taking Fj,Ñ

and Fj,Ð as the associated positive and negative parts of Fj (see [19] for example). Moreover, one classically

makes the choice ĂM “ M for the internal interfaces.

In the same idea, such a numerical trace has to be defined on the boundary faces to take the BCs into
account. To do so, we presuppose the reader is able to express the incoming flux with respect to a given surface
metric.

Definition 2.11 (Boundary flux numerical traces). Let us consider a direction j P J1, pK, a boundary face F P F j

orthogonal to ej , with n P N the index of its neighbouring cell and s P J1, 2pK the index of the corresponding
boundary interface, such that F “ Kn X BΩs.
Moreover, we denote the incoming and outgoing directions as id and od, which stand for Ñ and Ð (respectively
Ð and Ñ) if nj “ 1 (respectively nj “ Nj). Furthermore, is stands for the internal side of the boundary,
corresponding to ` (respectively ´) if nj “ 1 (respectively nj “ Nj).
Finally, we suppose that, for this face F, we are given a decomposition of the directional flux operator Fj “

Fj,Ñ ` Fj,Ð, such that the BC can be written as

Fj,idy “ gF on F, (42)

where gF : F Ñ im pFj,idq.

This allows to define a flux numerical trace polynomial γF rϕ
j
h P

“

Qkzj
pFq

‰q
on F in the same way as (41), by

replacing the incoming (and then undefined) component thanks to the previous expression:

γF rϕ
j
h “ Fj,od

“

yis
h,F

‰

` ΠF
h,kzj

“

gF
‰

, (43)
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where ΠF
h,kzj

:
“

L2pFq
‰q

Ñ
“

Qkzj
pFq

‰q
stands for a given projection on multivariate polynomial functions defined

on F.

Remark 2.12. We highlight the fact that Definitions 2.9 and 2.11 offer specific ways to define the flux numerical
traces in the consistency framework of (39): for both the equations of Subsection 1.1, their applications will be
detailed in Section 3. Yet, they are not the only consistent possibilities, let alone the only choice to define a FR
method.
Indeed, one may choose completely general ways to define γF rϕ

j
h on internal and boundary faces (not even

ensuring consistency), and Definition 2.13 will still allow to define the associated FR formulation.
Finally, in any case, neither well-posedness nor convergence properties of the FR method are naturally ensured:
this paper will prove them only for the specific Problem 4.4, and it is not destined to characterise a class of flux
numerical traces that should be used for a general problem.

This finally allows to define the flux approximation rϕj
h. To do so, we impose the flux numerical traces at

each interface thanks to flux correction polynomial functions of degree kj ` 1: this will satisfy the expected
continuity and polynomial degree properties.

Definition 2.13 (Flux approximation). For j P J1, pK, let’s introduce two polynomials P j,Ñ, P j,Ð P Qkj`1pr0, 1sq

such that
"

P j,Ñp0q “ 1, P j,Ñp1q “ 0,
P j,Ðp0q “ 0, P j,Ðp1q “ 1.

(44)

We define rϕj
h as the perturbation of ϕj

h “ Fjyh P Vh,k whose values at any interface F P F j of normal ej
match the numerical trace polynomial functions γF rϕ

j
h, thanks to corrections realised by P j,Ñ and P j,Ð.

More precisely, let’s consider a cell n P N and its two faces along ej , respectively F` “ Fj
nj,´1 and F´ “ Fj

n on

the ’left’ and ’right’ (in the j-th direction). Thus, we define rϕj
h,n as

@ x P Kn, rϕj
h,npxq “ ϕj

h,npxq ` δÑ
h,F` pxq ` δÐ

h,F´ pxq, (45)

where the perturbations from the ’left’ and ’right’ interfaces (in the j-th direction) are respectively

δÑ
h,F` pxq “

´

γF`
rϕj
h ´ ϕj,`

h,F`

¯

pxzjq P j,Ñppxjq and δÐ
h,F´ pxq “

´

γF´
rϕj
h ´ ϕj,´

h,F´

¯

pxzjq P j,Ðppxjq, (46)

where xj “ Xj
nj´1 ` hjpxj (see Figure 3).

Remark 2.14. One will observe that Definition 2.13 naturally ensures the increase to kj ` 1 of the flux
polynomial degree with respect to xj , in addition to the continuity with respect to the j-th component (as the
values at the interfaces of normal ej are then single-valued with the numerical trace polynomials):

@ nF P N j
F , @ x P Fj

nF , rϕj
h,nF pxq “ rϕj

h,pnF qj,1
pxq “ γFj

nF

rϕj
hpxzjq. (47)

This allows to complete the introduction of the Flux Reconstruction method with the strong polynomial

equation (36), the flux numerical traces γF rϕ
j
h definition (with the examples of Definitions 2.9 and 2.11, or a

general choice) and the flux approximation Definition 2.13: in any cell Kn, with n P N , we get

iκMyh,n `

p
ÿ

j“1

B rϕj
h,n

Bxj
“ pΠh,kψqn with rϕj

h,n “ ϕj
h,n ` δÑ

h,Fj

nj,´1

` δÐ

h,Fj
n
. (48)

Remark 2.15. We highlight the fact we did not introduce any set of solution points, as it is used to being
done in classic definitions of the FR method (see [20, 44]). Such nodes are usually used as collocation points,
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(i) Flux correction in direction 1 (ii) Flux correction in direction 2

Figure 3. Illustration, for p “ 2 and k “ p2, 1q, of the flux correction with the numerical

traces, with respect to direct flux approximation: rϕ1
h P Vh,p3,1q and rϕ2

h P Vh,p2,2q.

where the polynomial equation (48) is evaluated: the approximate solution is then reconstructed thanks to
Lagrange polynomials. Yet, in this linear case, it has been shown thewe solution nodes have no influence on the
method [20,41] (without paying attention to the RHS projection which may depend on it, especially in case of
interpolation), which avoids their introduction and additional notations.

Remark 2.16. The Spectral Difference (SD) method can be seen as a specific case of the FR approach
in this linear framework [20]. Indeed, for each direction j, let’s consider a set of kj ` 2 distinct flux

points tpxF,j
0 , . . . , pxF,j

kj`1u Ă r0, 1s such that pxF,j
0 “ 0 and pxF,j

kj`1 “ 1, with the associated Lagrange polynomials
´

LF,j
l

¯

lPJ0,kj`1K
. Thus, by considering the specific flux correction polynomials

P j,Ñ “ LF,j
0 and P j,Ð “ LF,j

kj`1, (49)

the associated FR formulation allows to retrieve the SD one. Similarly to Remark 2.15, SD definitions (see
[24, 26]) rely on sets of solution points which have no influence in this linear case: they are only introduced as
collocation points for the numerical implementation.

Equivalently, in this case, rϕj
h can be defined as the unique element of Vh,kj,1 such that its restriction rϕj

h,n to
any Kn is equal to:

‚ γFj

nj,´1

rϕj
h on Fj

nj,´1 (the ’left’ interface in the j-th direction).

‚ ϕj
h on the internal faces of the cell associated to the flux points, defined by

´

I1n1
ˆ ¨ ¨ ¨ ˆ Ij´1

nj´1
ˆ

!

hj

´

nj ´ 1 ` pxj,F
l

¯)

ˆ Ij`1
nj`1

ˆ ¨ ¨ ¨ ˆ Ipnp

¯

lPJ1,kjK
. (50)

‚ γFj
n

rϕj
h on Fj

n (the ’right’ interface in the j-th direction).

3. Application of the FR approach to the problems of interest

We will then specify the applications of Definitions 2.9 and 2.11 to the Problems 1.1 and 1.4: this will allow
to characterise the FR methods we introduce for them.
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3.1. The FR formulation for the 1D wave equations

Note 3.1. In the case of a single dimension, we will abandon the superscript of the direction j and the faces,
reduced to a single point, will directly be referred as their number nF P J0, NK (see (51)). Moreover, as the cells
Kn and intervals In are identical, we will only refer to In in this Subsection.

We take back Problem 1.1. Then, giving the set of numerical traces at the interfaces

´

γnF
rϕh

¯

nF PJ0,NK
, (51)

the corrected flux (see (45) and (46)) can be expressed on any In, for n P J1, NK, as

rϕh,n “ ϕh,n `

´

γn´1
rϕh ´ ϕh,npXn´1q

¯

PÑ
n `

´

γn rϕh ´ ϕh,npXnq

¯

PÐ
n , (52)

where PÑ
n and PÐ

n stand for the transported versions of the flux correction polynomial functions on In:

@ x P In, PÑ
n pxq “ PÑ ppxq and PÐ

n pxq “ PÐ ppxq where x “ Xn´1 ` hpx. (53)

Then, the last thing we need to completely define the FR method is the computation of these numerical traces.
To do so, as mentioned in Remark 2.10, let’s diagonalize the flux operator F with respect to M “ I2:

F “ PΛP´1 with P “

ˆ

1 ´1
1 1

˙

and Λ “

ˆ

´1 0
0 1

˙

. (54)

Thus, we introduce the flux operator decomposition as the positive and negative parts of F

$

’

’

’

&

’

’

’

%

FÑ “ PΛ`P´1 “
1

2

ˆ

1 ´1
´1 1

˙

with Λ` “

ˆ

0 0
0 1

˙

,

FÐ “ PΛ´P´1 “
1

2

ˆ

´1 ´1
´1 ´1

˙

with Λ´ “

ˆ

´1 0
0 0

˙

,

(55)

which allows to define the flux numerical traces for internal faces according to Definition 2.9.

Concerning the boundaries, we refer to Subsection 1.3: we will highlight a surface metric ĂM whose associated
decomposition of the flux operator F encompasses the BCs (2). Indeed, one has, for given complex values
Z0 ‰ 0 and Y0 “ pZ0q´1 ‰ 0:

F “ ĂMQΛQ´1 with ĂM “

ˆ

Y0 0
0 Z0

˙

and Q “

ˆ

pZ0q1{2 ´pZ0q1{2

pY0q1{2 pY0q1{2

˙

, (56)

which allows to introduce

FÑ
ĂM

“ ĂMQΛ`Q´1 “
1

2

ˆ

Y0 ´1
´1 Z0

˙

and FÐ
ĂM

“ ĂMQΛ´Q´1 “
1

2

ˆ

´Y0 ´1
´1 ´Z0

˙

. (57)

Then, replacing pZ0, Y0q by pZ1, Y1q and pZ2, Y2q for the left and right boundaries respectively (and denoting

the associated surface metrics as ĂM1 and ĂM2) that we suppose to be non-zero, one has

$

’

’

’

&

’

’

’

%

FÑ
ĂM1

yp0q “
g1
2

ˆ

Y1

´1

˙

ðñ

ˆ

Y1rup0q ´ Z1vp0q ´ g1s

´rup0q ´ Z1vp0q ´ g1s

˙

“ 0 ðñ up0q ´ Z1vp0q “ g1,

FÐ
ĂM2

ypLq “
g2
2

ˆ

´Y2

´1

˙

ðñ

ˆ

´Y2rupLq ` Z2vpLq ´ g2s

´rupLq ` Z2vpLq ´ g2s

˙

“ 0 ðñ upLq ` Z2vpLq “ g2.

(58)
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Thus, the framework of Definition 2.11, with FÑ
ĂM1

, FÐ
ĂM2

and (58), allows to take the BCs into account, and

then defines an associated numerical trace.

Remark 3.2 (BCs for Dirichlet and Neumann conditions). Finally, one will note that the previous condition
does not allow to take into account Dirichlet (Z0 “ 0) and Neumann (Y0 “ 0) conditions. To solve this
limitation, let’s first highlight that (55) leads, on the left and right boundaries respectively, to

$

’

’

’

&

’

’

’

%

FÑ
ĂM1

“
1

2

„ˆ

1 ` Y1 0
0 1 ` Z1

˙

FÑ `

ˆ

1 ´ Y1 0
0 1 ´ Z1

˙

FÐ

ȷ

,

FÐ
ĂM2

“
1

2

„ˆ

1 ´ Y2 0
0 1 ´ Z2

˙

FÑ `

ˆ

1 ` Y2 0
0 1 ` Z2

˙

FÐ

ȷ

,

(59)

which allows to rewrite the BCs (58) as the expression of the incoming natural flux in terms of the reflection of
the outgoing one:

$

’

’

&

’

’

%

FÑyp0q “ RãÑFÐyp0q ` G1 with G1 “
g1

Z1 ` 1

ˆ

1
´1

˙

and RãÑ “

ˆ

´R1 0
0 R1

˙

,

FÐypLq “ RÐâFÑypLq ` G2 with G2 “
g2

Z2 ` 1

ˆ

´1
´1

˙

and RãÑ “

ˆ

´R2 0
0 R2

˙

,

(60)

with R1 “
Z1 ´ 1

Z1 ` 1
and R2 “

Z2 ´ 1

Z2 ` 1
the classic expressions of the reflection coefficients at normal incidence.

Moreover, replacing the undefined term of Definition 2.9 with these rewritings allows to define a numerical trace
in more general conditions.

3.2. The FR formulation for the 3D Maxwell problem

In what follows, we suppose that εr and µr are constant in the whole domain (which is a subcase of the more
general hypotheses of Problem 1.4).
In the framework of Subsection 2.3, we finally need to define the numerical traces. To do so, we consider the
same mechanism as the one introduced in Subsection 3.1: the idea is to diagonalize each flux operator with
respect to the scalar product induced by M (defined in (10)), before using their positive and negative parts as
a decomposition. For example, we have Fx “ MPxΛxpPxq´1, with

Px “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 pεrq´1{2

´pεrq´1{2 0 pεrq´1{2 0 0 0

0 pεrq´1{2 0 ´pεrq´1{2 0 0

0 0 0 0 pµrq´1{2 0

0 pµrq´1{2 0 pµrq´1{2 0 0

pµrq´1{2 0 pµrq´1{2 0 0 0

˛

‹

‹

‹

‹

‹

‹

‚

and Λx “

¨

˝

´cI2 02 02

02 cI2 02

02 02 02

˛

‚ (61)

where Λx is the diagonal matrix composed of the eigenvalues, while Px is made of the eigenvector coordinates.

The speed is also denoted as c “
1

?
εrµr

.

Thus, we introduce the flux operator decomposition Fx “ Fx,Ñ ` Fx,Ð as its positive and negative parts.
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This leads to Fx,Ñ “ MPxΛx,`pPxq´1 and Fx,Ð “ MPxΛx,´pPxq´1 with

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Fx,Ñ “ MPxΛx,`pPxq´1 “
1

2

ˆ

Y Γtrexs ´Γˆrexs

Γˆrexs ZΓtrexs

˙

with Λx,` “

¨

˝

02 02 02

02 cI2 02

02 02 02

˛

‚,

Fx,Ð “ MPxΛx,´pPxq´1 “
1

2

ˆ

´Y Γtrexs ´Γˆrexs

Γˆrexs ´ZΓtrexs

˙

with Λx,´ “

¨

˝

´cI2 02 02

02 02 02

02 02 02

˛

‚,

(62)

where Z “

c

µr

εr
and Y “ Z´1 stand for the internal impedance and admittance, and Γtrexs and Γˆrexs denote

the matrices respectively associated to the operators γtrexs and γˆrexs (see (12)). This allows to define the flux
numerical traces for internal faces according to Definition 2.9, in a similar way to classic ones [15,29].

Then, for the boundaries, we introduce a surface metric ĂM whose associated decomposition will allow to take
into account the BCs, as detailed in Subsection 1.3. Thus, for given values Z0 ą 0, Y0 “ pZ0q´1 ą 0 and the
surface metric

ĂM “

ˆ

ZY0εrI3 03

03 Z0Y µrI3

˙

(63)

the generalised eigenvalue problem leads to the decomposition Fx “ Fx,Ñ
ĂM

` Fx,Ð
ĂM

with

Fx,Ñ
ĂM

“
1

2

ˆ

Y0Γtrexs ´Γˆrexs

Γˆrexs Z0Γtrexs

˙

and Fx,Ð
ĂM

“
1

2

ˆ

´Y0Γtrexs ´Γˆrexs

Γˆrexs ´Z0Γtrexs

˙

. (64)

Then, considering left and right boundary faces of respective outgoing normals nBΩ “ ´ex and nBΩ “ ex, and
their impedance ZBΩ and admittance YBΩ “ pZBΩq´1 that we suppose strictly positive (with the associated

surface metric ĂMBΩ), one has

$

’

’

’

&

’

’

’

%

FÑ
ĂMBΩ

E “
1

2

ˆ

YBΩΓtr´exs

´Γˆr´exs

˙

g ðñ γtr´exse ` ZBΩγˆr´exsh “ g,

FÐ
ĂMBΩ

E “
1

2

ˆ

´YBΩΓtrexs

Γˆrexs

˙

g ðñ γtrexse ` ZBΩγˆrexsh “ g,

(65)

where we use the fact that g P L2
t pBΩq implies that g “ γtrexsg “ γtr´exsg on these boundary faces.

Thus, the framework of Definition 2.11 allows to take the BCs into account, and then defines an associated
numerical trace. Similar considerations can be applied for the y and z axes.

Remark 3.3 (BCs for perfect conductor conditions). Finally, one will note that the previous condition does
not allow to take into account perfect electric (ZBΩ “ 0) and magnetic (YBΩ “ 0) conductor conditions. To
solve this limitation, let’s first highlight that (62) leads, on left and right boundaries respectively, to

$

’

’

’

&

’

’

’

%

Fx,Ñ
ĂMBΩ

“
1

2

„ˆ

1 ` YBΩZ 0
0 1 ` Y ZBΩ

˙

Fx,Ñ `

ˆ

1 ´ YBΩZ 0
0 1 ´ Y ZBΩq

˙

Fx,Ð

ȷ

,

Fx,Ð
ĂMBΩ

“
1

2

„ˆ

1 ´ YBΩZ 0
0 1 ´ Y ZBΩ

˙

Fx,Ñ `

ˆ

1 ` YBΩZ 0
0 1 ` Y ZBΩ

˙

Fx,Ð

ȷ

,

(66)
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which allows to rewrite the BCs (65) as the expression of the incoming natural flux (associated to M) in terms
of the reflection of the outgoing one:

$

’

’

&

’

’

%

Fx,ÑE “ RãÑFx,ÐE ` GãÑ with GãÑ “
Z

ZBΩ ` Z

ˆ

Y Γtr´exs

´Γˆr´exs

˙

g and RãÑ “

ˆ

´RI3 03

03 RI3

˙

,

Fx,ÐE “ RÐâFx,ÑE ` GÐâ with GÐâ “
Z

ZBΩ ` Z

ˆ

´Y Γtrexs

Γˆrexs

˙

g and RÐâ “

ˆ

´RI3 03

03 RI3

˙

,

(67)

with the classic expression of the reflection coefficient at normal incidence R “
ZBΩ ´ Z

ZBΩ ` Z
. Moreover, replacing

the undefined term of Definition 2.9 with these rewritings allows to define a numerical trace in more general
conditions.

Remark 3.4. These numerical traces can also be obtained by considering a 1D Riemann solver or an upwinding
mechanism (see respectively 2.3.2 and 2.3.3 from [39]). For the latter, the idea to look for the numerical trace
as a linear combination of output traces from the neighbouring cells of the face (associating a virtual cell out
of Ω in the boundary case).

4. A priori error estimates and well-posedness character

After detailing the construction of the Flux Reconstruction method, we focus on the homogeneous 1D time-
harmonic wave Problem 4.4, with the numerical traces introduced in Subsection 3.1 and incoming BCs.
Thus, this Section is devoted to show the well-posedness of the associated FR formulation, in addition to explicit
a priori error estimates.

4.1. Main results

First, we detail the problem on which we focus, before summarising the main results.

Conjecture 4.1. For the rest of the paper, we assume the flux correction polynomials PÑ and PÐ are of
degrees exactly k ` 1 and that the parameters are such that

k`1
ÿ

l“0

pPÑq
plq

p0q p´iκhq´l ‰ 0 and
k`1
ÿ

l“0

pPÐq
plq

p1q piκhq´l ‰ 0, (68)

where pPÑq
plq

and pPÐq
plq

denote the lth derivatives of PÑ and PÐ respectively.

Remark 4.2. We highlight the fact that:

1. For any given flux correction polynomial functions PÑ and PÐ, by introducing the real polynomials of
degrees k ` 1

TÑpXq “

k`1
ÿ

l“0

pPÑq
plq

p0qX l and TÐpXq “

k`1
ÿ

l“0

pPÐq
plq

p1qX l, (69)

Conjecture 4.1 may be refuted for at most

Z

k ` 1

2

^

values of κh (which is the maximum number of their

couples of non-zero conjugated purely imaginary roots).

2. Condition (68) is verified for h small enough, as pPÑq
pk`1q

p0q ‰ 0 and pPÐq
pk`1q

p1q ‰ 0.
3. All the numerical tests that we have implemented (for various flux correction polynomial functions,

polynomial orders, domain lengths and wavenumbers) have verified this condition (see Subsection 5.1).
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Claim 4.3. In what follows, we restrict the study to the homogeneous case ψ “ p0, 0q with the Boundary
Conditions associated to Z1 “ 1 and Z2 “ 1, the numerical traces associated to (55) and (58), and flux
correction polynomial functions of degrees exactly k ` 1 verifying Conjecture 4.1:

Problem 4.4. Find yh “ puh, vhq P Vh,k and rϕh P Wh,k such that for all n P J1, NK

iκyh,n `
d rϕh,n

dx
“ 0 in In, (70)

associated to the Boundary Conditions

#

upX0q ´ vpX0q “ g1,

upXN q ` vpXN q “ g2,
(71)

and the flux numerical traces from Subsection 3.1.

Just before presenting the error estimates, we introduce two semi-norms for which they are developed.

Definition 4.5. For w P H1pThq and w P
“

H1pThq
‰2

(see (32)), we define the semi-norms |w|˝ and |w|˝ by

|w|2˝ “ |w1pX0q|2 `

N´1
ÿ

n“1

|JwKn|
2

` |wN pXN q|2 and |w|2˝ “ |w1pX0q|2 `

N´1
ÿ

n“1

|JwKn|
2

` |wN pXN q|2, (72)

where we have denoted the modulus and the usual euclidean norm on C2 as | ¨ | and the jumps of w and w as

@ n P J1, N ´ 1K, JwKn “ wn`1pXnq ´ wnpXnq and JwKn “ wn`1pXnq ´ wnpXnq. (73)

Moreover, the semi-norms |w|1,h and |w|1,h denote the broken H1 semi-norms as

|w|21,h “

N
ÿ

n“1

ż

In

|pwnqp1qpxq|2 dx and |w|21,h “

N
ÿ

n“1

ż

In

|pwnqp1qpxq|2 dx. (74)

Finally, we denote the L2-norm on Ω as }w}0 “ }w}L2pΩq and }w}0 “ }w}L2pΩq.

Thus, we can introduce the main result, which ensures the well-posedness of the FR approach, in addition
to explicit asymptotic estimates of the error.

Theorem 4.6. For κL fixed and κh verifying Conjecture 4.1, the Flux Reconstruction formulation associated
to Problem 4.4 is well-posed.
Moreover, for κh small enough, we have the following estimates of the error εh “ y ´ yh (for the norms
introduced in Definition 4.5):

piq |εh|2˝ À pκLq pκhq2k`1
`

CÑ
˝ |g1|2 ` CÐ

˝ |g2|2
˘

,

piiq }εh}
2
0 À κ´1 pκLq pκhq2k`2

`

CÑ
L2 |g1|2 ` CÐ

L2 |g2|2
˘

,

piiiq |εh|
2
1,h À κ pκLq pκhq2k

`

CÑ
H1 |g1|2 ` CÐ

H1 |g2|2
˘

,

(75)
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where the notation A À B means that there exists a constant C ą 0, independent of κ, h, k and L, such that
we have A ď B C. Moreover, we have the explicit expressions of the constants

$

’

’

’

&

’

’

’

%

CÑ
˝ “

1

|TÑ
k`1|2

CÐ
˝ “

1

|TÐ
k`1|2

,

$

’

’

’

’

&

’

’

’

’

%

CÑ
L2 “

|BÑ
k |2 ` 1

3 pκLq2|AÑ
k |2

|TÑ
k`1|2

CÐ
L2 “

|BÐ
k |2 ` 1

3 pκLq2|AÐ
k |2

|TÐ
k`1|2

and

$

’

’

’

’

&

’

’

’

’

%

CÑ
H1 “

|CÑ
k |2

|TÑ
k`1|2

CÐ
H1 “

|CÐ
k |2

|TÐ
k`1|2

, (76)

which depend on

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

AÑ
k “

ż 1

0

PÑ ppxq dpx and AÐ
k “

ż 1

0

PÐ ppxq dpx,

BÑ
k “ }PÑ}L2p0,1q and BÐ

k “ }PÐ}L2p0,1q ,

CÑ
k “

›

›

›
pPÑq

p1q
›

›

›

L2p0,1q
and CÐ

k “

›

›

›
pPÐq

p1q
›

›

›

L2p0,1q
,

TÑ
k`1 “ pPÑq

pk`1q
p0q and TÐ

k`1 “ pPÐq
pk`1q

p1q .

(77)

Remark 4.7. One will note that Theorem 4.6 ensures quasi-optimal convergence orders, such as DG methods
[10, 31] (as it will be highlighted in the numerical Section 5). In particular, this behaviour is allowed by the
regularity of the exact solution y (see Remark 4.10). Moreover, the dependencies are explicit in terms of the flux
correction polynomial functions, the number of wavelengths in the domain κL, and the size of a cell relatively
to a wavelength κh.
Finally, the dependence of the estimate piiq on κL highlights two asymptotic behaviours in

?
κL and pκLq3{2,

according to the value of Ak, and then the flux correction polynomial functions (see Subsection 5.5).

4.2. Proof of the well-posedness result and error estimates

In what follows, we will detail the proof of Theorem 4.6. It will mainly rely on the introduction of one-
way variables, for which the associated approximations and errors verify local strong equations. Then, error
estimates will be derived going from one cell to its neighbour, and propagating the error along it in an iterative
process: summing up on all the cells will thus allow to conclude.

4.2.1. Strong equations for the one-way variables

The interest of the Flux Reconstruction approach is that strong equations can be derived on each interval
for the approximation of the solution, and then for the local error.
First, in every cell In, we define local flux correction polynomial functions PÑ

n and PÐ
n thanks to the reference

flux correction polynomial functions PÑ and PÐ (see Definition 2.13) as

@ x P In, PÑ
n pxq “ PÑ ppxq and PÐ

n pxq “ PÐ ppxq with x “ Xn´1 ` hpx. (78)

Then, to drastically simplify the continuous and discrete systems, we decompose the solution in the one-way
variables

yÑ “ u ´ v and yÐ “ u ` v, (79)

with their discrete counterparts

yÑ
h “ uh ´ vh and yÐ

h “ uh ` vh. (80)

Remark 4.8. In agreement with the BCs (71), we introduce the virtual values out of the boundaries

yÑ
h,0pX0q “ g1 and yÐ

h,N`1pXN q “ g2. (81)
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Then, these changes of variables allow to decouple the systems of Problems 1.1 and 4.4.

Proposition 4.9 (One-way reformulation). yÑ and yÐ are solutions of

@ x P Ω,

"

pyÑq
p1q

pxq “ ´iκyÑpxq

yÑpX0q “ g1
and

"

pyÐq
p1q

pxq “ iκyÐpxq,
yÐpXN q “ g2,

(82)

while yÑ
h and yÐ

h are solutions of

@ n P J1, NK, @ x P In,

$

’

&

’

%

´

yÑ
h,n

¯p1q

pxq “ ´iκyÑ
h,npxq ` JyÑ

h Kn´1 pPÑ
n q

p1q
pxq,

´

yÐ
h,n

¯p1q

pxq “ iκyÐ
h,npxq ´ JyÐ

h Kn pPÐ
n q

p1q
pxq,

(83)

where we recall the jump of w P H1pThq at any interface is denoted as

@ n P J0, NK, JwKn “ wn`1pXnq ´ wnpXnq. (84)

Proof. Equation (82) is derived from (1) with Z1 “ Z2 “ 1 and the definition (79) of yÑ and yÐ.
Equation (83) is due to the strong equation (70) verified by yh, the definition (80) of yÑ

h and yÐ
h , and the

following expressions of the interface corrections (which rely on the flux numerical trace operators defined
thanks to (55) and (58)):

‚ For an internal interface nF P J1, N ´ 1K, one obtains

γnF
rϕh ´ ϕh,nF `1pXnF q “

1

2

˜

´Juh ´ vhKnF

Juh ´ vhKnF

¸

and γnF
rϕh ´ ϕh,nF pXnF q “ ´

1

2

˜

Juh ` vhKnF

Juh ` vhKnF

¸

. (85)

‚ For the boundary interfaces, one obtains by referring to Remark 4.8

γ0 rϕh ´ ϕh,1pX0q “
1

2

˜

´Juh ´ vhK0
Juh ´ vhK0

¸

and γN rϕh ´ ϕh,N pXN q “ ´
1

2

˜

Juh ` vhKN
Juh ` vhKN

¸

, (86)

which can be seen as the direct application of (85) with fictive cells associated to the BCs.

□

Remark 4.10. We highlight the fact that the exact solutions of (82) can be easily obtained as

@ x P Ω, yÑpxq “ g1e
´iκpx´X0q and yÐpxq “ g2e

iκpx´XN q, (87)

which ensures that y P rC8pΩqs
2
.

Proposition 4.11 (Strong error equations in one-way variables). The one-way errors

εÑ
h “ yÑ ´ yÑ

h and εÐ
h “ yÐ ´ yÐ

h , (88)

satisfy the strong local equations

@ n P J1, NK, @ x P In,

$

’

&

’

%

´

εÑ
h,n

¯p1q

pxq “ ´iκεÑ
h,npxq ` JεÑ

h Kn´1 pPÑ
n q

p1q
pxq,

´

εÐ
h,n

¯p1q

pxq “ iκεÐ
h,npxq ´ JεÐ

h Kn pPÐ
n q

p1q
pxq,

(89)

and the boundary conditions
εÑ
h,0pX0q “ 0 and εÐ

h,N`1pXN q “ 0. (90)
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Proof. Equation (89) is due to (82), (83) and the continuity of yÑ and yÐ, while (90) relies on (81) and (87). □

4.2.2. Well-posedness of the one-way discrete problem and local error estimates

In this Subsection, we will focus on the propagating errors, to derive preliminary local estimates. The proofs
will only be detailed for εÑ

h , as similar steps can be followed for εÐ
h .

We begin with the proof that yÑ
h and yÐ

h are well defined on each interval if Conjecture 4.1 is verified, and
we detail a bound on the error jump realised on εÑ

h and εÐ
h at the interface between two cells.

Proposition 4.12. In the framework of Conjecture 4.1, the one-way variables yÑ
h and yÐ

h are well-defined in
Vh,k and the error jumps are bounded as

@ n P J0, N ´ 1K, |JεÑ
h Kn| ď αÑ

κh,k

pκhqk`1

|TÑ
k`1|

`
ˇ

ˇεÑ
h,npXnq

ˇ

ˇ ` |g1|
˘

,

@ n P J1, NK, |JεÐ
h Kn| ď αÐ

κh,k

pκhqk`1

|TÐ
k`1|

`
ˇ

ˇεÐ
h,n`1pXnq

ˇ

ˇ ` |g2|
˘

,

(91)

where we denote the derivatives at 0 and 1 of the reference flux correction polynomial functions as

@ l P J0, k ` 1K, TÑ
l “ pPÑq

plq
p0q and TÐ

l “ pPÐq
plq

p1q , (92)

and

αÑ
κh,k “

pκhq´pk`1q |TÑ
k`1|

ˇ

ˇ

ˇ

ˇ

ˇ

k`1
ÿ

l“0

p´iκhq´l TÑ
l

ˇ

ˇ

ˇ

ˇ

ˇ

and αÐ
κh,k “

pκhq´pk`1q |TÐ
k`1|

ˇ

ˇ

ˇ

ˇ

ˇ

k`1
ÿ

l“0

piκhq´l TÐ
l

ˇ

ˇ

ˇ

ˇ

ˇ

, (93)

with the asymptotic behaviour
αÑ
κh,k ÝÑ

κhÑ0`
1 and αÐ

κh,k ÝÑ
κhÑ0`

1. (94)

Proof. First, let’s consider an interval n P J1, NK for which we suppose yÑ
h,n´1pXn´1q is well-defined (which is

the case for n “ 1, as yÑ
h,0pX0q “ g1).

By differentiating (83) l ´ 1 times, we obtain for l P J1, k ` 1K

`

yÑ
h,n

˘plq
pXn´1q “ ´iκ

`

yÑ
h,n

˘pl´1q
pXn´1q `

`

yÑ
h,npXn´1q ´ yÑ

h,n´1pXn´1q
˘

pPÑ
n q

plq
pXn´1q, (95)

and by induction

`

yÑ
h,n

˘plq
pXn´1q “ p´iκql yÑ

h,npXn´1q `
`

yÑ
h,npXn´1q ´ yÑ

h,n´1pXn´1q
˘

l
ÿ

m“1

p´iκql´m pPÑ
n q

pmq
pXn´1q. (96)

Thus, the last thing we need to characterise the polynomial function yÑ
h,n (of degree at most k) is the expression

of yÑ
h,npXn´1q, as the derivatives

ˆ

´

yÑ
h,n

¯plq

pXn´1q

˙

lPJ1,kK
can be deduced from (96). To do so, by taking

l “ k ` 1 in this equation and as
´

yÑ
h,n

¯pk`1q

pXn´1q “ 0, we get

p´iκqk`1yÑ
h,npXn´1q `

`

yÑ
h,npXn´1q ´ yÑ

h,n´1pXn´1q
˘

k`1
ÿ

m“1

p´iκqk`1´m pPÑ
n q

pmq
pXn´1q “ 0. (97)

The definition (78) of transported flux correction polynomial functions leads to

@ m P J0, k ` 1K, @ x P In, pPÑ
n q

pmq
pxq “ h´m pPÑq

pmq
ppxq with x “ Xn´1 ` hpx, (98)



TITLE WILL BE SET BY THE PUBLISHER 21

and by using the fact that TÑ
0 “ PÑp0q “ 1, (97) can be rewritten as

«

k`1
ÿ

l“0

p´iκhq´l TÑ
l

ff

yÑ
h,npXn´1q “

«

k`1
ÿ

l“1

p´iκhq´l TÑ
l

ff

yÑ
h,n´1pXn´1q, (99)

where we recall that TÑ
l “ pPÑq

plq
p0q, for l P J0, k ` 1K. Conjecture 4.1 ensures that

k`1
ÿ

l“0

p´iκhq´l TÑ
l ‰ 0:

yÑ
h,npXn´1q, and then all the derivatives

ˆ

´

yÑ
h,n

¯plq

pXn´1q

˙

lPJ0,kK
, are well-defined with respect to yÑ

h,n´1pXn´1q.

The local solution approximation yÑ
h,n being a polynomial function of degree at most k, it is then perfectly de-

termined. Global well-posedness is deduced by induction.
Concerning the jump estimates, we can write

´JyÑ
h Kn´1 “

yÑ
h,n´1pXn´1q

k`1
ÿ

l“0

p´iκhq´l TÑ
l

. (100)

Artificially introducing yÑpXn´1q “ g1e
´iκXn´1 (see (87)) to make εÑ

h,n´1pXn´1q “ pyÑ ´ yÑ
h,n´1qpXn´1q

appear, we get

JεÑ
h Kn´1 “ ´JyÑ

h Kn´1 “
yÑpXn´1q ´ εÑ

h,n´1pXn´1q

k`1
ÿ

l“0

p´iκhq´l TÑ
l

, (101)

where we have used the continuity of yÑ at x “ Xn´1.
Then, the triangular inequality and the definition (93) of αÑ

κh,k lead to

|JεÑ
h Kn´1| ď αÑ

κh,k

pκhqk`1

|TÑ
k`1|

`

|g1| ` |εÑ
h,n´1pXn´1q|

˘

. (102)

Finally, the asymptotic behaviour of αÑ
κh,k results from TÑ

k`1 ‰ 0, as PÑ is of degree k ` 1 (see Claim 4.3). □

Proposition 4.12 is the key argument to propagate the error estimate between two consecutive cells.
The next Proposition estimates |εÑ

h,npXnq| and |εÐ
h,n`1pXnq|, respectively at the right and left sides of each cell

(see Figure 4).

Proposition 4.13. In the framework of Conjecture 4.1, the propagation of the error on each interval leads to

@ n P J0, NK, |εÑ
h,npXnq| ď

“`

1 ` γÑ
κh,k

˘n
´ 1

‰

|g1| and |εÐ
h,n`1pXnq| ď

”

`

1 ` γÐ
κh,k

˘N´n
´ 1

ı

|g2|, (103)

where we denote, thanks to the definition (93) of αÑ
κh,k and αÐ

κh,k

γÑ
κh,k “ αÑ

κh,k

|JÑ
κh|

|TÑ
k`1|

pκhqk`1 and γÐ
κh,k “ αÐ

κh,k

|JÐ
κh|

|TÐ
k`1|

pκhqk`1, (104)

JÑ
κh “ 1 `

ż 1

0

pPÑq
p1q

ppxq eiκhpx dpx and JÐ
κh “ 1 ´

ż 1

0

pPÐq
p1q

p1 ´ pxq eiκhpx dpx. (105)

with the asymptotic behaviour

γÑ
κh,k “

κhÑ0`
O
`

pκhqk`2
˘

and γÐ
κh,k “

κhÑ0`
O
`

pκhqk`2
˘

. (106)
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Proof. By considering a variation of parameters on the differential equation (89) solved by εÑ
h , we get

@ n P J1, NK, εÑ
h,npXnq “

“

JεÑ
h Kn´1J

Ñ
κh ` εÑ

h,n´1pXn´1q
‰

e´iκh, (107)

where we have denoted, and simplified thanks to the change of variable x “ hpx ` Xn´1 and (98)

JÑ
κh “ 1 `

ż

In

pPÑ
n q

p1q
pxq eiκpx´Xn´1q dx “ 1 `

ż 1

0

pPÑq
p1q

ppxq eiκhpx dpx. (108)

Thus, triangular inequality and Proposition 4.12 lead to

|εÑ
h,npXnq| ď p1 ` γÑ

κh,kq|εÑ
h,n´1pXn´1q| ` γÑ

κh,k|g1|, (109)

where we have used the definition (104) of γÑ
κh,k.

Thus, by considerations on an arithmetico-geometric sequence, we obtain

@ n P J0, N ´ 1K,
`

|εÑ
h,npXnq| ` |g1|

˘

ď p1 ` γÑ
κh,kqn

`

|εÑ
h,0pX0q| ` |g1|

˘

, (110)

and (90) allows to conclude.
Finally, the asymptotic behaviour of γÑ

κh,k comes out of Remark 4.14 and Lemma 4.15. □

Remark 4.14. We highlight two specific behaviours of γÑ
κh,k and γÐ

κh,k with respect to

AÑ
k “

ż 1

0

PÑ ppxq dpx and AÐ
k “

ż 1

0

PÐ ppxq dpx. (111)

Indeed, by using Lemma 4.15, one has:

‚ If AÑ
k ‰ 0 and AÐ

k ‰ 0, then γÑ
κh,k and γÐ

κh,k can be rewritten as

γÑ
κh,k “ αÑ

κh,kβ
Ñ
κh,k

|AÑ
k |

|TÑ
k`1|

pκhqk`2 and γÐ
κh,k “ αÐ

κh,kβ
Ð
κh,k

|AÐ
k |

|TÐ
k`1|

pκhqk`2, (112)

where we denote

βÑ
κh,k “

|JÑ
κh|

|AÑ
k |κh

and βÐ
κh,k “

|JÐ
κh|

|AÐ
k |κh

, (113)

with the asymptotic behaviour

βÑ
κh,k ÝÑ

κhÑ0`
1 and βÐ

κh,k ÝÑ
κhÑ0`

1. (114)

‚ Otherwise, by using the asymptotic behaviour (94) of αÑ
κh,k and αÐ

κh,k, one has

γÑ
κh,k “

κhÑ0`
O
`

pκhqk`3
˘

and γÐ
κh,k “

κhÑ0`
O
`

pκhqk`3
˘

. (115)

Lemma 4.15. We have the asymptotic estimates

JÑ
κh “

κhÑ0`
´iAÑ

k κh ` O
`

pκhq2
˘

and JÐ
κh “

κhÑ0`
´iAÐ

k κh ` O
`

pκhq2
˘

. (116)

Proof. Let’s first note that
ż 1

0

pPÑq
p1q

ppxq dpx “ PÑp1q ´ PÑp0q “ ´1, (117)
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which allows to rewrite JÑ
κh as

JÑ
κh “

ż 1

0

pPÑq
p1q

ppxq

´

eiκhpx ´ 1
¯

dpx. (118)

By writing eiκhpx ´ 1 “
κhÑ0`

iκhpx ` O
`

pκhq2
˘

for px P r0, 1s, an integration by parts leads to

JÑ
κh “

κhÑ0`
iκh

„

´

ż 1

0

PÑ ppxq dpx ` rpx PÑ ppxqs
1
0

ȷ

`

ż 1

0

pPÑq
p1q

ppxq O
`

pκhq2
˘

dpx. (119)

According to the fact that PÑp1q “ 0 and the definition (111) of AÑ
k , we get

iκh

„

´

ż 1

0

PÑ ppxq dpx ` rpx PÑ ppxqs
1
0

ȷ

“ ´iκhAÑ
k . (120)

Finally, a Cauchy-Schwarz inequality ensures that, for κh small enough

ż 1

0

pPÑq
p1q

ppxq O
`

pκhq2
˘

dpx À pκhq2
›

›

›
pPÑq

p1q
›

›

›

L2p0,1q
. (121)

□
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Figure 4. Visualisation of εÑ
h and εÐ

h along Ω for L “ 1, N “ 10, the parameters of Table 1
and configuration SD CLo (see Section 5): error ’absorption’ in each cell and global accumula-
tion with propagation towards right and left respectively.

4.2.3. Global error estimates in the one-way framework

Note 4.16. For the rest of this Section, we recall that the notation A À B means that there exists a constant
C ą 0, independent of κ, h, k and L, such that we have A ď B C.
Moreover, the following estimates will be derived in an asymptotic regime, for κh small enough, which ensures
that Conjecture 4.1 is verified (see Remark 4.2): all the local estimates of Subsection 4.2.2 are then valid.

This finally leads to a bound on the jump at each interface, and then on the weak semi-norm | ¨ |˝.
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Proposition 4.17. The jump error at any internal interface is bounded, for κh small enough, by

@ n P J0, N ´ 1K, |JεÑ
h Kn| À

pκhqk`1

|TÑ
k`1|

|g1| and |JεÐ
h Kn`1| À

pκhqk`1

|TÐ
k`1|

|g2|, (122)

which ensures the following bounds of the semi-norm of propagating errors

|εÑ
h |2˝ À pκLq

pκhq2k`1

|TÑ
k`1|2

|g1|2 and |εÐ
h |2˝ À pκLq

pκhq2k`1

|TÐ
k`1|2

|g2|2. (123)

Proof. First, by merging Propositions 4.12 and 4.13, we directly get

@ n P J1, N ´ 1K, |JεÑ
h Kn| ď αÑ

κh,k

pκhqk`1

|TÑ
k`1|

p1 ` γÑ
κh,kqn|g1|. (124)

Yet, as N “ Lh´1 and by using the asymptotic behaviour (106) of γÑ
κh,k, one has for any n P J1, N ´ 1K

`

1 ` γÑ
κh,k

˘n
“

κhÑ0`
1 ` O

`

pκLqpκhqk`1
˘

, (125)

which justifies the bound of (122) for κh small enough, with the asymptotic behaviour (94) of αÑ
κh,k.

Moreover, recalling that N “ Lh´1, we have

N´1
ÿ

n“0

`

1 ` γÑ
κh,k

˘2n
“

κhÑ0`

κL

κh
` O

`

pκLq2pκhqk
˘

, (126)

which implies, for κh small enough, that

N´1
ÿ

n“0

|JεÑ
h Kn|2 “

κhÑ0`

„

κL

κh
` O

`

pκLq2pκhqk
˘

ȷ „

αÑ
κh,k

pκhqk`1

|TÑ
k`1|

|g1|

ȷ2

. (127)

For the boundary terms, we have thanks to (90)

|εÑ
h,1pX0q|2 “ |JεÑ

h K0|2, (128)

and according to Proposition 4.13

|εÑ
h,N pXN q|2 “

κhÑ0`

“

O
`

pκLqpκhqk`1
˘

|g1|
‰2

. (129)

Finally, by recalling the definition (72) of |εÑ
h |˝, the right boundary term can be neglected for κh small enough:

this gives the expected semi-norm bounding as αÑ
κh,k has limit 1 as κh tends to 0`. □

Then, let’s consider the L2 norm of the error.

Proposition 4.18. We have the following bound of the L2 norm of the error for κh small enough

}εÑ
h }20 À L

|BÑ
k |2 ` 1

3 pκLq2|AÑ
k |2

|TÑ
k`1|2

pκhq2k`2|g1|2 and }εÐ
h }20 À L

|BÐ
k |2 ` 1

3 pκLq2|AÐ
k |2

|TÐ
k`1|2

pκhq2k`2|g2|2, (130)

where we denote
BÑ

k “ }PÑ}L2p0,1q and BÐ
k “ }PÐ}L2p0,1q . (131)
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Proof. Let’s take back the expression of εÑ
h obtained by variation of parameters: for any n P J1, NK, we have

@ x P In, ε
Ñ
h,npxq “

«

JεÑ
h Kn´1

˜

1 `

ż x

Xn´1

pPÑ
n q

p1q
ptq eiκpt´Xn´1q dt

¸

` εÑ
h,n´1pXn´1q

ff

e´iκpx´Xn´1q. (132)

Thus, by triangular and Young’s inequalities, one has

@ n P J1, NK, }εÑ
h,n}2L2pInq À KÑ

n phq |JεÑ
h Kn´1|2 ` h |εÑ

h,n´1pXn´1q|2, (133)

where we have denoted

KÑphq “

ż

In

ˇ

ˇ

ˇ

ˇ

ˇ

1 `

ż x

Xn´1

pPÑ
n q

p1q
ptq eiκpt´Xn´1q dt

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx. (134)

Then, by using Propositions 4.13 and 4.17 and Lemma 4.19, we obtain for κh small enough

@ n P J1, NK, }εÑ
h }2L2pInq À h

„

|BÑ
k |2

|TÑ
k`1|2

pκhq2k`2 `
`

p1 ` γÑ
κh,kqn´1 ´ 1

˘2
ȷ

|g1|2. (135)

Thus, by summing over n from 1 to N “ Lh´1, we obtain

}εÑ
h,n}20 À

„

L
|BÑ

k |2

|TÑ
k`1|2

pκhq2k`2 ` hSÑ
κh,k

ȷ

|g1|2, (136)

where we have denoted

SÑ
κh,k “

N
ÿ

n“1

“

p1 ` γÑ
κh,kqn´1 ´ 1

‰2
. (137)

Finally, reporting Lemma 4.20 in this bounding gives the expected estimate for κh small enough:

‚ If AÑ
k ‰ 0, we obtain the expected estimate.

‚ Otherwise, hSÑ
κh,k can be absorbed by the other term, and the estimate is still valid (with AÑ

k “ 0).

□

Lemma 4.19. For any n P J1, NK, we have the bound

KÑ
n phq “

ż

In

ˇ

ˇ

ˇ

ˇ

ˇ

1 `

ż x

Xn´1

pPÑ
n q

p1q
ptq eiκpt´Xn´1q dt

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx À δÑ
κh,kh|BÑ

k |2, (138)

where we denote

δÑ
κh,k “ 1 ` |BÑ

k |
´2

ż 1

0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

pz

0

pPÑq
p1q

pprq

´

eiκhpr ´ 1
¯

dpr

ˇ

ˇ

ˇ

ˇ

ˇ

2

dpz, (139)

with the asymptotic behaviour
δÑ
κh,k ÝÑ

κhÑ0`
1. (140)

Proof. First, let’s observe that KÑ
n phq is independent of n, as the the changes of variable x “ hpz ` Xn´1 and

t “ hpr ` Xn´1 and (98) ensure that

KÑ
n phq “ h

ż 1

0

ˇ

ˇ

ˇ

ˇ

ˇ

1 `

ż

pz

0

pPÑq
p1q

pprq eiκhpr dpr

ˇ

ˇ

ˇ

ˇ

ˇ

2

dpz (141)
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that we denote KÑphq for the rest of the proof. Then, let’s note that

@ pz P r0, 1s,

ż

pz

0

pPÑq
p1q

pprq dpr “ PÑppzq ´ 1, (142)

which allows to rewrite KÑphq as

KÑphq “ h

ż 1

0

ˇ

ˇ

ˇ

ˇ

ˇ

PÑppzq `

ż

pz

0

pPÑq
p1q

pprq

´

eiκhpr ´ 1
¯

dpr

ˇ

ˇ

ˇ

ˇ

ˇ

2

dpz. (143)

Thus, Young’s inequality allows to separate the bounding ofKÑphq in two terms which will be treated separately

KÑphq À h |BÑ
k |

2
` h

ż 1

0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

pz

0

pPÑq
p1q

pprq

´

eiκhpr ´ 1
¯

dpr

ˇ

ˇ

ˇ

ˇ

ˇ

2

dpz. (144)

Focusing on the second term denoted as MÑphq, the Cauchy-Schwarz inequality leads, for κh small enough, to

MÑphq “ h

ż 1

0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

pz

0

pPÑq
p1q

pprq

´

eiκhpr ´ 1
¯

dr

ˇ

ˇ

ˇ

ˇ

ˇ

2

dpz À κ2h3
›

›

›
pPÑq

p1q
›

›

›

2

L2p0,1q
(145)

Finally, by introducing δÑ
κh,k “ 1 `

MÑphq

h |BÑ
k |

2 , this allows to conclude. □

Lemma 4.20. Since N “ Lh´1, we have the following asymptotic estimate

SÑ
κh,k “

N
ÿ

n“1

“

p1 ` γÑ
κh,kqn´1 ´ 1

‰2
“

κhÑ0`

pκLq3

3

|AÑ
k |2

|TÑ
k`1|2

pκhq2k`1 ` o
`

pκhq2k`1
˘

. (146)

Proof. We develop the expression of SÑ
κh,k

SÑ
κh,k “

N´1
ÿ

n“0

“

p1 ` γÑ
κh,kq2n ´ 2p1 ` γÑ

κh,kqn ` 1
‰

“
p1 ` γÑ

h,kq2L{h ´ 1

2γÑ
h,k ` pγÑ

h,kq2
´ 2

p1 ` γÑ
h,kqL{h ´ 1

γÑ
h,k

`
L

h
, (147)

and realise series expansions of the different terms using the fact that, for κh small enough, γÑ
κh,k À pκhqk`2.

□

Finally, a similar estimate can be derived for the H1-broken semi-norm.

Proposition 4.21. We have the following bound of the H1-broken semi-norm of the error for κh small enough

|εÑ
h |21,h À κpκLqpκhq2k

|CÑ
k |2

|TÑ
k`1|2

|g1|2 and |εÐ
h |21,h À κpκLqpκhq2k

|CÐ
k |2

|TÐ
k`1|2

|g2|2, (148)

where we denote

CÑ
k “

›

›

›
pPÑq

p1q
›

›

›

L2p0,1q
and CÐ

k “

›

›

›
pPÐq

p1q
›

›

›

L2p0,1q
. (149)

Proof. Let’s take back the differential equation verified by εÑ
h on each cell

@ n P J1, NK, @ x P In,
`

εÑ
h,n

˘p1q
pxq “ ´iκεÑ

h,npxq ` JεÑ
h Kn´1 pPÑ

n q
p1q

pxq. (150)
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Thus, we obtain by triangular and Young’s inequalities

@ n P J1, NK,
›

›

›

`

εÑ
h,n

˘p1q
›

›

›

2

L2pInq
À κ2}εÑ

h,n}2L2pInq ` |JεÑ
h Kn´1|2

›

›

›
pPÑ

n q
p1q

›

›

›

2

L2pInq
. (151)

Yet, (98) ensures that
›

›

›
pPÑ

n q
p1q

›

›

›

L2pInq
“

1

h1{2

›

›

›
pPÑq

p1q
›

›

›

L2p0,1q
, (152)

and summing over n from 1 to N “ h´1L with the jump estimate of Proposition 4.17 leads to

|εÑ
h |

2
1,h À κ2}εÑ

h }20 ` κ
pκLqpκhq2k

|TÑ
k`1|2

›

›

›
pPÑq

p1q
›

›

›

2

L2p0,1q
|g1|2. (153)

Finally, the L2-broken norm estimate of Proposition 4.18 allows to neglect the first term when κh is small
enough, and then to conclude. □

4.2.4. FR formulation well-posedness and global error estimates

Finally, we gather the precedent results to prove Theorem 4.6.

Proof. Proposition 4.12 ensures that yÑ
h and yÐ

h are well-defined on each interval, in the framework of Conjecture
4.1. Then, by inverting their definitions (80), we get

@ n P J1, NK, uh,n “
yÑ
h,n ` yÐ

h,n

2
and vh,n “

yÐ
h,n ´ yÑ

h,n

2
, (154)

which ensures that yh is also uniquely defined in Vh,k.
Concerning the error estimates, the proof is exactly the same in the three cases, and we will then only present
it for (i), the semi-norm | ¨ |˝.
By definition, we have

|εh|2˝ “ |u ´ uh|2˝ ` |v ´ vh|2˝, (155)

and by using the definition (88) of εÑ
h and εÐ

h , we obtain thanks to the triangular and Young’s inequalities

|εh|2˝ À |εÑ
h ` εÐ

h |2˝ ` |εÐ
h ´ εÑ

h |2˝

À |εÑ
h |2˝ ` |εÐ

h |2˝.
(156)

Thus, Proposition 4.17 allows to conclude.
Similarly, Proposition 4.18 is used for (ii), while Proposition 4.21 corresponds to (iii). □

5. Numerical validations for the time-harmonic 1D wave equations

After the introduction of the error estimates of Theorem 4.6, this section will aim at illustrating them through
numerical experiments.

To do so, we take back Problem 4.4 in a domain Ω “ r0, Ls, with a uniform mesh of N P N˚ cells of size h “
L

N
.

In all the following experiments, we consider the parameters summarised in Table 1 with uniform polynomial
degree k and flux correction polynomial functions in all the cells.

Concerning the flux correction polynomial functions, we will focus on ’symmetrical couples’ of degree exactly
k ` 1 (as proposed in [20,44]), in that

@ x P r0, 1s, PÐpxq “ PÑp1 ´ xq, (157)
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κ g1 g2
2π 2.3 ` 0.4i ´1.2i

Table 1. Common characteristics to the different simulation configurations.

which avoids asymmetrical behaviours for waves coming from the left and the right. Indeed, exchanging the
BCs will have no effect on the solution precision and no direction will be favored. Moreover, referring to the
constants of (77), this implies

Ak “ |AÑ
k | “ |AÐ

k |, Bk “ |BÑ
k | “ |BÐ

k |, Ck “ |CÑ
k | “ |CÐ

k | and Tk`1 “ |TÑ
k`1| “ |TÐ

k`1|, (158)

where Ak, Bk, Ck and Tk`1 are referred as ’flux correction polynomial constants’. Similarly, the ’estimate
constants’ of (76) will be denoted as C˝ “ CÑ

˝ “ CÐ
˝ and so on.

In particular, the numerical experiments will be realised for four different families, for which PÑ is defined as:

‚ The first Lagrange polynomial associated to the Chebyshev-Lobatto nodes

@ l P J0, k ` 1K, xCLo
l “

1

2

ˆ

1 ´ cos

ˆ

l

k ` 1
π

˙˙

and @ x P r0, 1s, PÑpxq “
ź

lPJ1,k`1K

x ´ xCLo
l

xCLo
0 ´ xCLo

l

. (159)

According to Remark 2.16, the associated FR formulation can then be seen as a SD one in this config-
uration: it will then be referred as SD CLo.

‚ The first Lagrange polynomial associated to the Internal Gauss nodes pxIG
l qlPJ0,k`1K.

pxIG
l qlPJ1,kK are defined as the roots of the Legendre polynomial of degree k (translated to r0, 1s), referred

as PLegendre
k , while xIG

0 “ 0 and xIG
k`1 “ 1. This then leads to

@ x P r0, 1s, PÑpxq “
ź

lPJ1,k`1K

x ´ xIG
l

xIG
0 ´ xIG

l

. (160)

Similarly to the previous case, the associated FR formulation will be referred as SD IG.
‚ The right Radau polynomial of degree k ` 1 defined as

@ x P r0, 1s, PÑpxq “ PRadau
k`1 pxq “

p´1qk`1

2

´

PLegendre
k`1 pxq ´ PLegendre

k pxq

¯

. (161)

In particular, it is orthogonal to all the polynomial functions of degree at most k ´ 1, denoted as
Pk´1pr0, 1sq. The associated FR formulation will then be referred as FR Radau.
In this linear configuration, this method can also be seen as a nodal DG formulation using the same
flux numerical traces [2, 20].

‚ The G2 polynomial (according to Huynh’s original denomination in [20]) of degree k ` 1 defined as

@ x P r0, 1s, PÑpxq “ PG2
k`1pxq “

k

2k ` 1
PRadau
k`1 pxq `

k ` 1

2k ` 1
PRadau
k pxq. (162)

In particular, it is orthogonal to all the polynomial functions of Pk´2pr0, 1sq and verifies
`

PG2
k`1

˘p1q
p1q “

0. The associated FR formulation will then be referred as FR G2.

Remark 5.1. One will note that in the case k “ 0, the flux correction polynomial functions must be defined as

@ x P r0, 1s, PÑpxq “ 1 ´ x and PÐpxq “ x, (163)

because of (44). Then, we will only focus on the cases k ě 1 for which the four families differ.
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First, this Section will numerically verify Conjecture 4.1 for these flux correction polynomial functions of dif-
ferent degrees. Then, it will present the evolution of the associated estimate constants before illustrating error
behaviours relatively to various parameters: a study of the h-convergence, an overview of the k-convergence
and a focus on the κL-dependence.

5.1. Numerical validation of Conjecture 4.1

As highlighted in the proof Subsection 4.2, the well-posedness of the FR method relies on Conjecture 4.1.
We will then numerically verify it for the four families of flux correction polynomial functions.

k SD CLo SD IG FR Radau FR G2

1 0.37 ˘ 0.33i 0.38 ˘ 0.33i 0.33 ˘ 0.24i 0.5 ˘ 0.5i
2 0.15 ˘ 0.25i 0.36 0.17 ˘ 0.24i 0.33 0.16 ˘ 0.18i 0.27 0.18 ˘ 0.27i 0.38
3 0.08 ˘ 0.18i 0.24 ˘ 0.1i 0.09 ˘ 0.17i 0.22 ˘ 0.08i 0.1 ˘ 0.14i 0.19 ˘ 0.06i 0.1 ˘ 0.19i 0.23 ˘ 0.09i

Table 2. Numerical approximation of the roots of polynomial TÑ for the different flux cor-
rection polynomial families and polynomial degrees k P J1, 3K.

To do so, Table 2 presents the roots of the polynomial TÑ (defined in (69)) for the different flux correction
families and various polynomial degrees k: the key point is that none of them is purely imaginary.
Indeed, according to Remark 4.2, the Conjecture is verified if and only if p´iκhq

´1
and piκhq

´1
are not roots of

TÑ and TÐ respectively. Moreover, as correction symmetry (157) implies that TÐpXq “ TÑp´Xq and none
of them admits a purely imaginary root, the FR method is well-posed for any mesh in these configurations.
We also insist on the fact that all the numerical experiments we intended have fallen within the framework of
the Conjecture 4.1.

5.2. Flux correction polynomial constants

We present in Table 3 the evolution of the constants Ak, Bk, Ck and Tk`1 according to the polynomial degree
k, for the four flux correction polynomial families we introduced.

SD CLo SD IG FR Radau FR G2
k Ak Bk Ck Tk`1 Ak Bk Ck Tk`1 Ak Bk Ck Tk`1 Ak Bk Ck Tk`1

1 0.17 0.37 1.53 4 0.17 0.37 1.53 4 0.0 0.37 2.0 6 0.33 0.45 1.15 2
2 5.56ˆ10´2 0.27 2.19 32 0.0 0.28 2.41 36 0.0 0.29 3.0 60 0.0 0.29 2.19 24
3 3.33ˆ10´2 0.21 2.88 384 0.0 0.23 3.36 480 0.0 0.25 4.0 840 0.0 0.24 3.21 360
4 2.0ˆ10´2 0.18 3.57 6144 0.0 0.2 4.33 8400 0.0 0.22 5.0 15120 0.0 0.21 4.22 6720

Table 3. Evolution of the flux correction polynomial constants for the different flux correction
families and polynomial degrees k P J1, 4K.

In particular, one will note the decreasing behaviours of Ak and Bk, while Ck and Tk`1 show an opposite be-
haviour. Thus, the constants C˝ and CL2 will naturally decrease (and then improve their respective convergence
constants) with k, while the behaviour of CH1 will depend on the considered correction.
Moreover, an important remark is that the value of Ak for SD IG, FR Radau and FR G2 is 0 for k ě 2 (due
to their orthogonality properties to polynomial spaces). Coming back to the definition (76) of CL2 and Remark

4.7, one will then expect them to show a
?
κL-dependence for their }εh}0 estimate (see Subsection 5.5).
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5.3. h-convergence: mesh refinement influence

In this Subsection, we focus on the h-convergence of the method. Then, we fix the value L “ 1 and we make
the number of cells N “ Lh´1 vary: the objective is to highlight the behaviour of the method for different
polynomial orders k when the mesh is refined.
For a given error norm |εh| (along the three ones we introduced in Definition 4.5) and a cell number N ě 2,
the estimate of the convergence rate rN is given thanks to the error norm values for N ˘ 1 cells, respectively
denoted |εh|N˘1, as

rN “
log10p|εh|N`1q ´ log10p|εh|N´1q

log10pN ` 1q ´ log10pN ´ 1q
. (164)

Then, Tables 4, 5 and 6 present the values of rN and the relative error norms |εh|rel˝ , }εh}rel0 and |εh|rel1,h

respectively (with respect to the norm of the exact solution), when the mesh is refined.
In accordance with the estimates (75) of Theorem 4.6, quasi-optimal convergence orders are shown for the three
error estimates when κh tends to 0.
Moreover, we highlight the fact that the SD CLo and FR G2 method have shown inferior abilities to FR Radau
in this harmonic framework, as it had already been observed for CFD problems [5, 42].

SD CLo SD IG FR Radau FR G2
k N |εh|rel˝ rN |εh|rel˝ rN |εh|rel˝ rN |εh|rel˝ rN

1
5 0.55 -0.99 0.55 -0.99 0.37 -1.21 0.88 -0.36
22 6.9ˆ10´2 -1.51 6.9ˆ10´2 -1.51 4.49ˆ10´2 -1.49 0.15 -1.55
100 7.02ˆ10´3 -1.51 7.02ˆ10´3 -1.51 4.65ˆ10´3 -1.5 1.43ˆ10´2 -1.52

2
5 9.64ˆ10´2 -2.45 8.37ˆ10´2 -2.41 4.98ˆ10´2 -2.39 0.13 -2.39
22 2.42ˆ10´3 -2.5 2.14ˆ10´3 -2.5 1.28ˆ10´3 -2.5 3.21ˆ10´3 -2.5
100 5.48ˆ10´5 -2.5 4.87ˆ10´5 -2.5 2.92ˆ10´5 -2.5 7.31ˆ10´5 -2.5

3
5 1.0ˆ10´2 -3.44 7.95ˆ10´3 -3.43 4.54ˆ10´3 -3.43 1.06ˆ10´2 -3.43
22 5.74ˆ10´5 -3.5 4.59ˆ10´5 -3.5 2.62ˆ10´5 -3.5 6.12ˆ10´5 -3.5
100 2.87ˆ10´7 -3.5 2.3ˆ10´7 -3.5 1.31ˆ10´7 -3.5 3.06ˆ10´7 -3.5

4
5 7.9ˆ10´4 -4.45 5.75ˆ10´4 -4.45 3.2ˆ10´4 -4.45 7.18ˆ10´4 -4.44
22 1.02ˆ10´6 -4.5 7.49ˆ10´7 -4.5 4.16ˆ10´7 -4.5 9.37ˆ10´7 -4.5
100 1.13ˆ10´9 -4.5 8.24ˆ10´10 -4.5 4.58ˆ10´10 -4.5 1.03ˆ10´9 -4.5

Table 4. Evolution of the relative error |εh|rel˝ according to the number of mesh cells N and
the polynomial degree k.

5.4. k-convergence: polynomial degree influence

Then, we focus on the k-convergence of the method. Then, we fix the values L “ 1 and N “ 4, and we make
the polynomial degree k vary: the objective is to highlight the behaviour of the method, depending on the flux
correction polynomial functions, when k increases.
Then, Figure 5 presents the relative values of the errors |εh|rel˝ , }εh}rel0 and |εh|rel1,h respectively, when the
polynomial degree evolves. One will note comparable behaviours, as the error decreases in similar ways for all
the flux correction polynomial families, as it could be expected.

5.5. κL-dependence of the errors

Finally, we focus on the error dependence on κL: the objective is to highlight the behaviour of the method
when the number of wavelengths in the domain becomes larger and larger.
So as to get comparable experiments in this subsection, we fix the number of degrees of freedom (dof) per

wavelength, Ndof{λ “
2πpk`1q

κh , to a constant value Ndof{λ “ 600. Then, κ “ 2π is let constant, while various
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SD CLo SD IG FR Radau FR G2
k N }εh}rel0 rN }εh}rel0 rN }εh}rel0 rN }εh}rel0 rN

1
5 0.26 -1.59 0.26 -1.59 0.13 -2.15 0.61 -0.71
22 1.48ˆ10´2 -2.02 1.48ˆ10´2 -2.02 5.12ˆ10´3 -2.06 5.32ˆ10´2 -2.0
100 7.01ˆ10´4 -2.01 7.01ˆ10´4 -2.01 2.41ˆ10´4 -2.0 2.55ˆ10´3 -2.0

2
5 2.3ˆ10´2 -3.13 1.77ˆ10´2 -3.23 9.79ˆ10´3 -3.05 3.1ˆ10´2 -3.3
22 2.48ˆ10´4 -3.02 1.8ˆ10´4 -3.02 1.14ˆ10´4 -3.0 2.9ˆ10´4 -3.04
100 2.6ˆ10´6 -3.0 1.9ˆ10´6 -3.0 1.21ˆ10´6 -3.0 3.03ˆ10´6 -3.0

3
5 1.59ˆ10´3 -3.98 1.21ˆ10´3 -4.01 7.41ˆ10´4 -3.98 1.66ˆ10´3 -4.03
22 4.24ˆ10´6 -4.0 3.22ˆ10´6 -4.0 1.99ˆ10´6 -4.0 4.42ˆ10´6 -4.0
100 9.88ˆ10´9 -4.0 7.54ˆ10´9 -4.0 4.68ˆ10´9 -4.0 1.03ˆ10´8 -4.0

4
5 9.76ˆ10´5 -4.99 7.55ˆ10´5 -4.98 4.61ˆ10´5 -4.98 9.6ˆ10´5 -4.98
22 5.89ˆ10´8 -5.0 4.62ˆ10´8 -5.0 2.82ˆ10´8 -5.0 5.88ˆ10´8 -5.0
100 3.03ˆ10´11 -5.01 2.38ˆ10´11 -5.0 1.46ˆ10´11 -5.0 3.03ˆ10´11 -5.0

Table 5. Evolution of the relative error }εh}rel0 according to the number of mesh cells N and
the polynomial degree k.

SD CLo SD IG FR Radau FR G2
k N |εh|rel1,h rN |εh|rel1,h rN |εh|rel1,h rN |εh|rel1,h rN

1
5 0.56 -0.84 0.56 -0.84 0.41 -0.93 0.89 -0.3
22 0.12 -1.06 0.12 -1.06 9.51ˆ10´2 -1.0 0.2 -1.19
100 2.43ˆ10´2 -1.01 2.43ˆ10´2 -1.01 2.09ˆ10´2 -1.0 3.81ˆ10´2 -1.05

2
5 0.11 -2.05 0.11 -1.99 7.66ˆ10´2 -1.93 0.15 -2.02
22 5.64ˆ10´3 -2.01 5.45ˆ10´3 -2.0 4.07ˆ10´3 -2.0 7.45ˆ10´3 -2.0
100 2.71ˆ10´4 -2.0 2.64ˆ10´4 -2.0 1.97ˆ10´4 -2.0 3.6ˆ10´4 -2.0

3
5 1.48ˆ10´2 -2.98 1.36ˆ10´2 -2.95 9.23ˆ10´3 -2.95 1.73ˆ10´2 -2.95
22 1.75ˆ10´4 -3.0 1.63ˆ10´4 -3.0 1.11ˆ10´4 -3.0 2.07ˆ10´4 -3.0
100 1.86ˆ10´6 -3.0 1.74ˆ10´6 -3.0 1.18ˆ10´6 -3.0 2.21ˆ10´6 -3.0

4
5 1.43ˆ10´3 -3.97 1.26ˆ10´3 -3.96 8.09ˆ10´4 -3.96 1.53ˆ10´3 -3.96
22 3.87ˆ10´6 -4.0 3.43ˆ10´6 -4.0 2.2ˆ10´6 -4.0 4.17ˆ10´6 -4.0
100 9.07ˆ10´9 -4.0 8.04ˆ10´9 -4.0 5.15ˆ10´9 -4.0 9.78ˆ10´9 -4.0

Table 6. Evolution of the relative error |εh|rel1,h according to the number of mesh cells N and
the polynomial degree k.

values of L will be considered and the corresponding number of mesh cells are computed as N “ Ndof{λ
κL

2πpk`1q

(which are integers for κ “ 2π and the following choices of L P t0.1, 1, 10u).
For a given error norm |εh| and a domain length L (and the corresponding cell number N ą 2), the estimate of
the dependence rate rL is given thanks to the error norm values for N ˘ 1 cells (corresponding to L ˘ δL with

δL “
2πpk`1q

κNdof{λ
), respectively denoted |εh|L˘δL, as

rL “
log10p|εh|L`δLq ´ log10p|εh|L´δLq

log10pL ` δLq ´ log10pL ´ δLq
. (165)

Then, Tables 7, 8 and 9 present the values of rL and the non-relative error norms |εh|˝, }εh}0 and |εh|1,h

respectively, when the domain size is increased, while the number of dof per wavelength is kept constant.
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Figure 5. Evolution of the relative errors according to the polynomial degree k for the four
flux correction families: SD CLo ( ), SD IG ( ), FR Radau ( ) and FR G2 ( ).

SD CLo SD IG FR Radau FR G2
k L |εh|˝ rL |εh|˝ rL |εh|˝ rL |εh|˝ rL

1
0.1 1.12ˆ10´3 0.5 1.12ˆ10´3 0.5 7.43ˆ10´4 0.5 2.23ˆ10´3 0.5
1.0 3.53ˆ10´3 0.5 3.53ˆ10´3 0.5 2.35ˆ10´3 0.5 7.1ˆ10´3 0.51
10.0 1.14ˆ10´2 0.52 1.14ˆ10´2 0.52 7.43ˆ10´3 0.5 2.39ˆ10´2 0.56

2
0.1 8.04ˆ10´6 0.5 7.15ˆ10´6 0.5 4.29ˆ10´6 0.5 1.07ˆ10´5 0.5
1.0 2.54ˆ10´5 0.5 2.26ˆ10´5 0.5 1.36ˆ10´5 0.5 3.39ˆ10´5 0.5
10.0 8.07ˆ10´5 0.5 7.15ˆ10´5 0.5 4.29ˆ10´5 0.5 1.07ˆ10´4 0.5

3
0.1 5.76ˆ10´8 0.5 4.61ˆ10´8 0.5 2.63ˆ10´8 0.5 6.15ˆ10´8 0.5
1.0 1.82ˆ10´7 0.5 1.46ˆ10´7 0.5 8.33ˆ10´8 0.5 1.94ˆ10´7 0.5
10.0 5.77ˆ10´7 0.5 4.61ˆ10´7 0.5 2.63ˆ10´7 0.5 6.15ˆ10´7 0.5

4
0.1 4.12ˆ10´10 0.5 3.01ˆ10´10 0.5 1.67ˆ10´10 0.5 3.77ˆ10´10 0.5
1.0 1.3ˆ10´9 0.5 9.53ˆ10´10 0.5 5.29ˆ10´10 0.5 1.19ˆ10´9 0.5
10.0 4.12ˆ10´9 0.5 3.01ˆ10´9 0.5 1.67ˆ10´9 0.5 3.77ˆ10´9 0.5

Table 7. Evolution of the non-relative error |εh|˝ according to the domain size L, for a constant
number of dof per wavelength.

In accordance with the estimates (75) of Theorem 4.6, Remark 4.7 and the flux correction polynomial constants
of Table 3, different behaviours can be highlighted:

‚ Tables 7 and 9 show a
?
κL-dependence of |εh|˝ and |εh|1,h on the number of wavelengths in the domain

for all the flux correction polynomial families.
‚ For }εh}0, two cases can be detailed.

First, if Ak “ 0 (for FR Radau, and SD IG and FR G2 when k ě 2), the same
?
κL-dependence is

observed. On the contrary, if Ak ą 0 (for SD CLo), the
?
κL-dependence only happens when κL tends

to 0, while having κL diverging to `8 implies a pκLq3{2-dependence. Moreover, this transition seems
to happen for larger values of L when the polynomial degree k increases.

Finally, the estimates (75) highlight the potential interest of flux correction polynomial functions for which
Ak “ 0, as their dependence on the number of wavelengths in the domain is optimised.
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SD CLo SD IG FR Radau FR G2
k L }εh}0 rL }εh}0 rL }εh}0 rL }εh}0 rL

1
0.1 2.38ˆ10´5 0.53 2.38ˆ10´5 0.53 1.57ˆ10´5 0.5 5.97ˆ10´5 0.57
1.0 1.44ˆ10´4 1.23 1.44ˆ10´4 1.23 4.96ˆ10´5 0.5 5.25ˆ10´4 1.38
10.0 3.9ˆ10´3 1.5 3.9ˆ10´3 1.5 1.59ˆ10´4 0.53 1.56ˆ10´2 1.5

2
0.1 1.52ˆ10´7 0.51 1.4ˆ10´7 0.5 8.88ˆ10´8 0.5 2.22ˆ10´7 0.5
1.0 6.02ˆ10´7 0.86 4.41ˆ10´7 0.5 2.81ˆ10´7 0.5 7.02ˆ10´7 0.5
10.0 1.16ˆ10´5 1.48 1.41ˆ10´6 0.52 8.88ˆ10´7 0.5 2.26ˆ10´6 0.54

3
0.1 9.94ˆ10´10 0.5 8.75ˆ10´10 0.5 5.42ˆ10´10 0.5 1.2ˆ10´9 0.5
1.0 3.62ˆ10´9 0.75 2.77ˆ10´9 0.5 1.71ˆ10´9 0.5 3.79ˆ10´9 0.5
10.0 5.78ˆ10´8 1.47 8.75ˆ10´9 0.5 5.42ˆ10´9 0.5 1.2ˆ10´8 0.5

4
0.1 6.59ˆ10´12 0.5 5.63ˆ10´12 0.5 3.43ˆ10´12 0.5 7.15ˆ10´12 0.5
1.0 2.26ˆ10´11 0.65 1.78ˆ10´11 0.5 1.09ˆ10´11 0.5 2.26ˆ10´11 0.5
10.0 2.82ˆ10´10 1.5 5.63ˆ10´11 0.5 3.44ˆ10´11 0.51 7.15ˆ10´11 0.5

Table 8. Evolution of the non-relative error }εh}0 according to the domain size L, for a
constant number of dof per wavelength.

SD CLo SD IG FR Radau FR G2
k L |εh|1,h rL |εh|1,h rL |εh|1,h rL |εh|1,h rL

1
0.1 2.95ˆ10´2 0.5 2.95ˆ10´2 0.5 2.57ˆ10´2 0.5 4.47ˆ10´2 0.5
1.0 9.37ˆ10´2 0.5 9.37ˆ10´2 0.5 8.14ˆ10´2 0.5 0.14 0.52
10.0 0.31 0.55 0.31 0.55 0.26 0.5 0.52 0.65

2
0.1 2.49ˆ10´4 0.5 2.43ˆ10´4 0.5 1.82ˆ10´4 0.5 3.32ˆ10´4 0.5
1.0 7.88ˆ10´4 0.5 7.7ˆ10´4 0.5 5.75ˆ10´4 0.5 1.05ˆ10´3 0.5
10.0 2.52ˆ10´3 0.51 2.43ˆ10´3 0.5 1.82ˆ10´3 0.5 3.32ˆ10´3 0.5

3
0.1 2.03ˆ10´6 0.5 1.9ˆ10´6 0.5 1.29ˆ10´6 0.5 2.41ˆ10´6 0.5
1.0 6.42ˆ10´6 0.5 6.0ˆ10´6 0.5 4.08ˆ10´6 0.5 7.64ˆ10´6 0.5
10.0 2.04ˆ10´5 0.51 1.9ˆ10´5 0.5 1.29ˆ10´5 0.5 2.41ˆ10´5 0.5

4
0.1 1.61ˆ10´8 0.5 1.43ˆ10´8 0.5 9.17ˆ10´9 0.5 1.74ˆ10´8 0.5
1.0 5.1ˆ10´8 0.5 4.52ˆ10´8 0.5 2.9ˆ10´8 0.5 5.5ˆ10´8 0.5
10.0 1.62ˆ10´7 0.5 1.43ˆ10´7 0.5 9.17ˆ10´8 0.5 1.74ˆ10´7 0.5

Table 9. Evolution of the non-relative error |εh|1,h according to the domain size L, for a
constant number of dof per wavelength.

6. Time-harmonic 3D Maxwell problem: error analysis through numerical
experiments

Finally, we come back to the Maxwell Problem 1.4. Contrary to the 1D wave problem, we did not derive
a priori error estimates for this case. Yet, we present numerical results for the implementation of the FR
formulation associated to the numerical traces introduced in Remark 3.3 of Subsection 3.2.
We consider a domain Ω “ r0, Ls3, with a uniform mesh of N cells of size h “ L

N in each direction. In all the
following experiments, we consider the parameters summarised in Table 10 with uniform polynomial degree k
and flux correction polynomial functions in all the cells and every direction (even if direction-wise choices could
have been made). Finally, we take back the four flux correction polynomial families introduced in Section 5 to
compare their influence in this 3D configuration.

Moreover, we consider impedance boundary conditions associated to an exact solution Eexa “ peexa,hexaq of
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κ L εr µr ZBΩ kpw epw hpw Pd Xd

2π 1 1 1 1 21{2πp1,´1, 0q p0, 0, 1q ´2´1{2p1, 1, 0q 2´1{2p1,´1, 0.q ´0.5p1, 1, 1q

Table 10. Common characteristics and parameters of the different simulation configurations.

the Maxwell problem, which leads to:

g “ γteexa ` ZBΩ nBΩ ˆ γthexa on BΩ, (166)

and the numerical approximation Eh is thus compared to Eexa thanks to the error εh “ Eexa ´ Eh.
Finally, we consider two different exact solutions, whose parameters are summarised in Table 10:

‚ A Plane Wave defined by

@ x P Ω, eexapxq “ epwe
ikpw¨x and hexapxq “ hpwe

ikpw¨x, (167)

where kpw ˆ epw “ ´κµrhpw and kpw ˆ hpw “ κϵrepw.
‚ An electric dipole of dipole moment Pd and position Xd, defined in the framework of the dipole ap-
proximation [25] by

@ x P Ω,

$

’

’

’

&

’

’

’

%

eexapxq “
e´iκr

4πr

„ˆ

´
1

r2
´

iκ

r
` κ2

˙

prx ˆ pP ˆ rxqq ` 2

ˆ

1

r2
`

iκ

r

˙

pP ¨ rxq rx

ȷ

,

hexapxq “
e´iκr

4πr

ˆ

´
iκ

r
` κ2

˙

prx ˆ Pq ,

(168)

where we denote r “ }x ´ Xd} and rx “
x ´ Xd

r
.

Thus, we focus on the h-convergence of the formulation. We fix all the parameters and we make the number
of cells in each direction, N , vary: the goal is to highlight the effect of mesh refinement on the error εh.
Moreover, the convergence rate is evaluated in a similar way as in Subsection 5.3 (see (164)).
Tables 11 and 12 present the relative L2-norm error }εh}rel0 , for the two exact solutions, when the number of
cells per direction increases. For all the flux correction polynomial functions and polynomial degrees k, it shows
an asymptotic quasi-optimal behaviour, as it was previously proved in the 1D case, and highlights properties
of a high-order method. Moreover, the flux correction polynomial family hierarchy seems to be the same as in
the 1D wave equations case: FR Radau clearly presents the best abilities in these contexts.

Remark 6.1. One will note that the finest mesh refinements are not presented for the highest polynomial
degrees in Tables 11 and 12: this is due to the fact these cases imply a prohibitive memory cost (due to the
direct resolution of the linear system) which prevented us from computing the associated results.

Conclusion

We introduced a Flux Reconstruction method in the framework of generic time-harmonic linear hyperbolic
problems, for Cartesian meshes of hyperrectangular domains. It relies on the piecewise polynomial approxima-
tion of the solution and fluxes, thanks to interface corrections to impose boundary conditions and flux continuity.
Such perturbations are realised thanks to user-dependent flux correction polynomial functions, whose choice al-
lows to recover some classical methods (as nodal Discontinuous Galerkin or Spectral Difference). A general flux
numerical trace definition through flux operator decomposition is also detailed, and the associated FR methods
have been specified for the homogeneous 1D time-harmonic wave equations and the 3D Maxwell problem.
Then, we focused on the 1D wave equations with ingoing boundary conditions, for which well-posedness con-
ditions of the associated FR method have been derived. This also allowed to determine quasi-optimal a priori
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SD CLo SD IG FR Radau FR G2
k N }εh}rel0 rN }εh}rel0 rN }εh}rel0 rN }εh}rel0 rN

1
3 0.29 -1.42 0.29 -1.42 0.19 -1.82 0.54 -0.69
5 0.12 -1.83 0.12 -1.83 6.77ˆ10´2 -2.03 0.31 -1.37
9 3.91ˆ10´2 -1.97 3.91ˆ10´2 -1.97 2.04ˆ10´2 -2.03 0.12 -1.84
12 2.21ˆ10´2 -1.98 2.21ˆ10´2 -1.98 1.14ˆ10´2 -2.02 6.8ˆ10´2 -1.92
19 8.87ˆ10´3 -1.99 8.87ˆ10´3 -1.99 4.54ˆ10´3 -2.01 2.78ˆ10´2 -1.97
31 3.34ˆ10´3 -2.0 3.34ˆ10´3 -2.0 1.7ˆ10´3 -2.0 1.06ˆ10´2 -1.98

2
3 3.82ˆ10´2 -2.88 3.33ˆ10´2 -2.93 2.12ˆ10´2 -2.97 5.19ˆ10´2 -2.84
5 8.47ˆ10´3 -2.97 7.24ˆ10´3 -3.0 4.62ˆ10´3 -2.99 1.14ˆ10´2 -2.98
9 1.47ˆ10´3 -2.99 1.24ˆ10´3 -3.0 7.97ˆ10´4 -2.99 1.97ˆ10´3 -2.99
12 6.21ˆ10´4 -2.99 5.25ˆ10´4 -3.0 3.37ˆ10´4 -3.0 8.34ˆ10´4 -2.99
19 1.57ˆ10´4 -3.0 1.33ˆ10´4 -3.0 8.5ˆ10´5 -3.0 2.11ˆ10´4 -2.99

3
3 3.52ˆ10´3 -3.88 3.02ˆ10´3 -3.93 1.92ˆ10´3 -3.95 4.06ˆ10´3 -3.9
5 4.73ˆ10´4 -3.95 4.0ˆ10´4 -3.97 2.53ˆ10´4 -3.98 5.44ˆ10´4 -3.95
9 4.58ˆ10´5 -3.98 3.86ˆ10´5 -3.99 2.42ˆ10´5 -3.99 5.28ˆ10´5 -3.98
12 1.45ˆ10´5 -3.99 1.23ˆ10´5 -3.99 7.68ˆ10´6 -4.0 1.68ˆ10´5 -3.99

4
3 2.7ˆ10´4 -4.9 2.25ˆ10´4 -4.92 1.41ˆ10´4 -4.95 2.83ˆ10´4 -4.9
5 2.16ˆ10´5 -4.96 1.79ˆ10´5 -4.97 1.11ˆ10´5 -4.98 2.27ˆ10´5 -4.96
9 1.16ˆ10´6 -4.99 9.6ˆ10´7 -4.99 5.94ˆ10´7 -4.99 1.22ˆ10´6 -4.98

Table 11. Evolution of the relative error }εh}rel0 according to the number of mesh cells N for
the Plane Wave.

SD CLo SD IG FR Radau FR G2
k N }εh}rel0 rN }εh}rel0 rN }εh}rel0 rN }εh}rel0 rN

1
3 0.26 -1.42 0.26 -1.42 0.17 -1.83 0.5 -0.67
5 0.11 -1.82 0.11 -1.82 6.16ˆ10´2 -2.04 0.29 -1.37
9 3.61ˆ10´2 -1.97 3.61ˆ10´2 -1.97 1.85ˆ10´2 -2.03 0.11 -1.85
12 2.04ˆ10´2 -1.98 2.04ˆ10´2 -1.98 1.04ˆ10´2 -2.02 6.37ˆ10´2 -1.92
19 8.19ˆ10´3 -1.99 8.19ˆ10´3 -1.99 4.11ˆ10´3 -2.01 2.6ˆ10´2 -1.97
31 3.08ˆ10´3 -2.0 3.08ˆ10´3 -2.0 1.54ˆ10´3 -2.0 9.87ˆ10´3 -1.99

2
3 3.67ˆ10´2 -2.86 3.15ˆ10´2 -2.91 2.01ˆ10´2 -2.96 4.9ˆ10´2 -2.82
5 8.15ˆ10´3 -2.97 6.86ˆ10´3 -2.99 4.39ˆ10´3 -2.98 1.08ˆ10´2 -2.98
9 1.41ˆ10´3 -2.99 1.18ˆ10´3 -2.99 7.58ˆ10´4 -2.99 1.87ˆ10´3 -2.99
12 5.96ˆ10´4 -3.0 4.99ˆ10´4 -2.99 3.2ˆ10´4 -3.0 7.89ˆ10´4 -2.99
19 1.5ˆ10´4 -3.0 1.26ˆ10´4 -2.99 8.08ˆ10´5 -3.0 2.0ˆ10´4 -2.99

3
3 3.75ˆ10´3 -3.85 3.2ˆ10´3 -3.9 2.05ˆ10´3 -3.93 4.29ˆ10´3 -3.87
5 5.08ˆ10´4 -3.94 4.27ˆ10´4 -3.96 2.7ˆ10´4 -3.98 5.79ˆ10´4 -3.94
9 4.94ˆ10´5 -3.98 4.13ˆ10´5 -3.98 2.6ˆ10´5 -3.99 5.63ˆ10´5 -3.97
12 1.57ˆ10´5 -3.99 1.31ˆ10´5 -3.99 8.23ˆ10´6 -3.99 1.79ˆ10´5 -3.98

4
3 3.42ˆ10´4 -4.86 2.85ˆ10´4 -4.89 1.79ˆ10´4 -4.93 3.56ˆ10´4 -4.87
5 2.76ˆ10´5 -4.95 2.28ˆ10´5 -4.96 1.42ˆ10´5 -4.97 2.88ˆ10´5 -4.95
9 1.48ˆ10´6 -4.98 1.23ˆ10´6 -4.98 7.57ˆ10´7 -4.99 1.55ˆ10´6 -4.98

Table 12. Evolution of the relative error }εh}rel0 according to the number of mesh cells N for
the dipole.
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error estimates in the asymptotic limit for various error norms, with explicit expressions of the constants in
terms of the polynomial degree, flux correction polynomials, wavenumber, domain length and mesh properties.
Numerical experiments were realised for some classical flux correction polynomial families, and confirmed the
expected behaviours of the estimates in terms of the mesh refinement, polynomial degree and dependence on
the number of wavelengths in the domain.
Finally, the FR method has been implemented for the 3D time-harmonic Maxwell problem. Even if a priori
estimates were not derived in this case, numerical experiments highlighted quasi-optimal orders for two different
actual solutions and allow to expect this method to show interesting properties for wave equations.

The presented approach relied on the possibility to uncouple the 1D wave equations thanks to the one-way
variables, and further developments may be needed to extend this work to general boundary conditions or
heterogeneous materials: in case this strong framework would not be applicable anymore, one could contem-
plate classic methodology for the associated weak formulation. The same remark holds in the 3D framework of
the Maxwell problem, for which it seems difficult to introduce uncoupling variables (which would rely on the
simultaneously diagonalisable character of the flux operators).
Furthermore, optimisations may be applied to such a method: one can think about Domain Decomposition
Methods [9, 12, 28] or static condensation [34] as for example Hybrid Discontinuous Galerkin (HDG) [6, 32, 33]
or Hybrid High Order (HHO) [31,36], allowing to reduce the amount of degrees of freedom.
This work allowed to explicit the influence of the error norms with respect to the flux correction polynomial
functions and discretisation parameters. Numerically, the Radau polynomials (corresponding to a nodal DG
method) led to the best results in both these time-harmonic frameworks, in comparison with the SD and G2
corrections. Then, the explicit character of the 1D estimates allows to get a glimpse of the possibility to optimise
their constants according to the flux correction polynomial, which will be investigated in further work in order
to define an ’optimised’ FR scheme.
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