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Simple Summary: In this work, we explore the central compromise in TrJ/+ mice, a model for
the peripheral neuropathy Charcot-Marie-Tooth, using three different approximations: Ultrafast
Doppler, Confocal Microscopy, and behavioral tests, exposing alterations in the brain vasculature, as
well as an anxiety-like behavior. Hemodynamic changes recorded in vivo, associated with vascular
volume modulation, together with behavioral alterations in the TrJ/+ model, account for a functional-
structural-behavioral profile that demonstrates vascular/central involvement of the disease.

Abstract: The main human hereditary peripheral neuropathy (Charcot-Marie-Tooth, CMT), manifests
in progressive sensory and motor deficits. Mutations in the compact myelin protein gene pmp22
cause more than 50% of all CMTs. CMT1E is a subtype of CMT1 myelinopathy carrying micro-
mutations in pmp22. The Trembler-J mice have a spontaneous mutation in pmp22 identical to that
present in CMT1E human patients. PMP22 is mainly (but not exclusively) expressed in Schwann
cells. Some studies have found the presence of pmp22 together with some anomalies in the CNS of
CMT patients. Recently, we identified the presence of higher hippocampal pmp22 expression and
elevated levels of anxious behavior in TrJ/+ compared to those observed in wt. In the present paper,
we delve deeper into the central expression of the neuropathy modeled in Trembler-J analyzing
in vivo the cerebrovascular component by Ultrafast Doppler, exploring the vascular structure by
scanning laser confocal microscopy, and analyzing the behavioral profile by anxiety and motor
difficulty tests. We have found that TrJ/+ hippocampi have increased blood flow and a higher vessel
volume compared with the wild type. Together with this, we found an anxiety-like profile in TrJ/+
and the motor difficulties described earlier. We demonstrate that there are specific cerebrovascular
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hemodynamics associated with a vascular structure and anxious behavior associated with the TrJ/+
clinical phenotype, a model of the human CMT1E disease.

Keywords: Ultrafast Power Doppler; Scanning Laser Confocal Microscopy; behavioral tests; Trembler-J;
CMT1E; anxiety; hippocampi

1. Introduction

The most prevalent human Peripheral Nervous System (PNS) disorder is the Charcot-
Marie-Tooth disease (CMT): a diverse group of hereditary, chronic, progressive, sen-
sory/motor peripheral neuropathies caused by monogenic mutations [1–3]. Different
genes, in neurons and Schwann cells, are involved in these disorders, showing more than
1000 different mutations in 80 genes [4]. The main involved genes are pmp22 (coding to
Peripheral Myelin Protein 22, PMP22), gjb1 (coding to gap junction protein B1, Connexin-32,
Cx-32), MPZ (coding to Myelin Protein Zero, MPZ), litaf (coding to Lipopolysaccharide
Induced TNF Factor, LITAF), mfn2 (coding to Mitofusin 2, MFN2), egr2 (coding to Early
Growth Response 2, EGR2), and sh3tc2 (coding to SH3 Domain and Tetratricopeptide
Repeat-Containing Protein 2, SH3TC2) [5–8]. With a few exceptions, most mutations ob-
served in PMP22 show autosomal dominant heritability, autosomal recessive and X-linked
inheritance being less common [5]. Classically, two different types of CMT are distinguished:
Type I CMTs generally considered as schwannopathies, with mutations in CS’s genes, and
type II CMTs involving axonopathies, having neuronal gene mutations. The pmp22 muta-
tions cause about 70% of all CMT type 1 (CMT1) [5,6]. Pmp22 is a highly conserved 40 kb/6
exons gene, belonging to the growth arrest-specific genes characterized by Shneider et al.
in 1988 [9]. It was early characterized in NIH3T3 murine fibroblasts, due to a noticeable
increased transcription during cell cycle arrest [10]. Later, two of its transcripts (CD25 and
SR13) were identified in rat sciatic nerve, associated with the Schwann cell and myelin,
suggesting a plausible structure of four transmembrane domains [11,12] and a repeatedly
confirmed N-glycosylation site at Asparagine 41, at the first extracellular domain [11,13–15],
in the finally translated protein. Analogous transcripts were also found in mice and hu-
mans [16,17]. Known mutations in PMP22 include 44 single base substitutions, 14 deletions,
two insertions, one reciprocal translocation, several excision sites, and some single base
substitutions in exon 1A and in the 3’ end UTR. All of them are integrated in the CMT1E
subtype [4,5]. The PMP22 results in a small (22 kDa) hydrophobic tetraspan claudin, highly
expressed in the peripheral nervous system myelin [14,18–22]. Among them, mutations
affecting the pmp22 (encoding peripheral-myelin-protein-22, PMP22) cause about 70% of
all CMT type 1 (CMT1), called myelinopathies [5,6]. CMT1E is a subtype of CMT1 carrying
micromutations in the pmp22 [4,5]. The PMP22 has historically been found only in the
peripheral nervous system, specifically bound to compact myelin [14,18–20], it is a glycosy-
lated claudin with functions in the regulation of cell growth and differentiation [19,21,22].
However, some studies have also found the presence of PMP22 in the Central Nervous
System (CNS). The pmp22 transcript has been found in whole brain extracts [11,12,23],
in neurons of cranial and spinal nerves [24] and in the CNS [25]. In addition, some CNS
implications have been found in patients with CMT. In cases of familial CMT1, lesions
have been found in the cerebral white matter [26]. A case of CNS demyelination has
been described in a patient with CMT1a mimicking multiple sclerosis [27]. More recently,
functional reorganization in multiple large-scale networks has been found in patients with
CMT1 [28].

The elucidation of PMP22’s roles and functions has contributed to the understanding
of CMT1E pathogenesis [4,5,14]. Trembler (TrJ)and Trembler-J (TrJ/+) murine models
have elucidated some of the clinical phenotypes caused by defective processing of mu-
tant PMP22 and altered intracellular trafficking [29,30]. The TrJ/+, in particular, have a
spontaneous point mutation in the pmp22 gene (T1703C) which results in an L16P change,
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affecting the first transmembrane domain of PMP22, preventing its insertion and generat-
ing intracellular aggregates, with a toxic gain of function, hypomyelination, and axonal
degeneration [15,29,31–37]. This neurodegenerative phenotype presents different levels
of severity depending on gene dosage: while TrJ/+ heterozygotes are viable, recessive
homozygotes (TrJ/TrJ) die before weaning [38,39]. The main clinical manifestations are
spastic paralysis and generalized tremor. TrJ is a model of high biological fidelity to the
human condition, as the same mutation is found in the homologous gene, of a CMT1E
lineage [14,18,29,40]. The underlying cellular homeostasis in the TrJ model is shifted to-
wards a progressive deterioration in the efficiency of nerve fiber maintenance. Aggregation
of the mutated PMP22 protein saturates cellular detoxification pathways, generating a
gain of toxic function, increased oxidative stress, decreased antioxidant response, and
mitochondrial alteration [41–46]. This is a particularly critical context in the SNP where
PMP22 shows its maximum expression. However, the biological consequences of the
micromutation generate a complex phenotype which, as we have shown, also manifests
in the CNS [47,48]. In addition, its presence in other cell types, and at the nuclear level,
augurs other unelucidated roles with more systemic characteristics in the expression of the
TrJ phenotype. Recently, our group reported for the first time the presence of pmp22 in the
TrJ hippocampus, together with a behavioral profile of the anxious type [47].

The diversity of genes and mutations causing CMT conditions produces phenotypes
of varying severity, both in the onset and progression of the disease. There are no specific
therapies for any form of CMT, the attenuation of clinical symptomatology being the most
common application (i.e., vitamin supplements, pes cavus surgery) [49,50]. However, at
present, although still in the testing stages in animal models, advances in virus-mediated
gene therapies, the identification of sensitive molecular targets, and various pharmaco-
logical approaches aimed at improving clearance of protein aggresomes seem to be in the
direction of a personalized medicine of the CMTs [51,52].

Cerebrovascular physiology is a key element in the understanding of brain health.
Neurovascular biology underpins and provides insight into relevant aspects of cognitive
and behavioral function, aging, or neurodegenerative progression [53,54]. Vascular alter-
ations of the brain have been observed in the development of neurodegenerative diseases,
in animal models and in humans [55,56]. Some crossectional and longitudinal clinical stud-
ies reveal that impaired blood flow is a common and early indicator of Alzheimer’s disease
(AD), postulating that it may even precede the onset of proteinopathy in its symptomatic
stage, affecting brain perfusion and connectivity [53,57,58]. However, the elucidation of
the role of the vascular component in neurodegenerative homeostasis has not yet been
resolved for most nervous system disorders. Vascular dysfunctions impact cellular oxygen
pathways, including glucose metabolism, oxidative phosphorylation, and mitochondrial
and cellular homeostasis of neurons and glia [59–61].

The vasculature of the brain is fundamental for its proper functioning, providing
oxygen and nutrients, regulating immune trafficking and clearing pathogenic proteins [54].
Due to the large number of functionally distinct brain regions with different nutritional
needs and the high energy demand of the brain, supplying the right amount of oxygen
to each region is a major logistical challenge. Because of this, disturbances in blood flow
can be detrimental to the CNS’s healthy functioning, which plays an important role in
neurodegenerative diseases. Blood–brain barrier permeability and blood flow disturbance
have been detected in initial AD disease, together with brain infarcts, arterial lipid deposits,
and arterial wall thickening [54,62]. A clear relationship exists between brain neurovascula-
ture and brain health, with cerebrovascular dysfunction being a cause/effect phenomenon
associated with neurodegenerative diseases. In CMT, the study of the vascular compromise
has been poorly signaled, despite having been originally described as accompanied by
vasomotor abnormalities [63,64]. Recently, we have reported the presence of PMP22 protein
in the TrJ model at the hippocampal level. Consistently, an anxious behavior seems to
involve the hippocampal domines as a component of the TrJ clinical phenotype [47].
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New technologies and tools have made it possible to analyze the brain from other
perspectives. Recently, our group started working on a new image-driven modality, Ul-
trafast Doppler (µDoppler), a powerful tool for in vivo imaging of cerebral blood flow.
This technique allows us to observe the cerebral blood volume (CBV) with high sensitivity.
Precisely, using this technique in association with Scanning Laser Confocal Microscopy
(SLCM), we developed a method for quantifying the blood flow and its corresponding
vascular structure, differentiating the CBV in quartiles according to the different vessel
sizes, and finding that the CBV and the vascular structure vary with age [48].

In this study, we evaluate the in vivo cerebral blood flow and vascular structure
distribution in TrJ mice by µDoppler and SLCM. In addition, in order to understand the TrJ
phenotype as a whole, we explore the associated behavioral component in anxiety tests.

2. Materials and Methods
2.1. Animals

The local ethics committee approved all the experiments and procedures (Comisión
de Ética en el Uso de Animales (CEUA), Instituto de Investigaciones Biológicas Clemente
Estable (IIBCE), Uruguay, protocol number: 002a/10/2020). The regulations and guidelines
were followed strictly in all the experiments (Uruguayan Law number 18611, accessed on
2 October 2019, link to the law: https://www.impo.com.uy/bases/leyes/18611-2009/8).
The endogamic mice strain B6.S2-Pmp22Tr-J/jm rJ/+ and the wild type for Pmp22, +/+
were acquired from Jackson Laboratories. Both strains were bred in the IIBCE animal
facility and raised under controlled conditions, with free access to water and food, with
dark/light cycle (12 h/12 h), at 21 ± 3 ◦C. From an early age, the phenotype of TrJ/+ mice
is distinguished from +/+ by the suspending tail test, as was reported by Rosso et al. [65].
Three-month-old male animals were used for the experiments, following the distribution
shown in Table 1.

Table 1. Distribution of animals used for each test.

Genotype Behavioral Tests µDoppler Confocal Microscopy

+/+ 12 12 4
TrJ/+ 12 12 4

2.2. µDoppler Images Acquisition

For µDoppler acquisition, the mouse was anesthetized with 120 mg/kg ketamine
(Ventanarcol, Koing do Brasil Ltda., São Paulo, Brazil) and 16 mg/kg xylazine (Xylased*2,
Vetcross) diluted in 300 µL of saline solution. Then, its head was shaved to avoid interfer-
ence with the ultrasound signal caused by the air trapped inside the fur. A 128-element,
15 MHz ultrasound probe driven by Verasonics Vantage System was used for µDoppler
imaging. To this end, each mouse was placed in a customized stereotaxic frame that allowed
alignment of the ultrasound probe with the coronal plane of the brain. Each µDoppler
image was generated by averaging 350 frames using a four-angle compound sequence and
applying clutter filtering based on singular value decomposition (SVD) (Figure 1b). The
cut-off values used in the SVD clutter filter were selected based on achieving on the best
signal-to-noise ratio. Further information regarding this experimental procedure can be
found in [48].

2.3. µDoppler Images Analysis

For the quantification of µDoppler images, the Matlab software was used. A program
was generated to select the hippocampus and cortex section and separate the intensity
levels of the pixels into quartiles, corresponding to the different structures of the vessels:
big arteries and vein, smaller arteries and vein, arteriole, and capillary-venules (Figure 1b).
The number of pixels in the whole section was used to normalize the data.

https://www.impo.com.uy/bases/leyes/18611-2009/8
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Figure 1. Workflow showing the experiment method. (a) First, the behavioral tests were performed,
(b) then the µDoppler im-200 ages were acquired, (c) finally the brains were extracted and were
processed for confocal microscopy visualization. The data 201 processing and the statistical analysis
were performed for each experiment.

2.4. Brain Processing for Vibratome Sectioning

Mouse’s brain was dissected immediately after cervical dislocation euthanasia and
fixed by immersion in 4% PFA in PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM
EGTA, 2 mM MgCl2, adjusted to pH 7.2–7.4 with KOH pellets) at 4 ◦C for 24 h. After
that, the brain was washed in large volumes of PHEM buffer, each for 5 min 6 times, to
eliminate excess fixatives. The brain was then embedded in a block with a mixture of
0.5% gelatin, 30% bovine serum albumin, and 1% glutaraldehyde (final concentration).
Vibratome sections of 60 µm thickness were obtained in a Leica, VT 10000S vibratome. For
vessel visualization, brain sections containing the hippocampal head regions were stained
as previously described using Isolectin GS-IB4 Alexa Fluor 488 conjugate (Cat#: I21411,
ThermoFisher Scientific, Waltham, MA, USA) in 1:100 concentration (Figure 1c) [48].

2.5. Scanning Laser Confocal Microscopy

For cerebrovascular imaging, the Zeiss LSM 800 confocal microscope was used.
Applying the same voltage and photomultiplier conditions and performing a 10-plane scan
on the Z-axis, images of the same SLCM section were obtained. In addition, the tail scan
mode was used to compose the images of the coronal section of the brain (Figure 1c).

2.6. Confocal Image Analysis

For the quantification, the confocal images of two consecutive brain slices were used, to
form a thickness similar to the µDoppler image. Using ImageJ software, each hippocampus
and cortex section was selected and created a binary image, using the automatic threshold
function. The 3D counter plug-in was used to analyze the vascular volumes and the number
of vessels. In order to normalize the results, the volume of the hippocampus or cortex
section (total volume) was used, defining the value of the vessel volume fraction (VVF):

VVF =
VesselVolume
TotalVolume

× 100

The VVF distribution was divided into quartiles, sectioning the whole vessels into four
groups where the sum of volumes in each group corresponds to 25% of the sum of all vessel’s
volumes, in decreasing order. Each of them corresponds to Q1 (large arteries and veins),
Q2 (smaller arteries and veins), Q3 (arterioles and venules), and Q4 (capillaries and venules).
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2.7. Behavioral Tests

The Open Field Test and the Elevated Plus Maze were used as behavioral tests to assess
anxiety, while the Rotarod was used to assess motor behavior (Figure 1a). As reported by
Damián et al. (2021) [47], the animals were acclimatized for at least 2 h before performing
each of the tests. All the tests were carried out (on different days) in a room at a controlled
temperature (20 ± 2 ◦C). After each of the mice went through each test, the apparatus was
sanitized using 70% alcohol.

2.7.1. Open Field Test

For the Open Field Test, a plexiglass box with the following dimensions 30 × 35 × 40 cm
was used. Video recordings were made during the 10 min that each test lasted. The behaviors
evaluated during the Open Field Test were the number of rearings, grooming, freezing, fecal
boli, and head shakes, as well as the time dedicated to grooming and freezing [47,66].

2.7.2. Elevated Plus Maze Test

The apparatus for the Elevated Plus Maze Test (length of each arm 30 × 5 cm) was the
same as the one previously used by Damián et al. [47,66]. During the test that lasted five
minutes, the number of entries in open and closed arms and total entries were recorded,
and in addition, the number of grooming, rearing, fecal boli, and head shakes were also
recorded [47,66].

2.7.3. Rotarod Test

For the Rotarod, a cylindrical motorized platform (5 cm in length × 5 cm in diameter),
which rotates at different velocities, was used. Mice are placed above the cylinder and
the velocities are augmented at 15 s, until reaching the 5 different velocities. The time of
permanence in the platform for each of the speeds was scored.

2.8. Statistical Analysis

Normality was evaluated using the Shapiro–Wilk test. Behavioral parameters for TrJ/+
and +/+ phenotypes were compared using Student’s test when normally distributed while
the Mann–Whitney U test was used for non-normal distributed parameters. Different quar-
tiles within the same phenotype were compared using the one-way ANOVA test with the
Bonferroni test for multiple comparisons as post hoc for normal distributions, and the Fried-
man test for non-normal distributions. For confocal microscopy quantification, because of
the great variability, the data were analyzed in function of each quartile separately.

3. Results
3.1. µDoppler Images Quantification

The different quartiles showed significant differences for each genotype, both in the
hippocampus and in the cortex (p < 0.01, for all comparisons, Figure 2c,d and Figure 3c,d).

In the hippocampus, when comparing the mean quartile value between both geno-
types, the TrJ/+ mice show a significantly higher number of decibels for each quartile
(p < 0.001, for all comparisons, Figure 4a), while in the cortex there were no significant
differences between genotypes (Figure 4b).
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Figure 3. µDoppler quartile segmentation of the cortex. Brain coronal µDoppler images of (a) +/+
and (b) TrJ/+ mice. The quartile distribution is highlighted in colors on the rightcortex. Pixels falling
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Contrary to Figure 1, for this figure, the color scale in dB was computed with the maximum intensity
within the cortex as reference. Significant differences were obtained for the mean quartile values in
(c) +/+, and (d) TrJ/+ mice. ** p < 0.001, *** p < 0.0001.
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Figure 4. Mean quartile values of µDoppler mesure for +/+ vs. TrJ/+ mice in the hippocampus and the
cortex. (a) Mean quartile values in the hippocampus showed significantly higher values for TrJ/+ mice
when compared to +/+ mice. (b) No significant differences were found in the cortex. *** p < 0.0001.

3.2. Confocal Microscopy Vascular Visualization

The 3D Object counter plug-in and posterior data analysis showed significant differ-
ences between each quartile for each genotype, (Figure 5), both in the hippocampus and
cortex section (p < 0.0001 for all comparisons).
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TrJ/+ mice showed higher mean VVF values for each quartile, compared to Wt (+/+ vs. 
TrJ/+: p < 0.0001 for all comparisons) (Figure 6a). In the cortex section, no significant 
differences were found between both genotypes for Q1 and Q2, but for Q3 and Q4 TrJ/+ 
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Figure 5. Vascular structure by SLCM. (a) Tile-scan image of a coronal section from a +/+ mouse
brain. (b) Binary image in black and white by Image J automatic Threshold from the hippocampus
in (a). (c) Binary image in black and white by Image J automatic Threshold from the cortex section
in (a). (d) 3D counter object image showing the distribution of identified vessels. Vessels in the Q1,
Q2, Q3, Q4 range were colored blue, fuchsia, green, and yellow, respectively. (e) same as (d) but for
the cortex section. (h–l) same as (a–e) but for TrJ/+ mouse. (f,g,m,n) show the mean vessel volume
fraction (VVF) in the hippocampus and the cortex section, for all +/+ and TrJ/+ mice included in the
study, respectively. All quartiles show significant differences. *** p < 0.0001. The white bar in (a) and
(h) represent 1 mm.

Figure 6 shows the comparison of the vessels between different genotypes using confocal
microscopy in the hippocampus and cortex section. In the hippocampus, the TrJ/+ mice
showed higher mean VVF values for each quartile, compared to Wt (+/+ vs. TrJ/+: p < 0.0001
for all comparisons) (Figure 6a). In the cortex section, no significant differences were found
between both genotypes for Q1 and Q2, but for Q3 and Q4 TrJ/+ mice showed higher mean
VVF values compared to Wt (+/+ vs. TrJ/+: [Q3]: p < 0.0001; [Q4]: p = 0.0160) (Figure 6b).
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Figure 6. VVF Mean values for +/+ and TrJ/+ mice. (a) Comparison obtained in the hippocampus.
IB4 probing, tile-scan SLCM-imaging and 3D Counter FIJI plug-in showed significant differences for
all quartiles in the VVF values in the hippocampus between +/+ and TrJ/+ mice,. (b) Same as (a)
but in the cortex section. No significant differences were found for Q1 and Q2; Q3 and Q4 showed
significant differences. * p < 0.01, *** p < 0.0001, ns not significant.

3.3. Behavioral Tests
3.3.1. Elevated Plus Maze

In the Elevated Plus Maze test, TrJ/+ mice presented lower frequency of closed-arm
entries (p = 0.0065) (Figure 7a), lower total entries (p = 0.0380) (Figure 7b), lower rearing
frequency (p < 0.0001) (Figure 7c), and greater defecation frequency (p < 0.0001) (Figure 7d)
than Wt mice.
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Figure 7. Behavioral parameters of +/+ and TrJ/+ mice in the Plus Maze test. (a) Entries in closed
arms. (b) Total entries. (c) Rearing. (d) Defecation. Parameters in (c,d) were not normally distributed
and were analyzed using the Mann–Whitney U-test. Parameters in (a,b) were normally distributed
and analyzed using Student’s t-test. * p < 0.01, ** p < 0.001, *** p < 0.0001.

3.3.2. Open Field Test and Rotarod

In the Open Field Test, compared with Wt mice, TrJ mice presented more frequency
and time spent freezing (p < 0.001) (Figure 8a,b) more frequency and time spent grooming
(p < 0.001) (Figure 8c,d), and lower frequency of rearing (p < 0.0001) (Figure 8e), headshakes
(p < 0.0001) (Figure 8f), and defecation (p < 0.0001) (Figure 8g).
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Figure 8. Behavioral parameters of +/+ and TrJ/+ mice in the open field and Rotarod test. (a) Frequency
of freezing. (b) Time spent in freezing. (c) Frequency of grooming. (d) Time spent grooming. (e) Frequency
of rearing. (f) Frequency of head shakes. (g) Defecation. (h) Time of permanence in the Rotarod test. Only
(b) was distributed normally and was analyzed using Student’s t-test. The rest of the parameters were
analyzed using the Mann–Whitney U-test. * p < 0.01, *** p < 0.0001.

In the Rotarod test, TrJ/+ mice presented lower time of permanence than wt mice
(p < 0.0001) (Figure 8h).

4. Discussion

In the present work, we address unexplored aspects of the CMT1E central expression,
modeled in TrJ/+ mice, through a functional, structural, and behavioral analysis of the
neurodegenerative phenotype.

We report here, for the first time, an increase in the cerebral hippocampal perfusion
of TrJ/+ mice, compared to that observed under the same conditions in the hippocampi
of +/+ mice (Figure 4a). In addition, the volumetry of the cerebrovascular network was
further analyzed by SLCM, showing that hippocampal TrJ/+ vessel volume was larger than
in the +/+ brain for mice of the same age (Figure 6a). The finding was made possible by
non-invasive in vivo µDoppler imaging using erythrocytes as ultrasound diffusing elements
and subsequent combination with confocal mosaic imaging of the Isolectin IB4-labeled vas-
cular network (post mortem). The segmentation of the data distribution of both imaging
into quartiles, represents with reasonable fidelity the structural functionality of the vascular
network (Q1: large arteries and veins; Q2: smaller arteries and veins; Q3: arterioles and
venules; Q4: capillaries and venules). This tool allowed us a quantitative assessment in the
characterization of vascular aging in wt mice, which we have recently reported [48]. This
combined approach enhances and verifies the functional findings with a higher-resolution
description of the vascular structure.

In the present study, we verified that the anxious-like behavior, which we had previously
described in 5-month-old TrJ/+ mice [47], is already present at an earlier age. Thus, the
hippocampal activity in TrJ/+ may require hyperperfusion, sustained by a greater volume of
vessels rather than an increase in their number. Interestingly, we found no significant differ-
ences between genotypes when analyzing the number of cortex and hippocampal normalized
vessels (Figure S1). These data suggest that in TrJ/+, hyperperfusion is accompanied by a
sustained expansion or dilation of blood vessel volume in the hippocampal region.
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No differences in the suprahippocampal cortex perfusion were observed between
genotypes (Figure 4b). However, although the Q1 and Q2 vessel volumes did not show any
differences, a significant change was observed in vessel volumes mainly in Q3 and, with
less significance, in Q4 (Figure 6b). The absence of differences in the number of vessels
(Figure S1), suggests that the normal cortical perfusion is supported mainly by a dilation of
arterioles and (partially) capillaries-venules, contained in quartiles 3 and 4 of TrJ cortex.

Lastly, a different behavioral profile was found in TrJ/+ mice, showing an anxiety-
type behavior, as seen by higher frequency of and time spent freezing and grooming, and
higher frequency of rearing and defecation. Additionally, TrJ/+ mice showed the notorious
presence of headshakes, which could correspond to a central compromise [67]. Other
behavioral tests confirm the motor difficulty known to be present in TrJ/+ mice, as the
lower permanence in Rotarod and lower total entries in EPM. Although the EPM test
shows responses to stress, in this case, the lower frequency of entries in closed arms of
TrJ/+ mice can be explained by the motor difficulties present. These results reaffirm that
the behavioral profile of TrJ/+ mice differs to +/+, evidencing an anxious-type profile,
as reported previously by Damian et al. [47]. It is interesting to highlight that although
the mice used in this work were younger than the ones used in Damian et al. [47], the
profile is almost identical, which allows us to speculate that the behavioral profile of TrJ/+
is characteristic of the pathologic condition, and is not affected in relationship with the
age. Additionally, this also reinforces that the vascular changes observed in this study
are contrasted with behavioral variables associated specifically with the brain areas, for
example, the hippocampus.

Changes in the cerebral vasculature have been associated with behavioral alterations,
both in animals and humans [68–71]. As an example, Hill et al. [68] reported that children
with sleep disorders have higher cerebral blood flow velocity than control children. In
addition, activation of stress and anxiety response pathways has been associated with
changes in the vasculature of the brain in rodents [69,71]. Finally, other pathologies that
affect the central nervous system, such as type 2 diabetes and Alzheimer’s disease, and those
that present anxious behavior, also present dysfunction of the cerebral vasculature [70].
Therefore, and based on our results, it is likely that the anxious-like behavior profile
observed in TrJ/+ mice may be linked to changes in the cerebral vasculature.

5. Conclusions

Central vascular involvement has been demonstrated to be a component associated
with major CNS disorders. However, this involvement noted in Charcot and Marie’s early
work has been subsequently scarcely explored in CMT, pointing to the involvement of
the autonomic nervous system. Our work contributes to the description and elucidation
of hemodynamic changes recorded in vivo, associated with vessel volume modulation.
In addition, behavioral alterations of the anxious type converge in the TrJ/+ model in a
functional-structural-behavioral profile that demonstrates the vascular/central involve-
ment of the disease. Thus, the requirement for increased hippocampal blood flow in TrJ/+
could respond to increased metabolic activity with increased oxygen demand to sustain
the higher levels of anxiety. Future works will be needed to confirm this hypothesis and its
implications to understand more deeply the neuropathy and its therapeutic implications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12101324/s1, Figure S1: Values of vessel number in
the hippocampus and the cortex. (a) Total vessel number in the hippocampus. (b) Total vessel
number for each quartile in the hippocampus. (c) Total vessel number in the cortex. (d) Total vessel
number for each quartile in the cortex. No significant differences were found in any case. Figure
S2: Quantification of erythrocytes in blood samples. (a) Number of erythrocytes in blood. +/+ mice
showed a higher concentration of cells than TrJ/+. (b) Diameter of erythrocytes in blood samples.
TrJ/+ showed a higher diameter of cells than +/+.

https://www.mdpi.com/article/10.3390/biology12101324/s1
https://www.mdpi.com/article/10.3390/biology12101324/s1
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