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GOLDBACH REPRESENTATIONS IN ARITHMETIC

PROGRESSIONS AND ZEROS OF DIRICHLET L-FUNCTIONS

GAUTAMI BHOWMIK, KARIN HALUPCZOK, KOHJI MATSUMOTO, AND YUTA SUZUKI

Abstract. Assuming a conjecture on distinct zeros of Dirichlet L-functions
we get asymptotic results on the average number of representations of an
integer as the sum of two primes in arithmetic progression. On the other hand
the existence of good error terms gives information on the location of zeros of
L-functions. Similar results are obtained for an integer in a congruence class
expressed as the sum of two primes.

1. Introduction and Results

The Goldbach problem of representing every even integer larger than 2 as the
sum of two primes has several variants, one being that in which the summands are
primes in given arithmetic progressions. Similar to the original problem it is known
that almost all even integers satisfying some congruence condition can be written
as the sum of two primes in congruence classes. Quantitatively, the exceptional set
of integers less than X and satisfying the necessary congruence condition, which
can not be written as the sum of primes congruent to a common modulus q may be
estimated as O(ϕ(q)−1X1−δ) for a computable positive constant δ and all q ≤ Xδ

[13]. (See [1] for more recent results.)
Though the complete solution of these binary Goldbach problems is out of sight,

the related question of the average number of representations of integers as sums
of primes seems more accessible. The study of the average order of the weighted
function

G(n) =
∑

ℓ+m=n

Λ(ℓ)Λ(m)

where Λ is the von Mangoldt function has begun with Fujii [8] and continues to
be actively pursued. However the current state of knowledge on the zeros of the
Riemann zeta function ζ(s) is not enough to obtain “good” error terms uncondi-
tionally and the Riemann Hypothesis is always assumed in such studies. In fact
obtaining sufficiently sharp error terms for average orders of the mean value of
G(n) is expected to solve other conjectures like the Riemann Hypothesis, as elab-
orated by Granville [11] in the classical case of unrestricted primes. This paper is
an analogous study with the two primes in arithmetic progressions with a common
modulus.
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The function that we consider here, with a, b positive integers coprime to q, is

G(n; q, a, b) =
∑

ℓ+m=n
ℓ≡a,m≡b (mod q)

Λ(ℓ)Λ(m)

whose summatory function defined as

S(x; q, a, b) =
∑

n≤x

G(n; q, a, b)

was introduced by Rüppel [15] and further studied by the fourth author [16].
On the lines of Granville we consider the relations between an explicit formula

for S(x; q, a, b) and zeros of L-functions. In [11, 1A] it is stated that there is an
equivalence between the estimate

(1.1)
∑

n≤x

(G(n) − J(n)) ≪ x3/2+o(1)

and the Riemann Hypothesis (RH) for ζ(s) where J(n) = 0 for odd n and, with
C2 = 2

∏

p>2(1−
1

(p−1)2 ) being the twin prime constant,

J(n) = n · C2

∏

p|n
p>2

p− 1

p− 2

for even n. The function J(n) is believed since Hardy and Littlewood to be a good
approximation for G(n) (cf. [12]).

We denote by χ a Dirichlet character (mod q), by L(s, χ) the associated Dirichlet
L-function and by ρχ its non-trivial zeros. Let Bχ = sup{ℜρχ} and Bq = sup{Bχ |
χ (mod q)}. Hence 1/2 ≤ Bq ≤ 1 for q ≥ 1. In case of the trivial character, we use
ρ for non-trivial zeros of ζ(s), and B = sup{ℜρ}.

In the context of primes in congruence classes we first need to formulate the
Distinct Zero Conjecture (DZC) on zeros of L-functions as:

For any q ≥ 1, any two distinct Dirichlet L-functions associated
with characters of modulus q do not have a common non-trivial
zero, except for a possible multiple zero at s = 1/2.

Though weaker than the non-coincidence conjecture found in literature that ex-
pects all zeros of all primitive L-functions to be linearly independent except for the
possible multiple zero at s = 1/2 (cf. [5, p.353]), this suffices for our purpose.

Theorem 1. Let a, b be integers with (ab, q) = 1.

(1) For x ≥ 2, we have

(1.2) S(x; q, a, b) =
x2

2ϕ(q)2
+O(x1+Bq ),

where the implicit constant is absolute.
(2) Let DZC be true, let χ(a) + χ(b) 6= 0 for all characters χ (mod q) and let

1/2 ≤ d < 1. If the asymptotic formula

S(x; q, a, b) =
x2

2ϕ(q)2
+Oq(x

1+d+ε).(1.3)

holds for any ε > 0, then Bq ≤ d or Bq = 1. Further if (1.3) holds with
a = b, then Bq ≤ d.
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Remark 1. Our result thus falls short of an equivalence with the Generalized
Riemann Hypothesis (GRH) for L-functions modulo q since we have an additional
possibility of Bq = 1. Using a yet unpublished idea of I. Ruzsa, we were able to
exclude this possibility for the case a = b under the DZC .

Thus the proof of the equivalence between the RH and (1.1) is now complete
(see also [2]). All other equivalences for primes in arithmetic progressions are still
partial.

In particular if Bq = 1, then the error term of Theorem 2 becomes so large that
it hides the information on non-trivial zeros. Thus the analytic continuation of the
generating function could only be obtained up to σ > 2Bq ( 3).

Remark 2. We need the condition that χ(a)+χ(b) 6= 0 for all χ (mod q) in order
to assure that the residue r1(ρq) in Proposition 3 does not vanish.

To prove Theorem 1 we need an explicit formula for S(x; q, a, b), which can be
stated as follows.

Theorem 2. Let a, b be integers with (ab, q) = 1. Then, for x ≥ 2 and for any
ε > 0 ,

S(x; q, a, b) =
x2

2ϕ(q)2
(1.4)

−
1

ϕ(q)2

∑

χ (mod q)

(χ(a) + χ(b))
∑

ρχ

xρχ+1

ρχ(ρχ + 1)
+O(x2B

∗

q (log qx)5),

where the implicit constant is absolute and

B∗
q = B∗

q (x) = min(Bq, 1− η), η = ηq(x) =
c1(ε)

min(qε, (log x)4/5)

with some small constant c1(ε) > 0 depending only on ε > 0.

First in Section 3 we prove an explicit formula with a weaker error estimate
(Proposition 1) using a generalized Landau–Gonek formula for L-functions (Propo-
sition 2 in Section 4). This weaker form is an analogue of Granville [11, Corrigen-
dum, (2)], which states

(1.5)
∑

n≤x

G(n) =
x2

2
− 2

∑

ρ
|ℑρ|≤x

xρ+1

ρ(ρ+ 1)
+O

(

x(2+4B)/3(log x)2
)

,

and the proof of Proposition 1 essentially runs along the line suggested by [11].
Therefore Sections 3 and 4 include a reconstruction of Granville’s argument for the
asymptotic order. However we can go further; we take this opportunity to prove (in
Sections 5 and 6) the stronger error estimate (1.4), an analogue of that announced
in [11, (5.1)] (cf. [11, Corrigendum, comments before (2)]), using a kind of circle
method of the first author and Schlage-Puchta [3].

With the help of Theorem 2 above the analytic continuation of the Dirichlet
series

∞
∑

n=1

G(n; q, a, b)

ns

is examined in Proposition 3 (in Section 7) and this enables us to establish rela-
tions between the error terms in the average of Goldbach problems in arithmetic
progressions and zeros of Dirichlet L-functions.
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Further, we examine the case of n with modulus conditions as in [11, 1B] where
it is stated that the GRH for Dirichlet L-functions L(s, χ), over all characters χ,
the modulus of which are odd squarefree divisors of q, is equivalent to the estimate

∑

n≤x
n≡2 (mod q)

(G(n)− J(n)) ≪ x3/2+o(1).(1.6)

Moreover in [11, Corrigendum, 1C] it is stated that if the estimate
∑

n≤x
q|n

G(n) =
1

ϕ(q)

∑

n≤x

G(n) +Oq(x
1+o(1))(1.7)

is attained then the GRH for Dirichlet L-functions L(s, χ), χ (mod q) holds; and
under this hypothesis the last estimate would have the error term O(x4/3(log x)2).

Here we extend (1.6) with the general congruence condition n ≡ c for an arbitrary
positive integer c instead of the special case n ≡ 2. Assuming the GRH for L-
functions (mod q) we can deduce the estimate

(1.8)
∑

n≤x
n≡c (mod q)

(G(n) − J(n)) ≪ x3/2.

However in the other direction, we could not deduce satisfactory conclusions on the
size of Bq when a 6= b. In particular we were unable then to reconstruct the reverse
implications for (1.6) and (1.7). In the following we give a further example of a
condition with which we can get the reverse implication.

Theorem 3. Let q, c be integers such that (2, q) | c.

(1) For x ≥ 2, we have

(1.9)
∑

n≤x
n≡c (mod q)

(G(n)− J(n)) ≪ x1+Bq ,

where the implicit constant is absolute.
(2) Assume that

(1.10)
∑

n≤x
n≡c (mod q)

(G(n)− J(n)) ≪q x
1+d+ε

holds for some 1/2 ≤ d ≤ 1 and any ε > 0. If there exists a zero ρ0 of
∏

χ (mod q) L(s, χ) such that

(a) Bq = ℜρ0
(b) ρ0 belongs to a unique character χ1 (mod q)
(c) the conductor q∗ of χ1 (mod q) is squarefree and satisfies (c, q∗) = 1,
then Bq = ℜρ0 ≤ d.

The conditions on ρ0 might resemble those of the Landau–Siegel zero although
(2) above is not actually applicable to a Landau–Siegel zero if there are some
complex zeros of L-function of the same modulus which are very close to the vertical
line σ = 1.
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To obtain the above results we require an asymptotic formula with B∗
q as in

Theorem 2.

Theorem 4. For x ≥ 2, ε > 0 and for any positive integer c we have

∑

n≤x
n≡c (mod q)

G(n) =
Sq(c)

2
x2 −

2

ϕ(q)2

q
∑

a=1
(a(c−a),q)=1

∑

χ (mod q)

χ(a)
∑

ρχ

xρχ+1

ρχ(ρχ + 1)

+O(x2B
∗

q (log qx)5),

where

Sq(c) =
1

ϕ(q)

∏

p|q
p∤c

p− 2

p− 1
,

and the implicit constant is absolute.

Note that Sq(c) = 0 if (2, q) ∤ c. The above theorem is proven in Section 6.
To ensure the uniformity of q it is not enough to sum Theorem 2 over residues
and we need other tools like Lemma 10 . Finally, using Theorem 4, we give the
proof of (1.8) and Theorem 3 in Section 7. In Section 8, we give the proof for the
supplement of Theorem 1 (2) in the case a = b.

Acknowledgements. The first two authors are grateful to Professor Andrew
Granville for helpful discussions. Thanks are due to Professor Masatoshi Suzuki for
useful information, and to Professor Keiju Sono and the referee for their valuable
comments on the first version of the manuscript. We particularly thank Professor
Imre Ruzsa for the idea that improves Theorem 1 (2) in the case a = b.

2. Some preliminaries

In this section we fix notation on the zeros of Dirichlet L-functions and give
some basic lemmas on Dirichlet L-functions. Results used directly from [14] are
only cited but in other cases details are added .

As we mentioned in Section 1, we denote by χ (mod q) a Dirichlet character
(mod q) and by χ∗ (mod q∗) the primitive character inducing χ (mod q). If there
is no specific mention, any statement with χ (mod q) is stated for any q ≥ 1 and
any character χ (mod q).

We denote the Dirichlet L-function associated to χ (mod q) by L(s, χ). We say
a zero of L(s, χ) is non-trivial, if it is contained in the strip 0 < σ < 1. We denote
by ρχ non-trivial zeros of L(s, χ) with the real part βχ and the imaginary part γχ.
As a summation variable, the letter ρχ runs through all non-trivial zeros of L(s, χ)
counted with multiplicity. We denote the Landau–Siegel zero of (mod q) by β1.

We let δ0(χ) = 1 if χ = χ0 is the principal character and δ0(χ) = 0 otherwise.
Similarly we let δ1(χ) = 1 if χ is the exceptional character (that is, whose L-function
has a Landau–Siegel zero) and δ1(χ) = 0 otherwise.

We first evoke some lemmas for sums over non-trivial zeros.

Lemma 1 ([14, Theorem 10.17]). For any T ≥ 0, we have
∑

ρχ

T≤|γχ|≤T+1

1 ≪ log q(|T |+ 2).
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Lemma 2. For any T ≥ 1 and χ (mod q), we have

∑

ρχ 6=1−β1

|γχ|≤T

1

|ρχ|
≪ (log 2qT )2,

∑

ρχ

|γχ|≤T

1

|ρχ|
≪ (log 2qT )2 + δ1(χ)q

1/2(log q)2.

Proof. For the first estimate we dissect the sum at |γχ| = 1 as

∑

ρχ 6=1−β1

|γχ|≤T

1

|ρχ|
=

∑

ρχ 6=1−β1

|γχ|≤1

1

|ρχ|
+

∑

ρχ

1<|γχ|≤T

1

|ρχ|
.

For the first sum Lemma 1 gives

∑

ρχ 6=1−β1

|γχ|≤1

1

|ρχ|
≤

∑

ρχ 6=1−β1

|γχ|≤1

1

βχ
=
∑

ρχ 6=β1

|γχ|≤1

1

1− βχ

≪
∑

ρχ

|γχ|≤1
βχ>1−c0/ log 2q

1

1− βχ
≪ (log 2q)

∑

ρχ

|γχ|≤1

1 ≪ (log 2q)2 ≪ (log 2qT )2,

where c0 > 0 is some small absolute constant while for the second sum, Lemma 1
gives

∑

ρχ

1<|γχ|≤T

1

|ρχ|
≤
∑

n≤T

∑

ρχ

n<|γχ|≤n+1

1

|ρχ|
≪
∑

n≤T

log q(n+ 2)

n
≪ (log 2qT )2.

Thus the first estimate follows. The second estimate is obtained by the first estimate
combined with the well-known bound [14, Corollary 11.12] of the Siegel zero

(2.1) β1 > 1−
c2

q1/2(log q)2
,

where c2 > 0 is some absolute constant. �

Lemma 3. For any T ≥ 1 and χ (mod q), we have

∑

ρχ

|ρχ|>T

1

|ρχ|2
≪

log 2qT

T
,
∑

ρχ

1

|ρχ(ρχ + 1)|
≪ (log 2q)2 + δ1(χ)q

1/2(log q)2.

Proof. The first estimate is again obtained by using Lemma 1 ,i.e.

∑

ρχ

|γχ|>T

1

|ρχ|2
≤

∞
∑

n=[T ]

∑

ρχ

n<|γχ|≤n+1

1

|ρχ|2
≪

∞
∑

n=[T ]

log qn

n2
≪

log qT

T
,

whereas the last estimate can be obtained by comparison to an integral. For the
latter estimate, we combine the former one with Lemma 2. This gives

∑

ρχ

1

|ρχ(ρχ + 1)|
≤
∑

ρχ

|γχ|≤1

1

|ρχ|
+
∑

ρχ

|γχ|>1

1

|ρχ|2
≪ (log 2q)2 + δ1(χ)q

1/2(log q)2.

�
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We next prepare some explicit formulas for the sum

ψ(x, χ) =
∑

n≤x

χ(n)Λ(n).

The next result appears in [14] with the restriction that χ (mod q) be primitive.

Lemma 4. For any u, T ≥ 2, the explicit formula

ψ(u, χ) = δ0(χ)u −
∑

ρχ

|γχ|≤T

uρχ

ρχ
+ C(χ∗) + E(u, T, χ)

holds, where

E(u, T, χ) ≪ (log 2q)(log u) +
u

T
(log quT )2

and C(χ) is some constant depending only on χ.

Proof. For primitive χ, this follows immediately from Theorem 12.5 and 12.10 of
[14] as below. If χ is trivial so that q = 1, we use Theorem 12.5 of [14] with x = u.
We can estimate the last three terms on the right-hand side of (12.3) of [14] as

− log 2π −
1

2
log(1− 1/u2) +R(u, T ) ≪ (log 2q)(log u) +

u

T
(log quT )2,

by using (12.4) of [14]. This gives the assertion for the case when χ is trivial. If χ
is non-principal, we use Theorem 12.10 of [14] with x = u. The last four terms on
the right-hand side of (12.6) of [14] can be rewritten as

−
1

2
log(u− 1)−

χ(−1)

2
log(u+ 1) + C(χ) +R(u, T ;χ)

= C(χ) +O
(

(log 2q)(log u) +
u

T
(log quT )2

)

.

This gives the assertion for the case of χ being primitive and non-principal.
If χ is imprimitive, then it suffices to note that the non-trivial zeros of L(s, χ)

are those of L(s, χ∗) and that

(2.2)

ψ(u, χ)− ψ(u, χ∗) ≪
∑

n≤u
(n,q)>1

Λ(n) =
∑

p|q

(log p)

[

log u

log p

]

≤

(

log u

log 2

)

∑

p|q

(log p) ≤ (log 2q)(log u),

which is absorbed into E(u, T, χ). �

When we substitute the above explicit formula into some sum or integral, we
need to use a uniform parameter T and a uniform bound of the error term. Also it
is convenient to work with the case 0 ≤ u < 2. Thus we modify the above explicit
formula in the following form.

Lemma 5. For any x ≥ T ≥ 2 and x ≥ u ≥ 0, the explicit formula

ψ(u, χ) = δ0(χ)u−
∑

ρχ

|γχ|≤T

uρχ

ρχ
+O

( x

T
(log qx)2 + δ1(χ)q

1/2(log q)2
)

(2.3)

holds.
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Proof. We first consider the case u ≥ 2. For this we use Lemma 4. Since u ≤ x ≤ T ,
the error term of Lemma 4 is

E(u, T, χ) ≪ (log 2q)(log x) +
x

T
(log qxT )2 ≪

x

T
(log qxT )2.

Further, by Theorem 11.4 of [14], we know that (L′/L)(1, χ∗) ≪ log 2q if χ is not
exceptional, while for the exceptional χ and exceptional zero β1, (2.1) gives

L′

L
(1, χ∗) =

1

1− β1
+O(log 2q) ≪ q1/2(log q)2.

Therefore by (12.7) of [14], we obtain

(2.4) C(χ∗) ≪ log 2q + δ1(χ)q
1/2(log q)2 ≪

x

T
(log qx)2 + δ1(χ)q

1/2(log q)2

for non-principal χ, from which the lemma follows for the case u ≥ 2.
The remaining case is when 0 ≤ u < 2. Now the sum on the right-hand side of

(2.3) is estimated by using Lemma 2 as

∑

ρχ

|γχ|≤T

uρχ

ρχ
≪ u

∑

ρχ

|γχ|≤T

1

|ρχ|
≪ (log qT )2 + δ1(χ)q

1/2(log q)2

≪
x

T
(log qx)2 + δ1(χ)q

1/2(log q)2.

since T ≤ x. On the other hand, when u < 2, the left-hand side of (2.3) is zero.
Therefore the assertion holds trivially. �

3. An asymptotic formula for S(x; q, a, b)

In this section, we deduce a prototype of Theorem 2 along the line of [11]:

Proposition 1. For integers a, b, q with (ab, q) = 1, we have

S(x; q, a, b) =
x2

2ϕ(q)2
−

1

ϕ(q)2

∑

χ (mod q)

(χ(a) + χ(b))
∑

ρχ

xρχ+1

ρχ(ρχ + 1)

+O
(

x(2+4Bq)/3(log qx)4
)

,

where the implicit constant is absolute.

The proof is divided into three parts.
Step 1 : The first substitution in the explicit formula.
With

ψ(x; q, a) =
∑

m≤x
m≡a (mod q)

Λ(m),

we can write

S(x; q, a, b) =
∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)ψ(x− ℓ; q, b).(3.1)

Using the orthogonality relation of Dirichlet characters, we have

ψ(x; q, b) =
1

ϕ(q)

∑

χ (mod q)

χ(b)ψ(x, χ).
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We substitute the explicit formula given by Lemma 5 here. This gives

(3.2) ψ(u; q, b) =
1

ϕ(q)
A(u, T ; q, b) +B(u, T ; q, b)

for x ≥ T ≥ 2 and x ≥ u ≥ 0, where

A(u, T ; q, b) = u−
∑

χ (mod q)

χ(b)
∑

ρχ

|γχ|≤T

uρχ

ρχ

and B(u, T ; q, b) is the error term satisfying

B(u, T ; q, b) ≪
x

T
(log qx)2 +

1

ϕ(q)

∑

χ (mod q)

δ1(χ)q
1/2(log q)2 ≪

x

T
(log qx)2,

where for estimating the term involving δ1(χ)q
1/2(log q)2, we use the fact that

there is at most one exceptional character (mod q). Substituting (3.2) into (3.1),
we obtain

(3.3) S(x; q, a, b) =
1

ϕ(q)

∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)A(x− ℓ, T ; q, b) +O

(

x2

T
(log qx)2

)

.

Step 2 : The second substitution in the explicit formula.
Now we evaluate the sum on the right-hand side of (3.3), we split it into two

parts.

1

ϕ(q)

∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)A(x− ℓ, T ; q, b)(3.4)

=
1

ϕ(q)

∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)(x− ℓ)

−
1

ϕ(q)

∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)
∑

χ (mod q)

χ(b)
∑

ρχ

|γχ|≤T

(x− ℓ)ρχ

ρχ

= Σ1 − Σ2, say.

Consider Σ1. We have

Σ1 =
1

ϕ(q)

∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)

∫ x

ℓ

du =
1

ϕ(q)

∫ x

0

ψ(u; q, a)du,

so, using (3.2), we obtain

Σ1 =
1

ϕ(q)2

∫ x

0

A(u, T ; q, a)du+O

(

x2

T
(log qx)2

)

.(3.5)

Inserting the definition of A(u, T ; q, a) yields

(3.6) Σ1 =
1

ϕ(q)2









x2

2
−

∑

χ (mod q)

χ(a)
∑

ρχ

|γχ|≤T

xρχ+1

ρχ(ρχ + 1)









+O

(

x2

T
(log qx)2

)

.
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Next consider Σ2. We have

Σ2 =
1

ϕ(q)

∑

χ (mod q)

χ(b)
∑

ρχ

|γχ|≤T

Ψ(ρχ, x; q, a),(3.7)

where

Ψ(ρχ, x; q, a) =
1

ρχ

∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)(x− ℓ)ρχ .

Again using (3.2),

Ψ(ρχ, x; q, a) =
1

ρχ

∫ x

0

(x− u)ρχdψ(u; q, a)

=
1

ρχ

∫ x

0

(x− u)ρχ

(

1

ϕ(q)
dA(u, T ; q, a) + dB(u, T ; q, a)

)

=
1

ϕ(q)ρχ

∫ x

0

(x− u)ρχdu

−
1

ϕ(q)ρχ

∑

χ′ (mod q)

χ′(a)
∑

ρχ′

|γχ′ |≤T

∫ x

0

(x− u)ρχuρχ′−1du

+
1

ρχ

∫ x

0

(x− u)ρχdB(u, T ; q, a)

= J1 − J2 + J3, say.

Obviously

J1 =
xρχ+1

ϕ(q)ρχ(ρχ + 1)
.

Since
∫ x

0

(x− u)ρχuρχ′−1du = xρχ+ρχ′
ρχΓ(ρχ)Γ(ρχ′)

(ρχ + ρχ′)Γ(ρχ + ρχ′)
,

we have

J2 =
1

ϕ(q)

∑

χ′ (mod q)

χ′(a)
∑

ρχ′

|γχ′ |≤T

Z(ρχ, ρχ′)xρχ+ρχ′ ,

where

(3.8) Z(ρχ, ρχ′) =
Γ(ρχ)Γ(ρχ′)

(ρχ + ρχ′)Γ(ρχ + ρχ′)
=

Γ(ρχ)Γ(ρχ′ )

Γ(1 + ρχ + ρχ′)
.

Lastly,

J3 =
1

ρχ

[

(x− u)ρχB(u, T ; q, a)
]x

u=0
+

∫ x

0

(x − u)ρχ−1B(u, T ; q, a)du

= O

(

1

|ρχ|

x2

T
(log qx)2

)

+

∫ x

0

(x− u)ρχ−1B(u, T ; q, a)du.

Therefore we now obtain

Ψ(ρχ, x; q, a) =
xρχ+1

ϕ(q)ρχ(ρχ + 1)
−

1

ϕ(q)

∑

χ′ (mod q)

χ′(a)
∑

ρχ′

|γχ′ |≤T

Z(ρχ, ρχ′)xρχ+ρχ′
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+

∫ x

0

uρχ−1B(x− u, T ; q, a)du+O

(

1

|ρχ|

x2

T
(log qx)2

)

.

Substituting this into (3.7) and using Lemma 2, we obtain

(3.9) Σ2 =
1

ϕ(q)2

∑

χ (mod q)

χ(b)
∑

ρχ

|γχ|≤T

xρχ+1

ρχ(ρχ + 1)
− Σ3 +Σ4 +O

(

x2

T
(log qx)4

)

.

where

Σ3 =
1

ϕ(q)2

∑

χ (mod q)

χ(b)
∑

χ′ (mod q)

χ′(a)
∑

ρχ

|γχ|≤T

∑

ρχ′

|γχ′ |≤T

Z(ρχ, ρχ′)xρχ+ρχ′ ,

Σ4 =
1

ϕ(q)

∑

χ (mod q)

χ(b)
∑

ρχ

|γχ|≤T

∫ x

0

uρχ−1B(x− u, T ; q, a)du.

Combining (3.3) with (3.4) yields

S(x; q, a, b) = Σ1 − Σ2 +O

(

x2

T
(log qx)2

)

,

so with (3.6) and (3.9) we now arrive at

S(x; q, a, b) =
x2

2ϕ(q)2
−

1

ϕ(q)2

∑

χ (mod q)

(χ(a) + χ(b))
∑

ρχ

|γχ|≤T

xρχ+1

ρχ(ρχ + 1)

+ Σ3 − Σ4 +O

(

x2

T
(log qx)4

)

.

We next extend the sum over zeros. By Lemma 3, we have

(3.10)
∑

ρχ

|γχ|>T

xρχ+1

ρχ(ρχ + 1)
≪ x2

∑

ρχ

|γχ|>T

1

|γχ|2
≪

x2

T
(log qx).

Therefore we can extend the sum over zeros as

(3.11) S(x; q, a, b) =
x2

2ϕ(q)2
−

1

ϕ(q)2

∑

χ (mod q)

(χ(a) + χ(b))
∑

ρχ

xρχ+1

ρχ(ρχ + 1)

+ Σ3 − Σ4 +O

(

x2

T
(log qx)4

)

.

Step 3 : The estimation of Σ3 and Σ4.
Lastly we estimate the remaining error terms Σ3 and Σ4.
First consider Σ4. The contribution of the integral on the interval 0 ≤ u ≤ 3 is

≪
1

ϕ(q)

x

T
(log qx)2

∑

χ (mod q)

∑

ρχ

|γχ|≤T

∫ 3

0

uβχ−1du

≪
1

ϕ(q)

x

T
(log qx)2

∑

χ (mod q)

∑

ρχ

|γχ|≤T

1

βχ
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≪
1

ϕ(q)

x

T
(log qx)2

∑

χ (mod q)

∑

ρχ 6=1−β1

|γχ|≤T

1

βχ
+
q1/2

ϕ(q)

x

T
(log qx)4

≪
1

ϕ(q)

x

T
(log qx)2

∑

χ (mod q)

∑

ρχ

|γχ|≤T
βχ>1−c0/ log qT

1

βχ
+
x

T
(log qx)4

≪
1

ϕ(q)

x

T
(log qx)3

∑

χ (mod q)

∑

ρχ

|γχ|≤T

1 +
x

T
(log qx)4 ≪ x(log qx)4

by (2.1) provided T ≤ x, so we have

(3.12) Σ4 =
1

ϕ(q)

∑

χ (mod q)

χ(b)

∫ x

3

(

∑

ρχ

|γχ|≤T

uρχ−1

)

B(x− u, T ; q, a)du

+O(x(log qx)4).

If 3 ≤ u ≤ x and T ≤ x, then Proposition 2, proven in the next section, yields
∑

ρχ

|γχ|≤T

uρχ ≪ u log(quT ) log log u+ T log u≪ u(log qx)2 + x(log qx).

Note that Proposition 2 is stated for primitive χ, but the above estimate is valid
for any χ. Using this estimate from (3.12) we obtain

(3.13) Σ4 ≪
x2

T
(log qx)4

if T ≤ x.
Next consider Σ3. The following argument is inspired by [11, Corrigendum], but

in our case we have to treat the zeros near the real line more carefully since Γ(s)
has a simple pole at s = 0. We evaluate Z(ρχ, ρχ′) defined in (3.8) for |γχ| ≤ |γχ′ |
by using Stirling’s formula

Γ(s) ≪ (|t|+ 1)σ−1/2e−(π/2)|t|, s = σ + it, 0 ≤ σ ≤ 3, |t| ≥ 1.

If |γχ| ≤ |γχ′ | ≤ 1, then |Γ(1 + ρχ + ρχ′)| ≍ 1, and hence

Z(ρχ, ρχ′) ≪ |ρχ|
−1|ρχ′ |−1 ≪ T 1/2|ρχ|

−1|ρχ′ |−1.

If |γχ| ≤ 1 ≤ |γχ′ |, then applying Stirling’s formula to Γ(ρχ′) and Γ(1 + ρχ + ρχ′),

Z(ρχ, ρχ′) ≪ |ρχ|
−1 |γχ′ |βχ′−1/2e−(π/2)|γχ′ |

(|γχ + γχ′ |+ 1)βχ+βχ′+1/2e−(π/2)|γχ+γχ′ |

≪ |ρχ|
−1|γχ′ |−βχ−1 ≪ |ρχ|

−1|ρχ′ |−1 ≪ T 1/2|ρχ|
−1|ρχ′ |−1

as in the case |γχ| ≤ |γχ′ | ≤ 1. If 1 ≤ |γχ| ≤ |γχ′ | ≤ T , we have

Z(ρχ, ρχ′) ≪
|γχ|

βχ−1/2e−(π/2)|γχ||γχ′ |βχ′−1/2e−(π/2)|γχ′ |

(|γχ + γχ′ |+ 1)βχ+βχ′+1/2e−(π/2)|γχ+γχ′ |
.

When γχ and γχ′ have the same sign, then the exponential factors are cancelled
and we obtain

(3.14) Z(ρχ, ρχ′) ≪ |γχ|
βχ−1/2|γχ′ |−βχ−1 ≪ |γχ|

−1/2|γχ′ |−1 ≪ T 1/2|γχ|
−1|γχ′ |−1
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since |γχ| ≤ |γχ′ | ≤ T . When they have opposite signs the contribution of the

exponential factors is O(e−π|γχ|), and

(|γχ + γχ′ |+ 1)−(βχ+βχ′+1/2)

= (1 + |γχ′ | − |γχ|)
−(βχ+βχ′+1/2)

= (1 + |γχ′ |)−(βχ+βχ′+1/2)

(

1−
|γχ|

1 + |γχ′ |

)−(βχ+βχ′+1/2)

≤ (1 + |γχ′ |)−(βχ+βχ′+1/2)(1 + |γχ|)
(βχ+βχ′+1/2)

≤ (1 + |γχ′ |)−(βχ+βχ′+1/2)(1 + |γχ|)
π

≤ (1 + |γχ′ |)−(βχ+βχ′+1/2)eπ|γχ|,

we again obtain Z(ρχ, ρχ′) ≪ T 1/2|γχ|
−1|γχ′ |−1. Therefore, the estimate

(3.15) Z(ρχ, ρχ′) ≪ T 1/2|ρχ|
−1|ρχ′ |−1

holds for all |γχ|, |γχ′ | ≤ T by symmetry between ρχ and ρχ′ .
By using the estimate (3.15), we have

∑

ρχ

|γχ|≤T

∑

ρχ′

|γχ′ |≤T

Z(ρχ, ρχ′)xρχ+ρχ′ ≪ x2BqT 1/2
∑

ρχ

|γχ|≤T

∑

ρχ′

|γχ′ |≤T

|ρχ|
−1|ρχ′ |−1.

Therefore, by Lemma 2, we have

Σ3 ≪ x2BqT 1/2









1

ϕ(q)

∑

χ (mod q)

∑

ρχ

|γχ|≤T

1

|ρχ|









2

≪ x2BqT 1/2

(

(log qx)2 +
q1/2(log q)2

ϕ(q)

)2

≪ x2BqT 1/2(log qx)4

if T ≤ x.
All the error terms on the right-hand side of (3.11) have now been estimated. We

choose the optimal T by requiring that x2BqT 1/2 = x2/T , hence T = x4(1−Bq)/3.
Since Bq ≥ 1/2 this choice satisfies the condition T ≤ x. Substituting this choice
of T into (3.11), we obtain the assertion of Proposition 1.

4. The Landau–Gonek formula for L-functions

The Landau–Gonek result [10], originally a formula on the zeros of ζ(s), has
been extended to other situations, for example Ford et al. [7] worked on a general
setting of the Selberg class. We did not find any instance where the uniformity
with respect to q was treated and we do so here for the sake of completeness.

Proposition 2. Let x, T, q > 1 and χ be a primitive character (mod q). Then

∑

ρχ

|γχ|≤T

xρχ = −
T

π
χ(x)Λ(x) +O(x(log 2qxT )(log log 3x))

+O

(

(log x)min

{

T,
x

〈x〉

})

+O

(

(log 2qT )min

{

T,
1

log x

})

,
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where χ(x) = Λ(x) = 0 if x is not an integer, and 〈x〉 denotes the distance from x
to the nearest prime power other than x itself.

Proof. The proof essentially follows the original one of Gonek [10]. Let c = 1 +
1/ log 3x, and consider the integral

I =
1

2πi

(

∫ c+iT

c−iT

+

∫ 1−c+iT

c+iT

+

∫ 1−c−iT

1−c+iT

+

∫ c−iT

1−c−iT

)

L′

L
(s, χ)xsds(4.1)

= I1 + I2 + I3 + I4,

say. First suppose that the horizontal paths do not cross any zero of L(s, χ). The
poles inside the rectangle are the non-trivial zeros of L(s, χ) and at most one trivial
zero of L(s, χ) at s = 0. Hence the residue theorem gives

I =
∑

ρχ

|γχ|≤T

xρχ +O(1).(4.2)

We evaluate I1, I2, I3 and I4. First consider I2. We use the well-known formula

L′

L
(s, χ) =

∑

ρχ

|γχ−t|≤1

1

s− ρχ
+O(log q(|t|+ 2))(4.3)

uniformly in −1 ≤ σ ≤ 2 ([14, Lemma 12.6]). We have

I2 =
∑

ρχ

|γχ−T |≤1

∫ 1−c+iT

c+iT

xs

s− ρχ
ds+O

(

log 2qT

∫ c

1−c

xσdσ

)

,(4.4)

whose error term is

≪ xc log 2qT ≪ x log 2qT.(4.5)

For each integral on the first sum of (4.4), we first observe that T −1 ≤ γχ ≤ T +1.
When T − 1 ≤ γχ ≤ T , we deform the path of integration as

∫ 1−c+iT

c+iT

=

∫ c+i(T+1)

c+iT

+

∫ 1−c+i(T+1)

c+i(T+1)

+

∫ 1−c+iT

1−c+i(T+1)

.

Noting that the denominator on the second term is ≫ 1 and that log 3x ≫ 1,
log log 3x≫ 1, we obtain in this case
∫ 1−c+iT

c+iT

xs

s− ρχ
ds≪ xc

∫ T+1

T

dt

|(c− βχ) + i(t− γχ)|
+

∫ c

1−c

xσdσ +
x1−c

βχ − (1− c)

≪ x

∫ γχ+2

γχ

min

{

log 3x,
1

t− γχ

}

dt+ x+ log 3x

≪ x

(

∫ γχ+1/ log 3x

γχ

log 3x dt+

∫ γχ+2

γχ+1/ log 3x

dt

t− γχ

)

+ x

≪ x

(

1

log 3x
· log 3x+

[

log(t− γχ)
]γχ+2

t=γχ+1/ log 3x

)

+ x

≪ x log log 3x.
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If T < γχ ≤ T + 1, we deform the path to that including the segment with the
imaginary part T − 1, and argue similarly. We can conclude that

I2 ≪ x log log 3x
∑

ρχ

|γχ−T |≤1

1 + x log 2qT

and hence, by using Lemma 1,

I2 ≪ x(log 2qxT )(log log 3x).(4.6)

The estimate of I4 is similar.
Next consider I3. We first quote

L′

L
(s, χ) = −

L′

L
(1− s, χ)− log

q

2π
−

Γ′

Γ
(1− s) +

π

2
cot

π

2
(s+ κ)(4.7)

([14, (10.35)]), where κ = 0 or 1 depending on whether χ is an even or an odd
character, respectively. We see easily that

π

2
cot

π

2
(s+ κ) = ±i+O(e−π|t|)

for |t| ≥ 1 and ℜs = 1− c. Therefore, putting s = 1− c+ it and applying Stirling’s
formula we have

L′

L
(1 − c+ it, χ) = −

L′

L
(c− it, χ)− log qt+ C +O(t−1)(4.8)

for t ≥ 1, where C denotes a constant. Hence, the part [1− c± i, 1− c± iT ] of the
integral I3 is

=
±1

2π

∫ T

1

(

L′

L
(c∓ it, χ) + log qt− C

)

x1−c±itdt+O

(

∫ T

1

x1−c

t
dt

)

,

whose error term is O(log T ). The integral is

= ∓
x1−c

2π

∞
∑

n=2

χ(n)Λ(n)

nc

∫ T

1

(nx)±itdt±
x1−c

2π

∫ T

1

(log qt− C)x±itdt,

whose first part is

≪ x1−c
∞
∑

n=2

Λ(n)

nc lognx
≪

∞
∑

n=2

Λ(n)

nc
= −

ζ′

ζ
(c) ≪

1

c− 1
≪ log 3x.

The second part is trivially O(T log 2qT ), while integration by parts gives

=
x1−c

2π

(

[

(log qt− C)
x±it

i log x

]T

t=1

−

∫ T

1

xit

it logx
dt

)

≪
log 2qT

log x
.

(Note that log x ≫ 1 does not hold.) The part [1 − c− i, 1 − c+ i] of the integral
I3 is ≪ log 2qx by (4.7). Therefore we conclude

(4.9)

I3 ≪ log 2qx+ (log 2qT )min

{

T,
1

log x

}

+ logT

≪ x(log 2qT )(log log 3x) + (log 2qT )min

{

T,
1

log x

}

since T > 1.
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We next consider I1. Substituting the Dirichlet series expansion, we have

I1 = −
∞
∑

n=2

χ(n)Λ(n)
1

2π

∫ T

−T

(x/n)c+itdt(4.10)

= −
T

π
χ(x)Λ(x) +O





∑

n6=x

Λ(n)(x/n)c min

{

T,
1

| log x/n|

}



 .

The error term here can be estimated by [10, Lemma 2], and so

I1 = −
T

π
χ(x)Λ(x) +O(x(log 2x)(log log 3x)) +O

(

(log x)min

{

T,
x

〈x〉

})

.

(4.11)

The formula of the lemma follows by combining (4.6), (4.9) and (4.11).
Finally if the path of I2 or I4 crosses some zero we choose T ′ slightly larger than

T , and define I ′, similar to I but now T is replaced by T ′. Then instead of (4.2)
we obtain

I ′ =
∑

ρχ

|γχ|≤T

xρχ +O(x log 2qT )

(by Lemma 1), while the evaluation of integrals on the edges of the rectangle can
be done in the same way as for I, so the assertion of the lemma is also valid in this
case. �

5. Lemmas for the proof of Theorem 2

In this section we present some preparatory material for the improvement of the
error term of Proposition 1. We start with a lemma on an integral of the Selberg-
type. In order to prove this first lemma, we need to calculate the following sum
over the non-trivial zeros of L(s, χ).

Lemma 6. For any x ≥ 2 and real number y, we have
∑

ρχ

|γχ|≤x

1

1 + |γχ − y|
≪ (log qx)2.

Proof. If |y| > 2x, then each term above is ≪ x−1 and the lemma holds trivially.
So we consider the case |y| ≤ 2x. Then by the triangle inequality, we have

|γχ − y| ≤ x+ y ≤ 3x.

Thus we can extend the sum and dissect it as
∑

ρχ

|γχ|≤x

1

1 + |γχ − y|
≤

∑

ρχ

|γχ−y|≤3x

1

1 + |γχ − y|

≤
∑

ρχ

|γχ−y|≤1

1

1 + |γχ − y|
+

∑

1≤n≤3x

∑

ρχ

n<|γχ−y|≤n+1

1

1 + |γχ − y|

≤
∑

ρχ

|γχ−y|≤1

1 +
∑

1≤n≤3x

1

n

∑

ρχ

n<|γχ−y|≤n+1

1.
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By using Lemma 1, we can estimate the last sum to be

≪ (log qx)



1 +
∑

1≤n≤3x

1

n



≪ (log qx)(log x) ≪ (log qx)2.

�

We now obtain an estimate for an integral of the Selberg-type.

Lemma 7. For any 2 ≤ h ≤ x and any χ (mod q), we have
∫ 2x

x

∣

∣

∣

∑

t<n≤t+h

χ(n)Λ(n)− δ0(χ)h
∣

∣

∣

2

dt≪ hx2B
∗

q (log qx)4.

Proof. By taking the difference between u = t+ h and u = t in Lemma 4, we have

∑

t<n≤t+h

χ(n)Λ(n) = δ0(χ)h−
∑

ρχ

|γχ|≤T

(t+ h)ρχ − tρχ

ρχ
+ E(t+ h, T, χ)− E(t, T, χ),

where the term C(χ∗) is cancelled out since it is independent of the main variable
u in Lemma 4. We take the parameter T = x. Then the error term is estimated by

E(t+ h, T, χ)− E(t, T, χ) ≪ (log 2q)(log x) +
x

T
(log qxT )2 ≪ (log qx)2.

Therefore, we obtain
∑

t<n≤t+h

χ(n)Λ(n)− δ0(χ)h

= −
∑

ρχ

|γχ|≤x

(t+ h)ρχ − tρχ

ρχ
+O((log qx)2)

= −
∑

ρχ

|γχ|≤x/h

∫ t+h

t

uρχ−1du−
∑

ρχ

x/h<|γχ|≤x

(t+ h)ρχ − tρχ

ρχ
+O((log qx)2)

= −

∫ t+h

t

(

∑

ρχ

|γχ|≤x/h

uρχ−1

)

du−
∑

ρχ

x/h<|γχ|≤x

(t+ h)ρχ − tρχ

ρχ
+O((log qx)2)

= − ψ1(t)− ψ2(t) +O
(

(log qx)2
)

, say.

Substituting this explicit formula into the integral of the assertion, we have
∫ 2x

x

∣

∣

∣

∑

t<n≤t+h

χ(n)Λ(n)− δ0(χ)h
∣

∣

∣

2

dt

≪

∫ 2x

x

|ψ1(t)|
2dt+

∫ 2x

x

|ψ2(t)|
2dt+ x(log qx)4.

Hence it suffices to prove the two estimates
∫ 2x

x

|ψ1(t)|
2dt,

∫ 2x

x

|ψ2(t)|
2dt≪ hx2B

∗

q (log qx)4,

since B∗
q ≥ 1/2 implies x(log qx)4 ≤ hx2B

∗

q (log qx)4.
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Applying the Cauchy–Schwarz inequality to the first integral we have

|ψ1(t)|
2 ≪ h

∫ t+h

t

∣

∣

∣

∑

ρχ

|γχ|≤x/h

uρχ−1
∣

∣

∣

2

du

so that

∫ 2x

x

|ψ1(t)|
2dt ≪ h

∫ 2x

x

∫ t+h

t

∣

∣

∣

∑

ρχ

|γχ|≤x/h

uρχ−1
∣

∣

∣

2

dudt

= h

∫ 2x+h

x

∣

∣

∣

∑

ρχ

|γχ|≤x/h

uρχ−1
∣

∣

∣

2
(

∫ min(u,2x)

max(u−h,x)

dt

)

du

≪ h2
∫ 3x

x

∣

∣

∣

∑

ρχ

|γχ|≤x/h

uρχ−1
∣

∣

∣

2

du≪ h2x−2

∫ 3x

x

∣

∣

∣

∑

ρχ

|γχ|≤x/h

uρχ

∣

∣

∣

2

du

since h ≤ x. We now expand the square and integrate over u. This gives

∫ 2x

x

|ψ1(t)|
2dt≪ h2x−2

∑∑

ρχ,ρ
′

χ

|γχ|,|γ
′

χ|≤x/h

xβχ+β′

χ+1

1 + |γχ − γ′χ|
.

Using the Vinogradov-Korobov zero-free region (For a detailed proof of a weaker
result, see [17, Theorem 1].) and Siegel’s theorem, we can estimate βχ and βχ′ by
B∗

q . Therefore,

∫ 2x

x

|ψ1(t)|
2dt≪ h2x2B

∗

q−1
∑

ρχ

|γχ|≤x/h

∑

ρ′

χ

|γ′

χ|≤x

1

1 + |γχ − γ′χ|

≪ h2x2B
∗

q−1(log qx)2
∑

ρχ

|γχ|≤x/h

1 ≪ hx2B
∗

q (log qx)3

by Lemma 6.
For the latter integral, we ignore the difference as

∫ 2x

x

|ψ2(t)|
2dt≪

∫ 2x

x

∣

∣

∣

∑

ρχ

x/h<|γχ|≤x

(t+ h)ρχ

ρχ

∣

∣

∣

2

dt+

∫ 2x

x

∣

∣

∣

∑

ρχ

x/h<|γχ|≤x

tρχ

ρχ

∣

∣

∣

2

dt

=

∫ 2x+h

x+h

∣

∣

∣

∑

ρχ

x/h<|γχ|≤x

tρχ

ρχ

∣

∣

∣

2

dt+

∫ 2x

x

∣

∣

∣

∑

ρχ

x/h<|γχ|≤x

tρχ

ρχ

∣

∣

∣

2

dt

≪

∫ 3x

x

∣

∣

∣

∑

ρχ

x/h<|γχ|≤x

tρχ

ρχ

∣

∣

∣

2

dt.
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Then we expand the square and integrate over t. This gives
∫ 2x

x

|ψ2(t)|
2dt ≪

∑∑

ρχ,ρ
′

χ

x/h<|γχ|,|γ
′

χ|≤x

xβχ+β′

χ+1

|γχ||γ′χ|(1 + |γχ − γ′χ|)
.

Obviously,

xβχ+β′

χ

|γχ||γ′χ|
≪

x2βχ

|γχ|2
+
x2β

′

χ

|γ′χ|
2
.

By using the symmetry of the terms in γχ and γχ′) we have
∫ 2x

x

|ψ2(t)|
2dt≪ x1+2B∗

q

∑

ρχ

x/h<|γχ|≤x

1

|γχ|2

∑

ρ′

χ

|γ′

χ|≤x

1

1 + |γχ − γ′χ|

≪ x1+2B∗

q (log qx)2
∑

ρχ

x/h<|γχ|≤x

1

|γχ|2
≪ hx2B

∗

q (log qx)3,

where we used Lemma 3 for the last estimate. This completes the proof. �

Now let

T (α) =
∑

n≤x

e(nα), S(α, χ) =
∑

n≤x

χ(n)Λ(n)e(nα),

and

W (α, χ) = S(α, χ)− δ0(χ)T (α),

where e(α) = exp(2πiα). Our next task is to translate the previous estimate of the
integral into this exponential sum setting.

Lemma 8. Let x−1 ≤ ξ ≤ 1/2. For any χ (mod q), we have
∫ ξ

−ξ

|W (α, χ)|2dα ≪ ξx2B
∗

q (log qx)4.

Proof. We first note that

W (α, χ) =
∑

0<n≤x

(χ(n)Λ(n)− δ0(χ)) e(nα).

Thus using Gallagher’s lemma [9, Lemma 1], we have

∫ ξ

−ξ

|W (α, χ)|2dα =

∫ ξ

−ξ

∣

∣

∣

∣

∣

∑

0<n≤x

(χ(n)Λ(n)− δ0(χ)) e(nα)

∣

∣

∣

∣

∣

2

dα.

≪ ξ2
∫ x

−(2ξ)−1

∣

∣

∣

∣

∣

∑

a(t)<n≤b(t)

(χ(n)Λ(n)− δ0(χ))

∣

∣

∣

∣

∣

2

dt,

where

a(t) = max(t, 0), b(t) = min(t+ (2ξ)−1, x).

We decompose this integral as

≪ ξ2
∫ (2ξ)−1

−(2ξ)−1

+ξ2
∫ x−(2ξ)−1

(2ξ)−1

+ξ2
∫ x

x−(2ξ)−1

= ξ2I− + ξ2I + ξ2I+, say.
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By Lemma 4, the Vinogadov-Korobov zero free-region, and Siegel’s theorem we
obtain

∑

n≤t

χ(n)Λ(n)− δ0(χ)t ≪ xB
∗

q

∑

ρχ 6=1−β1

|γχ|≤x

1

|ρχ|
+

∣

∣

∣

∣

δ1(χ)
t1−β1

1− β1
− C(χ∗)

∣

∣

∣

∣

+ (log qx)2

for 2 ≤ t ≤ 2x. The second term on the right-hand side is estimated by using
Theorem 11.4 and formula (12.7) of [14] as

δ1(χ)
t1−β1

1− β1
− C(χ∗) = δ1(χ)

t1−β1 − 1

1− β1
+O(log 2q)

= δ1(χ)
log t

1− β1

∫ 1−β1

0

tσdσ +O(log 2q)

≪ x1−β1(log 2x) + log 2q ≪ x1/2(log qx),

since β1 > 1/2. Thus, by Lemma 2, we have
∑

n≤t

χ(n)Λ(n)− δ0(χ)t ≪ xB
∗

q (log qx)2 + x1/2(log qx) + (log qx)2 ≪ xB
∗

q (log qx)2,

which also holds trivially for 0 ≤ t < 2. Thus for any 0 ≤ a ≤ b ≤ 2x, we have
∑

a<n≤b

(χ(n)Λ(n)− δ0(χ)) =
∑

a<n≤b

χ(n)Λ(n)− δ0(χ)(b − a) +O(1)

≪ xB
∗

q (log qx)2.

By substituting this estimate into I±, we obtain

ξ2I± ≪ ξx2B
∗

q (log qx)4,

since I± are integrals taken over intervals of length ≤ ξ−1. Finally,

ξ2I = ξ2
∫ x−(2ξ)−1

(2ξ)−1

∣

∣

∣

∣

∣

∑

t<n≤t+(2ξ)−1

(χ(n)Λ(n)− δ0(χ))

∣

∣

∣

∣

∣

2

dt

≪ ξ2
∫ x

(2ξ)−1

∣

∣

∣

∣

∣

∑

t<n≤t+(2ξ)−1

χ(n)Λ(n)− δ0(χ)(2ξ)
−1

∣

∣

∣

∣

∣

2

dt+ ξ2x

≪ ξ2
O(log x)
∑

k=0

∫ x/2k

x/2k+1

∣

∣

∣

∣

∣

∑

t<n≤t+(2ξ)−1

χ(n)Λ(n)− δ0(χ)(2ξ)
−1

∣

∣

∣

∣

∣

2

dt+ ξ2x

≪ ξx2B
∗

q (log qx)4

by Lemma 7. Summing up the above calculations, we obtain the lemma. �

Let

J(χ) =

∫ 1/2

−1/2

|W (α, χ)|2|T (α)|dα.

Now by using the previous results we can obtain an estimate for this quantity.

Lemma 9. We have

J(χ) ≪ x2B
∗

q (log qx)5.
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Proof. We dissect the integral dyadically as

J(χ) ≤

∫

|α|≤1/x

|W (α, χ)|2|T (α)|dα+

O(log x)
∑

k=1

∫

1/2k+1<|α|≤1/2k
|W (α, χ)|2|T (α)|dα.

Then since T (α) ≪ min(x, |α|−1) for |α| ≤ 1/2, we have

J(χ) ≪ (log x) sup
1/x<ξ≤1/2

ξ−1

∫

|α|≤ξ

|W (α, χ)|2dα ≪ x2B
∗

q (log qx)5

by Lemma 8. �

6. Proofs of Theorems 2 and 4

We let

G(n;χ1, χ2) =
∑

ℓ+m=n

χ1(ℓ)Λ(ℓ)χ2(m)Λ(m), S(x;χ1, χ2) =
∑

n≤x

G(n;χ1, χ2)

and prove the following intermediate lemma.

Lemma 10. For x ≥ 2 and χ1, χ2 (mod q), we have

S(x;χ1, χ2) =
δ0(χ1)δ0(χ2)

2
x2 − δ0(χ2)H(x, χ1)− δ0(χ1)H(x, χ2) +R(x;χ1, χ2)

+O
(

δ0(χ2)(1 + δ1(χ1)q
1/2)x(log qx)2 + δ0(χ1)(1 + δ1(χ2)q

1/2)x(log qx)2
)

,

where

H(x, χ) =
∑

ρχ

xρχ+1

ρχ(ρχ + 1)
, R(x;χ1, χ2) =

∫ 1

0

W (α, χ1)W (α, χ2)T (−α)dα.

Proof. By the orthogonality of the exponential function we have

(6.1) S(x;χ1, χ2) =

∫ 1

0

S(α, χ1)S(α, χ2)T (−α)dα.

From the definition we have an expansion

(6.2) S(α, χ1)S(α, χ2) = δ0(χ2)S(α, χ1)T (α) + δ0(χ1)S(α, χ2)T (α)

− δ0(χ1)δ0(χ2)T (α)
2 +W (α, χ1)W (α, χ2).

Substituting this decomposition into the integral expression (6.1), we have

S(x;χ1, χ2) = δ0(χ2)I(χ1) + δ0(χ1)I(χ2)− δ0(χ1)δ0(χ2)I +R(x;χ1, χ2),

where

I =

∫ 1

0

T (α)2T (−α)dα, I(χ) =

∫ 1

0

S(α, χ)T (α)T (−α)dα.

Therefore it is sufficient to show that

(6.3) I =
x2

2
+O(x), I(χ) =

δ0(χ)x
2

2
−H(x, χ) +O((1 + δ1(χ)q

1/2)x(log qx)2).

The first integral I is evaluated by using the orthogonality as

I =
∑

ℓ+m≤x

1 =
∑

n≤x

(n− 1) =
x2

2
+O(x).
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The second integral I(χ) is

I(χ) =
∑

ℓ+m≤x

χ(ℓ)Λ(ℓ) =
∑

n≤x

(x− n)χ(n)Λ(n) +O(x)

=
∑

n≤x

χ(n)Λ(n)

∫ x

n

du+O(x) =

∫ x

0

ψ(u, χ)du +O(x)

by partial summation. We substitute Lemma 5 with T = x. Then

(6.4) I(χ) =
δ0(χ)x

2

2
−
∑

ρχ

|γχ|≤x

xρχ+1

ρχ(ρχ + 1)
+O(x(log qx)2 + δ1(χ)q

1/2(log q)2x).

We then extend the sum over zeros which this gives the error term of the size

∑

ρχ

|γχ|>x

xρχ+1

ρχ(ρχ + 1)
≪ x2

∑

ρχ

|γχ|>x

1

|ρχ|2
≪ x(log qx)2,

by the use of Lemma 3 in the last estimate. Substituting this estimate into (6.4),
we obtain (6.3) for I(χ).

�

Now Theorem 2 can be proven.

Proof of Theorem 2. By the orthogonality of characters, we have

S(x; q, a, b) =
1

ϕ(q)2

∑

χ1,χ2 (mod q)

χ1(a)χ2(b)S(x;χ1, χ2).

Thus, by Lemma 10, it suffices to show that

1

ϕ(q)2

∑

χ1,χ2 (mod q)

|R(x;χ1, χ2)| ≪ x2B
∗

q (log qx)5.

By the Cauchy–Schwarz inequality and Lemma 9, the right-hand side above is

≪
1

ϕ(q)2

∑

χ1,χ2 (mod q)

J(χ1)
1/2J(χ2)

1/2 ≪ x2B
∗

q (log qx)5.

This completes the proof. �

We move on to the proof of Theorem 4. At first, it might seem that we can
obtain this asymptotic formula by summing up Theorem 2 over residues. However
this procedure violates the uniformity over q and so instead we take advantage of
the “bilinear nature” of the error term R(x;χ1, χ2) in Lemma 10. With this in
mind we prove the following which will be used in its full generality in the proof of
Theorem 3.

Lemma 11. For positive integers c, q and a character χ (mod q), we have

q
∑

a=1
(a(c−a),q)=1

χ(a) = µ(q∗)χ∗(c)
ϕ(q)

ϕ(q∗)

∏

p|q
p∤q∗c

p− 2

p− 1
,

where χ∗ (mod q∗) is the primitive character which induces χ.
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Proof. By using the Chinese Remainder Theorem and decomposing the character
into the product of characters of prime power moduli it is sufficient to prove the
lemma in the case where q is a prime power, say q = pk and q∗ = pℓ. If ℓ = 0, then

q
∑

a=1
(a(c−a),q)=1

χ(a) =

pk

∑

a=1
(a(c−a),p)=1

1 =

pk

∑

a=1
a 6≡0,c (mod p)

1 =

{

pk−1(p− 1) (if p | c),
pk−1(p− 2) (if p ∤ c),

which coincides with the assertion. If ℓ ≥ 1, then we have

q
∑

a=1
(a(c−a),q)=1

χ(a) =

pk

∑

a=1
(a(c−a),p)=1

χ∗(a) = pk−ℓ

pℓ

∑

a=1
a 6≡0,c (mod p)

χ∗(a).

If ℓ = 1, then by the orthogonality, this is

= pk−1







p
∑

a=1

χ∗(a)−

p
∑

a=1
a≡c (mod p)

χ∗(a)






= µ(p)χ∗(c)

ϕ(pk)

ϕ(p)
,

which also coincides with the assertion. If ℓ ≥ 2, then by Theorem 9.4 of [14] we
have

q
∑

a=1
(a(c−a),q)=1

χ(a) = pk−ℓ







pℓ

∑

a=1

χ∗(a)−

pℓ

∑

a=1
a≡c (mod p)

χ∗(a)






= 0,

which again satisfies the claimed equality. �

Proof of Theorem 4. By using the symmetry between ℓ and m, we have

∑

n≤x
n≡c (mod q)

G(n) =
∑

ℓ+m≤x
ℓ+m≡c (mod q)

(ℓm,q)=1

Λ(ℓ)Λ(m) +O

(

∑

ℓ+m≤x
ℓ+m≡c (mod q)

(m,q)>1

Λ(ℓ)Λ(m)

)

.

This error term can be estimated as
∑

ℓ+m≤x
ℓ+m≡c (mod q)

(m,q)>1

Λ(ℓ)Λ(m) ≪
∑

ℓ≤x

Λ(ℓ)
∑

m≤x
(m,q)>1

Λ(m) ≪ x(log qx)2,

using the same estimate as in (2.2). Thus it suffices to consider

∑

ℓ+m≤x
ℓ+m≡c (mod q)

(ℓm,q)=1

Λ(ℓ)Λ(m) =
1

ϕ(q)2

q
∑

a=1
(a(c−a),q)=1

∑

χ1,χ2 (mod q)

χ1(a)χ2(c− a)S(x;χ1, χ2).

We apply Lemma 10 to the right-hand side, and evaluate the resulting expression.
Clearly,

1

ϕ(q)2

q
∑

a=1
(a(c−a),q)=1

∑

χ1,χ2 (mod q)

δ0(χ2)(1 + δ1(χ1)q
1/2)x(log qx)2 ≪ x(log qx)2.
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Also,
q
∑

a=1
(a(c−a),q)=1

1 = ϕ(q)2Sq(c)(6.5)

by Lemma 11 with the principal character. Therefore, it suffices to show that

R =
1

ϕ(q)2

q
∑

a=1
(a(c−a),q)=1

∑

χ1,χ2 (mod q)

χ1(a)χ2(c− a)R(x;χ1, χ2) ≪ x2B
∗

q (log qx)5.

We have
∑

χ1,χ2 (mod q)

χ1(a)χ2(c− a)R(x;χ1, χ2)

=

∫ 1

0





∑

χ1 (mod q)

χ1(a)W (α, χ1)









∑

χ2 (mod q)

χ2(c− a)W (α, χ2)



T (−α)dα.

Next the Cauchy–Schwarz inequality gives

R ≪
1

ϕ(q)2

q
∑

a=1
(a(c−a),q)=1

∫ 1/2

−1/2

∣

∣

∣

∣

∣

∣

∑

χ (mod q)

χ(a)W (α, χ)

∣

∣

∣

∣

∣

∣

2

|T (α)|dα.

By the orthogonality of characters, we have

q
∑

a=1
(a(c−a),q)=1

∣

∣

∣

∣

∣

∣

∑

χ (mod q)

χ(a)W (α, χ)

∣

∣

∣

∣

∣

∣

2

≪

q
∑

a=1
(a,q)=1

∣

∣

∣

∣

∣

∣

∑

χ (mod q)

χ(a)W (α, χ)

∣

∣

∣

∣

∣

∣

2

= ϕ(q)
∑

χ (mod q)

|W (α, χ)|2.

Thus, by Lemma 9,

R(χ) ≪
1

ϕ(q)

∑

χ (mod q)

J(χ) ≪ x2B
∗

q (log qx)5.

Summing up the above calculations, we complete the proof. �

7. The connection between S(x; q, a, b) and GRH

Consider the Dirichlet series

F (s) = F (s; q, a, b) =

∞
∑

n=1

G(n; q, a, b)

ns
,

which converges absolutely and is analytic for σ > 2. Analytic properties of F (s)
have been studied by Egami and the third author [6], the first author and Schlage-
Puchta [4] (in the case q = 1), and by Rüppel [15] (general case). In particular, the
connection between S(x; q, a, b) and GRH can be understood through the analytic
continuation of F (s). We first find the meromorphic continuation of F (s) via The-
orem 2 in the following proposition. This type of result , under GRH was obtained
in [6], [15].
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Proposition 3. The function F (s) can be continued meromorphically to the half
plane σ > 2Bq. Its poles in the half plane σ > 2Bq are

(i) a simple pole at s = 2 with residue ϕ(q)−2,
(ii) a possible pole at s = ρq + 1 of at most order 1 with residue

r(ρq) = −
1

ϕ(q)2
1

ρq

∑

χ (mod q)
L(ρq,χ)=0

(χ(a) + χ(b))mχ(ρq),

where ρq is a zero of
∏

χ (mod q) L(s, χ) with 0 < ℜρq < 1 and mχ(ρq) is the

multiplicity of ρq as a zero of L(s, χ).

In particular, assuming DZC, Bq < 1 and χ(a) + χ(b) 6= 0 for all χ (mod q) we
obtain

1 +Bq = inf

{

σ0 ≥
3

2

∣

∣

∣

∣

F (s)−
1

ϕ(q)2
1

s− 2
is analytic on σ > σ0

}

.

Proof. From Theorem 2, we have

(7.1) S(x; q, a, b) =
x2

2ϕ(q)2
+
∑

ρq

r(ρq)
xρq+1

ρq + 1
+ E(x; q, a, b)

for x ≥ 1, where

(7.2) E(x; q, a, b) ≪ x2Bq (log 2qx)5

since B∗
q ≤ Bq. For σ > 2, we have

F (s) =

∫ ∞

1

u−sdS(u; q, a, b) = s

∫ ∞

1

S(u; q, a, b)u−s−1du

with integration by parts, because S(x; q, a, b) = 0 for x < 4. Substitute (7.1) in
the right-hand side of the above. The swapping of summation and integration is
justified due to absolute convergence. Therefore we have

F (s) =
s

2ϕ(q)2(s− 2)
+
∑

ρq

r(ρq)s

(ρq + 1)(s− ρq − 1)
+ s

∫ ∞

1

E(u; q, a, b)u−s−1du

(7.3)

=
1

ϕ(q)2(s− 2)
+
∑

ρq

r(ρq)

s− ρq − 1
+ s

∫ ∞

1

E(u; q, a, b)u−s−1du+ C1(q, a, b),

where

C1(q, a, b) =
1

2ϕ(q)2
+
∑

ρq

r(ρq)

ρq + 1

and the sum converges due to Lemma 3 to yield a certain constant depending on
a, b, q. The sum on the right-hand side of (7.3) converges uniformly for s ∈ C\{ρq+
1} and determines a meromorphic function on C. (Since for |ℑρq| = |γχ| > 2|ℑs|,
we have |ρq +1− s| ≥ |γχ −ℑs| ≥ |γχ|/2, then the compact uniformly convergence
can be justified by Lemma 3. Further note that in Lemma 3, each zero appears with
multiplicity.) The first and second term on the right-hand side of (7.3) already give
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the announced residues of the proposition. Using the estimate (7.2) we see that the
integral

∫ ∞

1

E(u; q, a, b)u−s−1du

converges uniformly on the half plane σ > 2Bq and so it defines an analytic function
on σ > 2Bq. This completes the proof of the meromorphic continuation.

For the last assertion, the inequality

1 +Bq ≥ inf

{

σ0 ≥
3

2

∣

∣

∣

∣

F (s)−
1

ϕ(q)2
1

s− 2
is analytic on σ > σ0

}

follows from the above meromorphic continuation, since 1 + Bq ≥ 2Bq. We next
prove the reverse inequality. If Bq = 1/2, then the implication is trivial. Hence we
can assume that 1/2 < Bq < 1 and we have max(2Bq, 3/2) < 1 + Bq, so that we
can take ε > 0 such that max(2Bq, 3/2) < 1 + Bq − ε. By the definition of Bq, we
can find a zero ρq such that 1/2 < Bq − ε < ℜρq. Then by the above meromorphic
continuation, we have a possible pole of F (s) of residue r(ρq) at ρq + 1. (Note
that we do not necessarily have meromorphic continuation on σ > 1 + Bq − ε if
Bq = 1, since then Bq +1− ε = 2Bq − ε < 2Bq.) By DZC and the assumption that
ℜρq > 1/2 we have

r(ρq) = −
1

ϕ(q)2
1

ρq
(χ(a) + χ(b))m,

where m ≥ 1. Since we have assumed that χ(a) + χ(b) 6= 0 for all χ (mod q), this
residue is non-zero so that ρq+1 is a pole of F (s) in the half plane σ > 1+Bq−ε >
3/2. This implies

1 +Bq − ε ≤ inf

{

σ0 ≥
3

2

∣

∣

∣

∣

F (s)−
1

ϕ(q)2
1

s− 2
is analytic on σ > σ0

}

so that on letting ε→ 0 we obtain the reverse inequality. �

We can now prove Theorem 1.

Proof of Theorem 1. First we prove the assertion (1). If q > x(1−Bq)/2(log x), then
the left-hand side of (1.2) is

≤









∑

ℓ≤x
ℓ≡a (mod q)

Λ(ℓ)

















∑

m≤x
m≡b (mod q)

Λ(m)









≪
(x log x)2

q2
+ (log x)2 ≪ x1+Bq .

Also the first term on the right-hand side of (1.2) is ≪ x1+Bq . Thus (1.2) holds
trivially. Therefore, we may assume q ≤ x(1−Bq)/2(log x). By using Lemma 3,

1

ϕ(q)2

∑

χ (mod q)

(χ(a) + χ(b))
∑

ρχ

xρχ+1

ρχ(ρχ + 1)

≪
xBq+1

ϕ(q)2

∑

χ (mod q)

(

(log 2q)2 + δ1(χ)q
1/2(log q)2

)

≪ x1+Bq .

Therefore, by Theorem 2, we obtain

S(x; q, a, b) =
x2

2ϕ(q)2
+O(x1+Bq + x2B

∗

q (log x)5).
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If 1−Bq > 5 log log x/ log x, then we see that

x2B
∗

q (log x)5 ≤ x1+Bq · x−(1−Bq)(log x)5 ≤ x1+Bq

so that (1.2) follows. Thus we may assume 1 − Bq ≤ 5 log log x/ log x. Further

using the assumption on q we find that q ≤ x(1−Bq)/2(log x) ≤ (log x)7/2. Thus, by
recalling the definition of η = ηq(x) and choosing ε = 1/7, we obtain

B∗
q ≤ 1− η ≤ 1−

c1
max((log x)1/2, (log x)4/5)

= 1−
c1

(log x)4/5
,

where c1 = c1(1/7) is an absolute constant. This gives

x2B
∗

q (log x)5 ≤ x1+B∗

q (log x)5 exp(−c1(log x)
1/5) ≪ x1+Bq .

Therefore we always arrive at (1.2) .
We next prove the assertion (2). Assume that the formula (1.3) holds, i.e.,

(7.4) S(x; q, a, b) =
x2

2ϕ(q)2
+ Ed(x), Ed(x) ≪q x

1+d+ε

for arbitrary ε > 0. Now we use this formula to obtain the meromorphic continua-
tion of F (s). In the same manner as in the proof of Proposition 3 we have

F (s)−
1

ϕ(q)2
1

s− 2
= s

∫ ∞

1

Ed(u)u
−s−1du+

1

2ϕ(q)2

for σ > 2. Then, by (7.4), the right-hand side gives an analytic function on σ > 1+d.
Therefore under the last assertion of Proposition 3, we have Bq ≤ d provided DZC,

Bq < 1 and that χ(a) + χ(b) 6= 0 for any χ (mod q). The supplement for a = b is
proved in Section 8. This now completes the proof. �

We next move on to Theorem 3. The strategy is the same as in the proof of
Theorem 1. We consider the Dirichlet series

F1(s) = F1(s; q; c) =

∞
∑

n=1
n≡c (mod q)

G(n)

ns
.

The meromorphic continuation of F1(s) is obtained via Theorem 4.

Proposition 4. The function F1(s) can be continued meromorphically to the half
plane σ > 2Bq. Its poles in the half plane σ > 2Bq are

(i) a possible pole at s = 2 of order at most 1 with residue Sq(c),
(ii) a possible pole at s = ρq + 1 of at most order 1 with residue

r1(ρq) = −
2

ϕ(q)2
1

ρq

∑

χ (mod q)
L(ρq,χ)=0

mχ(ρq)

q
∑

a=1
(a(c−a),q)=1

χ(a),

where ρq is a zero of
∏

χ (mod q) L(s, χ) with 0 < ℜρ < 1.

Proof. This can be proven in the same manner as Proposition 3.
�

We also require the following lemma.
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Lemma 12. For x ≥ 2 and positive integers c, q, we have

∑

n≤x
n≡c (mod q)

J(n) =
Sq(c)

2
x2 +O(x log x),

where the implicit constant is absolute.

Proof. We first consider the case of (2, q) ∤ c, i.e. q is even while c is odd. Since there
is no even number n ≡ c (mod q) the sum on the left-hand side is = 0 since J(n) = 0
for odd n. Also, Sq(c) = 0 by definition in this case. Thus the assertion trivially
holds for (2, q) ∤ c. We next consider the case (2, q) | c. We use an expression

J(2N) = 2C2N
∑

d|N
d: odd

µ(d)2

ϕ2(d)
, ϕ2(n) =

∏

p|n

(p− 2),

to obtain

(7.5)
∑

n≤x
n≡c (mod q)

J(n) =
∑

2N≤x
2N≡c (mod q)

J(2N) = 2C2

∑

d≤x
d: odd

µ(d)2d

ϕ2(d)

∑

2dn≤x
2dn≡c (mod q)

n.

Let q1 = q/(2d, q). The congruence

2dn ≡ c (mod q)

has a solution, say c1 (mod q1) if (2d, q) | c, and no solution if (2d, q) ∤ c. Moreover,
the condition (2d, q) | c is equivalent to (d, q) | c since d is odd and (2, q) | c. Hence
from (7.5), we have

(7.6)

∑

n≤x
n≡c (mod q)

J(n) = 2C2

∑

d≤x/2
d: odd
(d,q)|c

µ(d)2d

ϕ2(d)

∑

n≤x/2d
n≡c1 (mod q1)

n

=
C2x

2

4q

∑

d≤x/2
d: odd
(d,q)|c

µ(d)2(2d, q)

dϕ2(d)
+O









x
∑

d≤x/2
d: odd

µ(d)2

ϕ2(d)









.

As for the second term on the right-hand side of (7.6), we have

(7.7)
∑

d≤x/2
d: odd

µ(d)2

ϕ2(d)
≤

∏

2<p≤x

(

1 +
1

p− 2

)

≪ log x.

For the first term on the right-hand side of (7.6), we have

(7.8)
C2

4q

∑

d≤x/2
d: odd
(d,q)|c

µ(d)2(2d, q)

dϕ2(d)
=
C2 · (2, q)

4q

∑

d: odd
(d,q)|c

µ(d)2(d, q)

dϕ2(d)
+O









∑

d>x/2
d: odd

µ(d)2

dϕ2(d)









.
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This remainder term is estimated by using (7.7) as

(7.9)
∑

d>x/2
d: odd

µ(d)2

dϕ2(d)
=
∑

d>x/2
d: odd

µ(d)2

ϕ2(d)

∫ ∞

d

du

u2
≤

∫ ∞

x/2







∑

d≤u
d: odd

µ(d)2

ϕ2(d)







du

u2
≪

log x

x
.

On the other hand we have

C2 · (2, q)

4q

∑

d: odd
(d,q)|c

µ(d)2(d, q)

dϕ2(d)
=
C2 · (2, q)

4q

∏

p>2
p|(q,c)

p− 1

p− 2

∏

p>2
p∤q

(p− 1)2

p(p− 2)
.

Since the definition of C2 is

C2 = 2
∏

p>2

(

1−
1

(p− 1)2

)

= 2
∏

p>2

p(p− 2)

(p− 1)2
,

the right-hand side of the above is equal to

=
(2, q)

2q

∏

p>2
p|(q,c)

p

p− 1

∏

p>2
p|q
p∤c

p(p− 2)

(p− 1)2
=

Sq(c)

2
(7.10)

since (2, q) | c. Substituting (7.9) and (7.10) into (7.8), we have

C2

4q

∑

d≤x
d: odd
(d,q)|c

µ(d)2(2d, q)

dϕ2(d)
=

Sq(c)

2
+O

(

log x

x

)

.

Combining this with (7.7) and (7.6), we obtain the lemma. �

We finally prove Theorem 3.

Proof of Theorem 3. We first prove (1). By using Lemma 11, the second term on
the right-hand side of Theorem 4 is

=
2

ϕ(q)2

∑

χ (mod q)

∑

ρχ

xρχ+1

ρχ(ρχ + 1)







q
∑

a=1
(a(c−a),q)=1

χ(a)







≪
xBq+1

ϕ(q)

∑

χ (mod q)

1

ϕ(q∗)

∑

ρχ

1

|ρχ(ρχ + 1)|
.

By Lemma 3, this can be estimated as

≪ x1+Bq
q2/3

ϕ(q)

∑

χ (mod q)

1

ϕ(q∗)
≪ x1+Bq

q2/3

ϕ(q)

∑

q∗|q

1

ϕ(q∗)

∑∗

χ (mod q∗)

1

≤ x1+Bq
q2/3τ(q)

ϕ(q)
≪ x1+Bq

where the summation symbol with ∗ denotes the sum over primitive characters and
τ(q) denotes the number of divisors of q. Thus Theorem 4 gives

∑

n≤x
n≡c (mod q)

G(n) =
Sq(c)

2
x2 +O(x1+Bq + x2B

∗

q (log qx)5).
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Then an argument similar to that for (1) of Theorem 1 gives (1.9).
We next prove (2). Assume that formula (1.10) holds. Then by Lemma 12,

(7.11)
∑

n≤x
n≡c (mod q)

G(n) =
Sq(c)

2
x2 + Ed(x), Ed(x) ≪ x1+d+ε

for arbitrary ε > 0. As in the case of F (s) we can obtain the meromorphic con-
tinuation of F1(s) to the half plane σ > 1 + d, which has only one possible pole at
s = 2. We compare this analytic continuation with Proposition 4. By assumption
(a) we have Bq = ℜρ0 < 1 so that 2Bq < 1 + ℜρ0. Thus by using assumption (b)
F1(s) has a possible pole of order ≤ 1 with residue

−
2

ϕ(q)2
m

ρ0

q
∑

a=1
(a(c−a),q)=1

χ(a),

where m ≥ 1. By Lemma 11, we find that this residue is non-zero provided under
the assumption (c): q∗ is squarefree, (c, q∗) = 1, and yet another assumption

2 ∤ q or 2|q∗c,

the last of which is assured by the condition (2, q) | c of Theorem 3. Therefore
ρ0 + 1 is a pole of F1(s). By comparing the position of this pole and the analytic
continuation we have 1 +Bq ≤ 1 + d. This completes the proof. �

8. Exclusion of Bq = 1 for a = b

In this last section, we exclude the possibility of Bq = 1 for a = b in Theorem 1
(2) following an idea of Ruzsa.

Let Ga,q(n) = G(n; q, a, a), so that S(x; q, a, a) =
∑

n≤xGa,q(n).

Then our assumption (1.3) in Theorem 1 (2) reads

(8.1) S(x; q, a, a) =
x2

2ϕ(q)2
+Oq(x

1+d+ε)

for some 1/2 ≤ d < 1 and any ε > 0. We prove that (8.1) together with DZC
implies that Bq < 1.

Proof. Step 1. For |z| < 1 let

Fa,q(z) =
∑

n≥1
n≡a (q)

Λ(n)zn, so F 2
a,q(z) =

∑

n≥1

Ga,q(n)z
n.

Then, since (1− z)−1 = 1 + z + z2 + · · · , we obtain an identity

1

1− z
F 2
a,q(z) =

∑

n≥1









∑

i+j=n
i≥1, j≥0

Ga,q(i)









zn =
∑

n≥1

S(n; q, a, a)zn.

From (8.1) we deduce that

(8.2)
1

1− z
F 2
a,q(z) =

1

2ϕ(q)2

∑

n≥1

n2zn +Oq





∑

n≥1

n1+d+ε|z|n



 .
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Using the derivative of the geometric series twice we find that

2

(1− z)3
=
∑

n≥1

n2zn +O

(

∞
∑

n=1

n|z|n

)

for |z| < 1 so we can evaluate the main term in (8.2). The above error terms are
estimated with the help of the following Lemma.

Lemma 13. For a sequence of positive real numbers (an)
∞
n=0 satisfying

(8.3) A(x) :=
∑

n≤x

an ≤ Cxκ

for all x ≥ 0 with some constants C, κ ≥ 0, we have

(8.4)
∑

n≥0

ane
−n/X ≤ CΓ(κ+ 1)Xκ.

for any real number X ≥ 1.

Proof. By partial summation and (8.3), the above series is expressed as

∑

n≥0

ane
−n/X =

1

X

∫ ∞

0

e−u/XA(u)du.

Also by (8.3), we estimate this integral by

≤
C

X

∫ ∞

0

e−u/Xuκdu = CXκ

∫ ∞

0

e−uuκdu = CΓ(κ+ 1)Xκ.

Thus the lemma follows. �

In what follows we work on the circle |z| = R with R = e−1/N for a large positive
integer N . Since

∑

n≤x n
1+d+ǫ ≪ x2+d+ǫ, by Lemma 13, we continue (8.2) by

1

1− z
F 2
a,q(z) =

1

ϕ(q)2(1− z)3
+Oq

(

NC
)

, C := 2 + d+ ε < 3

on the circle |z| = R. Therefore, we obtain

Fa,q(z)
2 =

1

(1− z)2ϕ(q)2
+Oq

(

|1− z|NC
)

.

Note that the second term on the right-hand side is smaller than the first term if

(8.5) |1− z| ≤ cN−C/3

with sufficiently small constant c > 0 depending only on q and d. Thus on the arc
|z| = R with (8.5), which we may call a major arc on |z| = R, we can take the
complex square root of the formula for Fa,q(z) which yields

(8.6) Fa,q(z) = ±
1

(1− z)ϕ(q)
+Oq(|1− z|2NC)

as an asymptotic formula for all z on the major arc. Here, the same sign ± is
kept on the whole major arc since Fa,q(z) is continuous. Because there are only
non-negative coefficients, the left-hand side in (8.6) is non-negative for the choice
z = e−1/N . With this choice, the main term in (8.6) is real and therefore must also
be non-negative. Therefore, the sign ± on the right-hand side of (8.6) is +.
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At this point we notice that we are unable to obtain a similar asymptotic formula
when a 6= b. The square root step here shows that using this method we can prove
the exclusion of Bq = 1 in Theorem 1 (2) only when a = b.

Step 2. Now we use the kernel

(8.7) K(z) = z−N−1 + z−N + · · ·+ z−2 = z−N−1 1− zN

1− z
.

Then by using Cauchy’s integral formula, we obtain

ψ(N ; q, a) =
1

2πi

∫

|z|=R

Fa,q(z)K(z)dz, N =

∫

|z|=R

1

1− z
K(z)dz.

Thus we deduce that

(8.8) ψ(N ; q, a) =
N

ϕ(q)
+

1

2πi

∫

|z|=R

(

Fa,q(z)−
1

(1− z)ϕ(q)

)

K(z)dz.

From the second expression of K(z) in (8.7), we see that K(z) ≪ |1− z|−1. There-
fore, on the major arc (8.5) of length O(N−C/3) we insert the asymptotic formula
(8.6) and the contribution to this integral is O(NC−2C/3) = O(NC/3) with C/3 < 1.

Step 3. For the rest of the circle the minor arc where |1 − z| > cN−C/3 we
proceed with the Cauchy–Schwarz inequality and apply the Parseval identity.

By the Parseval identity, we obtain the estimate over the full arc

(8.9)

∫

|z|=R

∣

∣

∣

∣

Fa,q(z)−
1

(1− z)ϕ(q)

∣

∣

∣

∣

2

dz ≪
∑

n≥0

(Λ(n) + 1)2e−2n/N ≪ N1+ε,

where we used the estimate
∑

n≤x

(Λ(n) + 1)2 ≪ x log x≪ x1+ε

and Lemma 13.
On the other hand, we use the decay of the kernel K(z) on the minor arc. By

using the estimate K(z) ≪ |1− z|−1, we start with

I =

∫

|z|=R

|1−z|>cN−C/3

|K(z)|2dz ≪

∫

|z|=R

|1−z|>cN−C/3

dz

|1− z|2
.

Now we use the parametrization z = Reiα = e−1/N+iα with −π ≤ α ≤ π. On the
minor arc, we have

N−C/3 ≪ |1− e−1/N+iα| ≪

∣

∣

∣

∣

−
1

N
+ iα

∣

∣

∣

∣

≪
1

N
+ |α|

so, by recalling the fact that C < 3, we have |α| ≥ c1N
−C/3 with some small c1 > 0

depending only on q and d. Also, note that

(8.10) |1 − z|2 = |1− e−1/N cosα+ ie−1/N sinα|2 = 1 + e−2/N − 2e−1/N cosα.

By using the inequality of the arithmetic and geometric mean

2
∣

∣

∣e−1/N cosα
∣

∣

∣ ≤ e−2/N + (cosα)2,

we find that

|1− z|2 ≥ 1− (cosα)2 = (sinα)2.
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If |α| ≥ π/2, then cosα < 0 so (8.10) implies |1− z|2 ≥ 1. This yields

I ≪

∫

c1N−C/3<|α|≤π

dα

|1−Reiα|2
≪

∫

c1N−C/3<|α|≤π/2

dα

(sinα)2
+ 2

∫

π/2<|α|≤π

dα

≪

∫

c1N−C/3<|α|≤π/2

dα

α2
+ 1 ≪ NC/3.

Putting everything together the Cauchy–Schwarz inequality gives the minor arc
estimate for the integral in (8.8) as

≪

(

∫

|z|=R

∣

∣

∣

∣

Fa,q(z)−
1

(1 − z)ϕ(q)

∣

∣

∣

∣

2

dz

)1/2

I1/2 ≪ N1/2+C/6+ε

with 1/2+C/6 < 1. This together with the major arc estimate allows us to conclude
that

ψ(N ; q, a)−
N

ϕ(q)
≪ Nε(NC/3 +N1/2+C/6).

The exponent of N is < 1 for small ε > 0. In the explicit formula for

ψa,q(N) =
1

ϕ(q)

∑

χ(q)

χ̄(a)ψ(N,χ)

that we obtain by inserting the explicit formula for ψ(N,χ) from Lemma 4 with
T = N and assuming DZC, no two terms Nρχ/ρχ will cancel out for different
characters. We conclude that Bq < 1. �
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