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Abstract

First-order optimization methods have attracted a lot of attention due to their practical suc-

cess in many applications, including in machine learning. Obtaining convergence guarantees and

worst-case performance certificates for first-order methods have become crucial for understand-

ing ingredients underlying efficient methods and for developing new ones. However, obtaining,

verifying, and proving such guarantees is often a tedious task. Therefore, a few approaches were

proposed for rendering this task more systematic, and even partially automated. In addition to

helping researchers finding convergence proofs, these tools provide insights on the general struc-

tures of such proofs. We aim at presenting those structures, showing how to build convergence

guarantees for first-order optimization methods.

1 Introduction

In recent years, there has been a significant surge in the interest surrounding first-order optimization

methods, primarily driven by their remarkable efficiency on a number of applications, notably within

the field of machine learning (see e.g., [5]). Theoretical foundations for those methods played a crucial

role in this success, e.g., by enabling the development of momentum-type methods (see e.g., [29, 26]).

Formally, we consider the optimization problem

x⋆ , arg min
x∈Rd

f(x) (OPT)

where f belongs to a set F (often referred to as a “class of functions”, e.g., the set of convex func-

tions, the set of strongly-convex and smooth functions, or the set of quadratic convex functions, etc.).

Classical first-order optimization methods for solving this problem include gradient descent (GD) [7],

Nesterov accelerated gradient method (NAG) [26], and the heavy-ball method (HB) [29].

In this context, a key question is to obtain a priori performance guarantees for an iterative algo-

rithm A (i.e., A is a rule for generating sequences of approximations (xt)t6T to the minimizers of a cer-

tain function f ) when the function f to be minimized belongs to a set F . The most popular framework

for such analyses of optimization algorithms is that of worst-case analyses, see, e.g., [26, 15, 6, 16, 8].

Given an algorithm A, the worst-case analysis framework consists in finding guarantees that hold for

every function of the class.

In other words, we aim at evaluating the worst-case accuracy of A over the functions of the class F
after a given number of iterations T . For doing so, there are many different possible notions of

accuracy (or performance) which we denote by P (f, (xt)t6T ) and that we aim at minimizing. Letting

xT be the output of an algorithm, common examples of such metrics include the distance of the last
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iterate to an optimum ‖xT − x⋆‖, the function value accuracy of the last iterate f(xT )− f(x⋆), or its

gradient norm ‖∇f(xT )‖. Usually, xT can be arbitrarily bad just by choosing x0 arbitrarily far away

from the optimizer x⋆. Therefore, we usually need to assume x0 to be not too bad, such as x0 ∈ N (x⋆)
where N (x⋆) can be any fixed set (that we call a “neighborhood” of the optimizer x⋆) and depends

on x⋆. Common examples of such neighborhood are balls around the optimizer {x|‖x− x⋆‖ 6 R} or

the set {x|f(x)− f⋆ 6 R}.

The smallest upper bound on P (f, (xt)t6T ) that holds for any dimension d > 1, for any func-

tion f ∈ F , for any starting point x0 ∈ N (x⋆) ⊂ R
d, and for any (xt)t6T generated by A applied on

f from x0, is the optimal value to the problem of computing the worst-case:

∣
∣
∣
∣
∣
∣
∣
∣
∣

maximize
f∈F ,d>1

(xt)t6T∈(Rd)
T+1

P (f, (xt)t6T )

subject to

{
x0 ∈ N (x⋆)

(xt)t6T = A(f, T, x0)

(P)

In the black-box model, iterative algorithms gather information about f through so-called oracles,

which we denote by O(f). Classical oracles used in first-order optimization are gradient evaluations

O(f)(x) = ∇f(x) and approximate gradients O(f)(x) ≈ ∇f(x) (e.g., stochastic gradients), but

also proximal operators (see, e.g. [9]), etc. At step t ∈ J1, T K, A collects oracles on the previous

iterates (O(f)(xs))s6t−1 and outputs xt based on those information through the update function At as

xt = At((xs,O
(f)(xs))s<t).

Notation. For readability purposes, all notation used throughout this paper are summarized as

follows.

Notation Corresponding object

F Class of functions (generic form)

f Objective function

x⋆ Optimal point

x0 Initial iterate

O(f) Generic oracle applied on f
A Algorithm (generic form)

(xt)t6T Sequence of iterates generated by A, i.e. (xt)t6T = A(f, T, x0)
(At)16t6T Update function of the algorithm A, i.e. ∀t, xt = At((xs,O

f (xs))s<t)
T Total number of iterations

t Current iteration index

Fµ,L Class of L-smooth and µ-strongly-convex functions (0 6 µ 6 L)

Qµ,L Class of L-smooth and µ-strongly convex quadratic functions (0 6 µ 6 L)

(Vt)t Lyapunov sequence

F,G Linearization variables (after SDP lifting)

P (f, (xt)t6T ) Performance metric

Outline. In Section 2, we discuss two ways of characterizing classes of functions and detail the

main cases for which we can solve (P). In Section 3, we discuss an alternative way of describing the

algorithm A simplifying the resolution of (P). Section 4 outlines a systematic approach for acquiring

proofs of worst-case performance certificates and delves into their underlying structures. We further

elaborate on how this structure can be exploited for extending the applicability range of the worst-case

2



guarantees. Among others, we show how the properties of these proofs allow building algorithms.

Finally, Section 6 provides a natural approach for discovering Lyapunov sequences.

2 From explicit to implicit classes of functions

This section describes two ways of specifying a class of functions as part of the worst-case analysis

of a given algorithm. We describe two different methods to approach and solve (P) depending on the

ways F is specified. More specifically, we focus on two specific classes of functions to illustrate our

explanations, namely L-smooth µ-strongly convex quadratic functions (notation Qµ,L) and L-smooth

µ-strongly convex functions (notation Fµ,L).

2.1 Convex quadratic optimization

First-order optimization methods were extensively studied in the context of minimizing quadratic

convex functions. Such functions can be described explicitly as

f(x) ,
1

2
(x− x⋆)

TH(x− x⋆) + f⋆, (1)

where H is the symmetric positive semi-definite Hessian of f , x⋆ its optimizer and f⋆ its minimal

value. This expression allows to explicitly compute the gradient ∇f(x) = H(x− x⋆), and first-order

optimization methods can be expressed through polynomials due to the following property (e.g., [21,

Prop.4.1]).

Proposition 2.1 Let f ∈ Q0,∞ and x0 ∈ R
d. It holds that

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (2)

if and only if there exists a sequence of polynomials (Pt)t∈N, each of degree at most 1 more than

the highest degree of all previous polynomials and P0 of degree 0 (hence the degree of Pt is at

most t), such that

∀ t xt − x⋆ = Pt(H)(x0 − x⋆), Pt(0) = 1 . (3)

In this context, (P) can be solved by solving a polynomial problem of the form maxH ‖Pt(H)‖
where H is a symmetric matrix verifying some conditions (e.g. µI � H � LI when f ∈ Qµ,L).

This link between first-order algorithms and polynomials has been used by [19] for discovering the

Chebyshev method and by [29] for the “heavy-ball” method, still used nowadays far beyond quadratic

optimization (e.g. in stochastic optimization of neural networks [33]). This property has also been

exploited more recently for obtaining new algorithms with provable guarantees on quadratic func-

tions (see e.g., [17, 30, 16, 28, 31, 4, 21, 23, 10]).

2.2 Infinite-dimensional spaces of functions

As opposed to previous sections, many classes of functions are described implicitly as regions of

infinite-dimensional spaces of functions. In other words, such functions are defined by sets of in-

equalities. This section deals with the analyses of such classes. This is due to the fact the set of all

functions of the class are not described by a finite number of parameters, but rather by constraints

(inequalities). Studying (P) for classes that are defined implicitly through sets of constraints appears

to be much less natural. In this situation, (P) is often referred to as a performance estimation problem

(PEP) [14, 36, 34]. This tool primarily relies on two crucial components: interpolation conditions and

SDP lifting.

3



Interpolation conditions. We remark that the description of the algorithm and the objective

of (P) both only depend on the oracle values of f on the iterates (xt)t6T . We introduce the variables

(Ot)t6T . The constraint f ∈ F must be replaced by the constraint that there exists at least one element

f ∈ F such that (O(f)(xt))t6T = (Ot)t6T (Ot is a reachable value for O(f)(xt), when f ∈ F). As

an example, ft and gt are potential values of respectively f(xt) and ∇f(xt). Formally, we define the

equivalence relation ∼(P) as f1 ∼(P) f2 if and only if ∀t ∈ J0, T K∪{⋆},O(f1)(xt) = O(f2)(xt). Since

the only information A gathers on f is the oracle outputs at the iterates xt, two functions coming from

the same equivalence class both produce feasible points of (P) with the same objective value. In other

words, those two functions are undistinguishable using only the information available to A. We can

therefore rewrite (P) in terms of (Ot)t6T ∈ F/ ∼(P) instead of f ∈ F , so that the set of optimization

variables now lives in finite dimension. This constraint is referred to as interpolation conditions.

Example 2.2 (First-order algorithm on Fµ,L) Let L > µ > 0 two positive real numbers. A

function f is L-smooth and µ-strongly-convex when f is continuously differentiable and verifies

the two inequalities:

f(x) 6 f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2, (4)

f(x) > f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2, (5)

for all x, y and where ∇f denotes the gradient of f .

Studying a first-order algorithm (i.e. an algorithm based on the oracle O(f) , (∇f, f)) on

the class Fµ,L appears to be challenging at first sight due to the infinite number of parameters

needed for describing Fµ,L. However, [36, Theorem 4] provides interpolation conditions for the

class Fµ,L of L-smooth µ-strongly-convex functions and enables an exact study of the worst-case

of several algorithms on this class of functions:

∀i, j, fi >fj + 〈gj , xi − xj〉+
1
2L‖gi − gj‖

2 (IC)

+ µ
2(1−µ/L)‖xi −

1
Lgi − xj +

1
Lgj‖

2.

Indeed, in this case, (P) can be written in finite dimension as

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

maximize
d>1,(xt)t6T∈(Rd)

T+1
,x⋆∈Rd,

(gt,ft)t6T∈(Rd×R)
T+1

P ((xt, gt, ft)t6T )

s.t.







x0 ∈ N (x⋆)
∀t 6 T, xt = At((xs,O

f (xs))s<t)
∀i, j, fi > fj + 〈gj , xi − xj〉+

1
2L‖gi − gj‖

2

+ µ
2(1−µ/L)‖xi −

1
Lgi − xj +

1
Lgj‖

2.

SDP lifting. In many cases (see, e.g, Example 2.2, and [34, Theorem 3.5]), interpolation condi-

tions are written in terms of quadratic and bilinear expressions of xt and gt and linear expressions of ft.
Because of the quadratic dependency in xt and gt, this problem is generally non-convex. SDP lifting

can convexify this problem if all other parts of this problem also contain only quadratic expressions

of xt and gt. For example, classical choices for P (f, (xt)t6T ) are ‖xT − x⋆‖
2, f(xT ) − f(x⋆), or

‖∇f(xT )‖
2. Similarly, a classical choice for x0 ∈ N (x⋆) is ‖x0−x⋆‖

2 6 R2 for some radius R > 0.

Finally, the updates (At)t of the algorithm A are often of the form

xt = At((xs,∇f(xs), f(xs))s6t−1) = x0 −
t−1∑

s=0

γ(t)s ∇f(xs) (6)
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for some sequence of scalars (γ
(t)
s )s∈J0,t−1K. Substituting xt for t > 1 in the problem by their

corresponding expressions given by (6) preserves the above observation: the dependency of (P) in

(xt, gt)t6T is exclusively quadratic. Actually, in this specific case, all occurrences of (xt)t>1 have

been replaced by linear combinations of x0 and (gt)t6T . SDP lifting consists in introducing the Gram

matrix G of (x0 − x⋆, (gt)t6T ). This way, all quadratic expressions of (xt, gt)t6T are linear combina-

tions of the entries of G. We also introduce the vector F storing the values (ft − f⋆)t6T .

Finally (P) is rewritten with linear objective and constraints only as well as an SDP constraint

G � 0. ∣
∣
∣
∣
∣
∣
∣
∣

maximize
F,G�0

〈F, vP 〉+ 〈G,MP 〉

subject to

{
〈F, vI〉+ 〈G,MI〉 6 R2

∀k,
〈

F, v
(k)
F

〉

+
〈

G,M
(k)
F

〉

6 0

Vectors (vP , vI , (v
(k)
F )k) and matrices (MP ,MI , (M

(k)
F )k) are constants depending on the algorithm

A, the class F , and the performance metric P under consideration. More specifically, indices P , I
and F respectively correspond to the performance metric, the initialization constraint and the class

interpolation conditions. The algorithm is directly encoded in the fact that G does not contain inner

product with (xt)t>1. As an example, to express ‖xT − x⋆‖
2 in terms of G, one needs to actually

choose M with 〈G,M〉 = ‖x0 − x⋆ −
∑T−1

s=0 γ
(T )
s ∇f(xs)‖

2.

Key conditions. The above procedure generally works under the following conditions:

• A is a first-order algorithm whose updates (At)t can be expressed linearly in terms of observed

gradients;

• The interpolation constraints of the class of functions F are known and expressible linearly in

F and G;

• The performance metric as well as the initial condition are also expressible linearly in terms of

F and G.

Many pairs of function class and algorithm meet the right conditions and have been studied using

the PEP framework. Tools in Matlab [35] and Python [20] have been implemented to automate this

task and provide worst-case guarantees. Many examples of usages are listed in the corresponding

documentations.

3 From explicit to implicit algorithms

So far, we only considered explicit algorithms of the form (6). Note that, just as for classes of func-

tions, algorithms can be expressed implicitly via sets of (in)equalities. This is the case for line-search

based algorithms. Indeed, the step-size associated with line-search is not uniform over the problem

class, therefore algorithms containing line-search update cannot be written as (6), and therefore do

not meet the key conditions mentioned in the previous section. A relaxation of the gradient descent

with exact line-search has been proposed in [11]. Since this algorithm cannot be written as (6) with

pre-determined γ
(t)
s , we cannot specify (xt)t>1 in terms of x0 and (gt)t6T . Therefore, all vectors

(xt, gt)t6T must be considered as linearly independent. For this problem, G is the Gram matrix of all

(xt, gt)t6T .

Therefore, the algorithm is not totally encoded in vP ,MP , vI ,MI , vF and MF anymore and must

be specified by new constraints. In particular, the updates of gradient descent with line-search verify

that

〈gt+1, gt〉 = 0 (7)

〈gt+1, xt+1 − xt〉 = 0 (8)
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As for all the other elements of (P), those constraints only involve quadratic terms of (xt, gt)t6T

and can therefore be expressed linearly in terms of G, parametrized by the vectors (v
(l)
A )l and matri-

ces (M
(l)
A )l. This time, (P) writes

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

maximize
F,G�0

〈F, vP 〉+ 〈G,MP 〉

subject to







〈F, vI〉+ 〈G,MI〉 6 R2

∀k,
〈

F, v
(k)
F

〉

+
〈

G,M
(k)
F

〉

6 0

∀l,
〈

F, v
(l)
A

〉

+
〈

G,M
(l)
A

〉

6 0

(PEP-primal)

4 Proof structures in first-order optimization

There is an extensive literature on first-order optimization, offering a broad range of possibly advanced

worst-case guarantees and their associated proofs. In the previous sections, we saw conditions under

which the problem of computing worst-case guarantees was tractable. In this section, we detail how

to obtain proofs from PEPs and what we can conclude on the general structure of proofs in first-order

optimization.

4.1 Obtaining proofs with PEPs

Thanks to interpolation conditions and SDP lifting, (P) rewrites as a convex optimization problem. We

consider the dual of the problem. Let’s then introduce the Lagrangian multipliers τ , (λ
(k)
F )k, (λ

(l)
A )l

associated to the constraints of (PEP-primal).
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

maximize
F,G�0

〈F, vP 〉+ 〈G,MP 〉

subject to







〈F, vI〉+ 〈G,MI〉 6 R2 : τ

∀k,
〈

F, v
(k)
F

〉

+
〈

G,M
(k)
F

〉

6 0 : λ
(k)
F

∀l,
〈

F, v
(l)
A

〉

+
〈

G,M
(l)
A

〉

6 0 : λ
(l)
A

The Lagrangian then writes

L , 〈F, vP 〉+ 〈G,MP 〉 − τ
[
〈F, vI〉+ 〈G,MI〉 −R2

]

−
∑

k

λ
(k)
F

[〈

F, v
(k)
F

〉

+
〈

G,M
(k)
F

〉]

−
∑

l

λ
(l)
A

[〈

F, v
(l)
A

〉

+
〈

G,M
(l)
A

〉]

=τR2 +

〈

F, vP − τvI −
∑

k

λ
(k)
F v

(k)
F −

∑

l

λ
(l)
A v

(l)
A

〉

+

〈

G,MP − τMI −
∑

k

λ
(k)
F M

(k)
F −

∑

l

λ
(l)
A M

(l)
A

〉

The dual is obtained by maximizing over the primal variables:
∣
∣
∣
∣
∣
∣
∣
∣

minimize
τ,λ

(k)
F

,λ
(l)
A

>0

τR2

s.t.

{

vP − τvI −
∑

k λ
(k)
F v

(k)
F −

∑

l λ
(l)
A v

(l)
A = 0

MP − τMI −
∑

k λ
(k)
F M

(k)
F −

∑

l λ
(l)
A M

(l)
A � 0

(PEP-dual)
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For any feasible primal F,G and feasible dual τ, (λ
(k)
F )k, (λ

(l)
A )l, we know the objective of the dual is

larger than the Lagrangian value, that is:

〈F, vP 〉+ 〈G,MP 〉
︸ ︷︷ ︸

Performance metric

−τ [〈F, vI〉+ 〈G,MI〉]
︸ ︷︷ ︸

Initialization

6
∑

k

λ
(k)
F

[〈

F, v
(k)
F

〉

+
〈

G,M
(k)
F

〉]

︸ ︷︷ ︸

Class constraint

+
∑

l

λ
(l)
A

[〈

F, v
(l)
A

〉

+
〈

G,M
(l)
A

〉]

︸ ︷︷ ︸

Algorithm constraint

6 0. (Generic proof)

In words, the proof of a worst-case guarantee is obtained by linearly combining all available con-

straints, with coefficients that are the dual variables of the PEP. Indeed, the difference between the

performance metric and τ times the initialisation measure of proximity to the optimizer is decom-

posed as the sum of three terms. The two first ones respectively correspond to the values that are

enforced to be negative by the class of functions and the algorithm. The third one is called the residual

and is the opposite of a sum of squares of iterates and gradients. An example of full derivation of such

a proof is provided in Section 5.

Remark 4.1 (No duality gap) There generally exists a feasible point G,F with G ≻ 0, i.e. verifying

the Slater’s condition (see [32]), therefore guaranteeing strong duality of the convex reformulation

of (P). To ensure this, one needs to carefully remove iterates xt from the basis of G when xt is

completely identified from other vectors. For instance, leaving x1 in the basis of G with the constraint

‖x1 − (x0 − γg0)‖
2 = 0 instead of replacing x1 by x0 − γg0 everywhere, creates an empty interior

and can break strong duality. Each time there is no feasible G with G ≻ 0, we conclude that there

is a linear relationship between elements of the basis G is the Gram matrix of. Therefore, maximally

reducing the dimension of G ensures strong duality.

4.2 Understanding proofs with PEPs

Obtaining dual feasible points provides valuable insights into essential aspects pertaining to both the

class of functions under consideration and the algorithm employed to achieve the associated worst-

case guarantee.

Extension to broader sets of algorithms. [13] exploit these insights to design worst-case opti-

mal algorithms. The authors’ key observation is that (Generic proof) does not rely on all constraints

to hold, but rather only on a linear combination of them. Therefore, if instead of assuming that,

∀l,
〈

F, v
(l)
A

〉

+
〈

G,M
(l)
A

〉

6 0, we can simply assume that
∑

l λ
(l)
A

[〈

F, v
(l)
A

〉

+
〈

G,M
(l)
A

〉]

6 0,

therefore relaxing a lot of assumptions about the algorithm and then generalizing the proof to all the al-

gorithms verifying the remaining assumption. This was applied to the impractical algorithm (GFOM)

described as follow:

∀t, xt+1 = argmin
x∈x0+span{∇f(x0),··· ,∇f(xt)}

f(x), (GFOM)

greedily minimizing the objective value in the affine space of all the observed directions. For some

classes of functions, this algorithm is worst-case optimal. This is the case, for instance, for the class of

quadratic convex functions on which (GFOM) is equivalent to the so-called conjugate gradient method.

This is also the case for the class of L-smooth convex functions, allowing to find a broad range of

worst-case optimal algorithms on this class, including the so-called optimized gradient method (OGM)

[12, 13]. Generating such worst-case optimal algorithms works as follow:
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1. We note that (GFOM) verifies the following orthogonality constraints:

∀t,

{
∀s < t, 〈gt, gs〉 = 0,

∀s 6 t, 〈gt, xs − x0〉 = 0.
(9)

Note that following those constraints does not necessarily imply that (PEP-primal)’s primal

variables optimal values describe (GFOM). Nevertheless, a sufficient condition on the class F
under consideration for that to happen is that F is contraction-preserving (see [13, Definition

3]), which happens to be the case for Fµ,L for example.

2. We call the corresponding dual variables (βt,s)s<t and (γt,s)s6t and collect their optimal values

(β⋆
t,s)s<t and (γ⋆t,s)s6t: it happens that those values can be obtained in closed-form.

3. We group all the constraints as in (9), and conclude that the worst-case guarantee of (GFOM),

as well as the corresponding proof, would hold if

∀t,

〈

gt,

t−1∑

s=0

βt,sgs +

t∑

s=0

γt,s(xs − x0)

〉

6 0. (10)

4. When γt,t 6= 0, we conclude that, in particular, the algorithm described by the iteration

∀t, xt = x0 −
t−1∑

s=0

γt,s
γt,t

(xs − x0) +
βt,s
γt,t

gs (11)

annihilates the vector in the right-hand position of the inner product. Therefore, the worst-case

guarantee of (GFOM) also applies to A, using the exact same proof.

This method has more recently been used in [22, Th.2.4-Cor.2.5] to derive the worst-case optimal

algorithm

xt =
t

t+ 1
xt−1 +

1

t+ 1
x0 −

1

t+ 1

t−1∑

s=0

1

L
gs (HB)

under the class of convex and L-quadratically upper bounded (L-QG+) functions.

Extension to broader classes of functions. Interestingly, (HB) was studied several years ago

in [18] on the class F0,L of L-smooth convex functions, itself included in the class of L-QG+ convex

functions. On the other hand, the obtained guarantee was not better on F0,L than the one obtained on

the class of L-QG+ convex functions. This shows that the guarantee obtained on F0,L can be obtained

using only the interpolation constraints of the class of L-QG+ convex functions, which is a subset of

the set of interpolation constraints of F0,L. In general, for a given class and a given algorithm, when

λ
(k)
F = 0 in (Generic proof), we conclude that the corresponding constraint has not been used. This

allows to discard all the useless constraints and the result naturally holds on a larger class of functions.

Fewer class constraints allows new algorithms. Most of the time, we study a family of classes

of functions, parametrized by some value L. A classical example of this is the class of L-smooth

convex functions F0,L. The underlying interpolation constraints
〈

F, v
(k)
F (L)

〉

+
〈

G,M
(k)
F (L)

〉

6 0

then depend on L. We generally derive and study an algorithm on F0,L, and obtain a guarantee that

holds for any L such that 〈F, vP (L)〉 + 〈G,MP (L)〉 − τ(L) [〈F, vI(L)〉+ 〈G,MI(L)〉] 6 0. The

underlying algorithm can (and usually does) therefore depend on this value that is sometimes hard to

access in practice. Using line-search steps is a way to get rid of the dependence on L (there exists for

instance line-search version of OGM and (HB) that do not involve L), but an exact line-search step

is often not available neither. On the other hand, backtracking line-search have been proposed [1] to
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replace the class parameter L by any surrogate value L̂ that validates all the inequalities that are used.

Indeed, we know that for any L,

〈F, vP (L)〉+ 〈G,MP (L)〉
︸ ︷︷ ︸

Performance metric

−τ(L) [〈F, vI(L)〉+ 〈G,MI(L)〉]
︸ ︷︷ ︸

Initialization

6
∑

j

λ(j)
[〈

F, v(j)(L)
〉

+
〈

G,M (j)(L)
〉]

︸ ︷︷ ︸

Constraint

6 0 (12)

Therefore, even if we do not have access to L, being able to find some L̂ in an online manner such

that all the surrogate constraints
〈

F, v
(k)
F (L̂)

〉

+
〈

G,M
(k)
F (L̂)

〉

6 0 hold, allows tuning the algorithm

online with this L̂ and obtain the guarantee

〈

F, vP (L̂)
〉

+
〈

G,MP (L̂)
〉

− τ(L̂)
[〈

F, vI(L̂)
〉

+
〈

G,MI(L̂)
〉]

6 0.

We would like to apply bisection search to find such L̂, and all we need for that is being able to verify

the constraints
〈

F, v
(k)
F (L̂)

〉

+
〈

G,M
(k)
F (L̂)

〉

6 0 online. Note however that some constraints may

involve the optimizer x⋆ or the minimal value f⋆ and are then not verifiable. The authors of [16,

Remark 4.9] and [27] discuss this issue. They note that we only need to verify constraint that actually

involve L and that the ones that are problematic are the ones that involve both L and an unknown

value. They conclude that, if the dual values associated with these problematic constraints are set to

0, they are not used, and then we can proceed to backtracking line-search. They also enforce it by

removing those inequalities (or lowering them) and searching for methods that holds on this larger

class of functions (verifying less inequalities) in order to be able to apply backtracking line-search to

get rid of the requirement of knowledge of the parameter class.

5 Example: gradient descent with exact line-search

For sake of better comprehension of the formal reasoning made in Sections 2.2, 3 and 4, we detail in

this section the development of a proof of convergence guarantee of the form (Generic proof) on an

example: the gradient descent method with exact line-search, defined as

∀t ∈ J1, T K, xt = argmin
x∈xt−1+span{∇f(xt−1)}

f(x). (GDLS)

More precisely, we chose to consider the function value as performance metric, and therefore seek for

a guarantee of the form

f(x1)− f⋆ 6 τ(f0 − f⋆), (13)

with an appropriate τ . Note this problem has been solved in [11, Theorem 1.2]. Here we detail how

to find such a guarantee and its proof in a very systematic way, relying on the framework presented in

the present tutorial.

The problem can therefore be summarized as follow:

• The objective function belongs to the class Fµ,L of L-smooth µ-strongly-convex functions, i.e.

verifies the interpolation constraints (IC),

• We have access to the oracle Of (x) verifying:

– Of (x) ∈ x+ span {∇f(x)},

9



–
〈
∇f

(
Of (x)

)
,∇f(x)

〉
= 0,

• The algorithm A iteratively computes the update xt = At((xs,O
f (xs))s<t) , Of (xt−1),

• We study exactly one step of this algorithm. That is, we want a guarantee on x1 given x0.

• The performance metric that we use is the function value f(x1)− f⋆.

• The neighborhood N (x⋆) we assume x0 belongs to is also define by the function value as
{
x | f(x)− f⋆ 6 R2

}
for some positive R.

In summary, the problem (P) writes

∣
∣
∣
∣
∣
∣
∣
∣
∣

maximize
f∈Fµ,L,d>1

(x⋆,x0,x1)∈(Rd)
3

f(x1)− f⋆

subject to

{
f(x0)− f⋆ 6 R2

(xt)t61 = GDLS(f, T = 1, x0)

(14)

GDLS’s update is defined through an optimization problem. Implementing it into the PEP frame-

work is not straightforward. Instead, we replace the strict definition of the update by first order opti-

mality conditions of the line search procedure:

〈∇f(x1),∇f(x0)〉= 0,

〈∇f(x1), x1 − x0〉= 0.

Note the second one is verified because x1−x0 is colinear with g0 and therefore those 2 conditions

seem redundant. However, removing the proper definition of (GDLS) makes x1 − x0 and g0 non-

necessarily colinear anymore, and the two orthogonality conditions are complementary.

Note furthermore that, replacing the actual definition of (GDLS) by some conditions the latter

verifies leads to a guarantee that holds over all the algorithms that verify those conditions. This is

therefore possibly a relaxation, but the result still holds. Moreover, in this special case, and because

we used the two orthogonality conditions and not just one, replacing the definition of (GDLS) by

those conditions is tight. This technical assertion is based on the fact the class Fµ,L is contraction-

preserving. This reasoning is detailed in [13].

Expressing the constraints of the algorithm and the class, we obtain

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

maximize
d>1,(x⋆,x0,x1))∈(Rd)

3
,

(g0,g1)∈(Rd)
2
, (f⋆,f0,f1)∈R3

f(x1)− f⋆

s.t.







f(x0)− f⋆ 6 R2

〈∇f(x1),∇f(x0)〉 = 0,
〈∇f(x1), x1 − x0〉 = 0.
∀i, j, fi > fj + 〈gj , xi − xj〉+

1
2L‖gi − gj‖2

+ µ
2(1−µ/L)‖xi −

1
Lgi − xj +

1
Lgj‖

2.

Using SDP lifting, we can formulate this problem as a semi-definite program of the form (PEP-primal)

using the variables

F = (f⋆, f0, f1)
⊤

G = (x⋆, x0, g0, x1, g1)
⊤(x⋆, x0, g0, x1, g1).
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We therefore set the parameters of (Generic proof) to the following values:

vP = (−1, 0, 1)⊤, MP = 05,

vI = (−1, 1, 0)⊤, MI = 05,

v
(⋆,0)
F

=





−1
1
0



 , M
(⋆,0)
F

=
1

2(1 − κ)













µ −µ 1 0 0
−µ µ −1 0 0
1 −1 1

L
0 0

0 0 0 0 0
0 0 0 0 0













,

v
(⋆,1)
F

=





−1
0
1



 , M
(⋆,1)
F

=
1

2(1 − κ)













µ 0 0 −µ 1
0 0 0 0 0
0 0 0 0 0
−µ 0 0 µ −1
1 0 0 −1 1

L













,

v
(0,⋆)
F

=





1
−1
0



 , M
(0,⋆)
F

=
1

2(1 − κ)













µ −µ κ 0 0
−µ µ −κ 0 0
κ −κ 1

L
0 0

0 0 0 0 0
0 0 0 0 0













,

v
(0,1)
F

=





0
−1
1



 , M
(0,1)
F

=
1

2(1− κ)













0 0 0 0 0
0 µ −κ −µ 1
0 −κ 1

L
κ − 1

L
0 −µ κ µ −1
0 1 − 1

L
−1 1

L













,

v
(1,⋆)
F

=





1
0
−1



 , M
(1,⋆)
F

=
1

2(1 − κ)













µ 0 0 −µ κ
0 0 0 0 0
0 0 0 0 0
−µ 0 0 µ −κ
κ 0 0 −κ 1

L













,

v
(1,0)
F

=





0
1
−1



 , M
(1,0)
F

=
1

2(1− κ)













0 0 0 0 0
0 µ −1 −µ κ
0 −1 1

L
1 − 1

L
0 −µ 1 µ −κ
0 κ − 1

L
−κ 1

L













,

v
(1)
A

=





0
0
0



 , M
(1)
A

=
1

2











0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0











,

v
(2)
A

=





0
0
0



 , M
(2)
A

=
1

2











0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 1
0 −1 0 1 0











.

Solving this SDP, we find the rate τ =
(
L−µ
L+µ

)2
.

Moreover, the corresponding dual values are

λ⋆,0
F = 2µ(L−µ)

(L+µ)2 , λ⋆,1
F = 2µ

L+µ ,

λ0,⋆
F = 0, λ0,1

F = L−µ
L+µ ,

λ1,⋆
F = 0, λ1,0

F = 0,

λ1
A = 2

L+µ , λ2
A = 1.

11



Plugging those values in (Generic proof) builds a proof of convergence of (GDLS) with the guar-

antee f(x1)− f⋆ 6
(
L−µ
L+µ

)2
(f0 − f⋆).

f(x1)− f⋆ −

(
L− µ

L+ µ

)2

(f(x0)− f⋆)

6

2µ(L−µ)
(L+µ)2

(

f(x0)− f⋆ + 〈∇f(x0), x⋆ − x0〉+
1
2L‖∇f(x0)‖

2 + µ
2(1−µ/L)‖x⋆ − x0 +

1
L∇f(x0)‖

2

)

+ 2µ
L+µ

(

f(x1)− f⋆ + 〈∇f(x1), x⋆ − x1〉+
1
2L‖∇f(x1)‖

2 + µ
2(1−µ/L)‖x⋆ − x1 +

1
L∇f(x1)‖

2

)

+L−µ
L+µ

(

f(x1)− f(x0) + 〈∇f(x1), x0 − x1〉+
1
2L‖∇f(x0)−∇f(x1)‖

2 + µ
2(1−µ/L)‖x0 −

1
L∇f(x0)− x1 +

1
L∇f(x1)‖

2

)

+ 2
L+µ 〈∇f(x1),∇f(x0)〉

+ 〈∇f(x1), x1 − x0〉

6 0.

The first inequality holds independently on the chosen class. It simply results from terms rearrange-

ment. By subtracting the LHS from the RHS, one would find a semi-definite positive quadratic form

of the variables x0, x1,∇f(x0) and ∇f(x1). The second inequality precisely uses the (in)equalities

that are specific to the chosen class and algorithm. Note that the two algorithm constraints can be

replaced by the sole constraint
〈

∇f(x1), x1 − x0 +
2

L+µ∇f(x0)
〉

= 0, immediately showing that

this guarantee also holds on the gradient descent method with fixed steps-size 2
L+µ .

6 Lyapunov with PEPs

We saw in Section 4.1 that worst-case proofs essentially writes as (Generic proof):

〈F, vP 〉+ 〈G,MP 〉
︸ ︷︷ ︸

Performance metric

−τ [〈F, vI〉+ 〈G,MI〉]
︸ ︷︷ ︸

Initialization

6
∑

j

λ(j)
[〈

F, v(j)
〉

+
〈

G,M (j)
〉]

︸ ︷︷ ︸

Constraint

6 0. (15)

Namely, the right linear combination of the available constraints upper bounds the difference be-

tween the performance metric and τ times the initial value. Sometimes those proofs can be relatively

complicated and a simpler one can be desirable. In particular, this is the case when the algorithm under

consideration is run for a few iterations. Lyapunov analyses typically allows reducing the worst-case

analyses of T iterations to that of a single iteration, and therefore reducing the complexity of the proof.

For example, for (NAG), described as follow

λt+1 =
1
2 +

√
1
4 + λ2

t

yt = xt +
λt−1
λt+1

(xt − xt−1),

xt+1 = yt −
1
L∇f(yt).

(NAG)

on F0,L, we often use the sequence

Vt = λ2
t (ft − f⋆) +

L

2
‖λt(xt − x⋆) + (1− λt)(xt−1 − x⋆)‖

2 (16)

providing a worst-case convergence guarantee f(xT ) − f⋆ = O(1/T 2). In general, a direct way to

find such a sequence is to consider
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Vt =[〈F, vI〉+ 〈G,MI〉]
︸ ︷︷ ︸

Initialization

+
∑

j | only involves

values observed
before step t

λ(j)
[〈

F, v(j)
〉

+
〈

G,M (j)
〉]

︸ ︷︷ ︸

Constraint

. (17)

Applying this method on (NAG) provides the sequence of complete potential functions

Vt = λ2
t (ft − f⋆) +

L

2
‖λt(xt − x⋆) + (1− λt)(xt−1 − x⋆)‖

2

+
1

2L

t−1∑

s=1

[λ2
s+1‖∇f(xs+1)‖

2 + λs+1‖∇f(ys)‖

+ λ2
s‖∇f(ys)−∇f(xs)‖

2]

that allows for free (using the same inequalities as for proving that (16) is decreasing) to also conclude

that mint6T ‖∇f(xt)‖
2 = O(1/T 3), as shown in [25, Theorem 5.2.d] and experimentally evidenced

using PEPs in [36, Table 4].

Note that the cumulatively summed up constraints involve both class constraints and algorithm

constraints. Therefore, this technique can be applied directly on (GFOM) while looking for an optimal

algorithm, its rate, the corresponding proof and a sequence of potential functions at the same time.

7 Conclusion

Summary not only is the performance estimation problem (PEP) framework a powerful tool to auto-

mate the search of guarantees, but also it allows exhibiting general structure of proofs. Understanding

this structure enables to generalize results onto larger class of functions or onto a class of methods, but

also to find new optimization methods and study their convergence properties. Finally, it also enables

to understand how to build a Lyapunov sequence of functions.

Open research directions all this framework relies on two major assumptions: the class constraints

are known and homogeneous in ‖x‖2 and ‖∇f(x)‖2 and f , and the method’s update is a linear com-

bination of previous iterates and observed oracle calls. Therefore, two interesting questions arise: can

we automate the search of the interpolation conditions? And, how can we generalize this framework

to non homogeneous class of functions or to non linear methods such as adaptive step-size based

methods? A few works already investigate this direction for some specific methods. In particular, [3]

studies a variant of the Heavy-ball method [29] using Polyak step-sizes, also discussed in [2, Chapter

4]. On the other hand, [24] uses PEP techniques to provide worst-case guarantees on several variants

of non-linear conjugate gradient methods.
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