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Abstract 

Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors 
prior to surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, 
and suppression of distant (occult) metastatic disease. Yet such trials are rarely preceded by 
preclinical testing involving surgery. Here we used a mouse model of spontaneous metastasis 
after surgical removal to develop a predictive mathematical model of neoadjuvant treatment 
response to sunitinib, a receptor tyrosine kinase inhibitor (RTKI). Longitudinal data consisted 
of measurements of presurgical primary tumor size and postsurgical metastatic burden in 128 
mice (104 for model training, 24 for validation), following variable neoadjuvant treatment 
schedules over a 14-day period. A nonlinear mixed-effects modeling approach was used to 
quantify inter-animal variability. Machine learning algorithms were applied to investigate the 
significance of several biomarkers at resection as predictors of individual kinetics. Biomarkers 
included circulating tumor- and immune-based cells (circulating tumor cells and myeloid-
derived suppressor cells) as well as immunohistochemical tumor proteins (CD31 and Ki67). 
Our simulations showed that neoadjuvant RTKI treatment inhibits primary tumor growth but 
has little efficacy in preventing (micro)-metastatic disease progression after surgery. 
Surprisingly, machine-learning algorithms demonstrated only limited predictive power of tested 
biomarkers on the mathematical parameters. These results suggest that presurgical modeling 
might be an effective tool to screen biomarkers prior to clinical trial testing. Mathematical 
modeling combined with artificial intelligence techniques represent a novel platform for 
integrating preclinical surgical metastasis models in outcome prediction of neoadjuvant 
treatment. 

 

Major findings: Using simulations from a mechanistic mathematical model compared with 

preclinical data from surgical metastasis models, we found anti-tumor effects of neoadjuvant 
RTKI treatment can differ between the primary tumor and metastases in the perioperative 
setting. Model simulations with variable drug doses and scheduling of neoadjuvant treatment 
revealed a contrasting impact on initial primary tumor debulking and metastatic outcomes long 
after treatment has stopped and tumor surgically removed. Using machine-learning algorithms, 
we identified the limited power of several circulating cellular and molecular biomarkers in 
predicting metastatic outcome, uncovering a potential fast-track strategy for assessing future 
clinical biomarkers by paring patient studies with identical studies in mice.  
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Introduction  1 

Neoadjuvant trials in breast cancer (BC) patients involve the administration of systemic 2 
treatment for a limited period to treat (and reduce) localized primary tumors prior to 3 
surgery. They provide several advantages to assist in novel drug development and 4 
translational research (1). For example, neoadjuvant trials can be faster to conduct, 5 
require fewer patients, offer the potential for controlled assessment of biological tissue 6 
for novel biomarker development, and critically, can potentially limit distant (often 7 
occult) metastatic lesions to delay disease recurrence long after treatment has ended 8 
(1,2). Yet there are surprisingly few studies that precede neoadjuvant trial design to 9 
offer predictive guides to validate drug efficacy, biomarkers, or possible outcomes. In 10 
this regard, in silico (mathematical) modeling and preclinical in vivo testing can be 11 
useful. However, mathematical modeling most often occurs as post-hoc analysis in BC 12 
trials and studies in mice rarely include clinically relevant systems that capture the 13 
complexity of surgical impact on primary/metastatic growth to offer rationalized 14 
inclusion of biomarkers in trial design. 15 

To address this gap, here we describe a mathematical modeling framework of 16 
neoadjuvant therapy using a combination of preclinical in vivo and in silico data to 17 
provide a predictive platform for treatment outcomes. This extends from our prior work 18 
that validated a semi-mechanistic model comparing localized ‘primary’ tumor growth 19 
with the growth of spontaneous metastatic disease that occurred after surgery in mouse 20 
models of BC (4). We used ‘ortho-surgical’ models (i.e., orthotopic implantation followed 21 
by surgical tumor resection) to show that inter-individual variability in the kinetics of 22 
metastatic growth could be captured by a (lognormal) distribution of a critical parameter 23 
of metastatic aggressiveness, which we termed ‘μ’. By adding here neoadjuvant 24 
treatment to this mathematical modeling framework it allowed us to; 1) formulate and 25 
test mechanistic hypothesis about differential effects on primary versus secondary 26 
disease, 2) evaluate the impact of biomarkers on metastatic development and 3) 27 
investigate the impact of modulating dosing regimen. In addition, machine learning  28 
coupled to mechanistic modeling – an approach that we call ‘mechanistic learning’ (5,6) 29 
– can screen biomarkers with translational potential and establish predictive models 30 
(7). In contrast to classical statistical analysis, machine-learning consists in designing 31 
models with predictive power as metric of success, rather than inference properties, 32 
and makes use of highly nonlinear models such as regression trees or artificial neural 33 
networks (8).  34 

In this study, we examined neoadjuvant treatment with sunitinib, a molecular targeted 35 
tyrosine inhibitor (TKI) that can block angiogenesis-associated vascular endothelial 36 
growth factor receptors (VEGFRs) along with several other regulators of metastasis (9).  37 
Using a VEGFR TKI had several advantages. First, they have a short half-life which 38 
allowed us to confine treatment effects to the presurgical period and incorporate 39 
multiple variations of treatment dosing, days treated, and time of resection after initial 40 
tumor implantation in mice. Second, VEGFR TKIs have shown mixed effects in the 41 
perioperative setting in BC (10). While the addition of neoadjuvant sunitinib to 42 
chemotherapy improved pathologic complete response rates, long-term results have 43 
been more contrasted, with no disease free survival benefit and either none (11) or 44 
some (12) overall benefit. As a monotherapy, we and others have demonstrated that 45 
robust inhibition of primary tumor growth does not always translate into inhibition of 46 
metastasis post-surgically nor improvement in survival (13–15). In our model, we 47 
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measured multiple cellular and molecular biomarkers at surgery and used machine 48 
learning to investigate their predictive power on the mechanistic parameters of our 49 
neoadjuvant mathematical metastatic model. Machine learning confirmed a lack of 50 
definitive biomarkers, which shows the value of preclinical modeling studies to identify 51 
potential failures that should be avoided clinically.  52 

 53 

 54 

 55 

 56 

 57 
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Materials and Methods 58 

Cell lines 59 

The human LM2-4LUC+ cells are a luciferase-expressing metastatic variant of the MDA-60 
MB-231 breast cancer cell line derived after multiple rounds of in vivo lung metastasis 61 
selection in mice, as previously described (16). LM2-4LUC+ were maintained in DMEM 62 
(Corning cellgro; 10-013-CV) supplemented with 5% v/v FBS (Corning cellgro; 35-010-63 
CV), in a humidified incubator at 37oC and 5% CO2. The cell line was authenticated by 64 
STR profiling (DDC Medical, USA). 65 

Drug and doses used 66 

Sunitinib malate (SU11248; Sutent®©, Pfizer) was suspended in a vehicle formulation 67 
that contained carboxymethylcellulose sodium (USP, 0.5% w/v), NaCl (USP, 1.8% w/v), 68 
Tween-80 (NF, 0.4% w/v), benzyl alcohol (NF, 0.9% w/v), and reverse osmosis 69 
deionized water (added to final volume), which was then adjusted to pH 6. The drug 70 
was administered at 60 or 120 mg/kg/day orally by gavage as previously described 71 
(13,17). The treatment window used in all neoadjuvant studies consisted of a previously 72 
optimized 14-day period prior to surgery (13). Within this 14-day period, daily sunitinib 73 
(Su) treatment was given either at 60 mg/kg/day (for 3, 7, or 14 days followed by vehicle 74 
for 11, 7, or 0 days, respectively), or at 120 mg/kg/day for 3 days followed by 60 75 
mg/kg/day for 0, 4, 8, or 11 days, and vehicle for 11, 7, 3, or 0 days, respectively. An 76 
example of an abbreviation in the text includes ‘Su60(14D)’, which means ‘sunitinib at 77 
60mg/kg/day for 14 days. Schematics for all studies are shown in Table S1. Mice 78 
treated daily with vehicle for 14 days were used as controls. Detailed analysis and 79 
comparisons of these treatment regimens are described in a companion study 80 
evaluating treatment breaks on metastatic disease. 81 

Ortho-surgical model of metastasis 82 

Animal studies were performed in strict accordance with the recommendations in the 83 
Guide for Care and Use of Laboratory Animals of the National Institute of Health and 84 
according to guidelines of the Institutional Animal Care and Use Committee at Roswell 85 
Park Comprehensive Cancer Center (protocol: 1227M, PI: John M.L. Ebos). 86 

Implantations: Experimental methodology was extended from previous work using 87 
a xenograft animal model of breast cancer spontaneous metastasis that includes 88 
orthotopic implantation followed by surgical resection of a primary (termed ‘ortho-89 
surgical’) (4). Briefly, LM2-4LUC+(1 x 106 cells in 100μl DMEM) were orthotopically 90 
implanted into the right inguinal mammary fat pad (right flank) of 6-8-week old 91 
female SCID mice, as described previously (4,13,17). Primary tumor burden was 92 
monitored with Vernier calipers using the formula width2(length x 0.5) and 93 
bioluminescence imaging (BLI) (4,13,17). Neoadjuvant treatments started 14 days 94 
before primary tumors were surgically removed at a timepoint (34-38 days post-95 
implantation) previously optimized for maximal distant metastatic seeding but 96 
minimal localized invasion (4,13). The surgeries were planned at specific time 97 
points post-implantation to avoid invasion of primary tumor into the skin or 98 
peritoneal wall, ensuring that metastatic progression had proceed and minimizing 99 
the possibility of surgical cure (4,13). Postsurgical MB was assessed by BLI and 100 
overall survival was monitored based on signs of end stage disease as previously 101 
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described(4,13). 102 

Exclusion criteria: Two scenarios represented instances where animals were 103 
excluded from treatment studies. First, if complete removal of primary tumor was 104 
not surgically feasible because of local invasion or evidence of advanced metastatic 105 
spread(4,17). Second, if no primary or metastatic tumor was ever detected by BLI 106 
or visual assessment it was assumed there was lack of tumor-take upon 107 
implantation (4,13). 108 

Randomization: Before treatment initiation animals were randomized by primary 109 
tumor size assessed by Vernier calipers to avoid any false results due to unequal 110 
tumor burden between groups (18). 111 

Flow cytometry 112 

Peripheral blood was collected in tubes containing lithium heparin (BD Biosciences; 113 
365965) by orbital bleeding one day before surgical tumor resection. Non-specific 114 
binding was blocked with normal mouse IgG (Invitrogen; 10400C) incubated with whole 115 
blood, followed by incubation with an antibody mix. After staining, cells were fixed in a 116 
lyse/fix solution (BD Biosciences; 558049), while red blood cells were lysed. Samples 117 
were analyzed with a LSR II low cytometer (Becton Dickinson), while data were 118 
acquired with FACSDiva software (Becton Dickinson) and analyzed with FCS Express 119 
6 (DeNovo software). 120 

Circulating tumor cells (CTC) 121 

The antibody mix for CTC detection of human CTCs in animal models contained a rat 122 
anti-mouse CD45 (30-F11) antibody conjugated to PE (Biolegend; 103106) and mouse 123 
anti-human HLA conjugated to AlexaFluor 647 (Biolegend; 311416). CD45 staining with 124 
a rat anti-mouse CD45 conjugated to FITC (Invitrogen; MCD4501) was used to 125 
eliminate any mouse blood cells, whereas human HLA was used to identify CTC 126 
(human LM2-4LUC+). For a positive control, LM2-4LUC+ cells were trypsinized, washed 127 
with PBS, and stained for both CD45 and HLA. LM2-4LUC+ were used to define the CTC 128 
gate. 129 

Circulating myeloid-derived suppressor cells (MDSC) 130 

The antibody mix for detection of MDSCs contained a rat anti-mouse CD45 (30-F11) 131 
antibody conjugated to PE (Biolegend; 103106), a rat anti-mouse Ly-6G/Ly-6C (Gr1) 132 
(RB6-8C5) antibody conjugated to PE-Cy7 (BD Pharmingen; 552985), and an rat anti-133 
mouse CD11b (M1/70) antibody conjugated to eFluor450 (eBioscience; 48-0112). 134 
Mouse CD45 staining was used to select only leukocytes, and CD11b and Gr1 were 135 
used to define the granulocytic and monocytic MDSC. 136 

Immunofluorescence 137 

Resected tumors were frozen on dry ice in cryo-embedding compound (Ted Pella, Inc; 138 
27300), sectioned, and fixed in a 3:1 mixture of acetone:ethanol. Non-specific binding 139 
was blocked with 2% BSA in PBS, followed by staining with antibody mix containing 140 
rabbit anti-mouse Ki67 antibody (Cell Signaling Technologies; 12202) and rat anti-141 
mouse CD31 antibody (Dianova; DIA-310). Detection of primary antibodies was 142 
achieved using FITC conjugated goat anti-rabbit IgG (BD Pharmingen; 554020) and 143 
Cy3 conjugated goat anti-rat IgG (Invitrogen; A10522). Samples were counterstained 144 
with DAPI (Vector; H-1500) and mounted with a hard-set mounting medium for 145 
fluorescence. Random images from each section were obtained with a Zeiss 146 



 

7 

AxioImager A2 epifluorescence microscope at 200x magnification, and analyzed with 147 
ImageJ. CD31+ cells (% area) and Ki67+ cells (% cells) were quantified automatically 148 
using macro functions, whereas Ki76+/CD31+ cells (proliferating endothelial cells) were 149 
quantified manually. 150 

Mechanistic model of ortho-surgical metastasis 151 

For untreated animals, we previously validated a mechanistic model for description of 152 
pre-surgical primary tumor and post-surgical metastasis kinetics in the ortho-surgical 153 
LM2-4LUC+ animal model (4). Briefly, metastatic development is decomposed into two 154 
main processes: growth and dissemination.  155 

Growth of the primary and metastases follow the Gomp-Exp model (19): 156 

𝑔!(𝑣) = 𝑔(𝑣) = 	min*𝜆𝑣, -𝛼 − 𝛽 ln - 𝑣𝑉"334 , 157 

where 𝑔!  and 𝑔  denote the growth rates of the primary and secondary tumors, 158 

respectively. Parameter 𝜆 limits the Gompertz growth rate to avoid unrealistically fast 159 
kinetics for small sizes and is given by the in vitro proliferation rate, assessed previously 160 

(4). Parameters 𝛼 and 𝛽 are the Gompertz parameters, and 𝑉" is the size of one cell (in 161 
units of mm3 for the PT, and photons/seconds for the metastases). The PT volume, 162 𝑉!(𝑡) thus solves 163 

6 𝑑𝑉!𝑑𝑡 = 	𝑔!8𝑉!9𝑉!(𝑡 = 0) = 𝑉# , 164 

with 𝑉# the volume corresponding to the number of cells injected (= 1 mm3 based on the 165 

conversion rule 1 mm3 ≃ 106 cells (20)).  166 

Dissemination occurs at the following volume-dependent rate (4): 167 𝑑8𝑉!9 = 	𝜇𝑉!, 168 

where parameter 𝜇 can be interpreted as the daily probability that a cell from the PT 169 
successfully establishes a metastasis (4). 170 

The metastatic process was described through a function 𝜌(𝑡, 𝑣)  representing the 171 

distribution of metastatic tumors with size 𝑣  at time 𝑡 . It solves the following initial 172 
boundary value problem (21): 173 

 >𝜕$𝜌(𝑡, 𝑣) +	𝜕%8𝑔(𝑣)𝜌(𝑡, 𝑣)9 = 0,			 𝑡	 ∈ (0, +∞),			𝑣	 ∈ (𝑉", +∞)		𝑔(𝑡, 𝑉")𝜌(𝑡, 𝑉") = 𝑑 C𝑉!(𝑡)D ,																							 𝑡	 ∈ (0, +∞)	𝜌(0, 𝑣) = 0,																													 𝑣	 ∈ (𝑉", +∞)  174 

The first equation derives from a balance equation on the number of metastases; the 175 
second equation is a boundary condition for the rate of newly created metastases; the 176 
third equation is the initial condition (no metastases exist at the initial time).  177 

The total MB at time 𝑡 was then given by  178 

𝑀(𝑡) = 	F 𝑣𝜌(𝑡, 𝑣)𝑑𝑣 = 	F 𝑑 C𝑉!(𝑡 − 𝑠)D 𝑉(𝑠)𝑑𝑠$

"

,&'

(!

 179 
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which can be solved efficiently through the use of a fast Fourier transform algorithm 180 

(22). In the previous equation, 𝑉(𝑠) represents the volume reached by a metastatic 181 

tumor after a period of time 𝑠 from its emission, when growing with growth rate 𝑔. 182 

Mechanistic model of neoadjuvant targeted therapy 183 

Using this model, we next incorporated the effects of systemic therapy. This new model 184 
includes neoadjuvant sunitinib treatment and assumes that the drug reduces the 185 

primary tumor growth rate by a term proportional to its concentration, 𝐶(𝑡) (Norton-186 
Simon hypothesis (23)):  187 𝑔!)(𝑡, 𝑣) = 	𝑔!(𝑣)81 − 𝑘	𝐶(𝑡)9 188 

where 𝑘 is a parameter of drug efficacy. As no pharmacokinetic data was available, we 189 
used a kinetics-pharmacodynamics (K-PD) approach. Namely, we considered that the 190 
drug concentration decays exponentially after each dose, 191 

𝐶(𝑡) = 1𝑉*K𝐷#𝑒+,"($+	/#)𝕀$1	/#2

#34

, 192 

where 𝐷# 	indicates the dose administered at time 𝜏#. The volume of distribution 𝑉* and 193 
the elimination rate constant 𝑘5 were fixed to the values reported in (24). Inclusion of 194 
treatment effect on metastatic growth was considered in the model development phase; 195 
however, this led to model predictions which could not explain the behavior of the 196 
experimental data. Therefore, the final model considered that sunitinib did not affect 197 
growth of metastases during neoadjuvant treatment.  198 

Calibration of the mathematical metastatic model and parameter 199 

estimation 200 

Following previously established methodology (4), the mathematical metastatic model 201 
was fitted to the experimental data using a nonlinear-mixed effects modeling approach 202 
(25). Briefly, this consists in modeling inter-animal variability by assuming a parametric 203 
distribution for the model parameters. All individual PT and MB longitudinal data could 204 
then be pooled together in a population model, whose parameters were estimated by 205 

likelihood maximization (25). In mathematical terms, if 𝑦6#  denotes the observation 206 

(primary tumor size or metastatic burden) in animal 𝑖 at time 𝑡6# and 𝑓(𝑡6#; 𝜃#) denotes 207 

the model value in an animal with parameter set 𝜃# = (𝛼# , 𝛽# , 𝑘# , 𝜇#), the statistical model 208 
linking the model to the observations writes: 209 𝑦6# = 𝑓8𝑡6#; 𝜃#9 + 𝜎6#𝜀6# ,	210 ln	(𝜃#) = ln8𝜃!7!9 + 𝜂# ,					𝜂# ∼ 	𝒩(0, Ω) 211 

where 𝜀6#~𝒩(0,1) is a gaussian noise for measurement error. The parameters 𝜃!7! and 212 Ω  characterize the entire population. The observed data were log-transformed and a 213 
proportional error model was used, that is 214 ln 𝑦6# = ln C𝑓8𝑡6#; 𝜃#9D 81 + 𝜎\𝜀6#9. 215 

For the vector of individual parameters, a log-normal distribution with full covariance 216 
matrix was assumed. Maximum likelihood estimates of the population parameters were 217 
obtained using the Stochastic Approximation of Expectation-Maximization (SAEM) 218 
algorithm implemented in the nlmefitsa Matlab function (26). PT and MB data were fitted 219 
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simultaneously for vehicle and sunitinib-treated animals. Visual predictive checks 220 
(VPC), individual fits and standard diagnostic graphical tools based on individual 221 
parameters were used for evaluating the adequacy of the different model components.  222 

Machine learning algorithms 223 

Effects of covariates on the model parameters were assessed using linear regression 224 
and a number of machine learning regression techniques (partial least squares, artificial 225 
neural networks, support vector machines and random forest models) using the R caret 226 
package (27,28). Except for the random forest models, data were centered and scaled 227 
prior to modeling. Tuning parameter values of the regression models were selected to 228 
minimize the root mean squared error (RMSE) using five replicates of a 10-fold cross-229 

validation. If 𝜃# are the true values and  𝜃̂# the predicted ones, the RMSE is defined by: 230 

𝑅𝑀𝑆𝐸 = b∑ d𝜃̂# − 𝜃#d8# 𝑁 . 231 

   232 



 

10 

Results 233 

In vivo/in silico modeling of neoadjuvant treatment  234 

We have previously developed mathematical parameters of untreated spontaneous 235 
systemic metastatic breast cancer using orthotopic tumor implantation and surgical 236 
resection (i.e., ‘ortho-surgical’) models (4). Using individual longitudinal presurgical 237 
primary tumor (PT) and postsurgical metastatic burden (MB; tracked by 238 
bioluminescence) data, we previously established that the metastatic potential 239 

parameter µ quantifies inter-individual variability after surgical resection of the PT (4). 240 
In addition, our results validated the use of the mathematical model to simulate pre- 241 
and post-surgical metastatic development. Here, using a xenograft model with highly-242 
metastatic human breast cells expressing luciferase (LM2-4LUC+), we evaluated PT and 243 
MB data from 128 mice that received multiple doses and durations of neoadjuvant 244 
sunitinib treatment over a 14 days period (schematic shown in Fig 1A; see Table S1 245 
and methods for treatment details). 246 

 247 

Simulations of neoadjuvant sunitinib targeted treatment therapy (NATT) 248 

suggests limited effect on metastasis growth 249 

We have previously utilized ortho-surgical metastasis models to evaluate the impact of 250 
multiple VEGFR TKIs on PT and MB progression (13,14). These studies uncovered 251 
that neoadjuvant targeted therapy (NATT) yielded differential effects with suppression 252 
of presurgical PT growth not consistently translating into reduction in postsurgical MB 253 
nor improvement in survival (13).  This effect could result from two phenomena that are 254 
mixed in MB quantification: 1) metastatic growth suppression and 2) reduction of 255 
metastatic spread as a consequence of primary tumor size reduction. To disentangle 256 
the two and qualitatively assess the effect of NATT, we generated predictive model 257 
scenarios under two assumptions. In ‘scenario A’, NATT would have growth-arresting 258 
effects on both PT and MB, while in ‘scenario B’ NATT would have effect only on PT 259 
(schematic shown in Fig 1B). To test this, we used our previously calibrated ortho-260 
surgical model of pre- and postsurgical growth using LM2-4LUC+ tumor cells grown in 261 
SCID mice (4), and only set either both growth rates 𝑔! and 𝑔 (Scenario ‘A’) or 𝑔!	only 262 

(Scenario ‘B’) to zero during NATT. Scenario ‘A’ clearly failed to describe the data (Figs 263 
1C and S1), whereas Scenario ‘B’ interestingly demonstrated good accuracy given that 264 
simulations were pure predictions that did not make use of the data for parameter 265 
estimation (Figs 1C and S1). These results demonstrate a differential effect of NATT 266 
on growth of primary and secondary tumors and suggest that a mathematical model of 267 
NATT in our breast cancer ortho-surgical animal model should not include anti-growth 268 
effect on metastasis. 269 

 270 

Calibration and validation of a kinetics-pharmacodynamics (K-PD) model 271 

for  pre- and post-surgical disease after neoadjuvant sunitinib therapy 272 

To further link dose and scheduling to response, we developed a K-PD metastatic 273 
model of NATT using a defined neoadjuvant treatment window (14 days) containing 274 
multiple treatment periods (3, 7, 11, 14 days), doses (60mg and 120mg), and time of 275 
surgery after tumor implantation (Day 34 or 38) (see Table S1 and methods for details). 276 
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Following our findings above, we only adapted the PT growth rate 𝑔! from (4), using 277 

the Norton-Simon hypothesis for PT anti-growth effect of NATT (23). Estimates of the 278 
model parameters are reported in Table 1 and demonstrate high practical identifiability 279 
(relative standard error ≤ 17%), likely owing to the large number of subjects in the 280 

population fit. Confirming our previous results (4), the metastatic potential parameter 𝜇 281 
was found to vary significantly amongst individuals (largest coefficient of variation). 282 
Visual predictive checks for both vehicle group and treated groups demonstrated 283 
accurate goodness-of-fit both at the population (Figs 2A and S2) and individual (Figs 284 
2B and S3) levels. In addition, model predictions in independent data sets not used for 285 
parameter calibration, with distinct time of surgery (day 38 versus day 34) and drug 286 
regimens, were in good agreement with the data (Fig S4). Further model diagnostic 287 
plots demonstrated no clear misspecification of the structural and residual error model 288 
(Fig S5). Distributions of the empirical Bayes estimates were in agreement with the 289 
theoretical distributions defined in the statistical model (Fig S6). Moreover, the η-290 
shrinkage was less than 20% for each parameter, meaning that the individual 291 
parameter estimates and the diagnostic tools based on them can be considered reliable 292 
(29). Finally, correlations found between the estimated random effects (Fig S7) 293 
confirmed the appropriateness of a full covariance matrix in the assumed distribution of 294 
the individual parameters. Together, these results show the validity of our mathematical 295 
model to simulate PT and MB kinetics under a wide range of NATT administration 296 
regimens, which can thus be employed to explore in silico the quantitative impact of 297 
possible NATT schedules. 298 

 299 

Simulations of NATT duration reveal contrasted impact on PT size 300 

reduction and metastasis-free survival 301 

The overall impact of NATT is the combination of i): PT debulking (which in turn reduces 302 
metastatic spread from the PT), and ii) an increased risk of metastatic relapse due to 303 
delayed removal of the PT. To quantify the impact of NATT duration on these two 304 
opposite aspects, we ran simulations of our calibrated model for 0 to 18 days NATT 305 
and three dose levels (60, 120 and 240 mg/kg, see Fig 3). First using only the typical 306 
population estimates of the parameters (median individual), we found an important 307 
increase in postsurgical MB for long NATT: final values ranged from 2.73 x 108 to 7.52 308 
x 108 cells for NATT durations from 0 to 18 days (176% increase), respectively, at the 309 
60 mg/kg dose level (Fig 3A). This is consistent with our model where NATT does not 310 
affect metastatic growth, thus delaying surgery can only increase MB. This was less 311 
important in higher dose levels (125% and 48.5% increases for 120 mg/kg and 240 312 
mg/kg, respectively). To study the impact of inter-individual variability, we leveraged 313 
our mixed-effects framework to perform population simulations and quantify final 314 
outcome. Namely, we simulated 1000 virtual individuals and recorded the percent 315 
changes in PT size at the end of NATT. Fig 3B shows the resulting median PT percent 316 
changes, together with an area covering 80% of the population. In addition, we 317 
calculated a risk of metastatic relapse from the resulting simulation of MB kinetics. To 318 
do so, we considered as MB relapse threshold the 30th percentile of the control 319 
population MB at 85 days (considered to be an approximation of long term), to mimic 320 
the human situation in which 30% of breast cancer patients with localized disease 321 
undergo metastatic relapse (30). This threshold then allowed us to compute the percent 322 
of subjects having metastatic relapse in the virtual populations, under varying NATT 323 
duration (Fig 3B, circled line). For 60 mg/kg and 120 mg/kg doses, metastatic relapse 324 
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risk is predicted to increase drastically when delaying PT removal too long. However, 325 
for a 240 mg/kg dose (or for virtual subjects with increased sensitivity to treatment), 326 
increase in metastatic relapse risk is more moderate, since a prolonged NATT is 327 
associated with large decrease of the PT size, thus reducing the source of metastasis. 328 
Together, these results illustrate how our mathematical model, informed from preclinical 329 
data of an NATT ortho-surgical model, can provide informative quantitative simulations 330 
of the impact of treatment schedules. Our findings suggest a moderate to detrimental 331 
impact of long sunitinib NATT at low dose, in breast cancer. 332 

 333 

Machine learning for prediction of the metastatic aggressiveness 334 

parameter μ from biomarkers at surgery 335 

Next, we wanted to determine whether biological parameters at the time of PT surgery 336 
but after NAT had stopped could be utilized as predictive biomarkers of postsurgical 337 
MB after treatment cessation. These biomarkers included immunohistochemical 338 
molecular protein measurements of resected PT for cell proliferation (Ki67)  and blood 339 
vessel (CD31) markers in resected PTs (Fig 4A; example shown), blood-based cellular 340 
measurements of circulating myeloid derived stromal cells (MDSCs) (Fig 3B), and  341 
circulating tumor cells (CTCs) from 66 animals (Fig 4B and 4C, respectively; examples 342 
of flowcytometric gating shown). We investigated whether these molecular and cellular 343 
biomarkers may parallel the observed variability in the mathematical parameters, in 344 
particular µ, whose large variability indicated potential animal subpopulations of 345 
variable metastatic potential values. We first examined correlations between 346 
biomarkers in order to identify potential redundancies in the data (Fig 4B). High 347 
correlations were found between Ki67 and Ki67+/CD31− (r = 0.979, p < 10-12) and CTC 348 
and gMDSC (r = 0.678, p = 3.95 · 10−10). Next, we investigated the value of these 349 

measurements as predictive biomarkers of the mechanistic parameters: 𝛼  and 𝛽 350 
capture growth kinetics, 𝑘 the effect of treatment and 𝜇 metastatic dissemination. Fig 351 
4B shows correlations between biomarkers and the parameter estimates. As the 352 
individual growth parameters α and β were highly correlated (r = 0.997, p < 10-5), we 353 

used the Gompertz tumor doubling time at the volume 𝑉# = 1 mm3 to assess the impact 354 

of covariates on the tumor growth parameters. It is defined by 𝐷𝑇 = − 4

9
ln	 C:;(8)&<)

<
D, 355 

with 𝐴 = ln C(#
(!
D − =

9
. A weak correlation was found between log	(𝐷𝑇)  and mMDSC 356 

levels (Fig 4E, r = 0.275, p = 0.0257). However, none of the available biomarkers was 357 
found to correlate either with 𝜇 or log	(𝜇) (Fig S8). Next, partial least squares and a 358 
number of different machine learning regression algorithms were tested in order to 359 
identify possible relationships between covariates and individual estimates of the 360 
metastatic potential parameter (shown in Fig 1A schematic). These included neural 361 
networks, support vector machines and random forest models (31). Cross-validation 362 
results for the RMSE of the final regression models were compared against the 363 
intercept-only model (the constant model were predictions are the same for all animals, 364 
given by the median value in the population, 𝜇!7!). As shown in Figs 4F and 4G, none 365 

of the fitted models had RMSE or R2 significantly different from the intercept-only model. 366 
Lowest RMSE was achieved by the intercept-only model. Values of R2 ranged from 367 
0.133 to 0.199 across the models, with the highest value reached by the conditional 368 

random forest model. Prediction error on ln(𝜇) ranged from 9.83% ± 10.7% for the best 369 

model (conditional random forests, mean ± std) to 10.6% ± 11.3% for the worse 370 
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(random forests), which was not superior to predictive power of the intercept-only model 371 

(9.71% ± 10.1%). Plotting the observed versus predicted values (Figs 5 and S9) 372 
confirmed that the fitted algorithms were unable to explain the variability of parameter 373 
μ. Together, these results demonstrate that the biomarkers considered in this study 374 

have limited predictive power for metastatic potential as defined by 𝜇.  375 

 376 
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Discussion 377 

A large part of in vivo studies in experimental therapeutics focus on the effect of 378 
treatments on isolated tumors and few make use of metastatic animal models (32). 379 
However, we and others have previously shown that differential effects occur on the 380 
primary tumor and the metastases for some anti-cancer drugs, such as the 381 
multitargeted tyrosine kinase inhibitor sunitinib (13,14,33). Similarly, apart from efforts 382 
focusing on evolutionary dynamics of metastasis that do not make use of longitudinal 383 
data on size kinetics (34), few quantitative mathematical models exist for metastatic 384 
development (4,21,35,36), and none has been quantitatively validated for systemic 385 
therapy beyond theoretical considerations (35,37,38). In previous work we first 386 
established such a mathematical model featuring natural metastatic development and 387 
surgery of the primary tumor, but no systemic treatment (4). This was a critical step 388 
before being able to model the effect of systemic treatments such as NATT where 389 
treatments are limited and long-term benefits are presumed but difficult to quantify as 390 
disease recurrence can happen years after surgery, or not recur at all. In the current 391 
study, we extended our mathematical model to examine NATT with the RTKI sunitinib 392 
by using longitudinal data of 128 mice (more than four times more than previous studies 393 
(4,36)). Such large number of subjects and tightly controlled experimental conditions 394 
(genetically identical animal background, cell origin, treatment periods, etc..), resulted 395 
in precise estimates of the model parameters. Together our results represent an 396 
idealized system for predicting treatment impact and novel biomarker identification that 397 
could assist in trial design prior to testing in patients.   398 

Our results using sunitinib showing efficacy in reducing primary tumor growth but not 399 
metastasis mirror our previous report with two ortho-surgical animal models where we 400 
found that NATT with sunitinib and axitinib (another VEGFR TKI) did not always limit 401 
metastatic disease after surgery, despite clear antitumor effects on localized disease 402 
(13). This represents a challenge observed clinically with RTKIs where, despite 403 
decades of potent tumor reducing effects in mouse models, efficacy in patients with 404 
metastatic disease could be underwhelming. Using our mathematical model to simulate 405 
distinct biological scenarios, we demonstrated that the effect of the drug on tumor 406 
growth could differ between primary and secondary sites. Conversely, model simulation 407 
predictions (with no fitting involved) of a scenario where metastatic development during 408 
NATT was only altered by primary tumor size shrinkage was in excellent agreement 409 
with the data.  410 

These findings could be explained by the fact that the primary tumor (in the mammary 411 
fat pad) and the secondary tumors (mostly in the lungs) would rely on different growth 412 
mechanisms, especially at small sizes. Supporting this explanation, a study showed 413 
that metastasis relied more on vessel co-option rather than angiogenesis, thus 414 
providing them a mechanism of resistance to VEGFR TKIs therapy (39). Beyond NATT, 415 
our model predicts limited efficacy of sunitinib in the postsurgical setting, because 416 
metastases would likely be similarly small and rely on similar growth mechanisms. 417 
Interestingly, recent experimental results in mice confirmed this prediction where, using 418 
a similar metastatic experimental system of triple negative breast cancer, adjuvant 419 
sunitinib did not improve survival (40). The mechanistic model of NATT validated here 420 
provides a valuable tool to explore the impact of the treatment schedules on response 421 
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and relapse. Simulating varying durations and doses of NATT, we found that long 422 
durations of NATT could significantly increase the risk of metastatic relapse when PT 423 
response was moderate. Further, our model provides the computational basis to 424 
analyze the impact of various NATT dosing regimen in terms of sequence, breaks and 425 
frequency, which is the topic of a companion work. 426 

For breast cancer patients diagnosed with localized disease, predicting the risk and 427 
timing of distant metastatic relapse is a major clinical concern (41–43). Accurate ways 428 
to predict the extent of invisible metastatic disease at diagnosis and risk of future 429 
metastatic relapse could help to personalize perioperative therapy protocols, and avoid 430 
highly toxic therapies to patients with low risk of relapse (42). However, only two risk 431 
models (44,45) have met the AJCC criteria for prognostic tool quality so far (46), and 432 
both rely on classical Cox regression survival models. Recently, we have developed a 433 
mechanistic approach to metastatic relapse prediction (47). However, this work did not 434 
include the impact of NATT not any systemic treatment. The mathematical model that 435 
we validated here on animal data combined with the methodology developed in (47) 436 
lays the groundwork for applications in the clinical NATT setting. It could further refine 437 
individual predictions of metastatic relapse in breast cancer by providing surrogate 438 
markers of long-term outcome additional to pathologic complete response (3). Indeed, 439 
the NATT time period represents an invaluable window of opportunity to gather both 440 
longitudinal data (such as kinetics of tumor size or pharmacodynamic marker, or 441 
circulating DNA from liquid biopsies) and one-time biomarkers from tumor tissue (2). 442 
Here, we propose that mathematical models could form the basis of digital tools able 443 
to integrate this multi-parametric and dynamic data into predictive algorithms of both 444 
long-term outcome and disease sensitivity to systemic therapy in case of distant 445 
relapse. 446 

In the era of artificial intelligence (48), it is to be expected that an increasing number of 447 
such prognosis models will appear, combining advances in cancer biology (e.g. 448 
molecular gene signatures (42,49)) and imaging (50,51) with algorithmic engineering. 449 
Recent years have witnessed the generalization of methods going beyond classical 450 
statistical analysis, grouped by the generic term of machine learning (ML) (52). 451 
However, these techniques have not been applied to preclinical data from targeted 452 
therapy. Here, we proposed an approach to combine ML with mechanistic modeling 453 
that consists of using biomarkers at surgery to predict individual mathematical 454 
parameters and subsequently postsurgical metastatic evolution. Multiple cellular and 455 
molecular biomarkers were measured at the time of surgery, either by 456 
immunohistochemistry or flow cytometry. These constituted candidate features for ML 457 
prediction of the critical parameter μ, which we found as being the major driver of inter-458 
subject metastatic variability. We found overall that these biomarkers contained only 459 

limited predictive power of 𝜇, suggesting that alternative biomarkers should be explored 460 
in future preclinical and clinical studies. This contrasts with reports showing Ki67 as 461 
significantly associated with risk of metastatic relapse (53). It might be due to the fact 462 

that Ki67 is a proliferation marker (54), which should rather be predictive of 𝛼 or the 463 
doubling time. In fact, such correlation was observed between Ki67+/CD31+ and DT 464 
(Fig 3E), as well as clinical work using our modeling approach (47). Paired with early 465 
clinical trials, our in vivo/in silico approach could have translational value to inform the 466 
screening of biomarkers. 467 

Important limitations of our study are that we only analyzed data from one tumor type 468 
(triple negative breast cancer), one cell line in one, immune-depressed, animal system 469 
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and one drug. On the other hand, this is a necessary prerequisite to control as much 470 
as possible the heterogeneity in the data, which still remains substantial despite a tightly 471 
controlled experimental setting. Such conditions ensure robust test of biological 472 
assumptions underlying our mathematical models and, eventually, refutation of 473 
unplausible ones (here, that primary and secondary growth would be equally 474 
suppressed by NATT). Nevertheless, to address these limitations, we conducted a 475 
companion study in similar ortho-surgical kidney cancer systems, with two cell lines 476 
(SN12-PM6-N and RENCA, respectively of human and murine origin), immune-477 
competent animals (Balb/c mice for the RENCA cells), and two VEGFR TKIs (Sunitinb 478 
and Axitinib) used in the clinical setting to treat kidney cancer patients. In addition, we 479 
investigated in depth the impact of breaks and high-dose “bursts” during NATT. The 480 
mathematical model developed on the basis of the one in this study allowed to i) 481 
demonstrate and quantify post-NATT PT growth rebound and ii) quantify the impact of 482 
such dosing regimen variations on post-surgival metastatic development. 483 

Given the increasingly diverse arsenal of systemic anti-cancer therapies available with 484 
the approval of immune-checkpoint inhibitors, optimal treatment sequence (5,55–57)  485 
and dosing regimen (58,59) are becoming crucial issues. Our model could be used and 486 
extended to guide the rational design of treatment schedules and modes of combination 487 
of immunotherapy with another systemic drug, before preclinical or clinical testing. For 488 
immunotherapy, the model would need to be developed further and at least include an 489 
additional systemic variable representing the immune system. Immuno-monitoring 490 
quantifications could provide an invaluable source of longitudinal data to feed 491 
mechanistic models (60). In addition, response to neoadjuvant therapy could  be used 492 
to predict which patients are more likely to benefit from adjuvant therapy (12). 493 
Combining artificial intelligence techniques with mechanistic modeling, our modeling 494 
methodology offers a way to perform such predictions quantitatively and possibly 495 
personalize therapeutic intervention.  496 

 497 
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Figure 1: Mathematical modeling reveals differential effects of neoadjuvant 
sunitinib treatment on primary tumor  and  metastatic growth. 

(A) Schematic of the study. Data from an ortho-surgical, human xenograft animal model 
of neoadjuvant sunitinib breast cancer treatment were fitted using a mixed-effects 
statistical framework. This provided calibrated parameters for each animal. Machine 
learning algorithms were used to assess the predictive power of molecular and cellular 
biomarkers to predict the metastatic dissemination parameter μ and quantify metastatic 
aggressiveness. Biological and numerical parameters quantified at end of therapy and 
at time of surgery were implemented into a survival model. 

(B) Schematic of tested hypotheses of the effect of neoadjuvant sunitinib Tx on primary 
tumor and metastatic growth and dissemination through mechanistic mathematical 
modeling. Scenario A = growth arrest on both primary and secondary tumors. Scenario 
B = growth arrest on primary tumor only. 

(C) Predicted simulations of Scenarios A and B using parameters calibrated from a 
previous study [Benzekry et al., Cancer Res, 2016] involving untreated (vehicle) 
animals only. Data plotted here (LM2-4LUC+ bioluminescent human breast cancer cells 
orthotopically injected in mice) was not used to estimate the model parameters. 

Tx, treatment; PT, primary tumor; MB, metastatic burden. *See methods for additional 
details on animal experiments, treatment dose and duration, and mechanistic model. 

  



 

24 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Calibration and validation of a kinetics-pharmacodynamics (K-PD) 
mathematical model for neoadjuvant sunitinib treatment effect on pre- and post-
surgical tumor growth 

Pre- and postsurgical growth of LM2-4LUC+ human metastatic breast carcinomas were 
measured in multiple groups involving different neoadjuvant treatment modalities 
(doses and durations). The mathematical model was fitted to the experimental data 
using a mixed-effects population approach (n=104 animals in total).  

(A) Comparison of the simulated model population distribution (visual predictive check) 
for vehicle and neoadjuvant sunitinib treatment (60mg/kg/day) 14 days prior to surgery.  

(B) Examples of individual dynamics.  

Tx, treatment; PT, primary tumor; MB, metastatic burden. 
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Figure 3: Simulations of varying neoadjuvant treatment duration quantify 
contrasted impact on primary tumor size reduction and risk of metastatic relapse 

Using model parameters calibrated from data of our ortho-surgical animal model of 
breast cancer neoadjuvant treatment (NAT), simulations were conducted for a duration 
of NAT varying between 0 (light color) and 18 (dark color) days, for three dose levels 
(60 mg/kg, 120 mg/kg and 240 mg/kg). 

(A) Predicted simulations of pre-surgical primary tumor and post-surgical metastatic 
kinetics. Primary tumor growth curves are not distinguishable because they are all 
superimposed until time of surgery. 

(B) Population-level predictions of final primary tumor size (solid line and grey area) 
and probability of metastatic relapse as functions of duration of neoadjuvant treatment, 
which delays surgical removal of primary tumor (circled line). Inter-individual variability 
simulated from population distribution of the parameters learned from the data (n = 
1000 virtual subjects). 
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Figure 4: Use of machine learning algorithms based on presurgical molecular 
and cellular markers to predict metastatic dissemination parameter ‘μ’. 

(A-C) Examples of molecular and cellular biomarker analysis. 

(A) Proliferating endothelial cell identification by immunofluorescence. Tissue sections 
from resected tumors were stained with antibodies against mouse CD31 (red) and 
mouse Ki67 (green) and counterstained with DAPI (blue). Single channel and merged 
images are shown. Yellow arrows show proliferating endothelial cells which were 
counted manually.   

(B) Myeloid-Derived Suppressor Cells (MDSC) quantification by flow cytometry. Whole 
blood was stained with anti-mouse antibodies for CD45, CD11b, and Gr1. After 
selection of CD45 positive cells MDSCs were analyzed based on CD11b and Gr1 
levels. Monocytic-MDSC (M-MDSC) are CD11b+/Gr1high and granulocytic-MDSC (G-
MDSC) are CD11b+/Gr1Medium. Examples of MDSC in untreated and treated animals 
are shown. 

(C) CTC quantification by flow cytometry. CTCs for xenografts were identified using 
anti-human HLA. Blood was stained with anti-mouse CD45 and anti-human HLA. Blood 
and LM2-4 cell samples were overlaid in a dot plot to identify and create the gates for 
CTCs. Once the gates were created CTC were identified in blood of tumor-bearing 
mice. 

(D) Pearson correlation coefficients between biomarkers. Blue (resp. red) color 
indicates positive (resp. negative) correlation, with size of the circle proportional to the 
R2 correlation coefficient. * p<0.05, ** p<0.01, *** p<0.001. 

(E) Univariate correlations between the biomarkers and the mathematical parameters. 
DT = doubling time. 

(F) Cross-validated Root Mean Square Error (RMSE) across different machine learning 
regression models (see methods) utilizing the values of the biomarkers for predicting 
log(μ). To assess the significance of the covariate in the models, RMSE were compared 
against the value of this metric obtained using a only-intercept model. Bars are 95% 
confidence intervals. Shown in red is the model with lowest RMSE. PLS = Partial Least 
Squares. SVM = Support Vector Machines 

(G) Cross validated R2 with 95% confidence intervals. 

(H) Predictions versus observations for the conditional random forest algorithm. 
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Table 1: Parameter estimates of the metastatic and survival models obtained by 
likelihood maximization via the SAEM algorithm. In the survival model, log(mu) has 
been included as covariate on the scale parameter Te: log(Te) = log(Te,pop)+ β log(μ) 
+ η.   

Abbreviations: CV, coefficient of variation computed as the ratio of the standard 
deviation and the median of the estimated parameter distribution; r.s.e., residual 
standard error.   

 

 



Supplementary Table: 

Table S1: Neoadjuvant treatment schedules and doeses



120 60 0

1 6 0 0 14 38 Training Veh.

2 21 0 0 14 34 Training Vech.

3 21 0 14 0 34 Training Su60(14D)

4 6 0 7 7 34 Training Su60(7D)

5 15 0 3 11 34 Training Su60(3D)

6 15 3 11 0 34 Training Su120(3D)/Su60(11D)

7 20 3 0 11 34 Training Su120(3D)

8 6 3 11 0 38 Validation Su120(3D)/Su60(11D)

9 6 3 8 3 38 Validation Su120(3D)/Su60(8D)

10 6 3 4 7 38 Validation Su120(3D)/Su60(4D)

11 6 3 0 11 38 Validation Su120(3D)

Group Abbrev.ModelingN Sunitinib (mg/kg/day)

Duration (Days)
Surgery

(DPI)

Table S1: Animal groups showing treatment schedules and dosing 
during a presurgical neoadvjuant period of 14 days.

Table S1:



Supplementary Figures

Figure S1. Comparison of simulation of therapy (A) vs no therapy (B) on metastases

Figure S2. Population fits of all the groups used to calibrate the model parameters (surgery at day 34)

Figure S3. Representative individual fits of the model for Sunitinib-treated animals

Figure S4. Model predictions in independent datasets (surgery at day 38)

Figure S5. Model diagnostic plots

Figure S6. Distribution of the individual parameters

Figure S7. Correlations between random effects

Figure S8. Individual parameters vs covariates

Figure S9. Observed vs Predicted values for the machine learning algorithms



Figure S1. Comparison of simulation of therapy (A) vs no therapy (B) on metastases
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Surgery at day 38
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Figure S2. Population fits of all the groups used to calibrate the model parameters

(surgery at day 34)
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Figure S3. Representative individual fits of the model for Sunitinib-treated animals
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Figure S4. Model predictions in independent datasets (surgery at day 38)
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Figure S5. Model diagnostic plots
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A) Observation vs. individual prediction. Solid lines are identity lines. Dashed lines represent 90% prediction intervals.

B) Individual weighted residuals (IWRES) vs time.

C) Individual weighted residuals vs log-transformed individual predictions.



Figure S6. Distribution of the individual parameters
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Figure S7. Correlations between random effects
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Figure S8. Individual parameters vs covariates
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Figure S9. Observed vs Predicted values for the machine learning algorithms

Models for predicting µ

Conditional random forest Random forest Neural networks
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Models for predicting log(µ)

Conditional random forest Random forest Neural networks
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