

Machine-learning and mechanistic modeling of primary and metastatic breast cancer growth after neoadjuvant targeted therapy

Sébastien Benzekry, Michalis Mastri, Chiara Nicolò, John Ebos

► To cite this version:

Sébastien Benzekry, Michalis Mastri, Chiara Nicolò, John Ebos. Machine-learning and mechanistic modeling of primary and metastatic breast cancer growth after neoadjuvant targeted therapy. 2023. hal-04384182

HAL Id: hal-04384182 https://hal.science/hal-04384182

Preprint submitted on 10 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Machine-learning and mechanistic modeling of primary and metastatic breast cancer growth after neoadjuvant targeted therapy

S. Benzekry^{1*}, M. Mastri², C. Nicolò³ and J. ML Ebos^{2,4}

- 1. Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
- 2. Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- 3. InSilicoTrials Technologies S.P.A, Riva Grumula 2, 34123, Trieste, Italy.
- 4. Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.

* Correspondence: Sebastien Benzekry, PhD, sebastien.benzekry@inria.fr

Running title: Mathematical modeling of metastasis after neoadjuvant therapy

Conflict of interest: The authors declare no potential conflicts of interest

Abstract

Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors prior to surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Yet such trials are rarely preceded by preclinical testing involving surgery. Here we used a mouse model of spontaneous metastasis after surgical removal to develop a predictive mathematical model of neoadjuvant treatment response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Longitudinal data consisted of measurements of presurgical primary tumor size and postsurgical metastatic burden in 128 mice (104 for model training, 24 for validation), following variable neoadjuvant treatment schedules over a 14-day period. A nonlinear mixed-effects modeling approach was used to quantify inter-animal variability. Machine learning algorithms were applied to investigate the significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers included circulating tumor- and immune-based cells (circulating tumor cells and myeloidderived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). Our simulations showed that neoadjuvant RTKI treatment inhibits primary tumor growth but has little efficacy in preventing (micro)-metastatic disease progression after surgery. Surprisingly, machine-learning algorithms demonstrated only limited predictive power of tested biomarkers on the mathematical parameters. These results suggest that presurgical modeling might be an effective tool to screen biomarkers prior to clinical trial testing. Mathematical modeling combined with artificial intelligence techniques represent a novel platform for integrating preclinical surgical metastasis models in outcome prediction of neoadjuvant treatment.

Major findings: Using simulations from a mechanistic mathematical model compared with preclinical data from surgical metastasis models, we found anti-tumor effects of neoadjuvant RTKI treatment can differ between the primary tumor and metastases in the perioperative setting. Model simulations with variable drug doses and scheduling of neoadjuvant treatment revealed a contrasting impact on initial primary tumor debulking and metastatic outcomes long after treatment has stopped and tumor surgically removed. Using machine-learning algorithms, we identified the limited power of several circulating cellular and molecular biomarkers in predicting metastatic outcome, uncovering a potential fast-track strategy for assessing future clinical biomarkers by paring patient studies with identical studies in mice.

1 Introduction

2 Neoadjuvant trials in breast cancer (BC) patients involve the administration of systemic treatment for a limited period to treat (and reduce) localized primary tumors prior to 3 4 surgery. They provide several advantages to assist in novel drug development and 5 translational research (1). For example, neoadjuvant trials can be faster to conduct, 6 require fewer patients, offer the potential for controlled assessment of biological tissue 7 for novel biomarker development, and critically, can potentially limit distant (often 8 occult) metastatic lesions to delay disease recurrence long after treatment has ended 9 (1,2). Yet there are surprisingly few studies that precede neoadjuvant trial design to 10 offer predictive guides to validate drug efficacy, biomarkers, or possible outcomes. In this regard, in silico (mathematical) modeling and preclinical in vivo testing can be 11 12 useful. However, mathematical modeling most often occurs as post-hoc analysis in BC 13 trials and studies in mice rarely include clinically relevant systems that capture the complexity of surgical impact on primary/metastatic growth to offer rationalized 14 15 inclusion of biomarkers in trial design.

16 To address this gap, here we describe a mathematical modeling framework of 17 neoadjuvant therapy using a combination of preclinical in vivo and in silico data to 18 provide a predictive platform for treatment outcomes. This extends from our prior work 19 that validated a semi-mechanistic model comparing localized 'primary' tumor growth 20 with the growth of spontaneous metastatic disease that occurred after surgery in mouse 21 models of BC (4). We used 'ortho-surgical' models (i.e., orthotopic implantation followed 22 by surgical tumor resection) to show that inter-individual variability in the kinetics of 23 metastatic growth could be captured by a (lognormal) distribution of a critical parameter 24 of metastatic aggressiveness, which we termed ' μ '. By adding here neoadjuvant 25 treatment to this mathematical modeling framework it allowed us to: 1) formulate and 26 test mechanistic hypothesis about differential effects on primary versus secondary 27 disease, 2) evaluate the impact of biomarkers on metastatic development and 3) 28 investigate the impact of modulating dosing regimen. In addition, machine learning 29 coupled to mechanistic modeling – an approach that we call 'mechanistic learning' (5,6)30 - can screen biomarkers with translational potential and establish predictive models 31 (7). In contrast to classical statistical analysis, machine-learning consists in designing 32 models with predictive power as metric of success, rather than inference properties, 33 and makes use of highly nonlinear models such as regression trees or artificial neural 34 networks (8).

35 In this study, we examined neoadjuvant treatment with sunitinib, a molecular targeted 36 tyrosine inhibitor (TKI) that can block angiogenesis-associated vascular endothelial 37 growth factor receptors (VEGFRs) along with several other regulators of metastasis (9). 38 Using a VEGFR TKI had several advantages. First, they have a short half-life which 39 allowed us to confine treatment effects to the presurgical period and incorporate 40 multiple variations of treatment dosing, days treated, and time of resection after initial 41 tumor implantation in mice. Second, VEGFR TKIs have shown mixed effects in the 42 perioperative setting in BC (10). While the addition of neoadjuvant sunitinib to 43 chemotherapy improved pathologic complete response rates, long-term results have 44 been more contrasted, with no disease free survival benefit and either none (11) or 45 some (12) overall benefit. As a monotherapy, we and others have demonstrated that 46 robust inhibition of primary tumor growth does not always translate into inhibition of 47 metastasis post-surgically nor improvement in survival (13-15). In our model, we

48 measured multiple cellular and molecular biomarkers at surgery and used machine 49 learning to investigate their predictive power on the mechanistic parameters of our 50 neoadjuvant mathematical metastatic model. Machine learning confirmed a lack of 51 definitive biomarkers, which shows the value of preclinical modeling studies to identify 52 potential failures that should be avoided clinically.

- 53
- 54
- 55
- 56
- 00
- 57

58 Materials and Methods

59 Cell lines

The human LM2-4^{LUC+} cells are a luciferase-expressing metastatic variant of the MDA-MB-231 breast cancer cell line derived after multiple rounds of *in vivo* lung metastasis selection in mice, as previously described (16). LM2-4^{LUC+} were maintained in DMEM (Corning cellgro; 10-013-CV) supplemented with 5% v/v FBS (Corning cellgro; 35-010-CV), in a humidified incubator at 37oC and 5% CO2. The cell line was authenticated by STR profiling (DDC Medical, USA).

66 Drug and doses used

67 Sunitinib malate (SU11248; Sutent®C, Pfizer) was suspended in a vehicle formulation 68 that contained carboxymethylcellulose sodium (USP, 0.5% w/v), NaCl (USP, 1.8% w/v), 69 Tween-80 (NF, 0.4% w/v), benzyl alcohol (NF, 0.9% w/v), and reverse osmosis 70 deionized water (added to final volume), which was then adjusted to pH 6. The drug 71 was administered at 60 or 120 mg/kg/day orally by gavage as previously described 72 (13,17). The treatment window used in all neoadjuvant studies consisted of a previously 73 optimized 14-day period prior to surgery (13). Within this 14-day period, daily sunitinib 74 (Su) treatment was given either at 60 mg/kg/day (for 3, 7, or 14 days followed by vehicle 75 for 11, 7, or 0 days, respectively), or at 120 mg/kg/day for 3 days followed by 60 mg/kg/day for 0, 4, 8, or 11 days, and vehicle for 11, 7, 3, or 0 days, respectively. An 76 77 example of an abbreviation in the text includes 'Su60(14D)', which means 'sunitinib at 78 60mg/kg/day for 14 days. Schematics for all studies are shown in Table S1. Mice 79 treated daily with vehicle for 14 days were used as controls. Detailed analysis and 80 comparisons of these treatment regimens are described in a companion study 81 evaluating treatment breaks on metastatic disease.

82 Ortho-surgical model of metastasis

Animal studies were performed in strict accordance with the recommendations in the
Guide for Care and Use of Laboratory Animals of the National Institute of Health and
according to guidelines of the Institutional Animal Care and Use Committee at Roswell
Park Comprehensive Cancer Center (protocol: 1227M, PI: John M.L. Ebos).

87 Implantations: Experimental methodology was extended from previous work using 88 a xenograft animal model of breast cancer spontaneous metastasis that includes 89 orthotopic implantation followed by surgical resection of a primary (termed 'orthosurgical') (4). Briefly, LM2-4^{LUC+}(1 x 10^6 cells in 100µl DMEM) were orthotopically 90 91 implanted into the right inguinal mammary fat pad (right flank) of 6-8-week old 92 female SCID mice, as described previously (4,13,17). Primary tumor burden was 93 monitored with Vernier calipers using the formula width² (length x 0.5) and 94 bioluminescence imaging (BLI) (4,13,17). Neoadjuvant treatments started 14 days 95 before primary tumors were surgically removed at a timepoint (34-38 days post-96 implantation) previously optimized for maximal distant metastatic seeding but 97 minimal localized invasion (4,13). The surgeries were planned at specific time 98 points post-implantation to avoid invasion of primary tumor into the skin or 99 peritoneal wall, ensuring that metastatic progression had proceed and minimizing 100 the possibility of surgical cure (4,13). Postsurgical MB was assessed by BLI and 101 overall survival was monitored based on signs of end stage disease as previously

- 102 described(4,13).
- 103 *Exclusion criteria:* Two scenarios represented instances where animals were 104 excluded from treatment studies. First, if complete removal of primary tumor was 105 not surgically feasible because of local invasion or evidence of advanced metastatic 106 spread(4,17). Second, if no primary or metastatic tumor was ever detected by BLI 107 or visual assessment it was assumed there was lack of tumor-take upon 108 implantation (4,13).
- *Randomization:* Before treatment initiation animals were randomized by primary
 tumor size assessed by Vernier calipers to avoid any false results due to unequal
 tumor burden between groups (18).

112 Flow cytometry

Peripheral blood was collected in tubes containing lithium heparin (BD Biosciences; 113 114 365965) by orbital bleeding one day before surgical tumor resection. Non-specific 115 binding was blocked with normal mouse IgG (Invitrogen; 10400C) incubated with whole 116 blood, followed by incubation with an antibody mix. After staining, cells were fixed in a 117 lyse/fix solution (BD Biosciences; 558049), while red blood cells were lysed. Samples 118 were analyzed with a LSR II low cytometer (Becton Dickinson), while data were 119 acquired with FACSDiva software (Becton Dickinson) and analyzed with FCS Express 120 6 (DeNovo software).

121 Circulating tumor cells (CTC)

122 The antibody mix for CTC detection of human CTCs in animal models contained a rat 123 anti-mouse CD45 (30-F11) antibody conjugated to PE (Biolegend: 103106) and mouse 124 anti-human HLA conjugated to AlexaFluor 647 (Biolegend; 311416). CD45 staining with 125 a rat anti-mouse CD45 conjugated to FITC (Invitrogen; MCD4501) was used to 126 eliminate any mouse blood cells, whereas human HLA was used to identify CTC (human LM2-4^{LUC+}). For a positive control, LM2-4^{LUC+} cells were trypsinized, washed 127 with PBS, and stained for both CD45 and HLA. LM2-4^{LUC+} were used to define the CTC 128 129 gate.

130 Circulating myeloid-derived suppressor cells (MDSC)

The antibody mix for detection of MDSCs contained a rat anti-mouse CD45 (30-F11) antibody conjugated to PE (Biolegend; 103106), a rat anti-mouse Ly-6G/Ly-6C (Gr1) (RB6-8C5) antibody conjugated to PE-Cy7 (BD Pharmingen; 552985), and an rat antimouse CD11b (M1/70) antibody conjugated to eFluor450 (eBioscience; 48-0112). Mouse CD45 staining was used to select only leukocytes, and CD11b and Gr1 were used to define the granulocytic and monocytic MDSC.

137 Immunofluorescence

138 Resected tumors were frozen on dry ice in cryo-embedding compound (Ted Pella, Inc; 139 27300), sectioned, and fixed in a 3:1 mixture of acetone:ethanol. Non-specific binding 140 was blocked with 2% BSA in PBS, followed by staining with antibody mix containing 141 rabbit anti-mouse Ki67 antibody (Cell Signaling Technologies; 12202) and rat anti-142 mouse CD31 antibody (Dianova; DIA-310). Detection of primary antibodies was 143 achieved using FITC conjugated goat anti-rabbit IgG (BD Pharmingen; 554020) and 144 Cy3 conjugated goat anti-rat IgG (Invitrogen; A10522). Samples were counterstained 145 with DAPI (Vector; H-1500) and mounted with a hard-set mounting medium for 146 fluorescence. Random images from each section were obtained with a Zeiss 147 AxioImager A2 epifluorescence microscope at 200x magnification, and analyzed with

148 ImageJ. CD31+ cells (% area) and Ki67+ cells (% cells) were quantified automatically

using macro functions, whereas Ki76+/CD31+ cells (proliferating endothelial cells) werequantified manually.

151 Mechanistic model of ortho-surgical metastasis

For untreated animals, we previously validated a mechanistic model for description of pre-surgical primary tumor and post-surgical metastasis kinetics in the ortho-surgical LM2-4^{LUC+} animal model (4). Briefly, metastatic development is decomposed into two main processes; growth and dissemination.

156 Growth of the primary and metastases follow the Gomp-Exp model (19):

157
$$g_p(v) = g(v) = \min\left(\lambda v, \left(\alpha - \beta \ln\left(\frac{v}{V_0}\right)\right)\right),$$

158 where g_p and g denote the growth rates of the primary and secondary tumors, 159 respectively. Parameter λ limits the Gompertz growth rate to avoid unrealistically fast 160 kinetics for small sizes and is given by the *in vitro* proliferation rate, assessed previously 161 (4). Parameters α and β are the Gompertz parameters, and V_0 is the size of one cell (in 162 units of mm³ for the PT, and photons/seconds for the metastases). The PT volume, 163 $V_p(t)$ thus solves

164
$$\begin{cases} \frac{dV_p}{dt} = g_p(V_p) \\ V_p(t=0) = V_i, \end{cases}$$

with V_i the volume corresponding to the number of cells injected (= 1 mm³ based on the conversion rule 1 mm³ \simeq 10⁶ cells (20)).

167 Dissemination occurs at the following volume-dependent rate (4):

$$d(V_p) = \mu V_p$$

169 where parameter μ can be interpreted as the daily probability that a cell from the PT 170 successfully establishes a metastasis (4).

171 The metastatic process was described through a function $\rho(t, v)$ representing the 172 distribution of metastatic tumors with size v at time t. It solves the following initial 173 boundary value problem (21):

174
$$\begin{cases} \partial_t \rho(t, v) + \partial_v (g(v)\rho(t, v)) = 0, & t \in (0, +\infty), v \in (V_0, +\infty) \\ g(t, V_0)\rho(t, V_0) = d (V_p(t)), & t \in (0, +\infty) \\ \rho(0, v) = 0, & v \in (V_0, +\infty) \end{cases}$$

The first equation derives from a balance equation on the number of metastases; the second equation is a boundary condition for the rate of newly created metastases; the third equation is the initial condition (no metastases exist at the initial time).

178 The total MB at time *t* was then given by

179
$$M(t) = \int_{V_0}^{+\infty} v\rho(t, v) dv = \int_0^t d\left(V_p(t-s)\right) V(s) ds,$$

180 which can be solved efficiently through the use of a fast Fourier transform algorithm 181 (22). In the previous equation, V(s) represents the volume reached by a metastatic 182 tumor after a period of time *s* from its emission, when growing with growth rate *g*.

183 Mechanistic model of neoadjuvant targeted therapy

Using this model, we next incorporated the effects of systemic therapy. This new model includes neoadjuvant sunitinib treatment and assumes that the drug reduces the primary tumor growth rate by a term proportional to its concentration, C(t) (Norton-Simon hypothesis (23)):

188 $g_p^T(t,v) = g_p(v)(1-k C(t))$

189 where k is a parameter of drug efficacy. As no pharmacokinetic data was available, we 190 used a kinetics-pharmacodynamics (K-PD) approach. Namely, we considered that the 191 drug concentration decays exponentially after each dose,

192
$$C(t) = \frac{1}{V_d} \sum_{i=1}^n D_i e^{-k_e(t-\tau_i)} \mathbb{I}_{t > \tau_i},$$

193 where D_i indicates the dose administered at time τ_i . The volume of distribution V_d and 194 the elimination rate constant k_e were fixed to the values reported in (24). Inclusion of 195 treatment effect on metastatic growth was considered in the model development phase; 196 however, this led to model predictions which could not explain the behavior of the 197 experimental data. Therefore, the final model considered that sunitinib did not affect 198 growth of metastases during neoadjuvant treatment.

199 Calibration of the mathematical metastatic model and parameter 200 estimation

Following previously established methodology (4), the mathematical metastatic model 201 202 was fitted to the experimental data using a nonlinear-mixed effects modeling approach 203 (25). Briefly, this consists in modeling inter-animal variability by assuming a parametric distribution for the model parameters. All individual PT and MB longitudinal data could 204 205 then be pooled together in a population model, whose parameters were estimated by likelihood maximization (25). In mathematical terms, if y_i^i denotes the observation 206 (primary tumor size or metastatic burden) in animal *i* at time t_i^i and $f(t_i^i; \theta^i)$ denotes 207 the model value in an animal with parameter set $\theta^i = (\alpha^i, \beta^i, k^i, \mu^i)$, the statistical model 208 209 linking the model to the observations writes:

210
$$y_i^i = f(t_i^i; \theta^i) + \sigma_i^i \varepsilon_i^i,$$

211
$$\ln \left(\theta^{i}\right) = \ln\left(\theta_{pop}\right) + \eta^{i}, \quad \eta^{i} \sim \mathcal{N}(0, \Omega)$$

where $\varepsilon_j^i \sim \mathcal{N}(0,1)$ is a gaussian noise for measurement error. The parameters θ_{pop} and Ω characterize the entire population. The observed data were log-transformed and a proportional error model was used, that is

215
$$\ln y_j^i = \ln \left(f(t_j^i; \theta^i) \right) \left(1 + \bar{\sigma} \varepsilon_j^i \right).$$

For the vector of individual parameters, a log-normal distribution with full covariance matrix was assumed. Maximum likelihood estimates of the population parameters were obtained using the Stochastic Approximation of Expectation-Maximization (SAEM) algorithm implemented in the nlmefitsa Matlab function (26). PT and MB data were fitted simultaneously for vehicle and sunitinib-treated animals. Visual predictive checks
 (VPC), individual fits and standard diagnostic graphical tools based on individual
 parameters were used for evaluating the adequacy of the different model components.

223 Machine learning algorithms

Effects of covariates on the model parameters were assessed using linear regression and a number of machine learning regression techniques (partial least squares, artificial neural networks, support vector machines and random forest models) using the R caret package (27,28). Except for the random forest models, data were centered and scaled prior to modeling. Tuning parameter values of the regression models were selected to minimize the root mean squared error (RMSE) using five replicates of a 10-fold crossvalidation. If θ^i are the true values and $\hat{\theta}^i$ the predicted ones, the RMSE is defined by:

231
$$RMSE = \sqrt{\frac{\sum_{i} \left| \hat{\theta}^{i} - \theta^{i} \right|^{2}}{N}}.$$

232

233 **Results**

234 *In vivo/in silico* modeling of neoadjuvant treatment

235 We have previously developed mathematical parameters of untreated spontaneous 236 systemic metastatic breast cancer using orthotopic tumor implantation and surgical resection (i.e., 'ortho-surgical') models (4). Using individual longitudinal presurgical 237 238 primary tumor (PT) and postsurgical metastatic burden (MB; tracked by 239 bioluminescence) data, we previously established that the metastatic potential 240 parameter μ quantifies inter-individual variability after surgical resection of the PT (4). 241 In addition, our results validated the use of the mathematical model to simulate pre-242 and post-surgical metastatic development. Here, using a xenograft model with highlymetastatic human breast cells expressing luciferase (LM2-4^{LUC+}), we evaluated PT and 243 244 MB data from 128 mice that received multiple doses and durations of neoadjuvant 245 sunitinib treatment over a 14 days period (schematic shown in Fig 1A; see Table S1 246 and methods for treatment details).

247

Simulations of neoadjuvant sunitinib targeted treatment therapy (NATT) suggests limited effect on metastasis growth

- 250 We have previously utilized ortho-surgical metastasis models to evaluate the impact of 251 multiple VEGFR TKIs on PT and MB progression (13,14). These studies uncovered that neoadjuvant targeted therapy (NATT) yielded differential effects with suppression 252 253 of presurgical PT growth not consistently translating into reduction in postsurgical MB 254 nor improvement in survival (13). This effect could result from two phenomena that are 255 mixed in MB quantification: 1) metastatic growth suppression and 2) reduction of 256 metastatic spread as a consequence of primary tumor size reduction. To disentangle the two and qualitatively assess the effect of NATT, we generated predictive model 257 258 scenarios under two assumptions. In 'scenario A', NATT would have growth-arresting 259 effects on both PT and MB, while in 'scenario B' NATT would have effect only on PT 260 (schematic shown in Fig 1B). To test this, we used our previously calibrated orthosurgical model of pre- and postsurgical growth using LM2-4^{LUC+} tumor cells grown in 261 SCID mice (4), and only set either both growth rates g_p and g (Scenario 'A') or g_p only 262 263 (Scenario 'B') to zero during NATT. Scenario 'A' clearly failed to describe the data (Figs 264 1C and S1), whereas Scenario 'B' interestingly demonstrated good accuracy given that 265 simulations were pure predictions that did not make use of the data for parameter 266 estimation (Figs 1C and S1). These results demonstrate a differential effect of NATT 267 on growth of primary and secondary tumors and suggest that a mathematical model of 268 NATT in our breast cancer ortho-surgical animal model should not include anti-growth 269 effect on metastasis.
- 270

271 Calibration and validation of a kinetics-pharmacodynamics (K-PD) model 272 for pre- and post-surgical disease after neoadjuvant sunitinib therapy

To further link dose and scheduling to response, we developed a K-PD metastatic model of NATT using a defined neoadjuvant treatment window (14 days) containing multiple treatment periods (3, 7, 11, 14 days), doses (60mg and 120mg), and time of surgery after tumor implantation (Day 34 or 38) (see Table S1 and methods for details). 277 Following our findings above, we only adapted the PT growth rate g_p from (4), using the Norton-Simon hypothesis for PT anti-growth effect of NATT (23). Estimates of the 278 279 model parameters are reported in Table 1 and demonstrate high practical identifiability 280 (relative standard error \leq 17%), likely owing to the large number of subjects in the 281 population fit. Confirming our previous results (4), the metastatic potential parameter μ 282 was found to vary significantly amongst individuals (largest coefficient of variation). 283 Visual predictive checks for both vehicle group and treated groups demonstrated 284 accurate goodness-of-fit both at the population (Figs 2A and S2) and individual (Figs 285 2B and S3) levels. In addition, model predictions in independent data sets not used for 286 parameter calibration, with distinct time of surgery (day 38 versus day 34) and drug 287 regimens, were in good agreement with the data (Fig S4). Further model diagnostic 288 plots demonstrated no clear misspecification of the structural and residual error model 289 (Fig S5). Distributions of the empirical Bayes estimates were in agreement with the 290 theoretical distributions defined in the statistical model (Fig S6). Moreover, the η -291 shrinkage was less than 20% for each parameter, meaning that the individual 292 parameter estimates and the diagnostic tools based on them can be considered reliable 293 (29). Finally, correlations found between the estimated random effects (Fig S7) 294 confirmed the appropriateness of a full covariance matrix in the assumed distribution of 295 the individual parameters. Together, these results show the validity of our mathematical 296 model to simulate PT and MB kinetics under a wide range of NATT administration 297 regimens, which can thus be employed to explore in silico the quantitative impact of 298 possible NATT schedules.

299

300 Simulations of NATT duration reveal contrasted impact on PT size 301 reduction and metastasis-free survival

302 The overall impact of NATT is the combination of i): PT debulking (which in turn reduces 303 metastatic spread from the PT), and ii) an increased risk of metastatic relapse due to 304 delayed removal of the PT. To quantify the impact of NATT duration on these two 305 opposite aspects, we ran simulations of our calibrated model for 0 to 18 days NATT 306 and three dose levels (60, 120 and 240 mg/kg, see Fig 3). First using only the typical 307 population estimates of the parameters (median individual), we found an important increase in postsurgical MB for long NATT: final values ranged from 2.73 x 10⁸ to 7.52 308 309 x 10^8 cells for NATT durations from 0 to 18 days (176% increase), respectively, at the 310 60 mg/kg dose level (Fig 3A). This is consistent with our model where NATT does not 311 affect metastatic growth, thus delaying surgery can only increase MB. This was less important in higher dose levels (125% and 48.5% increases for 120 mg/kg and 240 312 313 mg/kg, respectively). To study the impact of inter-individual variability, we leveraged 314 our mixed-effects framework to perform population simulations and quantify final 315 outcome. Namely, we simulated 1000 virtual individuals and recorded the percent 316 changes in PT size at the end of NATT. Fig 3B shows the resulting median PT percent changes, together with an area covering 80% of the population. In addition, we 317 318 calculated a risk of metastatic relapse from the resulting simulation of MB kinetics. To 319 do so, we considered as MB relapse threshold the 30th percentile of the control 320 population MB at 85 days (considered to be an approximation of long term), to mimic the human situation in which 30% of breast cancer patients with localized disease 321 322 undergo metastatic relapse (30). This threshold then allowed us to compute the percent 323 of subjects having metastatic relapse in the virtual populations, under varying NATT duration (Fig 3B, circled line). For 60 mg/kg and 120 mg/kg doses, metastatic relapse 324

325 risk is predicted to increase drastically when delaying PT removal too long. However, 326 for a 240 mg/kg dose (or for virtual subjects with increased sensitivity to treatment), 327 increase in metastatic relapse risk is more moderate, since a prolonged NATT is 328 associated with large decrease of the PT size, thus reducing the source of metastasis. 329 Together, these results illustrate how our mathematical model, informed from preclinical 330 data of an NATT ortho-surgical model, can provide informative guantitative simulations 331 of the impact of treatment schedules. Our findings suggest a moderate to detrimental 332 impact of long sunitinib NATT at low dose, in breast cancer.

333

Machine learning for prediction of the metastatic aggressiveness parameter μ from biomarkers at surgery

- 336 Next, we wanted to determine whether biological parameters at the time of PT surgery 337 but after NAT had stopped could be utilized as predictive biomarkers of postsurgical 338 MB after treatment cessation. These biomarkers included immunohistochemical 339 molecular protein measurements of resected PT for cell proliferation (Ki67) and blood 340 vessel (CD31) markers in resected PTs (Fig 4A; example shown), blood-based cellular 341 measurements of circulating myeloid derived stromal cells (MDSCs) (Fig 3B), and 342 circulating tumor cells (CTCs) from 66 animals (Fig 4B and 4C, respectively; examples 343 of flowcytometric gating shown). We investigated whether these molecular and cellular 344 biomarkers may parallel the observed variability in the mathematical parameters, in 345 particular μ , whose large variability indicated potential animal subpopulations of variable metastatic potential values. We first examined correlations between 346 347 biomarkers in order to identify potential redundancies in the data (Fig 4B). High 348 correlations were found between Ki67 and Ki67+/CD31- (r = 0.979, $p < 10^{-12}$) and CTC and gMDSC (r = 0.678, p = $3.95 \cdot 10^{-10}$). Next, we investigated the value of these 349 350 measurements as predictive biomarkers of the mechanistic parameters: α and β capture growth kinetics, k the effect of treatment and μ metastatic dissemination. Fig 351 352 4B shows correlations between biomarkers and the parameter estimates. As the individual growth parameters α and β were highly correlated (r = 0.997, p < 10⁻⁵), we used the Gompertz tumor doubling time at the volume $V_i = 1 \text{ mm}^3$ to assess the impact 353 354 of covariates on the tumor growth parameters. It is defined by $DT = -\frac{1}{\beta} \ln \left(\frac{\ln(2) + A}{A} \right)$, 355 with $A = \ln \left(\frac{V_i}{V_0}\right) - \frac{\alpha}{\beta}$. A weak correlation was found between $\log (DT)$ and mMDSC 356 levels (Fig 4E, r = 0.275, p = 0.0257). However, none of the available biomarkers was 357 358 found to correlate either with μ or log (μ) (Fig S8). Next, partial least squares and a 359 number of different machine learning regression algorithms were tested in order to 360 identify possible relationships between covariates and individual estimates of the 361 metastatic potential parameter (shown in Fig 1A schematic). These included neural 362 networks, support vector machines and random forest models (31). Cross-validation 363 results for the RMSE of the final regression models were compared against the 364 intercept-only model (the constant model were predictions are the same for all animals, given by the median value in the population, μ_{pop}). As shown in Figs 4F and 4G, none 365 366 of the fitted models had RMSE or R² significantly different from the intercept-only model. 367 Lowest RMSE was achieved by the intercept-only model. Values of R² ranged from 368 0.133 to 0.199 across the models, with the highest value reached by the conditional
- random forest model. Prediction error on $\ln(\mu)$ ranged from 9.83% ± 10.7% for the best model (conditional random forests, mean ± std) to 10.6% ± 11.3% for the worse

(random forests), which was not superior to predictive power of the intercept-only model (9.71% \pm 10.1%). Plotting the observed versus predicted values (Figs 5 and S9) confirmed that the fitted algorithms were unable to explain the variability of parameter μ . Together, these results demonstrate that the biomarkers considered in this study have limited predictive power for metastatic potential as defined by μ .

376

377 **Discussion**

378 A large part of in vivo studies in experimental therapeutics focus on the effect of 379 treatments on isolated tumors and few make use of metastatic animal models (32). 380 However, we and others have previously shown that differential effects occur on the 381 primary tumor and the metastases for some anti-cancer drugs, such as the 382 multitargeted tyrosine kinase inhibitor sunitinib (13,14,33). Similarly, apart from efforts 383 focusing on evolutionary dynamics of metastasis that do not make use of longitudinal 384 data on size kinetics (34), few quantitative mathematical models exist for metastatic 385 development (4,21,35,36), and none has been quantitatively validated for systemic 386 therapy beyond theoretical considerations (35,37,38). In previous work we first 387 established such a mathematical model featuring natural metastatic development and 388 surgery of the primary tumor, but no systemic treatment (4). This was a critical step 389 before being able to model the effect of systemic treatments such as NATT where 390 treatments are limited and long-term benefits are presumed but difficult to quantify as 391 disease recurrence can happen years after surgery, or not recur at all. In the current 392 study, we extended our mathematical model to examine NATT with the RTKI sunitinib 393 by using longitudinal data of 128 mice (more than four times more than previous studies 394 (4,36)). Such large number of subjects and tightly controlled experimental conditions 395 (genetically identical animal background, cell origin, treatment periods, etc..), resulted 396 in precise estimates of the model parameters. Together our results represent an 397 idealized system for predicting treatment impact and novel biomarker identification that 398 could assist in trial design prior to testing in patients.

399 Our results using sunitinib showing efficacy in reducing primary tumor growth but not 400 metastasis mirror our previous report with two ortho-surgical animal models where we 401 found that NATT with sunitinib and axitinib (another VEGFR TKI) did not always limit 402 metastatic disease after surgery, despite clear antitumor effects on localized disease 403 (13). This represents a challenge observed clinically with RTKIs where, despite 404 decades of potent tumor reducing effects in mouse models, efficacy in patients with 405 metastatic disease could be underwhelming. Using our mathematical model to simulate 406 distinct biological scenarios, we demonstrated that the effect of the drug on tumor 407 growth could differ between primary and secondary sites. Conversely, model simulation 408 predictions (with no fitting involved) of a scenario where metastatic development during 409 NATT was only altered by primary tumor size shrinkage was in excellent agreement 410 with the data.

411 These findings could be explained by the fact that the primary tumor (in the mammary 412 fat pad) and the secondary tumors (mostly in the lungs) would rely on different growth 413 mechanisms, especially at small sizes. Supporting this explanation, a study showed 414 that metastasis relied more on vessel co-option rather than angiogenesis, thus 415 providing them a mechanism of resistance to VEGFR TKIs therapy (39). Beyond NATT, 416 our model predicts limited efficacy of sunitinib in the postsurgical setting, because 417 metastases would likely be similarly small and rely on similar growth mechanisms. 418 Interestingly, recent experimental results in mice confirmed this prediction where, using 419 a similar metastatic experimental system of triple negative breast cancer, adjuvant sunitinib did not improve survival (40). The mechanistic model of NATT validated here 420 421 provides a valuable tool to explore the impact of the treatment schedules on response

and relapse. Simulating varying durations and doses of NATT, we found that long
durations of NATT could significantly increase the risk of metastatic relapse when PT
response was moderate. Further, our model provides the computational basis to
analyze the impact of various NATT dosing regimen in terms of sequence, breaks and
frequency, which is the topic of a companion work.

427 For breast cancer patients diagnosed with localized disease, predicting the risk and 428 timing of distant metastatic relapse is a major clinical concern (41–43). Accurate ways 429 to predict the extent of invisible metastatic disease at diagnosis and risk of future 430 metastatic relapse could help to personalize perioperative therapy protocols, and avoid 431 highly toxic therapies to patients with low risk of relapse (42). However, only two risk 432 models (44,45) have met the AJCC criteria for prognostic tool guality so far (46), and 433 both rely on classical Cox regression survival models. Recently, we have developed a 434 mechanistic approach to metastatic relapse prediction (47). However, this work did not 435 include the impact of NATT not any systemic treatment. The mathematical model that 436 we validated here on animal data combined with the methodology developed in (47) 437 lays the groundwork for applications in the clinical NATT setting. It could further refine 438 individual predictions of metastatic relapse in breast cancer by providing surrogate 439 markers of long-term outcome additional to pathologic complete response (3). Indeed, 440 the NATT time period represents an invaluable window of opportunity to gather both 441 longitudinal data (such as kinetics of tumor size or pharmacodynamic marker, or 442 circulating DNA from liquid biopsies) and one-time biomarkers from tumor tissue (2). 443 Here, we propose that mathematical models could form the basis of digital tools able 444 to integrate this multi-parametric and dynamic data into predictive algorithms of both 445 long-term outcome and disease sensitivity to systemic therapy in case of distant 446 relapse.

447 In the era of artificial intelligence (48), it is to be expected that an increasing number of 448 such prognosis models will appear, combining advances in cancer biology (e.g. 449 molecular gene signatures (42,49)) and imaging (50,51) with algorithmic engineering. 450 Recent years have witnessed the generalization of methods going beyond classical 451 statistical analysis, grouped by the generic term of machine learning (ML) (52). 452 However, these techniques have not been applied to preclinical data from targeted 453 therapy. Here, we proposed an approach to combine ML with mechanistic modeling 454 that consists of using biomarkers at surgery to predict individual mathematical 455 parameters and subsequently postsurgical metastatic evolution. Multiple cellular and 456 molecular biomarkers were measured at the time of surgery, either by 457 immunohistochemistry or flow cytometry. These constituted candidate features for ML 458 prediction of the critical parameter μ , which we found as being the major driver of inter-459 subject metastatic variability. We found overall that these biomarkers contained only 460 limited predictive power of μ , suggesting that alternative biomarkers should be explored in future preclinical and clinical studies. This contrasts with reports showing Ki67 as 461 462 significantly associated with risk of metastatic relapse (53). It might be due to the fact 463 that Ki67 is a proliferation marker (54), which should rather be predictive of α or the 464 doubling time. In fact, such correlation was observed between Ki67+/CD31+ and DT 465 (Fig 3E), as well as clinical work using our modeling approach (47). Paired with early clinical trials, our *in vivo/in silico* approach could have translational value to inform the 466 screening of biomarkers. 467

468 Important limitations of our study are that we only analyzed data from one tumor type 469 (triple negative breast cancer), one cell line in one, immune-depressed, animal system 470 and one drug. On the other hand, this is a necessary prerequisite to control as much 471 as possible the heterogeneity in the data, which still remains substantial despite a tightly 472 controlled experimental setting. Such conditions ensure robust test of biological 473 assumptions underlying our mathematical models and, eventually, refutation of 474 unplausible ones (here, that primary and secondary growth would be equally 475 suppressed by NATT). Nevertheless, to address these limitations, we conducted a 476 companion study in similar ortho-surgical kidney cancer systems, with two cell lines 477 (SN12-PM6-N and RENCA, respectively of human and murine origin), immune-478 competent animals (Balb/c mice for the RENCA cells), and two VEGFR TKIs (Sunitinb 479 and Axitinib) used in the clinical setting to treat kidney cancer patients. In addition, we 480 investigated in depth the impact of breaks and high-dose "bursts" during NATT. The 481 mathematical model developed on the basis of the one in this study allowed to i) 482 demonstrate and quantify post-NATT PT growth rebound and ii) quantify the impact of 483 such dosing regimen variations on post-surgival metastatic development.

484 Given the increasingly diverse arsenal of systemic anti-cancer therapies available with 485 the approval of immune-checkpoint inhibitors, optimal treatment sequence (5,55-57) 486 and dosing regimen (58,59) are becoming crucial issues. Our model could be used and 487 extended to guide the rational design of treatment schedules and modes of combination 488 of immunotherapy with another systemic drug, before preclinical or clinical testing. For 489 immunotherapy, the model would need to be developed further and at least include an 490 additional systemic variable representing the immune system. Immuno-monitoring 491 quantifications could provide an invaluable source of longitudinal data to feed 492 mechanistic models (60). In addition, response to neoadjuvant therapy could be used 493 to predict which patients are more likely to benefit from adjuvant therapy (12). 494 Combining artificial intelligence techniques with mechanistic modeling, our modeling 495 methodology offers a way to perform such predictions quantitatively and possibly 496 personalize therapeutic intervention.

497

References

1. Escrivá-de-Romaní S, Arumí M, Zamora E, Bellet M. Neoadjuvant Model as a Platform for Research in Breast Cancer and Novel Targets under Development in this Field. Breast Care. Karger Publishers; 2018;13:251–62.

2. Marron TU, Galsky MD, Taouli B, Fiel MI, Ward S, Kim E, et al. Neoadjuvant clinical trials provide a window of opportunity for cancer drug discovery. Nat Med. Nature Publishing Group; 2022;28:626–9.

3. Conforti F, Pala L, Bagnardi V, De Pas T, Colleoni M, Buyse M, et al. Surrogacy of Pathologic Complete Response in Trials of Neoadjuvant Therapy for Early Breast Cancer: Critical Analysis of Strengths, Weaknesses, and Misinterpretations. JAMA Oncol. 2022;8:1668–75.

4. Benzekry S, Tracz A, Mastri M, Corbelli R, Barbolosi D, Ebos JM. Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer Res. 2016;76:535–47.

5. Ciccolini J, Barbolosi D, André N, Barlesi F, Benzekry S. Mechanistic Learning for Combinatorial Strategies With Immuno-oncology Drugs: Can Model-Informed Designs Help Investigators? JCO Precis Oncol. American Society of Clinical Oncology; 2020;486–91.

6. Benzekry S. Artificial intelligence and mechanistic modeling for clinical decision making in oncology. Clin Pharmacol Ther. 2020;108:471–86.

7. Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019;380:1347–58.

8. Breiman L. Statistical modeling: the two cultures. Stat Sci Rev J Inst Math Stat. 2001;16:199–231.

9. Faivre S, Demetri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov. Nature Publishing Group; 2007;6:734–45.

10. Aalders KC, Tryfonidis K, Senkus E, Cardoso F. Anti-angiogenic treatment in breast cancer: Facts, successes, failures and future perspectives. Cancer Treat Rev. 2017;53:98–110.

11. von Minckwitz G, Eidtmann H, Rezai M, Fasching PA, Tesch H, Eggemann H, et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med. 2012;366:299–309.

12. Bear HD, Tang G, Rastogi P, Geyer CE, Robidoux A, Atkins JN, et al. Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med. 2012;366:310–20.

13. Ebos JML, Mastri M, Lee CR, Tracz A, Hudson JM, Attwood K, et al. Neoadjuvant antiangiogenic therapy reveals contrasts in primary and metastatic tumor efficacy. EMBO Mol Med. 2014;6:1561–76.

14. Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15:232–9.

15. Ebos JML. Prodding the Beast: Assessing the Impact of Treatment-Induced Metastasis. Cancer Res. 2015;75:3427–35.

16. Ebos JML, Lee CR, Bogdanovic E, Alami J, Van Slyke P, Francia G, et al. Vascular endothelial growth factor-mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth. Cancer Res. 2008;68:521–9.

17. Mastri M, Tracz A, Lee CR, Dolan M, Attwood K, Christensen JG, et al. A Transient Pseudosenescent Secretome Promotes Tumor Growth after Antiangiogenic Therapy Withdrawal. Cell Rep. 2018;25:3706-3720.e8.

18. Suresh K. An overview of randomization techniques: An unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011;4:8–11.

19. Wheldon TE. Mathematical Models in Cancer Research, 1 edition. Bristol: CRC Press; 1988.

20. Spratt JS, Meyer JS, Spratt JA. Rates of growth of human solid neoplasms: Part I. J Surg Oncol. 1995;60:137–46.

21. Iwata K, Kawasaki K, Shigesada N. A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol. 2000;203:177–86.

22. Hartung N. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete Contin Dyn Syst Ser B. 2015;20:445–67.

23. Norton L, Simon R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep. 1977;61:1307–17.

24. Zhou Q, Gallo JM. Quantification of sunitinib in mouse plasma, brain tumor and normal brain using liquid chromatography-electrospray ionization-tandem mass spectrometry and pharmacokinetic application. J Pharm Biomed Anal. 2010;51:958.

25. Lavielle M. Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools. 2014.

26. Matlab with statistics and optimization toolboxes. The Mathworks Inc.; 2015.

27. Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan and Tyler Hunt. (2018). caret: Classification and Regression Training. R package version 6.0-80. https://CRAN.R-project.org/package=caret.

28. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

29. Savic RM, Karlsson MO. Importance of Shrinkage in Empirical Bayes Estimates for Diagnostics: Problems and Solutions. AAPS J. 2009;11:558–69.

30. Pollard JW. Defining Metastatic Cell Latency. N Engl J Med. 2016;375:280–2.

31. Kuhn M, Johnson K. Applied predictive modeling. Springer; 2013.

32. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer. 2011;11:135–41.

33. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, ViNals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. 2009;15:220–31.

34. Reiter JG, Makohon-Moore AP, Gerold JM, Heyde A, Attiyeh MA, Kohutek ZA, et al. Minimal functional driver gene heterogeneity among untreated metastases. Science. 2018;361:1033–7.

35. Haeno H, Gonen M, Davis MB, Herman JM, Iacobuzio-Donahue CA, Michor F. Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies. Cell. 2012;148:362–75.

36. Hartung N, Mollard S, Barbolosi D, Benabdallah A, Chapuisat G, Henry G, et al. Mathematical modeling of tumor growth and metastatic spreading: validation in tumorbearing mice. Cancer Res. 2014;74:6397–407.

37. Benzekry S, André N, Benabdallah A, Ciccolini J, Faivre C, Hubert F, et al. Modelling the impact of anticancer agents on metastatic spreading. Math Model Nat Phenom. 2012;7:306–36.

38. Benzekry S, Hahnfeldt P. Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers. J Theor Biol. 2013;335:235–44.

39. Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E, et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol. 2017;241:362–74.

40. Wu FTH, Xu P, Chow A, Man S, Krüger J, Khan KA, et al. Pre- and postoperative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer. 2019;120:196–206.

41. Krop I, Ismaila N, Andre F, Bast RC, Barlow W, Collyar DE, et al. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Focused Update. J Clin Oncol. 2017;35:2838–47.

42. Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med. 2016;375:717–29.

43. Senkus E, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rutgers E, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v8–30.

44. Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol. 2001;19:980–91.

45. Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12:R1.

46. Hortobagyi GN, Connolly JL, DOrsi CJ, Edge S, Mittendorf E, Rugo HS, et al. AJCC Cancer Staging Manual - Breast Cancer. In: Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al., editors. AJCC Cancer Staging Man. Springer International Publishing; 2017.

47. Nicolò C, Périer C, Prague M, Bellera C, MacGrogan G, Saut O, et al. Machine Learning and Mechanistic Modeling for Prediction of Metastatic Relapse in Early-Stage Breast Cancer. JCO Clin Cancer Inform. 2020;4:259–74.

48. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.

49. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

50. Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol. 2017;28:1191–206.

51. Kather JN, Krisam J, Charoentong P, Luedde T, Herpel E, Weis C-A, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. Butte AJ, editor. PLOS Med. 2019;16:e1002730.

52. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.

53. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11:174–83.

54. Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 2011;103:1656–64.

55. Imbs D-C, El Cheikh R, Boyer A, Ciccolini J, Mascaux C, Lacarelle B, et al. Revisiting Bevacizumab + Cytotoxics Scheduling Using Mathematical Modeling: Proof of Concept Study in Experimental Non-Small Cell Lung Carcinoma. CPT Pharmacomet Syst Pharmacol. 2018;7:42–50.

56. Rothschild S, Zippelius A, Savic S, Gonzalez M, Weder W, Xyrafas A, et al. SAKK 16/14: Anti-PD-L1 antibody durvalumab (MEDI4736) in addition to neoadjuvant chemotherapy in patients with stage IIIA(N2) non-small cell lung cancer (NSCLC)—A multicenter single-arm phase II trial. J Clin Oncol. 2018;36:TPS8584–TPS8584.

57. Ciccolini J, Barbolosi D, André N, Benzekry S, Barlesi F. Combinatorial immunotherapy strategies: most gods throw dice, but fate plays chess. Ann Oncol. Elsevier; 2019;30:1690–1.

58. Reguera-Nuñez E, Man S, Xu P, Kerbel RS. Preclinical impact of high dose intermittent antiangiogenic tyrosine kinase inhibitor pazopanib in intrinsically resistant tumor models. Angiogenesis. 2018;21:793–804.

59. Ratain MJ, Goldstein DA. Time Is Money: Optimizing the Scheduling of Nivolumab. J Clin Oncol. 2018; JCO.18.00045-4.

60. Ciccolini J, Benzekry S, Barlesi F. Deciphering the response and resistance to immune-checkpoint inhibitors in lung cancer with artificial intelligence-based analysis: when PIONeeR meets QUANTIC. Br J Cancer. Nature Publishing Group; 2020;1–2.

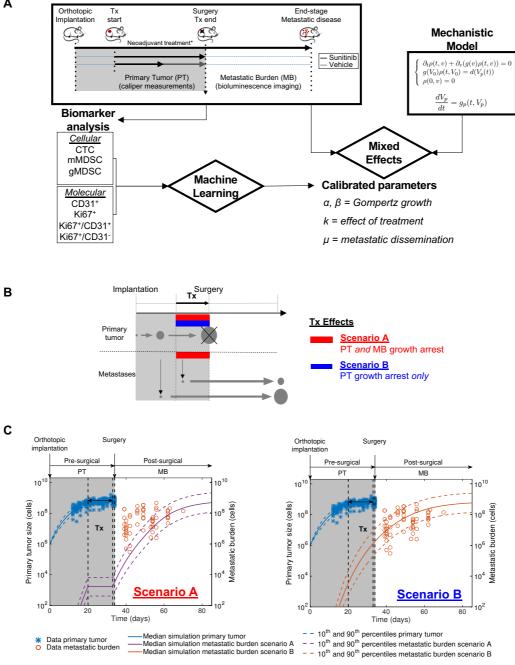


Figure 1: Mathematical modeling reveals differential effects of neoadjuvant sunitinib treatment on primary tumor and metastatic growth.

(A) Schematic of the study. Data from an ortho-surgical, human xenograft animal model of neoadjuvant sunitinib breast cancer treatment were fitted using a mixed-effects statistical framework. This provided calibrated parameters for each animal. Machine learning algorithms were used to assess the predictive power of molecular and cellular biomarkers to predict the metastatic dissemination parameter μ and quantify metastatic aggressiveness. Biological and numerical parameters quantified at end of therapy and at time of surgery were implemented into a survival model.

(B) Schematic of tested hypotheses of the effect of neoadjuvant sunitinib Tx on primary tumor and metastatic growth and dissemination through mechanistic mathematical modeling. Scenario A = growth arrest on both primary and secondary tumors. Scenario B = growth arrest on primary tumor only.

(C) Predicted simulations of Scenarios A and B using parameters calibrated from a previous study [Benzekry et al., Cancer Res, 2016] involving untreated (vehicle) animals only. Data plotted here (LM2-4^{LUC+} bioluminescent human breast cancer cells orthotopically injected in mice) was not used to estimate the model parameters.

*Tx, treatment; PT, primary tumor; MB, metastatic burden. *See methods for additional details on animal experiments, treatment dose and duration, and mechanistic model.*

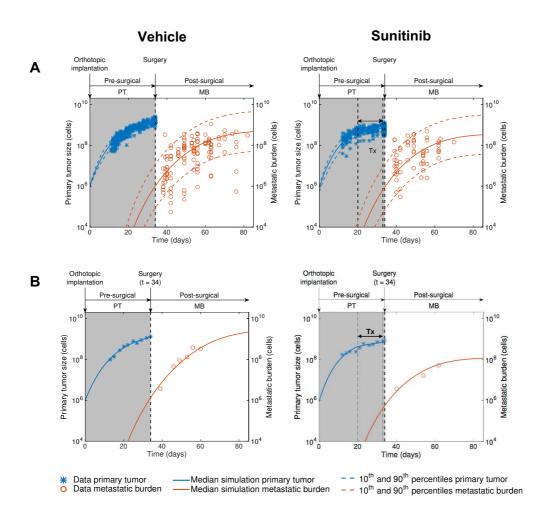


Figure 2: Calibration and validation of a kinetics-pharmacodynamics (K-PD) mathematical model for neoadjuvant sunitinib treatment effect on pre- and post-surgical tumor growth

Pre- and postsurgical growth of LM2-4^{LUC+} human metastatic breast carcinomas were measured in multiple groups involving different neoadjuvant treatment modalities (doses and durations). The mathematical model was fitted to the experimental data using a mixed-effects population approach (n=104 animals in total).

(A) Comparison of the simulated model population distribution (visual predictive check) for vehicle and neoadjuvant sunitinib treatment (60mg/kg/day) 14 days prior to surgery.

- (B) Examples of individual dynamics.
- Tx, treatment; PT, primary tumor; MB, metastatic burden.

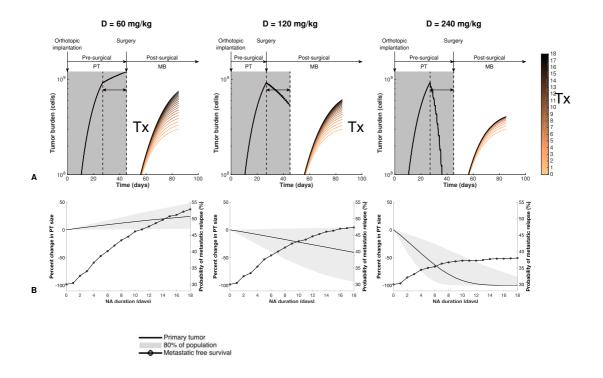
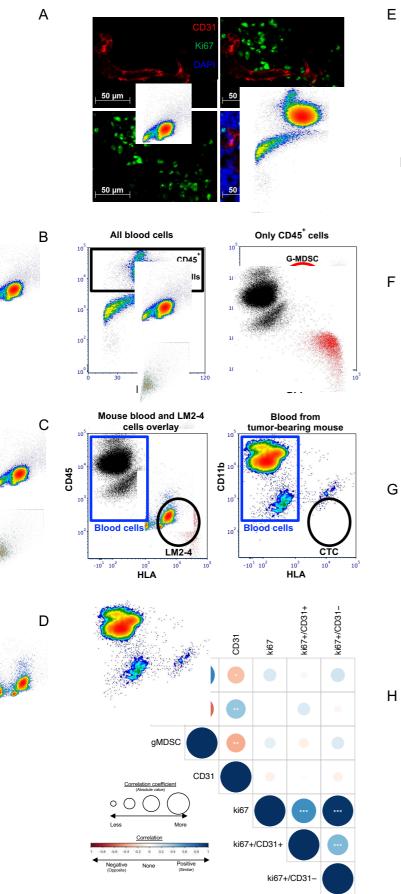


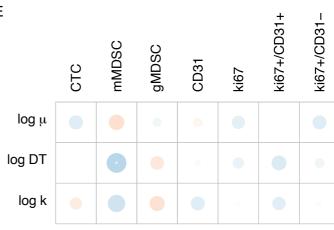
Figure 3: Simulations of varying neoadjuvant treatment duration quantify contrasted impact on primary tumor size reduction and risk of metastatic relapse

Using model parameters calibrated from data of our ortho-surgical animal model of breast cancer neoadjuvant treatment (NAT), simulations were conducted for a duration of NAT varying between 0 (light color) and 18 (dark color) days, for three dose levels (60 mg/kg, 120 mg/kg and 240 mg/kg).

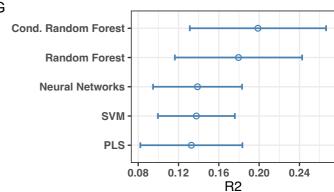
(A) Predicted simulations of pre-surgical primary tumor and post-surgical metastatic kinetics. Primary tumor growth curves are not distinguishable because they are all superimposed until time of surgery.

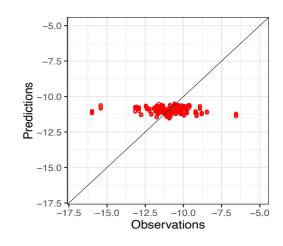
(B) Population-level predictions of final primary tumor size (solid line and grey area) and probability of metastatic relapse as functions of duration of neoadjuvant treatment, which delays surgical removal of primary tumor (circled line). Inter-individual variability simulated from population distribution of the parameters learned from the data (n = 1000 virtual subjects).





Random Forest PLS Neural Networks SVM Cond. Random Forest Intercept-only model 1.2 1.3 1.4 1.5 1.6 RMSE





26

Figure 4: Use of machine learning algorithms based on presurgical molecular and cellular markers to predict metastatic dissemination parameter ' μ '.

(A-C) Examples of molecular and cellular biomarker analysis.

(A) Proliferating endothelial cell identification by immunofluorescence. Tissue sections from resected tumors were stained with antibodies against mouse CD31 (red) and mouse Ki67 (green) and counterstained with DAPI (blue). Single channel and merged images are shown. Yellow arrows show proliferating endothelial cells which were counted manually.

(B) Myeloid-Derived Suppressor Cells (MDSC) quantification by flow cytometry. Whole blood was stained with anti-mouse antibodies for CD45, CD11b, and Gr1. After selection of CD45 positive cells MDSCs were analyzed based on CD11b and Gr1 levels. Monocytic-MDSC (M-MDSC) are CD11b+/Gr1high and granulocytic-MDSC (G-MDSC) are CD11b+/Gr1Medium. Examples of MDSC in untreated and treated animals are shown.

(C) CTC quantification by flow cytometry. CTCs for xenografts were identified using anti-human HLA. Blood was stained with anti-mouse CD45 and anti-human HLA. Blood and LM2-4 cell samples were overlaid in a dot plot to identify and create the gates for CTCs. Once the gates were created CTC were identified in blood of tumor-bearing mice.

(D) Pearson correlation coefficients between biomarkers. Blue (resp. red) color indicates positive (resp. negative) correlation, with size of the circle proportional to the R^2 correlation coefficient. * p<0.05, ** p<0.01, *** p<0.001.

(E) Univariate correlations between the biomarkers and the mathematical parameters. DT = doubling time.

(F) Cross-validated Root Mean Square Error (RMSE) across different machine learning regression models (see methods) utilizing the values of the biomarkers for predicting $log(\mu)$. To assess the significance of the covariate in the models, RMSE were compared against the value of this metric obtained using a only-intercept model. Bars are 95% confidence intervals. Shown in red is the model with lowest RMSE. PLS = Partial Least Squares. SVM = Support Vector Machines

(G) Cross validated R2 with 95% confidence intervals.

(H) Predictions versus observations for the conditional random forest algorithm.

	Parameter (Unit)	Meaning	Median	CV (%)	r.s.e. (%)
Metastatic model	$\mu \; (\text{cell}^{-1} \cdot \; \text{day}^{-1})$	dissemination coefficient	$2.12\cdot 10^{-11}$	$1.48\cdot 10^3$	17.3
	$\alpha (\mathrm{day}^{-1})$	gompertzian growth parameter	1.94	18.1	2
	$\beta (day^{-1})$	gompertzian growth parameter	0.0911	19.7	2.21
	$\lambda (\mathrm{day}^{-1})$	in vitro proliferation rate	0.837 (fixed)	-	-
	k (L/mg)	drug efficacy	0.446	32.1	6.34
	$k_e (\mathrm{day}^{-1})$	drug elimination rate	3.26 (fixed)	- 1	-
	$V_d~({ m L/kg})$	volume of distribution	12 (fixed)	-	-
Survival model	T_e (day)	scale parameter	32.3	11.5	11.4
	β_{μ} (unitless)	covariate coefficient	-0.066		15.8
	s (unitless)	shape parameter	17.9	-	21.6

Table 1: Parameter estimates of the metastatic and survival models obtained by likelihood maximization via the SAEM algorithm. In the survival model, log(mu) has been included as covariate on the scale parameter Te: $log(Te) = log(Te,pop) + \beta log(\mu) + \eta$.

Abbreviations: CV, coefficient of variation computed as the ratio of the standard deviation and the median of the estimated parameter distribution; r.s.e., residual standard error.

Supplementary Table:

Table S1: Neoadjuvant treatment schedules and doeses

Table S1:

Group	Ν		ration (Dav nib (mg/kg 60		Surgery (DPI)	Modeling	Abbrev.	
1	6	0	0	14	38	Training	Veh.	
2	21	0	0	14	34	Training	Vech.	
3	21	0	14	0	34	Training	Su60(14D)	
4	6	0	7	7	34	Training	Su60(7D)	
5	15	0	3	11	34	Training	Su60(3D)	
6	15	3	11	0	34	Training	Su120(3D)/Su60(11D)	
7	20	3	0	11	34	Training	Su120(3D)	
8	6	3	11	0	38	Validation	Su120(3D)/Su60(11D)	
9	6	3	8	3	38	Validation	Su120(3D)/Su60(8D)	
10	6	3	4	7	38	Validation	Su120(3D)/Su60(4D)	
11	6	3	0	11	38	Validation	Su120(3D)	

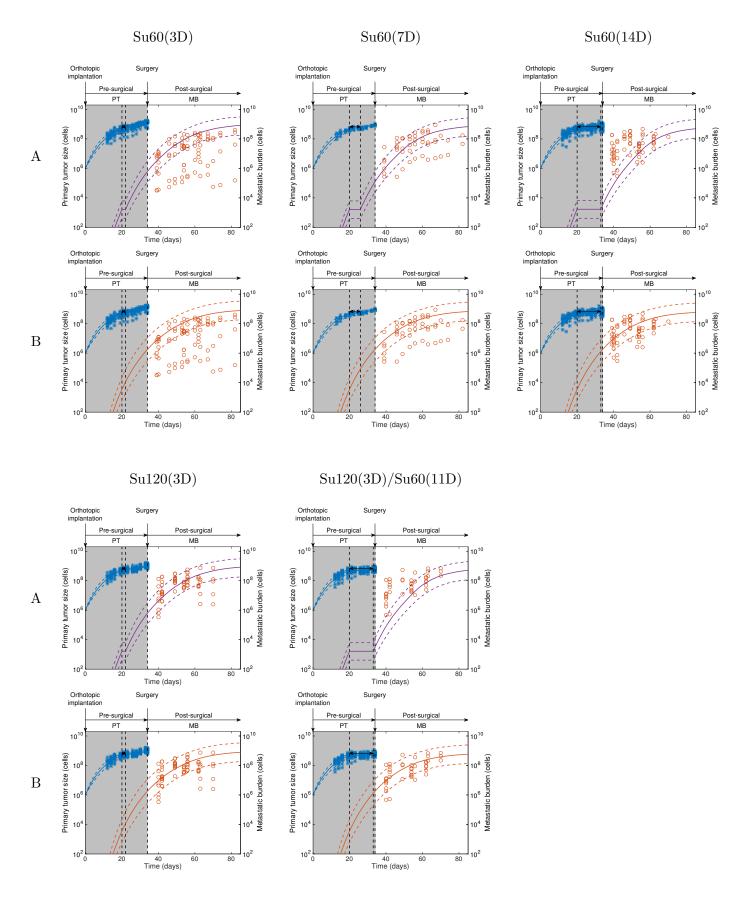
Table S1: Animal groups showing treatment schedules and dosingduring a presurgical neoadvjuant period of 14 days.

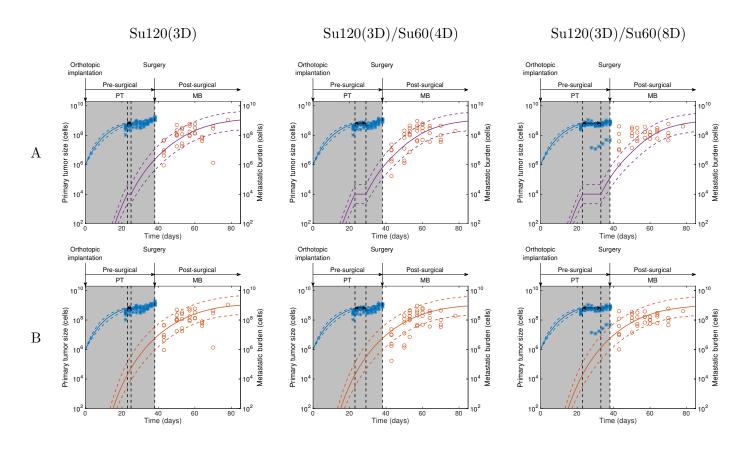
Supplementary Figures

- Figure S1. Comparison of simulation of therapy (A) vs no therapy (B) on metastases
- Figure S2. Population fits of all the groups used to calibrate the model parameters (surgery at day 34)
- Figure S3. Representative individual fits of the model for Sunitinib-treated animals
- Figure S4. Model predictions in independent datasets (surgery at day 38)
- Figure S5. Model diagnostic plots
- Figure S6. Distribution of the individual parameters
- Figure S7. Correlations between random effects
- Figure S8. Individual parameters vs covariates
- Figure S9. Observed vs Predicted values for the machine learning algorithms

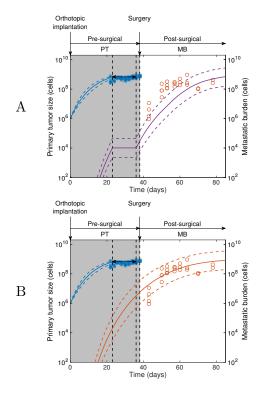
Figure S1. Comparison of simulation of therapy (A) vs no therapy (B) on metastases

Surgery at day 34





Su120(3D)/Su60(11D)



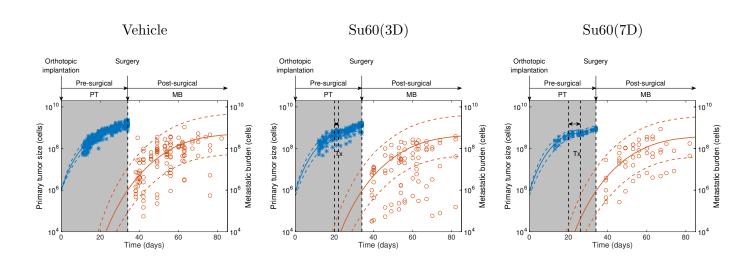
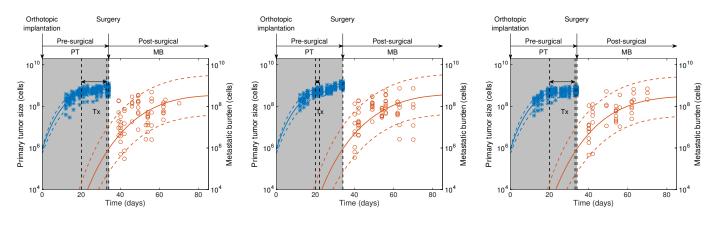


Figure S2. Population fits of all the groups used to calibrate the model parameters (surgery at day 34)

Su60(14D)

Su120(3D)

Su120(3D)/Su60(11D)



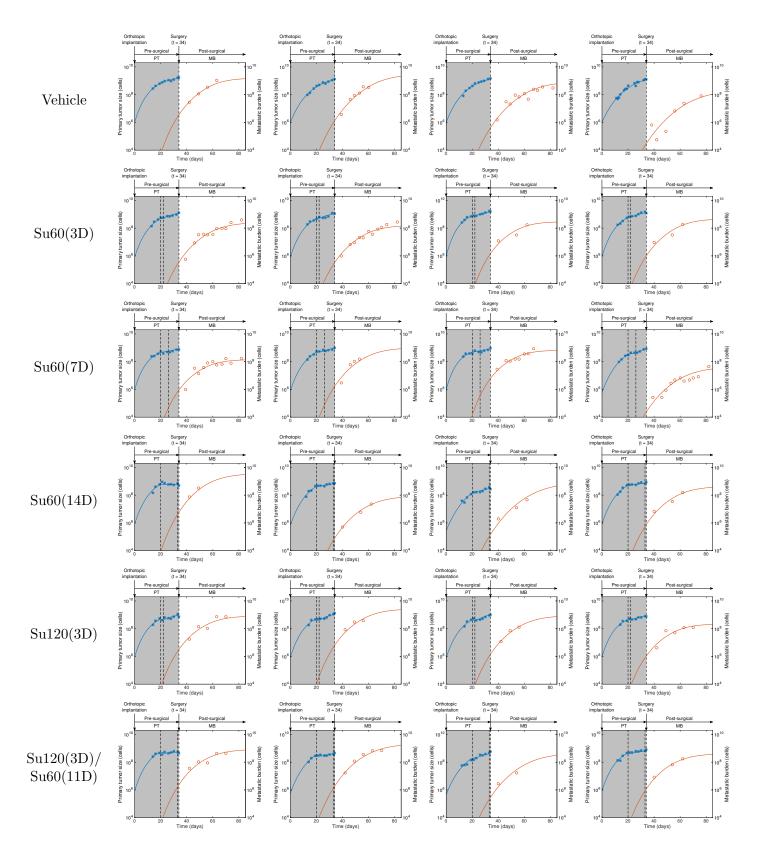
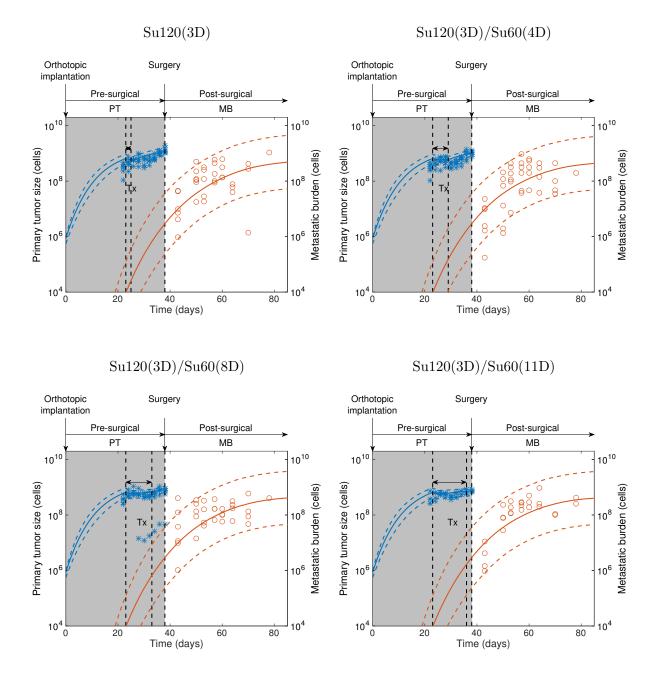
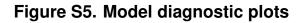
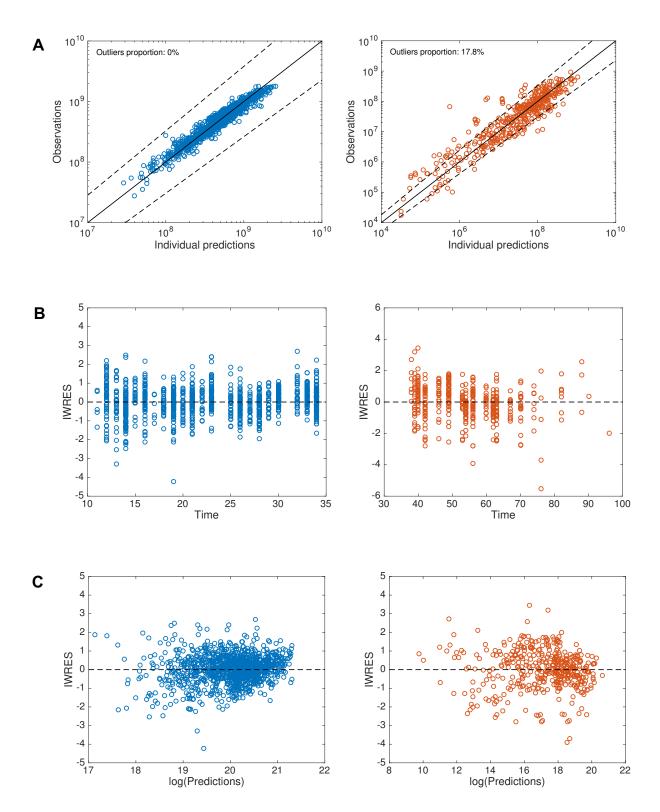


Figure S4. Model predictions in independent datasets (surgery at day 38)







A) Observation vs. individual prediction. Solid lines are identity lines. Dashed lines represent 90% prediction intervals.B) Individual weighted residuals (IWRES) vs time.

C) Individual weighted residuals vs log-transformed individual predictions.

Figure S6. Distribution of the individual parameters

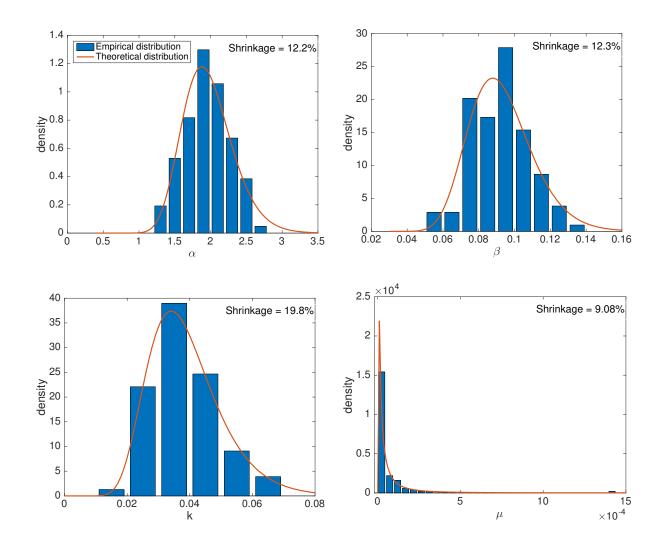


Figure S7. Correlations between random effects

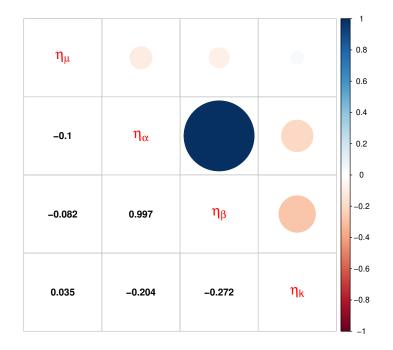


Figure S8. Individual parameters vs covariates

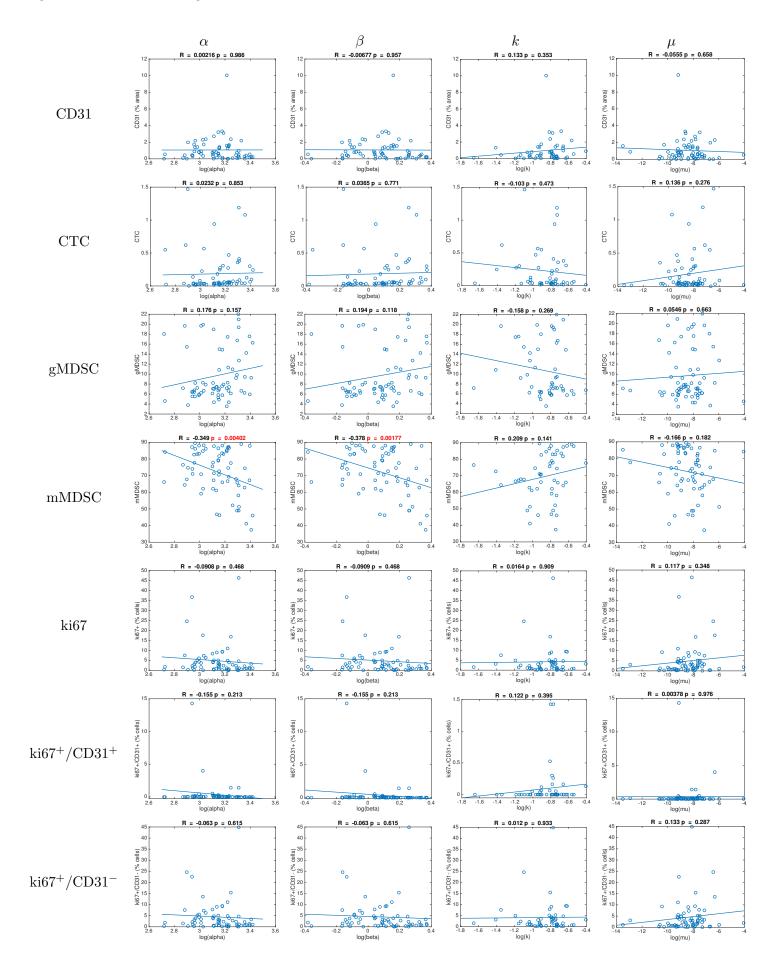


Figure S9. Observed vs Predicted values for the machine learning algorithms

Models for predicting μ

