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APPL I ED PHYS ICS

The fundamental mechanisms of the Korotkoff sounds
generation
Jerome Baranger1*, Olivier Villemain1, Guillaume Goudot1,2, Alexandre Dizeux1, Heiva Le Blay1,
Tristan Mirault2, Emmanuel Messas2, Mathieu Pernot1, Mickael Tanter1*

Blood pressuremeasurement is themost widely performed clinical exam to predict mortality risk. The gold stan-
dard for its noninvasive assessment is the auscultatory method, which relies on listening to the so-called
“Korotkoff sounds” in a stethoscope placed at the outlet of a pneumatic arm cuff. However, more than a
century after their discovery, the origin of these sounds is still debated, which implies a number of clinical lim-
itations. We imaged the Korotkoff sound generation in vivo at thousands of images per second using ultrafast
ultrasound. We showed with both experience and theory that Korotkoff sounds are paradoxically not sound
waves emerging from the brachial artery but rather shear vibrations conveyed in surrounding tissues by the
nonlinear pulse wave propagation. When these shear vibrations reached the stethoscope, they were synchro-
nous, correlated, and comparable in intensity with the Korotkoff sounds. Understanding this mechanism could
ultimately improve blood pressure measurement and provide additional understanding of arterial mechanical
properties.
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INTRODUCTION
Blood pressure (BP) measurement is a medical act of prime impor-
tance in clinical practice. Among the pathologies whose diagnostics
rely on accurate BP measurements, hypertension is one of the most
prevalent in western countries, affecting up to one-third of adults
(1), with a continuous relationship between BP and cardiovascular
events (2). Incorrect diagnostics can lead to a higher risk of mortal-
ity due to overtreatment or lack of treatment (3, 4). For this reason,
regular BP measurement in the doctor ’s office is recommended
whenever possible (5). Therefore, it is essential to develop noninva-
sive, robust, and widely available BP assessment methods (6).
Nicolai S. Korotkoff brought one of the most substantial contribu-
tions in 1905 by discovering natural sounds from arteries that gave
rise to the so-called auscultatory method. Briefly, it consists of
wrapping a pneumatic cuff around the participant’s arm. The cuff
inflation above the systolic BP (SBP) occludes the brachial artery
and hence stops the flow through the vessel. As the cuff is gradually
deflated, blood flow is reestablished and accompanied by the so-
called Korotkoff sounds (KSs), which can be heard with a stetho-
scope held over the brachial artery at the distal extremity of the
cuff (7). SBP is measured when a first tapping sound is heard in
the stethoscope (named KS phase 1), and diastolic BP (DBP) is
reached when there is no sound anymore (KS phase V) (7).
Despite the advent of automatic oscillometric devices (8) or
Doppler techniques (9) not based on KSs, the auscultatory
method remains the gold standard for noninvasive BP measure-
ments (10–12). Therefore, the question of the origin of the KSs nat-
urally arises.

Extensive studies have already proposed different theories for
KSs origin. Among these, it was suggested that KSs are the result
of a water hammer phenomenon in the brachial artery (13), a

slight pressure dip shortly preceding the SBP upstroke (named
the preanacrotic wave) (14–16), a collapse of cavitation bubbles in
the arterial lumen (17), blood flow instability causing arterial wall
fluttering (18) or “pistol shot” sounds (19), pulse wave distortion
generating audible harmonics in arterial BP (20), and arterial wall
vibrations modeled as dynamic instability (21, 22) or observed by
ultrasound (23–25). Despite the variety of potential mechanisms
proposed by these studies, they all share a characteristic limitation
in their methodology: They assessed the physical parameters (pres-
sure, flow, and wall motion) at discrete locations along the artery.
This limitation was mainly due to a constraint of most medical
imaging systems, unable to track such transient phenomena in
both space and time at thousands of frames per second.

Nevertheless, the reason for studying this phenomenon goes
beyond simple scientific curiosity, as the auscultatory method has
several shortcomings related to KSs themselves. In particular,
DBP may be challenging to measure, as the KS is progressively
muffled before silencing. Concerning SBP assessment, several lim-
itations seem to exist in severely pathological cases, exposing to in-
creased BP measurement variability (26). Uncovering the
mechanism of KSs formation would provide a better understanding
of their use in BP measurement.

Here, we managed to observe the entire section of the brachial
artery affected by the arm cuff compression during KSs generation
by leveraging the high spatiotemporal resolution of ultrafast ultra-
sound imaging (UUI). Unlike conventional devices using scanning
focused beams of ultrasound, UUI systems use unfocused waves to
reconstruct a wide field of view with very few transmits (27). The
resulting frame rate can reach 10,000 images per second, to be com-
pared with the typical 50 images per second of conventional
methods. For this study, we designed a setup such that the brachial
artery of healthy volunteers could be imaged along its longitudinal
axis, under and outside the arm cuff, with a temporal resolution
lower than 1 ms and sensitivity to motions as low as 3 μm. The mea-
sured physical parameters included arterial wall motion, tissue dis-
placements, blood flow, and tissue stiffness. We compared them to
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the KSs acquired simultaneously with an electronic stethoscope.
These direct observations of artery and tissue displacements
during the pulse wave propagation in the compressed artery in
this spatiotemporal range provided an accurate physical and theo-
retical understanding of the KSs origin.

RESULTS
Tracking the arterial wall motion
We first investigated the role of arterial wall motion in the genera-
tion of KSs. Using a pressure cuff with a strap closure (17), we in-
serted a linear ultrasound transducer between the cuff straps to
image the artery at three different locations and at different cuff
pressure levels (Fig. 1A). At each transducer ’s location, UUI se-
quences were acquired. The sequences were triggered by the R
wave of an electrocardiogram (ECG). Having this shared time
origin made it possible to place side by side the acquisitions from
different locations. This enabled to virtually reconstruct an ultra-
sound movie of the brachial artery over a 7.2-cm longitudinal
segment, as if it had been acquired during a single cardiac cycle.
From the same UUI dataset, both anatomic grayscale B-mode
images and tissue Doppler axial velocities could be derived.

Knowing the initial position of the arterial wall with B mode
(Fig. 1B) and its dynamics with tissue Doppler, it was possible to
follow the arterial walls along the cardiac cycle and to compare
their motion with the stethoscope signal recorded at the distal
cuff outlet.

Pulse wave and stethoscope signal
The results in Fig. 1 were acquired on a healthy 30-year-old male
volunteer and at given cuff pressure Pcuff = 90 mmHg. Similar ob-
servations were made for all Pcuff values between SBP and DBP and
are reported in fig. S1. This observation was characteristic, and
similar results were found in all other healthy volunteers. The
axial displacement and the velocity time courses of Fig. 1 (C and
D) revealed the pulse wave propagation in the upper arterial wall
following systolic heart contraction. For the rest of the article, all
mentions to the arterial wall implicitly refer to the upper wall, the
closest to the transducer surface. The pulse wave velocity (PWV)
was derived from the delay between the different time courses
and was of 1.2 m/s for this participant and cuff pressure.

The first notable result was the high wall velocity values (up to 26
mm/s in this example) as compared to a control situation without
any external compression (~1 mm/s). We explain this by

Fig. 1. Arterial wall velocity time course under the stethoscope is highly correlated to the KS. (A) Experimental setup. (B) B-mode images corresponding to the three
transducers’ positions, with dashed pads corresponding to the sections not imaged between each position. The brachial artery lumen is identified in red. The blue crosses
identify 24 points in the upper wall. (C) Corresponding axial displacement and (D) axial velocity time courses. I, incident pulse wave; R, reflected wave. The KS from the
stethoscope is plotted in orange. (E) NCCof the band-pass–filtered velocity time courses and the KS. rNCC is themaximumof the NCC, corresponding to a distance δxNCC to
the center of the probe and to a signal delay of δtNCC. The corresponding wall velocity time course SNCC is reported in blue in (F).
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considering the relationship between vessel compliance (defined as
volume change with BP) and transmural pressure (defined as the
difference between BP and cuff pressure). Without cuff compres-
sion, the BP radially stresses the arterial walls, but their constitutive
collagen fibers are poorly stretchable in this tensile state and at phys-
iologic BP ranges (28). This allows little volume change with pres-
sure variation, in other words, low compliance and high stiffness [in
the sense of functional stiffness as defined by Segers et al. (28)].
However, when the cuff pressure is in the range of SBP and DBP,
it counterbalances the BP stress, bringing the artery to a less stiff
and more deformable state. When the transmural pressure
becomes negative (cuff pressure higher than SBP), the artery can
even collapse. Therefore, around zero transmural pressure, the com-
pliance of the artery strongly increases [see works by Drzewiecki
et al. (20, 29) for graphical illustrations], and the arterial stiffness
strongly decreases, as will be shown here. Hence, in our experiment,
when the pulse wave entered the artery segment compressed by the
cuff, it reached a highly compliant artery and consequently gener-
ated strong displacements observed in Fig. 1C.

Second, the pulse wave appeared to be partially reflected at the
distal cuff extremity [Fig. 1 (C and D), R line]. This phenomenon
was also visible in movies S1 and S2 and was present as long as Pcuff
was between SBP and DBP. The reflection occurred precisely where
the artery transitioned from a state where it was under pressure
from the cuff to its basal out-of-cuff state. In line with previous
studies (30), we conjectured that the discontinuity of the artery stiff-
ness and its diameter change at the extremity of the cuff induced this
reflection.

Third, the evolution of the pulse wave time profile revealed a dis-
persive propagation. It was noticeable that the wavefront steepened
as the distance to the proximal inlet of the cuff increased.

Last, the arterial wall velocity looked correlated and synchronous
to the KS at the distal edge of the cuff, particularly right under the
stethoscope. This was quantified using normalized cross-correla-
tion (NCC) between the wall velocities’ time courses and the KS.
Signals were first band-pass–filtered in the low-frequency audible
range where most KS energy lies (31). The maximum of the
cross-correlation rNCC was reached when comparing the KS and
the arterial wall velocity at a longitudinal abscissa δxNCC, defined
as respect to the center of the ultrasound probe in its distal position
(see Fig. 1A, position #3). This corresponded to the configuration
where the probe was aligned with the stethoscope. The associated
delay is denoted by δtNCC, and the corresponding delayed wall ve-
locity signal is denoted by SNCC (Fig. 1, E and F). In the example
shown in Fig. 1, δtNCC = 1 ms and δxNCC = 5.7 mm. This means
that the wall velocity signal that was the most similar to the KS
was almost synchronous with the KS and was located near the
center of the transducer, that is to say, near the center of the stetho-
scope. The signal SNCC reported in Fig. 1F was visually similar to the
KS plotted in Fig. 1C, and the quantitative comparison gave a high
correlation coefficient rNCC = 0.81. While both wall velocities and
displacements could be derived (Fig. 1, C and D), we focused on the
wall velocity as the stethoscope sound is linked to the velocity of its
diaphragm (32).

Correlation of wall velocity with KS
For the same participant, other SNCC obtained with different values
of Pcuff were compared to the KS recorded at these pressure levels
(Fig. 2A). Qualitatively, thewall velocity was highly similar to the KS

and displays the main features of the KS waveform. This trend was
quantitatively confirmed by analyzing 23 KSs and corresponding
UUI datasets acquired onN = 6 healthy volunteers at different pres-
sure levels. The corresponding signals are displayed in fig. S2 and
analyzed in table S1. On average, over the participant cohort, we re-
spectively obtained the following values for the maximum of NCC,
the location with respect to the center of the distal transducer, and
the corresponding lag (± their SD): rNCC = 0.87 ± 0.06, δxNCC =
−1.45 ± 5.88 mm, and δtNCC = −1.49 ± 4.90 ms. The high rNCC
values suggested that KS and wall velocities had a comparable wave-
form. δxNCC values near zero mean that the wall motion most
similar to the KS was near the center of the stethoscope. Last,
δtNCC close to zero means that the wall motion corresponding to
the KS was almost synchronous with it. From this quantitative anal-
ysis, we deduced that the KS has a strong spatial and temporal cor-
relation with the arterial wall axial velocity under the stethoscope.

Wall velocity amplitude versus KS intensity
The previous NCC analysis helped us identify and locate the poten-
tial source of the KS. However, it did not reflect the relative intensity
of KS and arterial wall velocities (Figs. 1, E and F, and 2A) due to the
normalization of the signals. We wanted to answer the question of
whether a loud KS corresponded to a high amplitude of arterial wall
velocity (a faint KS and low wall velocity, respectively). To perform
this comparison, we recorded several long audio tracks (60 s), each
containing multiple KSs acquired at different cuff pressures, and
compared them with the corresponding wall velocities acquired
under the stethoscope (Fig. 2B). We estimated the signal intensities
by extracting their root mean square (RMS) envelope (Fig. 2B) fre-
quently used to measure audio power (33, 34). By plotting the nor-
malized KS envelope as a function of the normalized wall velocity
envelope for each track, we quantitatively confirmed the linear re-
lationship between wall motion intensity and audio power in the
stethoscope (Fig. 2C and fig. S3 for individual track plots). The
least-square fitting of Fig. 2C was y = 0.921x + 0.045 with r2 =
0.88 (95% confidence interval: y = 0.915x + 0.044 and y = 0.926x
+ 0.047). In other words, the greater the arterial wall velocity, the
louder the KS. Movie S3 (with audio) qualitatively shows this sim-
ilarity between the KSs and the sounds derived from wall velocity.

Blood flow variation versus KS occurrence
As many past studies focused on the role of blood flow in KS gen-
eration, we proposed a simultaneous assessment of arterial wall ve-
locity and blood flow in the segment located under the stethoscope.
For a given participant and cuff pressure, tissue and blood signals
were derived from the sameUUI dataset (Fig. 2D). Doppler spectro-
gram reflecting blood flow was extracted from the vessel lumen
(Fig. 2E), while the arterial wall motion right above that point
was reported (Fig. 2F). Consistently with previous results, the KS
signal was synchronous with the arterial wall motion. However, in
this example, the blood flow only started to accelerate 38 ms after
the onset of the sound. This substantial delay made any hypothesis
linking KS and blood flow incompatible.

For some values of Pcuff lower than SBP, we observed that the
artery was not fully collapsed under the cuff (see movie S1, 90
mmHg). Moreover, we did not detect any of the strong transient
scattering event characteristics of cavitation bubbles imaged by ul-
trasound (35, 36).
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Sound propagation or shear propagation?
Previous results demonstrated the link between the arterial wall ve-
locity during the pulse wave propagation and the KS. The mecha-
nism of the transmission of this wall vibration to the stethoscope
had yet to be investigated. Intuitively, all past studies inferred that
the source of the KS was located in the artery or in its walls and that
a sound wave was radiating from that source to the nearby stetho-
scope. However, this mechanism is incompatible with our results.
The NCC results of Fig. 1E showed that even for arterial segments
located near the proximal edge of the cuff, the wall velocity signals
exhibit high NCC values with the KS in the audible range, but these
high NCC values were associated with high NCC temporal lags. For
instance, the wall velocities at the abscissa 30 mm reached a
maximum NCC coefficient of 0.78 for an NCC lag of −25 ms. In
other words, the vibrations of the proximal segments of the artery
under the cuff and the KS were similar but temporally distant by
dozens of milliseconds. With the hypothesis of a sound wave
between the KS source and the stethoscope and a typical speed of

sound of 1540 m/s in human soft tissue (37), we should have heard
the KS only 20 μs after the pulse wave had penetrated under the cuff.
Thus, there was a discrepancy between this sound-wave hypothesis
and our NCC analysis. We propose another mechanism compatible
with the observed timings: radial shear motion radiated in tissues by
the arterial pulse wave (Fig. 3A).

From Fig. 3 (C and E) and movies S1 and S2, we observed that
the arterial wall motions were transmitted to the surrounding
tissues [see movie S4 for a three-dimensional (3D) representation].
These radial tissue displacements propagated longitudinally. There-
fore, they constituted shear displacements in tissues whose speed
was driven by the PWV. This was confirmed by a shear-wave
time-of-arrival map (Fig. 3C), with the probe in the middle of the
cuff. The iso-delay lines were almost orthogonal to the artery axis,
which means that for a given abscissa along the artery, the wall
motions were transmitted to the tissue in the radial direction
(Fig. 3E). We hypothesized that these radial shear vibrations were
converted into compression when they reached the stethoscope

Fig. 2. Arterial wall velocity under the stethoscope is the source of KS. (A) KS at different pressure levels, compared to the associated wall velocity signal, slightly
shifted upward for clarity. For cuff pressure above SBP (130 mmHg) or below DBP (80 mmHg), no KSs were heard by definition. (B) Time course (top) and RMS envelope
(bottom) of a stethoscope track with three KSs, compared with thewall velocity under the stethoscope, during cuff deflation from 130 to 110mmHg. (C) RMS envelope of
stethoscope versus RMS envelope of wall velocity (14 stethoscope 60-s-long tracks, 40 KSs). Solid red line, fitted affinemodel; dashed red line, 95% confidence interval. (D)
Power Doppler of the artery over tissue B mode. The cuff pressure was 80 mmHg near the DBP (70 mmHg for this participant). The blood flows along the black arrow. (E)
Pulsed wave Doppler in the arterial lumen under the stethoscope and correspondingmean velocity. (F) Top: Wall velocity (in the audible range) acquired at the blue circle
in (D). Bottom: KS recorded in the stethoscope.
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diaphragm, hence creating the KS. As the PWV was much slower
than the speed of sound (range of meter per second versus kilome-
ter per second, respectively), this mechanism explains the previous-
ly stated paradox: The wall velocity at abscissa 30 mm was highly
similar to the KS waveform (i.e., high NCC values) but occurred
25 ms earlier than the KS. This 25-ms lag was precisely the time
needed by the shear wave to propagate from the considered abscissa
to the stethoscope, located approximately 30 mm farther in the lon-
gitudinal direction, with a PWV of 1.2 m/s (Fig. 3A). Note that our
results did not rule out the possibility of mode conversion of the
shear wave into a compression wave, but considering the relative in-
tensity and timings of the KS and the pulse wave, we can say that if
such mode conversion occurred, then it was not the source of
the KS.

Evanescent radial shear displacements
To better understand the propagative properties of these shear dis-
placements, we independently measured the stiffness of the muscle
surrounding the artery using shear wave elastography (SWE) (38).
With the same ultrafast ultrasound scanner, controlled shear waves
were induced in the tissue by applying an acoustic radiation force.
SWE consists of measuring the speed of these induced shear waves,
denoted by cSWE, and to convert them into Young’s modulus,

denoted by E. The values were collected for several cuff pressure
levels for tissue regions located inside the cuff and distal to the
cuff (see fig. S1). We observed that when the cuff pressure was
above 80 mmHg, the stiffness of the compressed tissue increased
above 110 kPa, corresponding to cSWE ≈ 6 m/s, whereas it was 50
kPa without compression (cSWE ≈ 4 m/s). Put differently, during an
increase of cuff pressure, surrounding tissues stiffened, whereas the
arterial wall softened (PWV from 5m/s down to 1.5m/s). The radial
shear motion generated in the tissue by the pulse wave was therefore
in a subsonic-like regime: Its speed was much slower than the speed
of induced shear waves freely propagating in the same material and
driven by the arterial pulsewave. Thus, this radial shear wave cannot
be considered as a classical shear wave generated into tissue, but it
corresponds to an evanescent wave with a radial exponential decay,
jointly propagating with the pulse wave of the arterial wall (39). This
radial exponential decay was confirmed in Fig. 3 (D and F). The ev-
anescent nature also explains why the tissue and arterial wall
motions were synchronous in the radial direction (Fig. 3, C and E).

Wall velocity frequency content
Now that we showed that KS originated from arterial wall velocity
and was transmitted to the stethoscope through an evanescent
radial shear wave mechanism, we investigated how the pulse wave

Fig. 3. The radial evanescent shear wavemechanism. (A) Time-of-flight (TOF) comparison under the hypotheses of a soundwave (top) and shear wave (bottom). (B) 3D
representation of the pulse wave in the artery and of the radial evanescent shear wave in the tissues. (C) Time of arrival of the shear wave in the tissue, overlaid on the
anatomical image. Zero delay is set as the bottom left corner of the map. Black isolines of delay are plotted every 1 ms. Transducer inside the cuff inflated at 100 mmHg,
between SBD and DBP. (D) Map of the RMS wave amplitude, normalized by the maximum over the field of view. Black isolines of amplitude are plotted with a step of 0.1.
(E) Axial velocity time courses of several tissue points, distributed along the segment drawn in (C) and (D). (F) Corresponding normalized RMS wave amplitude.
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propagation under the cuff affected the sound characteristics. The
space-resolved spectral analysis (Fig. 4A) confirmed the previously
conjectured nonlinear propagation of the pulse wave. Its fundamen-
tal frequency progressively shifted from 20 Hz in the proximal
region to 40 to 50 Hz at the distal outlet of the cuff, which corre-
sponded to the typical center frequency of KSs (31). The good ac-
cordance between the wall velocity spectrum at cuff distal edge and
the stethoscope signal spectrum led us to conclude that the frequen-
cy content of KSs was driven by the dispersive propagation of the
pulse wave under the cuff. Although wall velocity signals in proxi-
mal regions already had audible components close to the KSs, only
wall velocity signals in distal regions of the cuff exhibited the full
spectrum of the KSs.

Nonlinear propagation of the pulse wave: Theory
We also see in Fig. 4 that the power spectral density (PSD) of the
first harmonic increased with propagation distance (see for instance
Fig. 4A, 90 mmHg). This translated the steepening of the wavefront
that was previously observed in Fig. 1D. We can define a Mach
number for the pulse wave as the ratio between the maximum
wall velocity and the propagation speed of the pulse wave. Typically,
wall velocities reached tens of centimeters per second within the
pressurized cuff pressure to be compared to the basal situation
without cuff (~1 mm/s). On the contrary, PWV was down to 1
m/s with cuff pressure and up to 5 m/s without cuff. This means
that the Mach number typically increased from 10−3 without cuff
to 10−1 with cuff. Consequently, with this 100-fold increase of the
Mach number, high-order nonlinear effects become important and
affect the pulse wave shape.

Fig. 4. Nonlinearity of pulsewave propagation versus cuff pressure. (A) Power spectral density (PSD) of the arterial wall velocity for each abscissa along the artery and
for different cuff pressures, averaged over N = 6 participants. The dashed gray pads (not to scale) mark the nonimaged areas between each transducer positions. The
corresponding stethoscope signal PSD is shown on the right side. (B) Relative variation of the arterial lumen area, as a function of time and abscissa along the artery, for a
given participant at eight cuff pressure levels. Each surfacewas normalized by itsmaximum dA/dt value. Three characteristic curves at 20, 50, and 80% of themaximum are
plotted in red, green, and blue, respectively. (C) Projection of the characteristic curves on the distance-time plane. Data points appear as thick dots in the range of 0 to 17.9
mm of the graph. Linear regressions are plotted in solid red, green, and blue. (D) Theoretical and experimental shock distances as a function of cuff pressure. (E) Ten pulse
wave group velocity curves plotted for 10 participants, with averaged DBP and SBP values.
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We derived the theory for this nonlinear propagation of the
pulse wave in arteries located under the cuff (see Materials and
Methods). For this, we used the linearized equations of axisymmet-
ric flow in a flexible tube by considering small perturbations

∂tAþ ∂xQ ¼ 0
∂tQ ¼ �

AKp
ρ

dP
dA ∂xA

ð1Þ

where A is the tube area, P is the arterial pressure, ρ the blood
density, and Kp is a constant proportional to the bending stiffness.
The link dP

dA between the arterial pressure P and area A is strongly
depending from the nonlinear elastic properties of the arterial
wall. By using the Laplace law, one can show that the transmural
pressure ptm is linked to the wall stress σ (force per unit area) and
artery radius R as ptm ¼ σh

R , with h the wall thickness. We propose
then to derive σ from the acoustoelasticity theory by expressing the
stress field as a function of the Piola-Kirchhoff stress tensor and to
develop the elastic energy density in the fourth-order approxima-
tion as first introduced by Landau and Lifshitz (40). We obtain
the dependency of transmural pressure as a function of the area A

ptm ¼ μ
h

πR0
3 ðA � A0Þ þ

AL

4
�
3DL

2

� �
h

π2R0
5 ðA � A0Þ

2

þ
DL

2
h

π3R0
7 ðA � A0Þ

3
ð2Þ

with μ and AL being the expansion of Landau and Lifshitz theory
and the coefficientDL identified as the fourth-order elastic constant
(41). The Landau coefficient AL determines the nonlinear shear
stress (or behavior), while DL is required to describe nonlinear dis-
tortion of shear mechanical waves in finite amplitudes. A0 and R0
are the area and radius of the constrained artery in the absence of
arterial pulse, respectively. By calculating dptm/dA, one obtains the
nonlinear propagation equation for the arterial pulse wave under
the cuff

∂2ttA

� ∂x μ
h
ρR0
þ

AL
4
�
3DL
2

� �
2h

ρπR03
ðA � A0Þþ

3DL
2

h
ρπ2R05

ðA � A0Þ2
" #

∂xA

( )

¼ 0

ð3Þ

We introduce the speed for zero stress induced by the arterial
pulse, c02 ¼

πhμ
ρR0

, where μ = μ(Pcuff ) should be considered as the
shear modulus of the vessel under the static cuff constraint in the
absence of arterial pulse. When neglecting nonlinearities, c0 is
given by a modified Moens-Korteweg equation

c0 ¼

ffiffiffiffiffiffiffiffiffiffi
Eh
3ρR0

s

ð4Þ

considering E = 3μ in soft solids and a thin-wall approximation.
Note that c0 depends on the static cuff pressure Pcuff. Increasing
the cuff pressure progressively counteracts the diastolic arterial BP
Pdiast. It results in a very low transmural pressure corresponding to a
softening of the artery segment under the cuff and a decrease of c0.
Equation 3 can be factorized into two counterpropagating terms
and leads to the propagation equation toward the increasing x

values

∂tA

� c0þ
AL

4
�
3DL

2

� �
c0

μπR02
ðA � A0Þþ

3DL

4
c0

μπ2R04
ðA � A0Þ

2
� �

∂xA

¼ 0

ð5Þ

Equation 5 can be seen as a modified Burgers equation for the
propagation of the pulse wave under the cuff. The propagation
speed depends on the local radius and leads to a cumulative distor-
tion of the pulse wave during the propagation under the cuff. By
using the characteristics theory, we can derive the shock distance
due to the nonlinear propagation of the arterial pulse

LtheoryS ¼ λpw:
πμðpcuff � pdiastÞ

AL
2 � 3DL
� � :

Rd2

R2
max � Rd2

ð6Þ

where λpw is the wavelength of the pulse wave under the cuff, Rd is
the minimal diastolic radius, and Rmax is the maximal radius. We
show that the shock distance LtheoryS directly depends on the ratio
between the linear elastic coefficient in the absence of the arterial
pulse and the nonlinear elastic parameters at maximal distortion
during the pulse wave propagation under the cuff multiplied by
the squared ratio between Rd and Rmax. When μ(Pcuff ) becomes
very low and nonlinear elastic properties are high, it results in a
very short shock distance LtheoryS and the generation of harmonics
in the radial shear wave (Fig. 4A). As the Landau coefficients AL
and DL are unknown for arteries, we derived a typical value for
linear/nonlinear elastic ratio of Eq. 6 by fitting the parameters of
Eq. 2 to the experimental curve ptm = f (A) of Drzewiecki et al.
(29). Knowing the radius Rd and Rmax at the different cuff pressures
from our ultrasound data, we finally obtained LtheoryS .

Pulse wave shock distance
Qualitatively, we can see this shock as the moment where the “tail”
of the pulse wave catches up with the “head.” This phenomenon was
visible in Fig. 4B for cuff pressure of 100 and 110mmHg: After a few
millimeters of propagation, the wavefront steepens and becomes
almost vertical. The theory of characteristics states that this shock
is reached when characteristic curves of equivelocity intersect.
Three characteristics curve corresponding to equivelocities of 20,
50, and 80% of the maximum velocity were reported in Fig. 4B
for several cuff pressure on a given participant. Figure 4C shows
the projection of these curves on the distance-time plane, with a
linear regression for each curve. These fitted lines intersected at a
distance LexpS that was the experimental shock distance. Figure 4D
compares LtheoryS and LexpS and shows a good agreement between
theory and experiment. Another example with a second participant
is provided in fig. S3.

Pulse wave group velocity
Essentially, this nonlinearity results in different phase velocities for
the multiple frequency components of the pulse wave. This explains
the spectral dispersion and distortion observed in Fig. 4A. From
Eqs. 3 to 6, we can also see that the velocity at zero stress depends
on the initial artery radius and, consequently, of the static cuff pres-
sure. The consequence is that in addition to the dispersive
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propagation that causes the spreading of the pulse wave, the velocity
of the pulse wave envelope (namely, its group velocity) also decreas-
es with cuff pressure. The group velocity of the pulse wave corre-
sponds to what is commonly called the PWV. This theoretical
decrease of PWV with cuff pressure was observed in previous
studies (21, 25) and confirmed with UUI (Fig. 4E). The PWV
curve had a sharp transition around DBP (70 to 80 mmHg for
our cohort, N = 10 healthy volunteers aged 24 to 32 years old)
and reached a plateau around 1.1 m/s for a cuff pressure above
DBP. PWV was still measurable for a cuff pressure slightly above
SBP as partial opening of the artery was observed at the proximal
part of the cuff (see also movie S2 for P = 140 mmHg).

DISCUSSION
From these results, we propose the following theory for the origin of
the KSs: (i) By decreasing the transmural pressure and, therefore,
the brachial artery stiffness, the pressure cuff slows down the
pulse wave and amplifies the local arterial wall displacements. (ii)
The resulting high velocity of the arterial wall compared to the
propagation speed of the pulse wave results in a highly nonlinear
propagation regime under the cuff transferring wave energy from
very low, barely audible frequencies to a higher-frequency audible
content. (iii) These nonlinear vibrations radiate into the surround-
ing tissues, where they form shear displacements with an amplitude
exponentially decaying with the distance to the arterial wall. These
tissue vibrations propagate jointly with the arterial pulse wave. (iv)
When these shear tissue displacements reach the stethoscope (at the
distal edge of the cuff ), they are converted into compressional dis-
placements within the stethoscope diaphragm and create the KS.

Beyond previous hypotheses
Our observations refute some of the previous hypotheses for KSs
origins. In particular, our results seem incompatible with the cavi-
tation hypothesis of Venet et al. (17), as the artery was not fully col-
lapsed under the stethoscope and no cavitation bubbles were
detected, whereas UUI is particularly sensitive to such events (35,
36). The damped harmonic oscillator hypothesis (21, 22) is also in-
compatible with our results, as it implies wall oscillations after artery
dilation and compression. This second oscillation should be detect-
ed by ultrafast Doppler, which is sensitive to motion of ~3 μm. This
mechanism does not explain either the KS frequency content.
Third, the flow-related hypothesis (18, 19) is also mostly opposed
to our findings. We clearly showed that the blood flow was still
very weak when the KS is perceived, with a typical delay in the
range of ~40 ms between the KS and the maximum flow rate
(Fig. 2, D to F). We can partially conciliate our results with previous
ultrasound works on the topic (23–25). However, because of the
constraints of conventional ultrasound imaging, the arterial wall
could not be studied in space and time simultaneously. Hence,
the propagative aspect of the problem was missed and so were the
shear vibrations in tissues. These previous studies only established a
synchronicity of KS with a strong motion at cuff outlet attributed to
the arterial wall but could not directly explain the sound origin. Re-
garding the theory of the preanacrotic wave (14–16), we observed
that the steepening and the shock of the pulse wave can create a
short pressure dip, or breaker, known as the preanacrotic wave
(Fig. 1D). Nevertheless, these forerunner wavelets have an insuffi-
cient amplitude and temporal extent to explain the full

characteristics of the KS. They are more a side effect of the nonlinear
propagation of the pulse wave (42). Last, Drzewiecki et al. (20) had
already hypothesized the distortion of the pulse wave but did not
explain the fundamental physical mechanisms. In particular, they
used an empirical five-parameter law to describe the arterial pres-
sure-area relationship and did not investigate how arterial motion
was transmitted to the surrounding tissue, which is a key mecha-
nism to explain why and when KSs are heard according to
our results.

Are KSs really sound?
The results demonstrate that the KS source cannot be a sound wave
but rather is a shear displacement induced in surrounding tissues
and confined around the artery during the pulse wave propagation.
As the pulse wave has a very different propagation speed (~1 to 5 m/
s) compared to sound speed (1540 m/s), this alternative hypothesis
explains the timing of the sound perception on the stethoscope and
its localization. The originality of our study was to use UUI to track
the transient and nonlinear propagation of the pulse wave both in
space and time from the proximal to the distal edges of the cuff and
to the stethoscope. Somehow ironically, McCutcheon et al. (23)
were close to discovering this mechanism back in their 1971
work. They observed that the KSs were similar to the sound per-
ceived in the stethoscope when briskly tapping the skin. They mis-
takenly concluded that KSs were “nonspecific.” Tapping the skin
creates shear waves within the tissue that are physically similar to
the tissue shear displacements induced by the arterial pulse wave.
The resulting sounds were comparable because they had the same
physical mechanism.

The role of other waves
We can clearly see in Fig. 1, fig. S1, and movies S1 and S2 that the
pulse wave is partially reflected as it exits the cuff because of the im-
pedance difference between the compressed deformable segment of
the artery under the cuff and the stretched, less deformable segment
distal to the cuff. We observed that while most of the KS was per-
ceived in the stethoscope before the reflection of the pulse wave oc-
curred, the last sinusoid arches of the KS waveform corresponded to
the reflected wave (fig S6). This suggests that, to a lesser extent, the
reflected pulse wave also accounts for part of the KS spec-
tral content.

In this work, we implicitly consider that the pulse wave at the
origin of the KS is symmetrical around the longitudinal axis of
the artery. It was recently evidenced that nonaxisymmetric pulse
waves also propagate along the artery as flexural waves (43). These
flexural pulse waves (FPWs) typically have a velocity one order of
magnitude lower than the axisymmetric longitudinal pulse wave
(LPW) and then may be incompatible with the observed timings.
However, for low-transmural pressure, when the LPW velocity is
considerably reduced, it may become comparable with the FPW ve-
locity and then influence the KS. Nevertheless, we could confirm
from our results that the upper wall and the lower wall had symmet-
rical velocity time courses when the KS was perceived. This is illus-
trated in fig. S6.

Perspectives for pressure measurements
Answering the question of KSs origins could have important clinical
consequences. Even if the auscultatory method tends to be sup-
planted by automatic oscillometric assessment, the latter has well-
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known limitations (10) that can lead to BP under/overestimation
(44, 45). KSs remain the calibration reference for these commercial
devices with undisclosed algorithms, so understanding their mech-
anism is essential for BP measurements. In particular, accurately es-
timating DBP is challenging (44). Essentially, our findings show that
the disappearance of the KS with decreasing cuff pressure is a
gradual phenomenon. Not only the intensity of the KS decreases
when the cuff pressure reaches the DBP, but we also showed that
the frequency content of the KS is driven by the nonlinear propa-
gation of the pulse wave. Hence, as shown in Fig 4A, around DBP,
where the nonlinear behavior is less pronounced, the arterial wall
velocity has a very low-pitched spectral content, in a range where
the human ear has a very low sensitivity. This dependence of the
frequency content with the propagation distance also explains
why the position of the stethoscope can also influence the percep-
tion of the KS. All in all, the KS becomes fainter and deeper around
DPB, which may explain why it is frequently overestimated, espe-
cially for hypertensive participants (45). We foresee that the curve
of local PWV versus cuff pressure (Fig. 4E) might be used as a pre-
dictor of DBP, as it presents a sharp transition around DBP. Simi-
larly, the curve of the shock distance versus cuff pressure also
exhibits a sharp transition around DBP (Fig. 4D).

Perspectives and limitations of the theoretical model
A second major contribution of this work is to propose a physical
model for KSs origins derived from the acoustoelasticity theory.
Many of the current models for arterial pressure-area relationship
implicitly rely on the linear elasticity theory. Here, to introduce the
nonlinear framework of acoustoelasticity while keeping the model
simple, we had to make several assumptions and choices.

First, we assumed that the arterial wall could be considered as an
isotropic material to introduce the nonlinear Landau coefficients.
This is a common assumption in works on wave propagation in ar-
teries (43). It is well known however that arteries have anisotropic
properties due the complex organization and properties of smooth
muscles, elastin, and collagen fibers (46, 47). Many studies proposed
advanced constitutive modeling to account for these different con-
stituents (46, 48), which should be compared to the model proposed
herein in subsequent works.

Second, we only considered the circumferential stretch of the
artery. It would be more realistic to introduce also the axial and
radial deformations. However, the theoretical derivation of the non-
linear PWV from the acoustoelasticity theory would become ex-
tremely complex and hardly interpretable in terms of physical
properties. We would have to introduce nonlinear elastic Landau
coefficients for all directions and would lose the easiness of inter-
pretation of the theoretical equations relating the PWV to the trans-
mural pressure and Landau coefficients and relating the shock
distance with the material properties.

Third, we assumed an axisymmetric nature of the nonlinear
problem. In particular, we considered that the vessel had a circular
cross section throughout the problem. This axisymmetric assump-
tion was found valid in our experiments, as seen for the example in
fig. S6. However, it can be challenged at low transmural pressure
levels (≤0 mmHg), where the artery can collapse. In these cases,
the simple Laplace law used to link the transmural pressure and
the circumferential stress does not hold, and the fluid mechanics
equations are not axisymmetric anymore. This nonaxisymmetric
stress distribution could enhance the role of nonaxisymmetric

modes such as the flexural waves described by Laloy-Borgna et al.
(43). Similarly to Drzewiecki et al. (29), we considered that for
transmural pressures above the buckling pressure (which is typically
below 0 mmHg), the lumen area had a circular cross-sectional
shape. It results that for the onset of the pulse wave, when the trans-
mural pressure is very low, our model has intrinsic weaknesses but
becomes more reliable as soon as the artery dilates under the rapidly
rising BP.

These hypotheses were deemed necessary to allow the develop-
ment of nonlinear elasticity theory within this complex biomechan-
ical problem. We think that the final agreement between the shock
distances estimated theoretically and experimentally shows at least
the interest of this simplified model.

These results may open alternative ways to measure the mechan-
ical properties of the artery. While many studies have shown links
between PWV and arterial stiffness (49–51), they were unable to
disentangle the concomitant effects of BP and structural properties
of the arterial wall (52). Here, we demonstrated the impact of both
intrinsic material parameters (arterial wall nonlinear elastic coeffi-
cients) and geometry (pressure-dependent arterial radius varia-
tions). We believe that our approach could lead to an innovative
tool combining the auscultatory method and UUI able to study
the intrinsic physical properties of the artery independently of the
BP. In particular, noninvasive assessments of arterial stiffness may
become possible and open up different perspectives for clinical
practice.

MATERIALS AND METHODS
Definitions
Here, we define the transmural pressure as the difference between
the BP in the collapsible segment of the artery and the sphygmom-
anometer cuff pressure. Hence, a negative transmural pressure
means that the cuff pressure exceeds the arterial BP.

The longitudinal axis refers to the artery long axis. The term ab-
scissa stands for the coordinate along the longitudinal axis. The
radial axis is orthogonal to the artery long axis. The axial direction
refers to the transducer main axis and corresponds to the depth axis.

Participant cohort
N = 15 healthy volunteers aged 24 to 32 years old were included in
the study (ULTRAFASTECHO, NCT01096264) and gave informed
consent. The protocol strictly complied with the ethical principles
for medical research involving human participants of the World
Medical Association Declaration of Helsinki. The data from the
five first participants were used to improve the experimental setup
and were not included in the results. Among the 10 remaining par-
ticipants, only 6 were imaged with the probe at the three possible
locations in the cuff.

Ultrasound sequences and preprocessing
All ultrasound data were collected with an ultrafast ultrasound re-
search scanner (Aixplorer, SuperSonic Imagine, Aix-en-Provence,
France). A hockey stick–shaped probe (SLH20-6, 192 elements,
0.14-mm pitch, 11.25 MHz; SuperSonic Imagine, Aix-en-Provence,
France) was used for all the UUI acquisitions except SWE measure-
ments. These were executed with a custom linear probe (128 ele-
ments, 0.2-mm pitch, 6.4 MHz; Vermon, Tours, France) using
the system commercial SWE mode. UUI sequences consisted of
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the emission and coherent compounding of nine plane waves (53),
linearly tilted from −7.5° to +7.5°. The imaging depth was set to 30
mm. A pulse-repetition frequency of 10,800 Hz was used, yielding a
frame rate of 1200 Hz. The total duration of the sequence was 400
ms. From the resulting IQ datasets, tissue signals and blood signals
were separated using singular value decomposition (SVD) (54). The
tissue and blood subspaces were adaptively determined using the
spatial similarity matrix approach (55). Sequence programming
and the postprocessing were done in MATLAB (The MathWorks,
Natick, MA, USA).

Lagrangian tracking of arterial walls
Conceptually, IQ data are an Eulerian representation of the
medium, each pixel describing a fixed spatial location along time.
In this study, the arterial wall radial displacements typically reach
several millimeters, whereas the pixel size in this direction is 137
μm. The Eulerian framework is then not ideal, as the arterial wall
will move from one pixel to another along acquisition time. A La-
grangian approach was adopted to track the material points of the
walls over time. We assumed that the arterial wall only experienced
axial motions. Hence, the lateral position of the wall was considered
constant. First, the Eulerian axial velocity field was computed using
beamformed radio frequency cross-correlation (56) with cosine in-
terpolation (57).VE(zE, xE, t), with (zE, xE) being the constant spatial
coordinates of the IQ pixels and t the frame index. Second, the po-
sitions of the upper and lower arterial walls were manually delineat-
ed on a given frame t0 where they were clearly visible. For the upper
wall, this initial Lagrangian coordinate is denoted by zL(xE, t0).
Knowing the pixel size in the axial direction, it was possible to
find the Eulerian coordinates znearestE (xE, t0) that is the closest to
zL(xE, t0). The Lagrangian velocity vL(xE, t0) is then defined by Eq.
7, which can be considered a simple nearest neighbor approxima-
tion

vLðxE; t0Þ ¼ VE½znearestE ðxE; t0Þ; xE; t0� ð7Þ

The Lagrangian coordinate of the wall at frame t0 + 1 could then
be computed using Eq. 8, with T being the time interval between
two consecutive frames. By substituting t0 + 1 to t0 in these equa-
tions, the coordinate at t0 + 2 can then be obtained, and so on. Sim-
ilarly, the coordinates could be iteratively computed for t < t0. Here,
wall velocity implicitly refer to vL(xE, t)

zLðxE; t0 þ 1Þ ¼ zLðxE; t0Þ þ vLðxE; t0Þ T ð8Þ

More advanced interpolation or regularization techniques (58)
can be used to improve the wall tracking but were deemed unnec-
essary given the relative simplicity of the arterial motion. See fig. 2A
for an example. Note that because of the convention chosen for the
depth axis orientation, negative velocities correspond to motion
toward the probe.

Sphygmomanometer and stethoscope
A sphygmomanometer with a particular three-strap closure system
was used (Vaquez-Laubry Classic, Spengler, Antony, France). The
cuff was positioned with the opening directly over the brachial
artery so that the probe could be inserted between the straps and
image the vessel. The straps were tightened firmly to ensure a
uniform transmission of the cuff pressure to the skin. SBP and
DBP were measured with the cuff in this orientation and with the

orientation suggested by the manufacturer (cuff opening on the
other side of the arm). The values were in good accordance, with
less than 5 mmHg of difference. An electronic pressure sensor
(TBPDLNN005PGUCV, Honeywell, Charlotte, NC, USA) was
mounted on the sphygmomanometer pipes to ensure a steady pres-
sure level during ultrasound acquisitions. The KSs were recorded at
the distal extremity of the cuff by inserting an electronic stethoscope
(Littmann 3200M, 3M, Saint Paul, MN, USA) and using its extend-
ed frequency range mode (20 to 2000 Hz). The stethoscope signal
was sampled at 4000 Hz and transmitted via Bluetooth to a host
computer stethoscope (Littmann StethAssist software, 3M, Saint
Paul, MN, USA).

Experimental protocol
The participants were in supine position, with the cuff at the level of
their right atrium (7).We first measured their BP using the standard
auscultatory method and defined a list of target pressure levels every
10 mmHg, starting at SBP + 10 mmHg, and decreasing to DBP − 10
mmHg.We then inserted the ultrasound probe and the stethoscope.
We inflated the cuff at SBP + 30 mmHg and launched a 60-s stetho-
scope recording (the longest allowed by the manufacturer’s acqui-
sition software). An in-house graphical user interface displayed the
BP in real time on the scanner’s monitor, with the next target level
highlighted. We slowly deflated the cuff until its pressure reached
the target level. After the cuff pressure had remained stable for at
least 3 s, the ultrasound sequence was allowed to start at the next
cardiac cycle. After the acquisition, a few seconds were necessary
for data transfer and save. Overall, it took around 15 to 20 s in
total to reach the pressure target, stabilize the pressure, wait for
the next cardiac cycle, and acquire and transfer the ultrasound
data. Hence, only two to three acquisitions were done per 60-s-
long stethoscope track. At the end of this 60-s period, the cuff
was fully deflated to avoid venous congestion. After a few
minutes, we then resumed the compression cycle and continued
with the remaining pressure targets.

Synchronization
Ultrasound acquisitions were triggered by an ECG (AccuSync 42,
Milford, CT, USA). A delay of 100 ms was programmed between
the R wave and the ultrasound sequence start to account for the
pulse wave propagation from the heart to the cuff. The ultrasound
acquisition and the stethoscope recording were synchronized using
a reference audio signal. At the start and the end of the ultrasound
sequence, a trig signal was transmitted by the scanner to a signal
generator (AFG3022C, Tektronix, Beaverton, OR, USA) pro-
grammed to emit a sinusoid at 400 Hz with 50 cycles, 2 Vpp,
toward an earphone (CX 100, Sennheiser, Wedemark, Germany)
taped to the stethoscope body. This resulted in two loud beeps
audible in the stethoscope. After band-pass filtering of the stetho-
scope signal {[350 450] Hz, Butterworth filter order 5, zero-phase
distortion using forward-backward filtering (59)}, these two audio
markers were precisely located using NCC with a reference sinus-
oid. This extra signal adds no influence on the KS, whose PSD gen-
erally falls below −60 dB above 280 Hz (31). More detail regarding
the synchronization of signals can be found in fig. S8 and Supple-
mentary Text.
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Cross-correlation in the audible range
To compare arterial wall velocities and stethoscope signal, we band-
pass–filtered both signals in the range [20,250] Hz (Butterworth
filter of order 5) to match with the stethoscope bandwidth and
reject high-frequency noise. We compensated for the nonlinear
phase-response of the Butterworth filter by using a zero-phase fil-
tering function [forward-backward filtering, MATLAB function
“filtfilt” (59)]. We made sure that both signals were filtered with
the same frequency characteristics, without phase distortion, as oth-
erwise, it may introduce strong artifacts in their comparison (60).
We used NCC between the stethoscope signal and the filtered
wall velocity to compare signal similarity and delay in Fig. 1
(MATLAB function xcorr). Signals were priorly centered and
scaled by their SD. The NCC lag corresponding to the maximum
NCC value was considered as the delay between the compared
signals. The same NCC approach was also used to establish the
time of arrival maps of Fig. 3.

Envelope comparison
Because of the constraints of the experimental protocol, we deflated
the cuff every 60 s maximum. This constraint meant that the stetho-
scope, probe, and artery adopted slightly different relative positions
from one compression cycle to the next. As a result, KS intensities
could vary from one acquisition to the next simply because of these
different configurations. Therefore, rather than comparing wall ve-
locity and KSs individually, we took the longest stethoscope tracks
available (60 s, each containing multiple KSs acquired at different
cuff pressures, 14 tracks, N = 6 participants) and compared them
in their entirety with the corresponding wall velocities, assuming
that during these tracks, the setup configuration was constant. In
this way, within a single track, we could fairly compare the sound
intensity of multiple KSs by extracting their RMS envelope. The
RMS envelope was computed on sliding temporal windows of 50
ms, roughly corresponding to the duration of a KS. The stethoscope
recordings containing several KSs were normalized by their
maximum and then compared against the corresponding normal-
ized wall velocity RMS envelope. The tracks with a low signal-to-
noise (SNR) ratio were excluded. The SNR was considered too
low if the peak of the weakest KS was lower than 3 SDs of the
audio background noise (fig. S9). This audio noise was mostly
caused by friction of the stethoscope on the skin and the cuff.

Blood imaging
As mentioned earlier (see the “Ultrasound sequences and prepro-
cessing” section), the blood signal is separated from the tissue
signal using adaptive SVD filtering. The resulting blood IQ signal,
denoted as sF(z, x, t), can be processed into Power Doppler (PD) and
so-called pulsed wave Doppler (PWD). PD is the time integral of sF
envelope (Eq. 9) and is proportional to the concentration of red
blood cell in a given pixel (Fig. 2D) (61)

PDðz; xÞ ¼
ð

j sFðz; x; tÞ j2dt ð9Þ

PWD is the discrete short-time Fourier transform of sF(z, x, t)
along the temporal dimension. For a given sample area, the result-
ing spectrogram (Fig. 2E) reflects the changes of blood axial velocity
along time.

Spectral content
For each longitudinal abscissa, the PSD of thewall velocity was com-
puted using Welch’s overlapped segment averaging spectral estima-
tion (62), with sliding windows of 300 ms and an 80% overlap. The
PSD was then averaged between participants at each abscissa.

Experimental shock distance
Knowing the Lagrangian coordinates of the upper and lower arterial
walls along time and assuming a cylindrical symmetry, we could
derive the artery lumen area A(xE, t) at each abscissa xE and along
time. dAdt ðxE; tÞ surfaces were normalized by their maximum over the
displayed time and space ranges. The characteristic curve at 20% is
the intersection of the dA

dt ðxE; tÞ surfaces with the horizontal plane of
coordinates (0.2, xE, t). A least-square linear regression is fitted to
the projection of each characteristic curve on the space/time hori-
zontal plane. If the theoretical shock distance was lower than the
probe width (17.9 mm), then only the part of the projected charac-
teristic curves corresponding to spatial abscissas lower than this the-
oretical shock distance was used for linear regression. As the three
fitted lines did not intersect exactly at the same point, the experi-
mental shock distance was taken as the median spatial coordinates
of the three intersection points.

Pulse wave velocity
The Lagrangian velocity vL(xE, t) of the arterial upper wall can be
visualized as a space-time image by considering all xE and t coordi-
nates (63). For each abscissa xE, the pulse wave envelope was extract-
ed using the Hilbert transform of vL(xE, t) along time (64). The
pulse wave envelope appears as a titled wavefront, whose slope is
the pulse wave group velocity, in other words, the PWV. The nor-
malized Radon transform of this space-time image was computed
with angular increments of 0.1°. The angular direction that maxi-
mized the Radon transform was considered as orthogonal to the
wavefront, and thus, the PWV could be computed (65).

Theory of pulse wave under cuff pressure: Equation
of motion
The description of flow in elastic tubes as arterial vessels needs three
independent variables namely the pressure p(x, t), the fluid velocity
v(x, y) [or equivalently, the flow rateQ(x, t)], and the cross-sectional
area A(x, t). The main governing equations are the conservation of
mass and momentum (i.e., the continuity and the momentum
equations). In this problem, we only have two equations and
three variables, namely, p, Q, and A. Therefore, we need a third re-
lation that describes the deformation of the vessel walls due to a var-
iation in the pressure. A third equation could be obtained from the
energy conservation, which is related to the interaction between the
fluid and the tube wall, or by analytical equations, which provide a
relationship between the transmural (internal minus external) pres-
sure ptm and the variation in the cross-sectional area (or diameter),
the so-called state equation or pressure-area P − A constitutive
relations.

The vessel is represented as a cylindrical tube (fig. S4) of length L,
wall thickness h, inner (or internal) radius Rint, outer (or external)
radius Rext, and circular cross-sectional area A(x, t) = πR2. Pressure-
area equations provide relation between the transmural pressure ptm
and the variation in the cross-sectional area (or the radius). The
transmural pressure is defined as ptm = p − pext, where p = pint is
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the internal fluid (blood) pressure and pext is the external pressure
(from surrounding tissue). The variation in the area is between the
tube section A = πR2 (at internal fluid pressure p) and A0 ¼ πR0

2

when there is zero transmural pressure (i.e., p = pext), where R0 is the
radius at ptm = 0.

Navier-Stokes equations for an axisymmetric flow in a flexible
tube can be derived. On the basis of the work of Comolet (66)
and Lighthill (67), we may consider the governing equations for
fluid flow without gravity or viscous term (68)

∂tAþ ∂xðQÞ ¼ 0
∂tQ ¼ � A

ρ ∂xp
p ¼ KpPðAÞ

ð10Þ

where ρ is the fluid density and Kp is a constant. The equations are
linearized by considering small perturbations around the state v = 0,
A = A0, where A0 is the reference area. Then

∂tAþ ∂xQ ¼ 0
∂tQ ¼ �

AKp
ρ

dP
dA ∂xA

ð11Þ

Eliminating Q, one obtains the wave equation

∂2ttA � c2∂2xxA ¼ 0 ð12Þ

where the speed of the pulse wave is given by

c2 ¼
AKp

ρ
dP
dA

ð13Þ

A key question is then the pressure dependency with respect to
the radius R or area A, which is highly dependent on the vessel vis-
coelastic properties.

Transmural pressure versus wall tension
Several approaches can be taken to write the relation between the
pressure and the cross-sectional area. The arterial wall does not
respond instantaneously to a change in pressure due to its viscoelas-
tic behavior (69, 70). However, these viscoelastic effects seem to be
small within the physiological range of the flow and pressure (71).
Therefore, many studies use relations derived from the linear theory
of elasticity and disregard the viscoelastic behavior (72–76). In the
following part, we will neglect viscosity effects. As the pressure load
induced during the Korotkoff experiments is high and lead to major
changes of elasticity, we will have to derive the P − R relationship in
the framework on nonlinear elasticity. In the following part, we will
therefore build on the following assumptions: (i) The flow, loading,
and deformation are axisymmetric. (ii) The arterial vessels walls are
thin, i.e., h ≪ R. (iii) The structural arterial properties are constant.
(iv) The vessel is tethered in the longitudinal direction.

To obtain the relationship between the pressure and the cross-
sectional area, we need first to examine the equilibrium of the inter-
nal and external forces acting on a unit element of the wall.
Pressure force
The elementary force due to the pressure differences is given by

dFp ¼ dFpint � dFpext ¼ ðpintRi � pextReÞLdθ ð14Þ

For the half cylinder (fig. S4), the vertical component is

Fp;1 ¼ ðpintRi � pextReÞ L sinðθÞdθ ð15Þ

After integrating from 0 to π, we obtain the vertical force due to
the pressure differences

Fp;1 ¼ 2 ðpintRi � pextReÞ L ð16Þ

If the vessel is thin walled (h ≪ R), then Ri ≈ Re = R and

Fp;1 ¼ 2 ðpint � pextÞ R L ¼ 2 ptmRL ð17Þ

Laplace’s law
The aim is to link the transmural pressure to the tension in the walls
related to the wall stress (force per unit area) σ. The force pulling the
half cylinder down is

Fσ ¼ 2 σhL ð18Þ

In equilibrium, Fσ is balanced by the vertical force due to the
transmural pressure Fp,1 (Eq. 17)

σh ¼ ptmR ð19Þ

ptm ¼
σh
R

ð20Þ

Equation 20 is an expression of Laplace’s law for a thin-walled
cylinder. Note that for a given transmural pressure, the wall
tension (T = σh) per unit length increases as the radius increases
and vice versa.

Acoustoelasticity applied to P − A
Here, we propose to derive the theoretical P − A relationship by
taking into account the nonlinear elastic properties of the arterial
wall (see Supplementary Text for considerations on the P − A rela-
tionship under the linear elasticity framework). To better describe
the propagation of the arterial pulse wave under a loading pressure
pext, we have to introduce the acoustoelasticity theory describing the
influence of stresses on the propagation of mechanical waves in
nonlinear elastic solids. Many theoretical works have been
devoted to the expression of the propagation velocity of elastic
waves in a stretched nonlinear elastic soft solid (41, 77, 78) by revis-
iting the seminal work of Landau and Lifshitz (40).
Mechanics of a continuous medium
Adisturbance in amedium is represented by a particle displacement
with time-dependent position u(x, t). The general equation of
motion is given by

ρ
∂2ui
∂t2
¼
∂σij
∂xj

ð21Þ

where ρ, σij, and ∂2ui
∂t2 designate the density, the second Piola-Kirch-

hoff stress tensor, and the particle acceleration, respectively. The
Piola-Kirchhoff stress tensor is given by

σij ¼
∂e

∂ ∂ui
∂xj

� � ð22Þ

with e, the strain energy density. In a general elastic medium, the
strain energy density developed to the third order is

e ¼
1
2
Cijklεijεkl þ

1
6
Cijklmnεijεklεmn ð23Þ

where Cijkl and Cijklmn designate the second- and third-order elastic

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Baranger et al., Sci. Adv. 9, eadi4252 (2023) 4 October 2023 12 of 18

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 05, 2023



tensor, respectively and ɛ is the Lagrangian finite-strain tensor

εik ¼
1
2

∂ui
∂xk
þ
∂uk
∂xi
þ
∂ul
∂xi

∂ul
∂xk

� �

ð24Þ

also defined as the Lagrangian finite strain or Green-Lagrange strain
tensor

E ¼
1
2
ðFTF � IÞ ð25Þ

with C = FTF, being the right Cauchy-Green deformation tensor,
which is commonly used in materials science. Therefore, E is a
measure of how much C differs from identity I. Invariants of C
are often used in the expressions for strain energy density functions.
The most commonly used invariants are

IC1 ¼ trðCÞ ¼ λ21 þ λ22 þ λ23
IC2 ¼ 1

2 ½trðCÞ
2
� trðC2Þ� ¼ λ21λ

2
2 þ λ22λ

2
3

IC3 ¼ detðCÞ ¼ λ21λ
2
2λ

2
3

ð26Þ

Note that IC3 ¼ 1 for incompressible materials (see Supplemen-
tary Text for considerations on elastic tensors in linear regime).

Acoustoelasticity theory
Landau and Lifshitz (40) have established the general expression for
the elastic energy density of an isotropic body in the fourth-order
approximation introducing the third-order coefficients (AL, BL, CL)
and expressed in terms of invariants of Lagrangian (Green-La-
grange). From the components of a symmetrical tensor of rank
two, we can form two quadratic scalar (ε2ik and (ε2ll) and three
cubic scalar (ε3ll, ɛllε2ik, and ɛikɛilɛkl). Hence, the most general scalar
containing terms quadratic and cubic in ɛik, with scalar coefficient
(since the body is isotropic) is

e ¼ με2ik þ
λ
2
ε2ll þ

1
3
ALεikεilεkl þ BLε2ikεll þ

1
3
CLε3ll ð27Þ

and invariants defined as follows

I1 ¼ trðEÞ
I2 ¼ trðE2Þ
I3 ¼ trðE3Þ

ð28Þ

The Lamé and the Landau coefficients as a function of the elastic
moduli in the Voigt’s notations come from (79)

λ ¼ c12; μ ¼ c66;AL ¼ 4c456;BL ¼ c144;CL ¼ c123=2 ð29Þ

Hamilton et al. and Zabolotskaya et al. (41, 77) also derived a
fourth-order expansion of the elastic energy density of an isotropic
medium separating effect due to compressibility and shear defor-
mation. The motivation was to identify the terms and correspond-
ing constants to describe nonlinear effects of shear deformation
when effects of compressibility and coupling between shear and
compressional waves are both negligible. They showed that P
waves and S waves can be considered separately. The simplified
strain energy density function for shear waves that relates the
strain energy density of a material to the deformation gradient is

e ¼ μI2 þ
1
3
ALI3 þ DLI22 ð30Þ

with μ and AL being the expansion of Landau and Lifshitz theory

and the coefficientDL identified as the fourth-order elastic constant.
The Landau coefficient AL determines the nonlinear shear stress (or
behavior), while DL is required to describe nonlinear distortion of
shear mechanical waves in finite amplitudes (41). Last, Gennisson
et al. (78) developed Eq. 21 to retrieve the shear wave speed when
the material is subjected to a stress.

Stress field versus artery radius
To relate the arterial pulse wave speed to the areaA, it is necessary to
derive the stress field σ22 with respect to the radius R. Note that if we
consider a tensile test with a stress applied in the direction 2, σ22,
with faces in axes 1 and 3 free to deform, then we can write the
correct Cauchy-Green deformation tensor according to the incom-
pressibility assumption

C ¼
λ21 0 0
0 λ22 0
0 0 λ23

0

@

1

A ¼

1=λ 0 0
0 λ2 0
0 0 1=λ

0

@

1

A ð31Þ

with λ ¼ R=R0, with R0 as the initial radius at zero stress, and R as
the radius at stretch state. It comes that the Green-Lagrange strain
tensor invariants in tension can be written as

I1 ¼ trðEÞ ¼ 1
2 λ2 þ 2

λ � 3
� �

I2 ¼ trðE2Þ ¼ 1
4 ðλ

2 � 1Þ2 þ 2 1
λ � 1
� �2

h i

I3 ¼ trðE3Þ ¼ 1
8 ðλ

2 � 1Þ3 þ 2 1
λ � 1
� �3

h i
ð32Þ

From Eq. 30, it comes that the strain energy density function can
be written in tension as

e ¼ μ
1
4
ðλ2 � 1Þ2 þ 2

1
λ
� 1

� �2
" #

þ
AL

24
ðλ2 � 1Þ3 þ 2

1
λ
� 1

� �3
" #

þ
DL

16
ðλ2 � 1Þ2 þ 2

1
λ
� 1

� �2
" #2

ð33Þ

From the strain energy density function, using Eq. 22 and con-
sidering that σ22 ¼ ∂e

∂λ, we can express the stress as a function of λ

σ22 ¼ μ λðλ2 � 1Þ �
1
λ2

1
λ
� 1

� �� �

þ
AL

4
λðλ2 � 1Þ2 �

1
λ2

1
λ
� 1

� �2
" #

þ
DL

2
ðλ2 � 1Þ2 þ 2

1
λ
� 1

� �2
" #

� λðλ2 � 1Þ �
1
λ2

1
λ
� 1

� �� �

ð34Þ
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After derivation, one obtains if R/R0 ≫ 1

σ22 ¼ μ
RðR2 � R2

0Þ

R2
0

þ
AL

4
�
3DL

2

� �
RðR2 � R2

0Þ
2

R5
0

þ
DL

2
RðR2 � R2

0Þ
3

R6
0

ð35Þ

By using the Laplace law (Eq. 20), we find the radius dependence
of the transmural pressure

ptm ¼ μ
h
R0

3 ðR
2 � R2

0Þ þ
AL

4
�
3DL

2

� �
h
R0

5 ðR
2 � R2

0Þ
2

þ
DL

2
h
R0

7 ðR
2 � R2

0Þ
3

ð36Þ

ptm can be written with respect to tube area A

ptm ¼ μ
h

πR0
3 ðA � A0Þ þ

AL

4
�
3DL

2

� �
h

π2R0
5 ðA � A0Þ

2

þ
DL

2
h

π3R0
7 ðA � A0Þ

3
ð37Þ

Nonlinear pulse wave propagation: Derivation of
propagation equation
Coming back to Eqs. 10 to 13 of axisymmetric flow in a flexible tube,
we can now calculate the dptm/dA from Eq. 37

dptm
dA
¼ μ

h
πR0

3 þ 2
AL

4
�
3DL

2

� �
h

π2R0
5 ðA � A0Þ

þ 3
DL

2
h

π3R0
7 ðA � A0Þ

2
ð38Þ

Eliminating Q in the Eqs. 10 to 12, one obtains the arterial pulse
wave equation

∂2ttA � ∂xðc2∂xAÞ ¼ 0 ð39Þ

where the propagation speed c verifies

c2 ¼
AKp

ρ
dP
dA

¼ μ
h

ρπR0
3 A0 þ 2

AL

4
�
3DL

2

� �
h

ρπ2R0
5 ðA � A0ÞA0

þ 3
DL

2
h

ρπ3R0
7 A0ðA � A0Þ

2
ð40Þ

Recalling that A0 ¼ πR0
2, we introduce the speed in the absence

of nonlinear elasticity and in the absence of arterial pulse wave
under the cuff

c02 ¼
hμðpcuffÞ
ρR0

ð41Þ

where μ(pcuff ) should be considered as the shear modulus of the
vessel under constraint but in the absence of pulse wave (and not
the shear modulus at zero stress). This speed corresponds roughly

to the Moens-Korteweg equation

c0 ¼

ffiffiffiffiffiffiffiffiffiffi
Eh
3ρR0

s

ð42Þ

where E is the Young’s modulus of the artery under the cuff and E ≈
3μ(pcuff ). If one keeps the nonlinear terms

c2¼
A0
ρ

μ
h

πR03
þ

AL
4
�
3DL
2

� �
2h

π2R05
ðA � A0Þþ

3DL
2

h
π3R07

ðA � A0Þ
2

� �

ð43Þ

with A0¼ πR02, the propagation equation can be written

∂2ttA

� ∂x μ
h
ρR0
þ

AL
4
�
3DL
2

� �
2h

ρπR03
ðA � A0Þþ

3DL
2

h
ρπ2R05

ðA � A0Þ2
" #

∂xA

( )

¼ 0

ð44Þ

This nonlinear equation can be factorized into two counter-
propagating terms:

∂tA � c0∂xA �
AL
4 �

3DL
2

� �
h

ρc0πR03
ðA � A0Þ∂xA �

3DL
4

h
ρc0π2R05

ðA � A0Þ2∂xA
� �

∂tAþ c0∂xAþ
AL
4 �

3DL
2

� �
h

ρc0πR03
ðA � A0Þ∂xAþ

3DL
4

h
ρc0π2R05

ðA � A0Þ2∂xA
� �

¼ 0

ð45Þ

If we keep only the term propagating toward the increasing x
values, we obtain

∂tA � c0∂xA �
AL

4
�
3DL

2

� �
h

ρc0πR0
3 ðA � A0Þ∂xA

�
3DL

4
h

ρc0π2R0
5 ðA � A0Þ

2∂xA

¼ 0 ð46Þ

or

∂tA � c0∂xA �
AL

4
�
3DL

2

� �
c0

μπR0
2 ðA � A0Þ∂xA

�
3DL

4
c0

μπ2R0
4 ðA � A0Þ

2∂xA

¼ 0 ð47Þ

Last, we obtain the nonlinear wave equation for the propagation
of the arterial pulse wave under the cuff given by

∂tA

� c0þ
AL

4
�
3DL

2

� �
c0

μπR0
2 ðA � A0Þþ

3DL

4
c0

μπ2R0
4 ðA � A0Þ

2
� �

∂xA

¼ 0
ð48Þ

This equation can be seen as a Burgers equation for the propa-
gation of the pulse wave under the cuff. We see that the propagation
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speed depends on the local radius

c ¼ c0 þ
AL

4
�
3DL

2

� �
c0

μR0
2 ðR

2 � R0
2Þ þ

3DL

4
c0

μR0
4 ðR

2 � R0
2Þ

2

ð49Þ

During the propagation of the pulse wave under the cuff, the high
values of BP induce a larger arterial radius and result in a faster prop-
agation than the lower values of BP, inducing a smaller arterial
radius. If the nonlinear elastic coefficients are non-negligible com-
pared to the linear elastic properties, then it results in a highly non-
linear propagation and a progressive and cumulative distortion of
the arterial wall motion during the propagation under the cuff.

Derivation of the shock distance
To estimate the shock distance, we have to introduce the character-
istics method. The aim of the characteristic curve method is to trans-
form the governing partial differential equation into a set of coupled
ordinary differential equations along certain curves known as char-
acteristic curves or simply characteristics along the propagation axis.

Instead of solving the equation on the surface (x, t), we look for
spatial curves on which the partial differential equation is reduced
to set of ordinary differential equations along these curves. We
choose an arbitrary 1D curve [t(s), x(s)] and want to determine
A(s), where s is a parameter that increases along the curve.

We apply the method of characteristics using Eq. 48 to convert
the initial value problem

∂tA � c0 þ 2
AL

4
�
3DL

2

� �
c0

μπR0
2 ðA � A0Þ

�

þ
3DL

2
c0

μπ2R0
4 ðA � A0Þ

2
�

∂xA ¼ 0
ð50Þ

or

∂tA � FðAÞ∂xA ¼ 0 ð51Þ

with the initial condition

Aðx; 0Þ ¼ A0ðxÞ ð52Þ

into the following two fully coupled characteristic ordinary differ-
ential equations

dx
dt ¼ F½AðxðtÞ; t� xð0Þ ¼ ξ

dA
dt ¼ 0 Aðξ; 0Þ ¼ A0

(

ð53Þ

Since dA/dt = 0 and A = A0, the characteristic curves dx/dt =
F(A0) are straight lines. We can obtain the equation of a particular
characteristic curve x = x(t) in the (x, t) plane from the former equa-
tion as follows

dx
dt
¼ F½Aðx; tÞ� ¼ F½Aðξ; 0Þ� ¼ F½A0ðξÞ� ð54Þ

Direct integration gives the characteristic curve x = x(t) as
follows

x ¼ ξþ F½A0ðξÞ�:t ð55Þ

where ξ is the x intercept of the characteristic line. This equation
shows that the characteristics are lines in (x, t) plane emanating
from (ξ,0) with slope 1

F½A0ðξÞ�
. See Fig. 4 (B and C) for examples.

For some smooth initial waveform A0, characteristic curves may
intersect at a critical time ts. Thus, the point (xs, ts) lies on two char-
acteristics with different values of ξ and, hence, different values ofA.
The result of this is that the solution A for t > ts becomes multival-
ued. To define a solution for the partial differential equation after
this critical time, we need to allow discontinuities in A. These dis-
continuities are known as shocks. At this point, we can define the
shock distance xs = Ls. Let us now derive a detailed description of the
shock theory, how they are formed, and how to locate them.

The breaking time is the minimum time at which the first inter-
section of characteristics occurs. Suppose two characteristics
emanate initially from the points ξ1 and ξ2 = ξ1 + ∆ξ. For t ≥ 0,
these characteristics will intersect when

ξ1 þ FðA0Þðξ1Þt ¼ ξ2 þ FðA0Þðξ2Þt ð56Þ

To find the shock distance, we can take ξ1 = 0, ξ2 = λpw/2, with
λpw the wavelength of the pulse wave. We search when the higher
radius Rmax will overtake the minimal radius R0 during propagation.

This shock distance Ls is reached when the smaller radius Rd (for
diastole) has traveled during a distance rd where the discontinuity
appears, with a velocity cd. This discontinuity appears at time ts

rd¼ c0þ
AL

4
�
3DL

2

� �
c0

μπR02
ðRd2 � R02Þþ

3DL

4
c0

μπ2R04
ðRd2 � R02Þ

2
� �

�
LS
cd

ð57Þ

At this breaking time ts, the maximum radius has traveled a dis-
tance rs

rs¼ c0þ
AL
4
�
3DL
2

� �
c0

μπR02
ðRmax

2 � R02Þþ
3DL
4

c0
μπ2R04

ðRmax
2 � R02Þ

2
" #

ts

ð58Þ

The shock is reached when rd − rs corresponds to the half wave-
length λpw/2 of the arterial pulse wave under the cuff, meaning rd −
Ls = λpw/2

rd � LS ¼
AL

4
�
3DL

2

� �
c0

μπR0
2 ðRmax

2 � Rd2Þ
�

þ
3DL

4
c0

μπ2R0
4 ½ðRmax

2 � R0
2Þ

2
� ðRd

2 � R0
2Þ

2
�

�
LS
cd
¼
λpw
2

ð59Þ

rd � LS ¼
AL

4
�
3DL

2

� �
c0

μπR0
2 ðRmax

2 � Rd2Þ
�

þ
3DL

4
c0

μπ2R0
4 ðRmax

2 � Rd2ÞðRmax
2 þ Rd2 � 2R0

2Þ

�
LS
cd
¼
λpw
2
ð60Þ

rd � LS �
AL

4
�
3DL

2

� �
c0

μπR0
2 ðRmax

2 � Rd
2Þ

�

þ
3DL

4
c0

μπ2R0
4 ðRmax

4 � Rd4Þ
�
LS
cd
¼
λpw
2

ð61Þ
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Thus, we obtain the shock distance

LS ¼
λpwμπR0

2

AL
2 � 3DL
� �

ðRmax
2 � Rd2Þ þ 3DL

4πR02
ðRmax

4 � Rd4Þ
cd
c0

ð62Þ

LS¼
λpwμπR0

2

AL
2 � 3DL
� �

ðRmax
2 � Rd2Þþ 3DL

4πR02
ðRmax

4 � Rd4Þ
1þ

Rd2 � R02

R02

� �

ð63Þ

or

LS¼
λpw
π
:

μπRd2
AL
2 � 3DL
� �

ðRmax
2 � Rd2Þþ 3DL

4πR02
ðRmax

4 � Rd4Þ
ð64Þ

or

LS¼ λpw:
μπ

AL
2 � 3DL
� �

þ 3DL
4πR02

ðRmax
2þRd2Þ

:
Rd2

R2
max � Rd

2 ð65Þ

When the nonlinear term 3DL
4πR02
ðRmax

2 þ Rd
2Þ is considered neg-

ligeable compared to AL
2 � 3DL
� �

, the shock distance Ls can be
finally simplified in first approximation to

LS ¼ λpw:
μπ

AL
2 � 3DL
� � :

Rd2

R2
max � Rd2

ð66Þ

We see that the shock distance directly depends on the ratio
between the linear elastic coefficient μ(pdiast − pcuff ) under the
cuff during diastole (i.e., before the pulse wave attains the cuff )
and the nonlinear elastic parameters at maximal distortion during
the pulse wave propagation multiplied by the squared ratio between
the minimal and maximal radius

LS ¼ λpw:
πμðpcuff � pdiastÞ

AL
2 � 3DL

:
Rd2

R2
max � Rd2

ð67Þ

λpw is the wavelength of the pulse wave under the cuff, corre-
sponding approximately to

λpw ¼
1
f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðpsyst � pcuff Þ

ρ

s

ð68Þ

where f0 is the central frequency of the pulse wave signal and ρ is
the density.

Calculation of the shock distance
Equation 67 can be simplified by introducing the ratio γ of the linear
and nonlinear elastic coefficients

γ ¼
πμ

AL
2 � 3DL

ð69Þ

LS ¼ λpw γ
Rd

2

R2
max � Rd

2 ð70Þ

The nonlinear Landau coefficients of arteries AL and DL are
unknown to date in the literature. To derive a typical value for γ,
we fitted our P − A relationship (Eq. 37) to published experimental
P−A curves. After least-square fitting, we could estimate γ by doing

the ratio of the first- and second-order terms of the fitted expression
that is equal to 2R2

0γ. The results of Fig. 4 and fig. S5 were obtained
using the curve fromDrzewiecki et al. (29) on excised canine carotid
artery, giving γ = 2.26. We also considered noninvasive measure-
ments in human brachial arteries from Drzewiecki and Pilla (80)
and Bank et al. (81), giving respectively 1.90 and 1.96 for γ. These
experimental P − A curves are reproduced in fig. S11 along with the
fitted curves. The three theoretical shock distance curves corre-
sponding to these three values of γ are also reported in fig. S11,
with no major differences.
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