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Context: GLS hydrogenation
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for the production of fine chemicals, pharmaceuticals, flavors and 
fragrances, the conversion of biomass and the processing of raw food

But several issues:
- fast reactions, thus prone to mass transfer limitations
- highly exothermic reactions (ΔHR ≈ -100130 kJ/mol=), resulting in

possible thermal hazards
- selectivity constraints, due to consecutive reaction scheme

and parallel side reactions (e.g. cis-trans isomerization)
ex. in food industry: C18:3  C18:2  C18:1  C18:0

- need for efficient & sustainable catalysts

Significant class of reactions:

selectivity highly sensible to catalyst type, T & pH2, 
but also hydrodynamics & mass transfer limitations



Motivation
Drawbacks of conventional three-phase reactors:

Fixed bed reactor Slurry reactor

- Liquid maldistribution (TBR)
- Partial catalyst wetting (TBR)
- Prone to hot spots and runaway (TBR)
- High resistances to mass transfer
- Limits of use for viscous/foaming fluids
- Plugging, high P for small beads

- Uneasy catalyst separation, attrition
- Low S & high mixing

*     Reduced productivity 
* Reduced selectivity (promotion of

homogeneous side reactions & lower
intermediate yields)
- High energy costs (mechanical stirring)
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Development of an innovative reactor for three-phase 
catalytic hydrogenation: HYDROMoRe project (ANR CD2I 2012) 3



Proposed solution

Expected features:
- Low P
- Low diffusional limitations (thin catalytic layer)
- Good G-L & L-S mass transfer (Taylor Flow)
- Plug flow in channels (TF,  productivity & selectivity)
- Fast draining in case of runaway
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+ Efficient temperature control (quasi-isothermal)
Heat-exchanger Monolith Reactor 

washcoat
Kreutzer et coll., 2006

Innovative reactor inspired from monolith technology

Kreutzer et coll., 2006
& US Patents, 1990s

Ceramic monolith with external cooling

& equipped with in situ heat removal system

Catalytic channel walls:
heat conductive scaffold

catalytic channel

cooling channel



Technological issues

• Conception of such a reactor with millimeter size
channels and metal scaffold?

• Catalytic layer adherence, activity & stability?

• Reactor design for efficient heat exchange?

• Suitable flow regime?

Monolith type reactor
equipped with in situ heat removal system   
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 Simulation of thermal behavior  

 Manufacture by selective laser melting (Al alloy) 

 Design of suitable GL distributor
& Experimental characterization of 
individual channel hydrodynamics 
(cold mock-up) 
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 Development of synthesis method & exhaustive characterizations



Methodology

Twall
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Catalytic objects & reactor tools
• Efficient heat removal

• Is it enough?

 Single channel as relevant scale for the proof of concept

 Overall monolith performance strongly linked to the catalyst activity/selectivity 
& the hydrodynamic / mass transfer behavior of individual channels   

 Need for a model that could discriminate involved phenomena
 Intrinsic catalyst performance to be evaluated separately 

Stirred batch reactor

 2 mm
L 20 cm

with coated platelets

with coated jacketed tubes

with catalytic powder

Continuous reactor

 more representative of monolith washcoat
 need to be recycled for kinetic study
(deactivation?)
 more difficult to characterize (M content)

 homogenous lot, can be extensively characterized
 size and amount easily modified for kinetic regime
 same activity as washcoat?
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Global overview of the coating process

AlOOH nanoparticlesAlOOH sol Mesoporous alumina

500°C

 Synthesis of colloidal dispersions (sols) of oxide nanoparticles in water

 Surface area and porosity are tuned through the addition of templating agents

 Sol deposition on the reactor walls (controlled filling and draining of the channel)

 Thermal treatment

 Impregnation with active metal precursor

Specific surface area : 300-500 m2 g-1

Average pore size : 5-40 nm
Pore volume : 0.3 - 2.6 cm3 g-1
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Impregnation with active metal precursor

1 - Selective impregnation of Pd precursor on support (alumina)

 Pd acetylacetonate (Pd-acac) in toluene

 (NH4)2PdCl4 in water

2 - Drying overnight at 70°C

3 - Activation by thermal treatment in H2 for 30 min at 250°C

J.P. Boitiaux and J. Cosyns and S. Vasudevan, Studies in Surface Science and Catalysis, 16 (1983) 123.
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Characterization of catalyst xerogel : 
propene hydrogenation

C3H6 +  H2 ↔   C3H8 ΔH = -124 kJ/mol
Conditions :
• Gas phase, P ≈ 1 atm
• Composition: 1% C3H6 + 1.5% H2 in Ar
• Flow rate: 100 mL/min, temperature: ≈ 20°C
• Mass of catalyst = 10 mg mixed with 90 mg of alumina
• Analysis of outlet gas by mass spectrometry

Parameters :
• Active metal (Pd, Pt, Ru)
• Catalyst support (alumina vs. TiO2)
• Addition of Pd (direct addition in sol vs. impregnation)
• Pd precursor : (NH4)2PdCl4, Pd-acac in acetone, Pd-acac in toluene
• Thermal treatment temperature for decomposition (none to 300°C)
• Thermal treatment atmosphere for decomposition (Ar, O2, H2)

Results :
• Activity of catalysts prepared by impregnation >> direct addition in sol
• Toluene is a better solvent for Pd-acac than acetone
• Pd-acac gives more active alumina supported catalysts than (NH4)2PdCl4
• With Pd-acac precursor TiO2 and alumina are equivalent
• Best thermal decomposition conditions = H2 at 250°C

C3H6 + H2 + Ar

MS 
analyzer

Thermocouple
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Characterization of catalyst xerogel : SSA, XRD

Xerogel SBET
(m2/g)

Vpore
(mL/g)

Alumina 320 ± 20 1.2 ± 0.1

1%Pd/alumina 
from Pd-acac

320 ± 20 1.2 ± 0.1

1%Pd/alumina from 
(NH4)2PdCl4

310 ± 20 1.2 ± 0.1

SBET and Vpore are determined from 
adsorption isotherms of N2 at 77.4 K

Negligible effect of impregnation on texture

Crystallite size of Pd < 5 nm
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Characterization of catalyst xerogel : TEM

Catalyst : 1%Pd/alumina (from Pd-acac) 

activated in H2 for 30 min at 250°C

Microscope JEM-ARM200F Cold FEG

TEM : bright field image STEM : dark field images
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Characterization of catalyst xerogel : TEM

Catalyst : 1%Pd/alumina (from (NH4)2PdCl4) activated in H2 for 30 min at 250°C

Microscope JEM-2100F

EDX analysis

gives 1%Pd

EDX analysis

gives 1.7%Pd
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Characterization of coatings: SEM

Determination of uniformity and thickness of the coating

1 - Filling the tube with epoxy resin

2 - Inspection by SEM of cross sections
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Characterization of coatings: m/S, SSA

Substrat Coated mass 
(mg)

Measured
Surface (m2)

Specific
Surface Area 

(m2/g)
AL3003 platelet 4 1.2 300
¼ AlSi10Mg monotube (SLM) 4 1.1 280

Surface area was determined from adsorption isotherms of Kr at 77.4 K

Coated amount of alumina (m/S) was evaluated by weighting

Substrate Coated mass 
(mg)

m/S 
(g/m2)

Al3003 platelets 3.6 ± 0.3 2.6 ± 0.2

AlSi10Mg platelets (SLM) 9.1 ± 0.3 3.8 ± 0.1

AlSi10Mg monotubes (SLM) 17 ± 5 14 ± 4

The coatings are well anchored, no loss was observed after adhesion tests 
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Characterization of coatings: SEM, EDS

EDS analyses done on SLM platelets after catalytic hydrogenation of α-pinene
- Check if the coating was damaged by the catalytic test
- Element analysis of Pd and S 

EDS analysis S (wt.%) Pd (wt.%)
Plate #1 0.33 ± 0.01 1.2 ± 0.3
Plate #2 0.0 1.6 ± 0.1
Plate #3 0.0 1.6 ± 0.3



Application to 3 system
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-pinene hydrogenation:

cis/trans selectivity reduced by an 
increase in temperature, but favored 
by increasing hydrogen pressure up to 
10 bar (negligible effect beyond)

Typical operating conditions:
pH2 = 1-100 bar, T = 50-200°C,
pure or diluted pinene (P),
Ni or noble metal catalyst

Kinetic investigation:
Stirred autoclave reactors (100 & 250 mL)
with gas ballast & addition funnel

• Controlled atmosphere (pH2) and T
• Gas auto-dispersing stirrer (1200 rpm) 
• Continuous recording of H2 consumption (R0,H2) 
+ GC/FID analysis of L samples (product speciation)

Catalytic platelet
(5-20 mg of coating)
or powder (5-50 mg)

[Il’ina et coll., 2002; Simakova et coll., 2009; Wang et coll., 2015]



Application to 3 system
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Tests after distillation of raw pinene
(powder): 
 Significant improvement of catalyst
stability after batch multi-stage distillation
of pinene (100 mbar)
 Reproducible tests (---)
 Deactivation by pinene oxidation
products?

 Deactivation during the reaction or
under recycling (---)
 Sulfur compounds and water traces
initially suspected,
but S content < 0.4 ppm  pretreatment
of pinene, and molecular sieve not
effective

Preliminary tests (catalytic platelets):
Deactivation issue
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Pinene hydrogenation
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Modelling of intrinsic hydrogenation rate: 

Kinetic study (with powder):
 Experimental verification of kinetic regime
(G-L mass transfer & internal diffusion)

 Experimental database: T = 100-160°C, pH2 = 10-30 bar, CP = 1.5-6 mol/L,
50 mL liquid, 25 mg cata (d43 = 30 µm)  18 experiments
 Parameter study: “apparent” EA & react° orders in accordance with literature values
 Reaction selectivity: < 5% of -pinene, cis-pinane selectivity: 60-70%
Evolution with T & pH2 in accordance with literature trends

 Model discrimination & parameter estimation 
based on R0,H2 then complete kinetic curves

 Selected model:
2ܪܴ =

ܲܭுమܭ݇ ுܲమܲܥ
(1 + ுమܭ ுܲమ + ଷ(ܲܥ௉ܭ

(dissociative adsorption of H2, 
surface reaction as rate-determining step)

140°C, 20 bar

R2 = 0.994
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Capillary reactor modelling

Similar behavior of CFD & 1D models
with adequate mass transfer coefficients

Plug flow model describing external mass 
transfer resistances
 can easily account for the effect of H2
consumption

BUBBLE

RB
dcfࡸࡳ

ࡿࡳࡿࡸ

1D heterogeneous model:CFD model:

Individual mass transfer coefficients in agreement with 
literature, except kLS for pinene
(resistance underestimated by tested correlations)

Complex interplay in between mass transfer, 
local hydrodynamics & catalytic reaction

163°C, 21 bar
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-n·Nj = -rs,j
(per deposit surf unit) 

• Transient calculation
• No limitation by internal diffusion 

(ewc 10 µm)
• Isothermal cell
• Constant bubble shape & G
• 1-phase or 2-phase calculations
( relevant bubble shape)
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Comparison to reactor data 
& open questions

 Too optimistic predictions 
vs. measured conversion

 Possible hypotheses:
• Taylor regime? (initial high G? effect of wall roughness?)
• Overestimated kLa value? (geometry effect, arbitrary LUC)

• Impact of catalyst deactivation? 
• Different activity of washcoat & powder?

163°C, 21 bar

Any suggestions?

Rem: cis-pinane selectivity= 35-70%
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