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Abstract

Surrogate models are built to produce computationally efficient versions of time-
complex simulation-based objective functions so as to address expensive opti-
mization. In surrogate-assisted evolutionary computations, the surrogate model
evaluates and/or filters candidate solutions produced by evolutionary operators.
In surrogate-driven optimization, the surrogate is used to define the objective
function of an auxiliary optimization problem whose resolution generates new
candidates. In this paper, hybridization of these two types of acquisition pro-
cesses is investigated with a focus on robustness with respect to the compu-
tational budget and parallel scalability. A new hybrid method based on the
successive use of acquisition processes during the search outperforms competing
approaches regarding these two aspects on the Covid-19 contact mitigation prob-
lem. To further improve the generalization to larger ranges of search landscapes,
another new hybrid method based on the dispersion metric is proposed. The
integration of landscape analysis tools in surrogate-based optimization seems
promising according to the numerical results reported on the CEC2015 test
suite.
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1. Introduction

To solve black-box expensive optimization problems where the objective
function is computationally costly to evaluate, Parallel Surrogate-Based Op-
timization Algorithms (P-SBOAs) [1] are built by leveraging parallel computing
and machine learning. Machine learning [2] is employed to create surrogate mod-
els that provide computationally cheap predictions of the expensive objective
function. Parallel computing allows to perform multiple expensive evaluations
simultaneously. Two categories of P-SBOAs arise: Parallel Surrogate-Assisted
Evolutionary Algorithms (P-SAEAs) [3] and Parallel Surrogate-Driven Algo-
rithms (P-SDAs), also called Bayesian Optimization [4]. Both families of al-
gorithms differ by their Acquisition Process (AP), the mechanism in charge of
suggesting new promising candidate solutions. The AP from P-SDAs consists of
optimizing an infill criterion that relies on the surrogate model and defines the
promisingness of new candidate solutions [5]. The AP from P-SAEAs consists
of utilizing the evolutionary operators to produce new solutions that are filtered
out or predicted by the surrogate model to only retain the most promising ones
and to save computational budget [6].

Computational expensiveness
In a previous study, we observed that P-SAEAs are generally recommended

in the context of moderately expensive problems and that P-SDAs are usually
preferred to deal with very expensive problems [7]. Very expensive problems
are characterized by a computational budget limited to few hundred of expen-
sive evaluations [8] while several ten thousand evaluations are affordable in the
context of cheap problems [9]. Moderately expensive problems come in between
with budgets amounting to few thousand expensive evaluations. The bounds to
define each categories of problem’s expensiveness are not clearly identified and
may depend on the surrogate type and the search landscape. In case of moder-
ately expensive problems, the archive of exactly evaluated solutions may grow
significantly enough for the surrogate training to become non-negligible [10]. In
this situation, it is not convenient to express the computational budget only as
a limited number of objective function evaluations as it is commonly done in the
field of surrogate-based optimization [8, 11, 12]. In this paper, we investigate
the two following questions: What are the bounds (in terms of computational
budget and objective function computational expensiveness) allowing to distin-
guish between moderately and very expensive problems? How can the surrogate
model training costs be included into the computational budget?

COVID-19 contact mitigation problem
The P-SBOAs can be leveraged to address a large range of real-world prob-

lems from aerospace design [13] to public health [14]. At the onset of the
COVID-19 pandemic, it was of primary importance to question and study the
strategies for contact mitigation to alleviate the detrimental effects of the dis-
ease on the populations [15]. For this purpose, numerical tools were designed
to simulate the propagation and impact of the SARS-COV-2 which therefore
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made it possible to formulate black-box simulation-based optimization problems
to identify the best possible decisions [16]. In this study, the real-world problem
taken into consideration consists of finding the best per-age contact reduction
plan to reduce mortality due to COVID-19 in Spain while attaining simulated
herd immunity.

Hybrid P-SBOAs
A hybrid AP proposed in [17] suggests to both optimize an infill criterion

(similarly to P-SDAs) and invoke reproduction operators (similarly to evolu-
tionary algorithms). This parallel hybrid approach, called Surrogate Model
Based Optimization Evolutionary Algorithm (SMBOEA), demonstrates a su-
periority compared to state-of-the-art P-SDAs for a number of computing cores
ncores < 10. However, it shows a serious limitation regarding parallel scalability
as it performs similarly to a surrogate-free parallel evolutionary algorithm for
ncores ⩾ 10. Relying on numerous cores may not be beneficial to P-SBOAs as it
is difficult to locate numerous promising solutions during one iteration because
of the challenge of balancing exploration and exploitation [4]. Indeed, evaluat-
ing uninteresting candidates with the expensive objective function would waste
the computational budget. How to hybridize P-SDAs and P-SAEAs to achieve
robustness with respect to the computational budget? How to benefit from a
large number of computing cores? These two questions are also addressed in
this study.

The contributions reported in this article can be summarized as follows:

• Concerning the categories of optimization problem’s expensiveness. We
approximate the threshold, in terms of computational budget, that al-
lows to distinguish between very and moderately expensive problems by
running a computationally intensive grid search over the design space of
P-SAEAs and P-SDAs. In order to take the surrogate training into ac-
count in the computational budget, a fixed wall-clock time in a capped
number of computing units is set to run the optimization exercise.

• The computationally expensive COVID-19 contact mitigation problem is
solved by P-SBOAs. A promising solution is pinpointed and a landscape
analysis is conducted to shine a light on the landscape features hidden by
the black-box objective function.

• We design hybrid P-SBOAs that retain the best of both P-SDAs and P-
SAEAs to achieve robustness with respect to the computational budget. In
particular, the HSAP strategy (Hybrid Successive Acquisition Processes)
yields the best resolution of the COVID-19-related problem and demon-
strates a reliable parallel scalability by efficiently leveraging up to 144
computing cores.

• As a first step towards landscape analysis-driven hybrid algorithms, we
introduce DDHAP (Dispersion-Driven Hybrid Acquisition Process). The
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landscape analysis dispersion metric is analyzed to drive the selection of
APs to be used during the search. This method demonstrates auspicious
performances on a broad range of optimization problems featuring various
landscape shapes.

A summary of the paper is given in Appendix A. Section 2 provides a back-
ground to the field of surrogate-based optimization by introducing surrogate
models, APs and Promisingness Criteria (PC). The COVID-19 contact reduc-
tion problem and artificial benchmark problems are presented in Section 3. In
Section 4, an intensive numerical grid search is conducted on the design space
of P-SDAs and P-SAEAs. Section 5 focuses on solving of the COVID-19-related
problem via hybrid methods such as HSAP. The generalization of hybrid meth-
ods to a larger range of problems is tackled in Section 6 by the specification
of DDHAP. Finally, conclusions and directions for future works are outlined in
Section 7.

2. Background on surrogate-based optimization

In this paper, we consider the minimization problem of locating x∗ such that

x∗ = argmin
x∈Ω

f(x) (1)

where the objective function f : Ω ⊂ RD → R is a computationally expensive
function. In order to deal with this type of problems, a surrogate model f̂
is built to predict f in a computationally cheap way. In this paper, we term
the evaluation of f expensive evaluation while the evaluation of f̂ is called
prediction. The value returned by f at a given point x is called an ”expensive
objective value” while the one returned by f̂ is a ”predicted objective value”.
A point x lying in the search space Ω is referred to as ”solution”, ”candidate”
or ”candidate solution” indistinctly.

2.1. Surrogate models

The surrogate model is based on a machine learning algorithm for interpo-
lation or regression in order to imitate the expensive objective function. Five
surrogate models are considered in this study because of their popularity in the
field of surrogate-based optimization. They are briefly described hereafter.

Gaussian Processes are very appreciated surrogate models as they provide a
reliable uncertainty information around their prediction [18, 19, 20]. The general
idea of a Gaussian Process with Radial Basis Function kernel (GP RBF) is to
model the influence of one point (x, f(x)) on the prediction at another point x′

by the kernel function defined by:

kRBF (x,x
′) = σ exp

(
−||x− x′||2

2s2

)
(2)
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where σ and s are hyper-parameters. With this kernel, the influence of (x, f(x))
on the prediction at x′ increases as the distance between x and x′ decreases.
By considering the training targets as random variables:Y (x(1))

...
Y (x(n))

 ∼ N

µ1

...
µn

 , Σ

 (3)

and by applying the Bayes theorem, we can derive the prediction f̂(x′) and the

standard deviation ŝ(x′) around f̂(x′). The operation of training a GP is cubic
in the number of training samples. More thorough details about GPs are given
in [10, 2].

The interpolation Ordinary Kriging model (iKRG) is a particular case of GP
[10]. It is assumed that an observation y = f(x) is the realization of a random
variable Y (x) ∼ N (µ, σ2). The kernel function is given by:

kiKRG(x,x
′) = exp

(
−

D∑
i=1

ηi|xi − x′
i|pi

)
(4)

When x and x′ move away from each other, their difference tends to infinity and
their correlation tends to 0. Building the Ordinary Kriging model consists in
estimating µ, σ2 and the hyper-parameters η and p via likelihood maximization
[21, 5]. The training of iKRG is more computationally expensive than that of
GP RBF because of the larger number of hyper-parameters (η and p).

The regression Ordinary Kriging model (rKRG) is obtained by adding a
regularization term λ · I to the covariance matrix Σ:

Σ = K + λ · I (5)

where Ki,j = kiKRG(x
(i),x(j)). This new term λ · I is treated as a hyper-

parameter.

The Bayesian Linear Regressor with Artificial Neural Network as basis func-
tions (ANN BLR) [22] allows to reduce the computational cost entailed to build
the surrogate while still providing uncertainty information around the predic-
tion. It is defined as a linear combination of mb non-linear functions ϕj of the
input vector x:

f̂(x;w) =

mb∑
j=1

wjϕj(x) = wTϕ(x) (6)

where w are the parameters to be learned. In this particular case of linear
model, the basis functions ϕj are given by the last hidden layer of an Artificial
Neural Network [23]. The Bayesian training allows to derive uncertainty infor-
mation around the prediction. The computational cost of building ANN BLR is
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linear in the number of training data but cubic in the number of basis functions.

The Bayesian Neural Network approximated by Monte-Carlo Dropout (BNN MCD)
[24] further lowers the computational load of surrogate building while yielding a
strong predictive capacity. The main principle behind BNN MCD is to sample
nsub sub-networks f̂i from a global Artificial Neural Network and to use the
nsub predictions to compute an average prediction and a standard deviation:

f̂(x′) =
1

nsub

nsub∑
i=1

f̂i(x
′) ŝ(x′) =

√√√√ 1

nsub

nsub∑
i=1

(f̂i(x
′)− f̂(x′))2 (7)

The sub-networks are sampled by randomly deactivating neurons in the global
network, thus approximating a Bayesian training. The operation of training a
BNN MCD is linear in the number of training samples, however, the uncertainty
information is less reliable than the one provided by GPs and Kriging models.

2.2. Acquisition processes

The two categories of P-SBOAs, namely P-SAEAs and P-SDAs, differ by
the coupling between the surrogate model and the optimizer [7].

In P-SAEAs, the surrogate is attached to the evolutionary algorithm by
means of an Evolution Control that defines the promisingness of new candidate
solutions [3]. The evolutionary algorithm carries out the search by evolving
a population of candidates through the stages of selection, reproduction and
replacement. The surrogate is introduced at one or multiple stages, also pos-
sibly at the initialization of the population, to replace the expensive objective
function.

In this study, we use a Genetic Algorithm (GA) as the algorithm leading the
search and three APs are considered depending on the role played by the sur-
rogate. Figure 1 depicts the Parallel Surrogate-Assisted GA (P-SAGA) frame-
work. The algorithm begins by initializing a population and an archive with
parallel expensive evaluations of solutions sampled through Latin Hypercube
Sampling (steps 1 and 2 in Figure 1). The surrogate is initialized based on
this archive. The population is then evolved by an iterative process stopping
when the computational budget is exhausted. During one iteration, solutions
are selected from the population and recombined via reproduction (step 3) to
generate a set of new candidates (step 4). According to the Evolution Control
(step 5), the ndisc less promising new candidates are discarded and the q most
promising ones go through parallel expensive evaluations (step 6). The archive
is enriched with the newly expensive evaluations and the surrogate is updated
(step 7). The npred remaining new candidates are predicted by the updated
surrogate (step 8) and participate to replacement along with the q expensive
evaluations (step 9) and the solutions from the population.

In this framework, the surrogate plays the role of an evaluator and/or a filter.
When q, ndisc, npred ̸= 0, it plays both roles as it filters out solutions consid-
ered as unpromising and it predicts moderately promising solutions. This AP
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Figure 1: P-SAGA framework. The ellipses represent the sets of candidate solutions along
with their objective values or not, while the rectangles stand for the operators. Steps 3-9 are
repeated until the computational budget is exhausted.

is called Surrogate as an Evaluator and a Filter (SaaEF) [25]. When ndisc = 0,
the surrogate is only employed as an evaluator (SaaE) [26, 14] while npred = 0
implies the unique role of a filter (SaaF) [27]. In SaaE and SaaEF, a high de-
gree of confidence is granted to the surrogate model as predicted solutions are
allowed into the population. While the risk of misleading the search appears
for inaccurate surrogates, the benefit lies in the saving of computational budget.
The idea behind SaaF is to give more opportunity to the reproduction operators
to come up with promising solutions.

In P-SDAs, whose generic diagram is given in Figure 2, the surrogate is used
to define a metric of promisingness called the Infill Criterion that is optimized
to locate new promising candidates. At each iteration, multiple candidates are
acquired and evaluated in parallel with the expensive function. The surrogate
is updated thanks to the new expensive evaluations and the iterative procedure
stops when the computational budget is depleted [28].

The q-point Efficient Global Optimization algorithm (qEGO) is a popular
P-SDA proposed under two variant APs, namely, Constant Liar (CL) and Krig-
ing Believer [29]. The acquisition of q points via CL is described in Algorithm
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Figure 2: P-SDA framework. The ellipses represent the sets of candidate solutions along
with their objective values or not, while the rectangles stand for the operators. Iterations are
stopped when the computational budget is exhausted.

1. In CL, q > 1 auxiliary optimization problems are solved sequentially at each
iteration in order to propose q new candidate solutions for parallel expensive
evaluations (lines 4-9 in Algorithm 1). One iteration also involves q sequen-
tial updates of the surrogate model, among which q − 1 updates are based on
an artificially-constructed training set to prevent redundancy in the batch of
new candidates. Relying on the mean objective value in the archive to enrich
the artificially-constructed training set (line 3 and 7) provides a trade-off be-
tween exploration and exploitation. Indeed, using the minimum objective value
would attract the next auxiliary optimization exercise in the area around the
last acquired point. Reversely, employing the maximum value would repel the
subsequent sampling from this area.

Kriging Believer follows the same scheme as CL with the only exception of
using the prediction of the last acquired point f̂(x(i)) instead of L to enrich the
artificially-constructed archive in line 7 of Algorithm 1.

2.3. Promisingness Criteria

The Evolution Control, in the framework of P-SAEAs, or the Infill Crite-
rion, in the case of P-SDAs, define what is a promising solution. As these two
terminologies point out the same concept, we choose the global denomination
”Promisingness Criterion” (PC) in this article. Let x(1) and x(2) be two can-
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Algorithm 1 Constant Liar AP for qEGO

Input
archive: set of solutions already evaluated by the expensive function
IC: infill criterion
surrogate: surrogate model
q: number of candidates to sample

1: Bsim ← ∅ ▷ batch of new candidates
2: tmp archive ← copy(archive)
3: L← meany∈archive(y)
4: for i = 1 : q do
5: x(i) ← optimize(IC, surrogate)
6: Bsim ← Bsim ∪ x(i)

7: tmp archive ← tmp archive ∪{(x(i), L)}
8: update surrogate(surrogate, tmp archive)
9: end for

10: return Bsim

didate solutions and >p the comparison operator defining the PC:

x(1) >p x(2) ⇔ x(1) is more promising than x(2)

Let f̂ and ŝ2 be the predicted objective value (mean) and the uncertainty (vari-
ance) as delivered by the surrogate respectively. Let d2 be the Euclidean dis-
tance, in search space, to the archive of solutions already evaluated by the
expensive function. For a minimization problem, the PC can then be defined
by:

• Predicted Objective Value (pov) [6]:

x(1) >p x(2) ⇔ f̂(x(1)) < f̂(x(2))

• Distance to the archive (dist) [14]:

x(1) >p x(2) ⇔ d2(x
(1)) > d2(x

(2))

• Standard Deviation on predictions (stdev) [14]:

x(1) >p x(2) ⇔ ŝ(x(1)) > ŝ(x(2))

• Expected Improvement (ei) [28]:

x(1) >p x(2) ⇔ EI(x(1)) > EI(x(2))

EI(x) =

{
(ymin − f̂(x)).ΦN

(
ymin−f̂(x)

ŝ(x)

)
+ ŝ(x).ϕN

(
ymin−f̂(x)

ŝ(x)

)
for ŝ(x) > 0

0 for ŝ(x) = 0

where ymin is the best expensive objective value currently known and ϕN
is the probability density function of N (0, 1).
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• Lower Confidence Bound (lcb) [12, 30]:

x(1) >p x(2) ⇔ f̂(x(1))− λlcb.ŝ(x
(1)) < f̂(x(2))− λlcb.ŝ(x

(2))

While pov favors exploitation by relying on the regions featuring small pre-
dicted objective values, dist and stdev promote exploration by favoring the
distant or uncertainly predicted regions of the search space. Expected Improve-
ment represents the expectation of the area enclosed by the surrogate predicting
distribution below the best expensive objective value ymin found hitherto. The
first part of the sum is the cumulative probability of improvement multiplied by
the amount of improvement. The second part of the sum is the probability of
improvement multiplied by the standard deviation on the prediction. Over the
search space, ei is high in regions of improvement thus enhancing exploitation,
and high in regions of high uncertainty thus promoting exploration. It is also
high in regions that represent both a moderate degree of improvement and un-
certainty. ei prevents re-sampling by having zero value for candidates already
evaluated with the expensive function (ŝ(x) = 0). The Lower Confidence Bound
also allows for a trade-off between exploration and exploitation by setting the
parameter λlcb ∈ R+. A small value of λlcb promotes exploitation while a larger
value incorporates ŝ to include exploration.

In addition to the aforementioned scalar criteria, there exists different ways
of generating ensembles of criteria.

• Pareto-based criteria with crowding distance (par-fs-cd, par-fd-cd) [31]:

x(1) >p x(2) if

NDR(x(1)) < NDR(x(2)) or

[NDR(x(1)) = NDR(x(2)) and cd(x(1)) > cd(x(2))]

for the bi-objective problems (min f̂ ,max ŝ) or (min f̂ ,max d2)

(8)

where NDR is the non-dominated rank and cd() is the crowding distance
[32]. If both non-dominated ranks are equal and both crowding distances
are equal, the most promising candidate is the one producing the lowest
predicted objective value.

• Pareto-based criteria from Tian et al. [18] (par-tian-fs, par-tian-fd):

x(1) >p x(2) if

[NDR(x(1)) = 1 and NDR(x(2)) ̸= 1] or

[NDR(x(1)) = t and NDR(x(2)) /∈ {1, t}] or
[NDR(x(1)) < NDR(x(2)) and NDR(x(1)), NDR(x(2)) /∈ {1, t}]

for the bi-objective problems (min f̂ ,max ŝ) or (min f̂ ,max d2)

(9)

where t is the number of non-dominated fronts.
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• Dynamic exclusive bi-criterion [7]: The search is divided into two equal
periods according to the computational budget.

– dyn-df-excl : first dist, then pov (from exploration to exploitation)

– dyn-fd-excl : first pov, then dist (from exploitation to exploration)

• Dynamic inclusive criteria [31] (dyn-df-incl): Two criteria, dist and pov

participate concurrently according to participation rates p
(i)
1 and p

(i)
2 re-

spectively. The search is divided into five equal periods according to the
computational budget. The participation rates are set at each period i of
the search according to:

(p
(i)
1 , p

(i)
2 ) =

(
1− i

4
,
i

4

)
i = 0, . . . , 4

which corresponds to a switch from exploration to exploitation during the
search.

• Adaptive criterion from Wang et al. [19] (ada-wang):

x(1) >p x(2) ⇔ fada-wang(x
(1)) < fada-wang(x

(2))

fada-wang(x) = (1− α)
f̂(x)

maxc∈B f̂(c)
+ α

ŝ(x)

maxc∈B ŝ(c)

α = −1

2
cos

(
bs
b
π

)
+

1

2

(10)

where B is a batch of new candidates, bs is the amount of computational
budget already spent and b is the total budget. At the beginning of the
search α ≈ 0 thus promoting exploitation by minimization of the predicted
objective value. As the search proceeds, α → 1, thus further reinforcing
exploitation by minimizing ŝ.

• Voting Committees (com-dpf, com-spf ) [7]: The most promising candi-
dates are those receiving the larger number of votes considering a com-
mittee of three criteria C1, C2, C3. The choice between two candidates with
the same number of votes is made randomly.

– com-dpf : C1: dist, C2: par-fd-cd, C3: pov
– com-spf : C1: stdev, C2: par-fs-cd, C3: pov

3. Benchmark and real-world problems

Multiple optimization problems are considered in the numerical experiments
reported in the next sections of this paper. This section aims at describing these
optimization problems and Table 1 summarizes the numerical experiments and
the associated subsections where the different problem suites are employed.
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Table 1: Summary of numerical experiments with the associated subsections and problem
suites.

Subsection Numerical experiments Problems suite
4.1 Off-line comparison Schwefel-Rastrigin

of surrogates -Rosenbrock & COVID-19
4.2 Grid-search on P-SAGA Schwefel-Rastrigin

and qEGO design space -Rosenbrock & COVID-19
5.4 Hybrid methods on the COVID-19

COVID-19-related problem
6.1, 6.2 Generalizable CEC2015

hybrid methods

3.1. Artificial benchmark problems

3.1.1. Schwefel-Rastrigin-Rosenbrock

This test suite is composed of the three artificial functions Schwefel, Rast-
rigin and Rosenbrock with 16 decision variables. The analytical formulas are
given in [7] while the graphs of the 2-D variants are given in Figure B.14, Figure
B.15 and Figure B.16 in Appendix B for the sake of illustration. These graphs
exhibit different features known to hamper the search process as multi-modality
(Schwefel and Rastrigin), weak global structure (Schwefel) and connected valley
(Rosenbrock). The weak global structure refers to a rugged landscape lacking
an underlying general structure. In other terms, smoothing such a landscape
would not provide any indication about the location of the optima. Reversely,
the strong global structure as provided by the Rastrigin function is governed by
a general shape that may be grasped by an adequately tuned regression model.
This test suite is used in this article to calibrate the algorithms as the low
number of problems allows to compare a large number of possible algorithms
configurations.

3.1.2. CEC2015 test suite

The CEC2015 test suite was proposed for an international competition on
bound constrained single-objective computationally expensive numerical opti-
mization [33]. It is composed of 15 artificial objective functions with 10 and 30
decision variables, spanning a large range of landscape characteristics such as
uni-modality, multi-modality, non-separability and weak-global structure. Hy-
brid and composite functions embedding the Rastrigin, Rosenbrock and Schwefel
functions are notably included. In this study, we rely on the CEC2015 test suite
to test the generalization of algorithms.

For both the Schwefel-Rastrigin-Rosenbrock and the CEC2015 test suite,
the terminology ”expensive objective function” is kept because an artificial wall
clock time is added to every objective function evaluation to simulate the context
of expensive evaluation.
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3.2. COVID-19 contact reduction problem

At the beginning of the COVID-19 crisis, when no vaccines were available,
governments of the affected countries adopted different strategies to contain the
spread of the virus. While some countries imposed lockdown and physical dis-
tancing, others, bet on reaching herd immunity by natural transmission. This
approach has not proven to be effective during the first two years of the epi-
demic [34]. However, at the time, studying the possible consequences of this
strategy was of importance. For potential new outbreaks appearing in the fu-
ture, herd immunity might be acquired by natural transmission which therefore
would make this study an asset.

The problem consists of optimizing the contact reduction strategy to min-
imize the number of COVID-19-related deaths in Spain while reaching herd
immunity. The Spanish population is divided into 16 age-categories and the
decision variables represent the contact mitigation factors to apply to each cat-
egory. For a decision vector x ∈ [0, 1]16, f1(x) represents the simulated number
of deaths after the considered period and f2(x) ∈ {0, 1} is a simulated boolean
variable indicating whether herd immunity has been reached. The optimization
problem consists in finding x∗ such that:

x∗ = argmin
x∈[0,1]16 s.t. f2(x)=1

f1(x) (11)

According to [35], handling constrained problems with evolutionary algo-
rithms can be realized by different means. For our problem, it is not known how
to generate feasible candidates so designing repairing operators or specific repro-
duction operators is impossible. Rejecting infeasible individuals would prevent
to keep knowledge about the infeasible region location, besides, this technique
works only if the search space is convex, that is probably not the case. Adding
the amount of infeasibility as an additional objective would increase the com-
plexity of the problem because the new objective would be boolean. Finally, we
opt for the penalization of the infeasible candidates to handle the constraint of
the COVID-19 contact reduction problem. The penalty value is set to the ap-
proximate Spanish population size (46,000,000) as it is the only a priori known
upper bound for f1. Even if this value could seem unrealistic, the optimization
algorithm is expected to locate the basins of interest of the penalized function,
which corresponds to the feasible region of the original problem. Therefore,
the problem is re-formulated as an unconstrained optimization problem by ap-
plying a penalty to the objective f1 when herd immunity is not reached. The
re-formulated problem thus consists in finding x∗ such that:

x∗ = argmin
x∈[0,1]16

f̃(x) (12)

where:

f̃(x) =

{
f1(x) if f2(x) = 1

f1(x) + 46, 000, 000 if f2(x) = 0
(13)
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The impact of the contact reduction strategy is simulated thanks to the Au-
TuMN simulator available at https://github.com/monash-emu/AuTuMN/ [36].
Both quantities f1 and f2 are obtained via resolution of differential equations
governing the flow of individuals in a compartmental model where the popula-
tion is divided according to the disease state (Susceptible, Exposed, Infectious,
Recovered) [37]. The graph of f1 is expected to be multi-modal with flat regions
according to the prior knowledge issued by the developers of AuTuMN. The sim-
ulation takes place in three phases. First, the past dynamic of the epidemic is
analysed by calibrating uncertain parameters according to past information.
Age-dependent metrics such as fatality rates, hospital proportions uncertainty
and symptomatic proportions uncertainty are calibrated while considering the
daily numbers of COVID-19 confirmed cases as calibration targets. Second, the
contact reduction strategy is applied during a period of 12 months. After the
12-month period, mobility restrictions are lifted and population herd immunity
is recognized if incidence still decreases after two weeks while assuming persis-
tent immunity for recovered individuals [38]. Different ways of modeling herd
immunity could be thought of such as measuring the gradient of incidence to
propose another objective in a bi-objective problem. These interesting perspec-
tives involve additional complexities that we suggest to investigate as future
work. The degrees of contact between individuals are integrated into the model
through the contact matrix C provided by [39] where the populations are di-
vided into 16 age-categories. Ci,j is the average number of contacts per day
that an individual of age-group j makes with individuals of age-group i. The
decision variables of the COVID-19 contact reduction problem represent the
mitigation factors. They are applied to matrix C such that Ci,j is replaced by
xi ·xj ·Ci,j . A decision variable xi = 0 impedes any contact to individuals from
age-category i while setting xi = 1 lets the contact rates unchanged compared
to the pre-COVID-19 era. There could exist some correlations among the miti-
gation factors for close age-categories but these are not known a priori because
a lot of parameters, including those calibrated at the first phase and those from
matrix C, are age-dependent. More details about the simulation phase and
notably the underlying differential equations are given in [38].

4. Investigating the design of P-SBOAs

Three main design choices need to be made to build actual implementations
of P-SBOAs: the surrogate model, the Acquisition Process and the Promis-
ingness Criterion. In this section, we analyze empirically these possible design
choices and their combination with respect to the search landscape characteris-
tics provided by the Schwefel-Rastrigin-Rosenbrock test suite and the COVID-19
contact mitigation problem.

4.1. Offline comparison of surrogates

In this preliminary step to the design of P-SBOAs, we propose to compare the
five surrogates presented in Subsection 2.1, GP RBF, iKRG, rKRG, ANN BLR
and BNN MCD with respect to global prediction accuracy and training time.
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The BNN MCDwas calibrated by a grid search reported in Appendix C. The
values retained for the BNN MCD hyper-parameters are exposed in Table 4.
The remaining surrogates are tuned according to the literature and the default
parameters of the selected libraries. The GP RBF is implemented thanks to the
GPyTorch library [40]. The interpolation and regression Kriging models are set
up via the pyKriging package [41]. The ANN BLR is tuned and implemented
according to [22].

Two training sets of 72 and 256 samples, and a validation set of 1024 samples
are generated by Latin Hypercube Sampling for the three artificial problems. It
is worth mentioning that, because of the small size of the training sets and the
hard-to-approximate landscapes (16-D, multi-modal, weak global structure...),
we do not expect the surrogates to provide reliable approximations over the
whole search space. In other terms, we do not expect good validation mean
squared errors (MSE). Nevertheless, this experiment should produce broad in-
dications about a surrogate’s training time and approximation quality. A sur-
rogate fitting perfectly the global search landscape with few training samples
would indicate an easy-to-optimize problem that would not require iterative
surrogate-update-based algorithms as those investigated in this paper. Through
the AP, we rather expect a surrogate to reproduce as accurately as possible the
comparison operation between two possible candidate solutions. In case a sur-
rogate seems to fit very well globally with few training samples, it is advisable
to optimize the surrogate predictions only and evaluate the optimization out-
put with the expensive objective function as in [42]. To best train a machine
learning model to fit globally, active learning techniques can be used [43], but
this falls out of the scope of this paper.

To compare the models, the training is repeated ten times for each of the
five models and the training sets, and the averaged training time and MSEs
computed on the validation set are presented in Table 2. According to the
reported results, the BNN MCD is ranked 1st or 2nd according to both training
time and validation MSE in all the cases. It seems better suited than the other
models to approximate the Schwefel function. The GP RBF is the best predictor
of the Rastrigin function but shows a higher training time than ANN BLR and
BNN MCD. Indeed the ANN BLR is the fastest to train on a training set of
72 samples but increasing the training set size significantly impacts its training
time when compared to BNN MCD that demonstrates no significant training
time increase from 72 to 256 training samples. The Kriging models perform
poorly regarding both training time and validation MSE compared to the other
models. While Kriging training time is known to be substantial because of
the large number of hyper-parameters, the poor prediction accuracy may be
surprising. Based on this observation, the Kriging models are discarded in the
rest of this study.

To alleviate the high training time implied by the GP RBF, the training
data is normalized and the new results are reported in Table 3. Normalizing the
training data relieves the training task as the search for the hyper-parameters
is stopped prematurely due to the early stopping mechanism implemented in
GPyTorch. The prediction accuracy provided by the GP RBF trained on nor-
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Table 2: Offline comparison of surrogates. Training time (TT) and validation mean
squared error (vMSE) averaged over 10 runs for each surrogate and each benchmark prob-
lem. Ranks according to TT and vMSE are denoted in parentheses.

72 training samples 256 training samples
Surrogates TT vMSE TT vMSE

Schwefel
BNN MCD 6.56(2) 6.1e+05(1) 7.09(1) 5.9e+05(1)
ANN BLR 3.99(1) 1.1e+06(2) 1.3e+01(2) 8.8e+05(2)
GP RBF 4.0e+01(4) 3.7e+07(3) 8.9e+01(3) 3.7e+07(3)
rKRG 2.2e+01(3) 6.3e+14(4) 2.6e+02(4) 9.4e+14(4)
iKRG 1.2e+02(5) 6.3e+14(4) 6.3e+14(4) 9.4e+14(4)

Rastrigin
BNN MCD 6.6(2) 1.6e+03(2) 8.3(1) 1.592e+03(2)
ANN BLR 4.0(1) 2.8e+03(3) 1.3e+01(2) 2.5e+03(3)
GP RBF 4.1e+01(4) 1.59e+03(1) 1.0e+02(3) 1.590e+03(1)
rKRG 1.5e+01(3) 3.3e+09(4) 2.3e+02(4) 4.35e+09(4)
iKRG 8.2e+01(5) 3.3e+09(4) 1.5e+03(5) 4.36e+09(5)

Rosenbrock
BNN MCD 7.38(2) 6.9e+11(1) 7.21(1) 6.8e+11(2)
ANN BLR 4.03(1) 1.1e+12(2) 1.4e+01(2) 5.5e+11(1)
GP RBF 4.1e+01(4) 4.3e+12(3) 9.2e+01(3) 4.3e+12(3)
rKRG 1.1e+01(3) 3.5e+25(4) 3.7e+02(4) 6.4e+25(4)
iKRG 7.9e+01(5) 3.6e+25(5) 1.8e+03(5) 7.0e+25(5)

malized data seems not to be badly affected as shown in Table 3. On the
contrary, GP RBF predictions are even improved on the Rosenbrock and the
Schwefel functions.

4.2. Grid search on P-SAGA and qEGO design spaces

The grid search over the design space of P-SBOAs assumes the following
three dimensions: the surrogate, the AP and the PC. In this study, the Parallel
Surrogate-Assisted Genetic Algorithm (P-SAGA) [26, 27] and the q-point Effi-
cient Global Optimization (qEGO) [29] are considered as the representatives of
P-SAEAs and P-SDAs respectively.

Table 3: Offline comparison of surrogates. Normalization effect on GP RBF training
for a training set of size 72. Training time (TT) and validation mean squared error (vMSE)
averaged over 10 runs for each benchmark problem.

Normalization TT vMSE TT vMSE TT vMSE
Schwefel Rastrigin Rosenbrock

None 4.0e+01 3.7e+07 4.1e+01 1.6e+03 4.1e+01 4.3e+12
[0, 1] 4.1e-01 6.2e+05 2.8e-01 1.7e+03 2.8e-01 5.4e+11
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4.2.1. Experimental protocol

The surrogate-free parallel GA is applied on the benchmark and represents
a baseline to test the impact of surrogate-based approaches. Its calibration is
displayed in Table 4 and the tuning of its population size and cross-over prob-
ability is reported in Appendix D.

The GP RBF, ANN BLR and BNN MCD are the possible choices of sur-
rogate models in the grid search. Two variants of GP RBF are employed,
GP RBF RTS is trained on the last 72 expensive evaluations and GP RBF CTS
is trained on the whole archive of known expensive evaluations. ANN BLR is
trained on the last 256 expensive evaluations while BNN MCD is trained on
the whole archive. Three variants of BNN MCD differing by the number of
sub-networks for prediction nsub ∈ {5, 20, 100} were also considered. All the
BNN MCD instances used in the numerical experiments reported in this paper
consider nsub = 5 as it provided the best results among the three tested values.

The selectable APs are the three variants of P-SAGA and the two variants
of qEGO presented in Subsection 2.2 (SaaE, SaaF, SaaEF, CL and Kriging
Believer). Because the Kriging models are not considered as surrogate, we
take the liberty to rename Kriging Believer into Surrogate Believer (SB). The
parameters’ values for SaaEF, SaaE and SaaF are exposed in Table 4 while the
calibration of SaaEF is described in Appendix E. The main difference between
SaaE and SaaEF is the reduction of nchld that results in less opportunity for the
reproduction operators to come up with promising candidates. In qEGO, the
optimization of the PC is realized by a surrogate-free GA whose parameters are
set as in Table 4 except for the population size (npop = 50) and the number of
generations (ngen = 100) that are tuned by a grid search reported in Appendix
F.

The 15 criteria described in Subsection 2.3 are employed as PC except dyn-
df-incl that is not considered in qEGO as it would be equivalent to dyn-df-excl.

The algorithm configurations retained for the grid search are summarized
in Table 5. To limit the computational task of the grid search, inauspicious
combinations were removed as soon as first results were made available. It is
for example the case for (BNN MCD, SaaE, Rastrigin) or (GP RBF CTS, SB,
COVID-19). Each algorithm instance is run 10 independent times on every
targeted problem for a computational budget of 30 minutes on 18 computing
cores while assuming an evaluation time of 15 seconds.

4.2.2. Analysis of experimental results

Table 6 exposes the top-5 ranking at the end of the search according to the
objective value averaged over the ten repetitions for the Schwefel, Rastrigin,
Rosenbrock and COVID-19 problems. The convergence profiles are exposed in
Figure 3, Figure 4, Figure 5 and Figure 6 respectively. They represent the best
identified expensive objective value, averaged over the ten repetitions, with re-
spect to the number of expensive evaluations. Only the most interesting curves

17



Table 4: Calibration of the algorithms.

Symbol Name Value Calibration method
Calibration of BNN MCD

nsub number of sub-networks 5 grid search
nhl number of fully-connected 1 grid search

hidden layers
mu number of units per layer 1024 grid search

λdecay weight decay coefficient 10−1 grid search
l normal standard deviation 10−2 grid search

for weights initialization
pdrop dropout probability 0.1 grid search
h() activation function Relu [23]
ξ Adam initial learning rate 0.001 [23]

Calibration of GA
npop population size 72 grid search
pc cross-over probability 0.9 grid search
ηc cross-over distribution 10 [44]
pm mutation probability 1

d [45]
ηm mutation distribution 50 [44]
nt tournament size 2 [32]

Calibration of SaaEF
nchld children/iteration 288 grid search
q exp. eval./iteration 72 = 0.25 ∗ nchld [26, 46]

npred predictions/iteration 72 = 0.25 ∗ nchld [26, 46]
ndisc discardings/iteration 216 nchld − q − npred

Calibration of SaaF
nchld children/iteration 288 same as SaaEF
q exp. eval./iteration 72 same as SaaEF

npred predictions/iteration 0
ndisc discardings/iteration 216 nchld − q − npred

Calibration of SaaE
nchld children/iteration 144 q + npred

q exp. eval./iteration 72 same as SaaEF
npred predictions/iteration 72 [26, 46]
ndisc discardings/iteration 0
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Table 5: Grid search on P-SAGA and qEGO design space. Algorithm configurations.
The * symbol refers either to the whole set of surrogates {GP RBF RTS, GP RBF CTS,
ANN BLR, BNN MCD}, to the whole set of 15 PC, or to the whole set of problems {Schwefel,
Rastrigin, Rosenbrock and COVID-19}

Surrogates AP PC Problems
∅ GA ∅ *

* \ {GP RBF CTS} SaaEF * *
BNN MCD SaaE * Schwefel, COVID-19

GP RBF RTS SaaE * Rastrigin, Rosenbrock
BNN MCD SaaF * Schwefel, COVID-19

GP RBF RTS SaaF * Rastrigin, Rosenbrock
* CL * \ {dyn-df-incl}, *

* \ {GP RBF CTS} SB * \ {dyn-df-incl}, *\ COVID-19

are displayed for readability purpose: those that demonstrate the minimum av-
eraged best objective value for any number of expensive evaluations. The length
of the curves informs about the computational efficiency of the approaches with
longer curves indicating more efficient approaches. In this respect, qEGO is
much more computationally expensive than P-SAGA due to the q sequential
auxiliary optimizations and surrogate trainings involved at each iteration. The
computational budget of 18 computing cores during 30 minutes characterizes a
moderately expensive problem for an expensive evaluation of 15 seconds on one
computing unit. Indeed, the upper bound for the number of expensive evalua-
tions amounts to 2160. In this context, both the convergence profiles and the
top-5 rankings presented in Table 6 indicate a clear preference for P-SAGAs.
Nevertheless, if the budget is defined as a limited number of around 100 ex-
pensive evaluations, which defines a very expensive problem, the P-SDAs are
clearly the best performing methods as shown by Figure 3-6. In most cases, it is
preferable to use P-SDAs for less than around 500 expensive evaluations and to
use P-SAGAs for more than 500 expensive evaluations. However, this threshold
depends on the problem at hand and the algorithm configuration. Indeed, for
the Rosenbrock problem this threshold seems to be larger than 500 as shown
in Figure 5. It is also greater than 500 for (CL, GP RBF, com-spf ) on the
COVID-19 problem in Figure 6 while the value of 500 seems to be accurate for
(CL, GP RBF CTS, ei) on the same graph.

Among the P-SAGAs, there is no unique AP outperforming all the others in
all the cases as demonstrated by Table 6. Using the surrogate as an evaluator
may be a good idea if an acceptable prediction accuracy is reached as it seems
to be the case for the GP in the Rastrigin problem according to both Table 6
and Table 2. For a low prediction accuracy, only using the surrogate as a filter is
advised as erroneously discarded candidates may be recovered easily during next
generations thanks to the evolutionary operators. Among the qEGO variants,
SB is outperformed by CL on the artificial problems. This is the reason why it
has not been applied to the COVID-19-related problem.

By comparing the PC, the dynamic and Pareto-based criteria seem to be
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adequate choices in P-SAGA. In particular, dyn-df-incl and dyn-df-excl appear
recurrently in the top-5 exposed in Table 6. They first promote exploration
based on the distance to the archive thus allowing to gain a global view over
the search space. As the search proceeds, they enhance exploitation of the most
promising regions. In P-SAGAs, maximizing the distance to the archive is a
better way of exploring than relying on the standard deviation around the pre-
diction as the results show. Conversely, in qEGO, the standard deviation is
more reliable and should be combined with the intensification metric of pre-
dicted objective value all along the search as shown by the performance of the
scalarized, Pareto-based and adaptive criteria in Figure 3-6. In P-SDA, it is
crucial to both quickly focus on promising regions and refine the surrogate in
regions of high uncertainty.
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Figure 3: Grid search on P-SAGA and qEGO design space. Schwefel problem.
Convergence profile in terms of best expensive objective values averaged over the 10 runs
of the experiment. Dotted lines represent qEGO-like approaches, dashed lines represent
P-SAGA approaches and the plain line represents the GA.

Figure 4: Grid search on P-SAGA and qEGO design space. Rastrigin problem.
Convergence profile in terms of best expensive objective values averaged over the 10 runs of
the experiment. Dotted lines represent qEGO-like approaches, dashed lines represent P-SAGA
approaches and the plain line represents the GA.
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Figure 5: Grid search on P-SAGA and qEGO design space. Rosenbrock problem.
Convergence profile in terms of best expensive objective values averaged over the 10 runs of
the experiment. Dotted lines represent qEGO-like approaches, dashed lines represent P-SAGA
approaches and the plain line represents the GA.

Figure 6: Grid search on P-SAGA and qEGO design space. COVID-19 contact
reduction problem. Convergence profile in terms of best expensive objective values averaged
over the 10 runs of the experiment. Dotted lines represent qEGO-like approaches, dashed lines
represent P-SAGA approaches and the plain line represents the GA.
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Table 6: Grid search on P-SAGA and qEGO design space. Top-5 strategies for each
framework according to the final expensive objective value averaged over 10 runs. Ordering
according to ascending average final expensive objective values from top to bottom.
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5. Hybrid algorithms for the COVID-19 contact reduction problem

5.1. Motivations

The observations from the experiments reported in Subsection 4.2.2 indi-
cate the suitability of qEGO for very computationally expensive problems while
P-SAGAs are more adequate in a moderately expensive context. From this con-
clusion, it is proposed to design hybrid algorithms to provide robustness with
respect to the computational budget and to improve the optimization quality
in the moderately expensive setting. On the one hand, the threshold defining
the domain of suitability of P-SAGAs and qEGO – in terms of number of ex-
pensive evaluations – is not clearly defined and may depend on the algorithm
configuration and the problem being tackled as seen in Figure 3-6. On the
other hand, optimization in moderately expensive settings might be improved
by boosting P-SAGAs thanks to a qEGO-like AP. In this section, the hybridiza-
tion of P-SAGAs and qEGO is investigated for the solving of the COVID-19
contact reduction problem.

On the COVID-19 contact mitigation application, the best method identified
in a moderately expensive context is (BNN MCD, SaaF, dyn-df-incl) according
to Table 6. In a very computationally expensive setting, (GP RBF, CL, com-
spf ) is preferred as Figure 6 shows. In the next subsection, we first suggest
to run both APs concurrently at each iteration to benefit from the acquisition
performances of both reproduction operators and optimization of a PC. We also
propose, in subsection 5.3, to execute both APs successively, starting with qEGO
and continuing with P-SAGA if the computational budget allows it. Alternative
algorithms combinations could be thought of such as integrating one method
into another similarly to a memetic algorithm where a local search acts as a
mutation operator in a GA [47]. In P-SDA, the internal auxiliary optimization
problem could be solved by a P-SAEA. However, this auxiliary problem is not
computationally expensive and it is therefore better addressed by a surrogate-
free method. In the case of separable problems, different optimizers can be
invoked on different sub-sets of decision variables such as in co-evolutionary
algorithms [48]. Nevertheless, the COVID-19-related problem is not expected
to be separable. Mixing more than two APs is envisioned in the Surrogate Model
Based Optimization Evolutionary Algorithm (SMBOEA) [17] that is considered
as a competing hybrid approach in the numerical experiments reported in the
following.

5.2. Hybrid Concurrent Acquisition Process

The first new hybrid method is named HCAP for ”Hybrid Concurrent Ac-
quisition Process” and is presented in Algorithm 2. The two aforementioned
APs, (BNN MCD, SaaF, dyn-df-incl) and (GP RBF, CL, com-spf ) and their
respective parameters calibrated in the previous section, are executed concur-
rently at each iteration to propose new candidates. One iteration consists of
firstly generating q1 = 9 new promising candidates (line 6 in Algorithm 2) via
qEGO. Thence, parent solutions are selected from the population and repro-
duced to create a batch of new solutions (lines 7 and 8) from which q2 = 63
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are kept (line 9) according to SaaF. A total of q1 + q2 = 72 new candidates
are evaluated with the expensive objective function in parallel at each iteration
(lines 10 and 11). Thereafter, the surrogates are updated (lines 13 and 14) and
a new population is formed by elitist replacement (line 15). The value for q1 is
maintained at a small level as qEGO is limited in this respect [29]. The value
for q2 is chosen such that the number of expensive evaluation q1 + q2 = 72 such
as SaaF.

Algorithm 2 Framework of HCAP.

Input
f : expensive objective function
budget : computational budget for the search
GP RBF: surrogate model for AP1
com-spf : promisingness criterion for AP1
q1 = 9: number of expensive evaluations per iteration for AP1
npop1 = 50: population size for AP1
ngen = 100: number of generations for AP1
BNN MCD: surrogate model for AP2
dyn-df-incl : promisingness criterion for AP2
npop2 = 72: population size for AP2
nchld = 288: number of new candidates per iteration for AP2
q2 = 63: number of expensive evaluations per iteration for AP2
ndisc = 225: number of discarding per iteration for AP2

1: archive ← initial sampling+expensive evaluations(f , npop2)
2: GP RBF ← training(archive)
3: BNN MCD ← training(archive)
4: P ← archive ▷ initial population
5: while budget ̸= 0 do
6: B1 ← Constant Liar AP(archive, com-spf, GP RBF, q1, npop1, ngen)
7: Pp ← selection(P, nchld)
8: Pc ← reproduction(Pp, nchld)
9: B2 ← filtering(Pc, dyn-df-incl, BNN MCD, q2, ndisc)

10: B ← B1 ∪ B2
11: expensive evaluations(f , B)
12: archive ← archive ∪ B
13: GP RBF ← training(archive, 72)
14: BNN MCD ← training(archive, all)
15: P ← elitist replacement(P, B, npop2)
16: budget ← get remaining budget(budget, elapsed time)
17: end while
18: (xmin, ymin) ← get best cost(archive)
19: return xmin, ymin
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5.3. Hybrid Successive Acquisition Processes

This method runs successively the two APs as described in Algorithm 3. It
is referred to as HSAP for ”Hybrid Successive Acquisition Processes”. The first
stage consists of running six iterations of (GP RBF, CL, com-spf ) with q1 = 18
expensive evaluations per iterations thus corresponding to a total of 108 expen-
sive evaluations (lines 2 to 11). Afterwards, (BNN MCD, SaaF, dyn-df-incl) is
run until the budget is completely consumed (lines 12 to 24). The population
is initialized by taking special care of balancing between exploration and ex-
ploitation. To foster exploitation, the ten best candidates identified so far are
included in the initial population (line 12). To boost exploration, a K-Means
algorithm [49, 50] partitions the set of decision vectors from the archive into
62 groups and one randomly-selected solution per cluster is added to the initial
population (line 13).

5.4. Numerical experiments

In this subsection, we present the experimental protocol set up to analyze
the proposed methods in terms of optimization quality and parallel scalability.
An a posteriori landscape analysis is also performed on the COVID-19-related
problem.

5.4.1. Experimental protocol

The computational budget is set to 30 minutes on ncores = 18 computing
cores and ten independent runs per algorithm are performed on the COVID-19
contact mitigation problem. The seven competing algorithms are the parallel
surrogate-free GA, SaaF (BNN MCD, SaaF, dyn-df-incl), two versions of CL
(GP RBF CTS, CL, com-spf ) and (GP RBF RTS, CL, com-spf ), HCAP, HSAP
and SMBOEA from [17].

In SMBOEA, an iteration consists in running three APs in parallel. The first
AP, executed on one computing core, maximizes the Expected Improvement [28]
to produce a new candidate. The second AP, also running on one computing
core, minimizes f̂ to output one new solution. The third AP generates q =
ncores − 2 new candidates via reproduction of q parents extracted from the
current population. The ncores new candidates are evaluated in parallel by the
expensive objective function. Afterwards, the archive, the surrogate and the
population are updated and the procedure is repeated until the computational
budget is wasted.

In SMBOEA, contrary to HCAP and HSAP, no filtering occurs in the AP
based on the reproduction operators. Relying on an PC at this step gives more
opportunity to the reproduction operators to generate good candidates. The
objective pointed out in [17] for future works on SMBOEA is to improve the
performance of the method when ncores increases. Indeed, in the experiments
reported in [17], SMBOEA performs similarly to the parallel surrogate-free GA
for ncores ⩾ 15. In HCAP and HSAP, the use of two surrogates from different
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Algorithm 3 Framework of HSAP.

Input
f : expensive objective function
budget : computational budget for the search
GP RBF: surrogate model for AP1
com-spf : promisingness criterion for AP1
q1 = 18: number of expensive evaluations per iteration for AP1
npop1 = 50: population size for AP1
ngen = 100: number of generations for AP1
BNN MCD: surrogate model for AP2
dyn-df-incl : promisingness criterion for AP2
npop2 = 72: population size for AP2
nchld = 288: number of new candidates per iterations for AP2
q2 = 72: number of expensive evaluations per iteration for AP2
ndisc = 216: number of discarding per iteration for AP2

1: archive ← initial sampling+expensive evaluations(f , npop2)
2: GP RBF ← training(archive, all)
3: counter ← 0
4: while counter< 6 AND budget available do
5: B ← Constant Liar AP(archive, com-spf, GP RBF, q1, npop1, ngen)
6: expensive evaluations(f , B)
7: archive ← archive ∪ B
8: GP RBF ← training(archive)
9: budget ← get remaining budget(budget, elapsed time)

10: counter ← counter+1
11: end while
12: P ← get best(archive, 10) ▷ initial population
13: P ← P∪ K-Means sampling(archive, 62)
14: BNN MCD ← training(archive)
15: while budget available do
16: Pp ← selection(P, nchld)
17: Pc ← reproduction(Pp, nchld)
18: B ← filtering(Pc, dyn-df-incl, BNN MCD, q2, ndisc)
19: expensive evaluations(f , B)
20: archive ← archive ∪ B
21: BNN MCD ← training(archive, all)
22: P ← elitist replacement(P, B, npop2)
23: budget ← get remaining budget(budget, elapsed time)
24: end while
25: (xmin, ymin) ← get best(archive, 1)
26: return xmin, ymin
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Figure 7: Hybridization for the COVID-19 contact reduction problem. Analysis of
optimization quality. Distribution of the best final expensive objective values from the 10
runs of the experiment. Averaged values are depicted by red squares.

types aims at enhancing diversification in the batch of new samples and im-
proving the overall performance of the hybrid methods. In SMBOEA, the three
APs are performed in parallel while the two APs from HCAP are performed
sequentially thus giving a slight advantage to SMBOEA regarding idleness of
computing cores.

The only adaptation made to SMBOEA to tackle the COVID-19 contact
reduction problem is to replace the Kriging model by GP RBF CTS because
of the results of the offline comparison of surrogates of Subsection 4.1. The
remaining algorithms are calibrated as presented in Table 4, Algorithm 2 and
Algorithm 3. The pySBO platform is used as the software framework for im-
plementation and experimentation [51]. The experiments are conducted on 18
computing cores from an Intel Xeon Gold 5220 CPU. The parallel machine is
part of the Grid5000, an infrastructure dedicated to parallel and distributed
computing [52].

5.4.2. Analysis of optimization quality

Figure 7 shows the distribution of the ten best objective values obtained at
the end of the search (one value at the end of each repetition) for each strategy.
It can be observed that the new hybrid method HSAP significantly outperforms
all its competitors on the COVID-19 contact reduction problem in terms of av-
erage, median and variance of the results. The concurrent combination of APs
proposed by HCAP is also a reliable strategy as it outperforms all the non-
hybrid methods and SMBOEA. It can be noticed that SMBOEA demonstrates
a similar averaged final objective value than the parallel surrogate-free GA but
with a larger variation.
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The convergence profiles are displayed in Figure 8 with a zoom on the best
performing methods around 300 expensive evaluations. Expectedly, HSAP and
CL exhibit a similar very steep improvement for less than 108 expensive evalu-
ations. After the AP switch in HSAP, the improvement is slowed down but a
continuous progress is noted until around 600 expensive evaluations where the
convergence is almost reached. The zoomed picture highlights the benefit from
using HSAP over CL from 300 expensive evaluations onward. Firstly, HSAP
allows one to perform more expensive evaluations than CL as indicates the
length of the curves. Secondly, the use of the surrogate to inform the reproduc-
tion operators enables a continuous improvement as soon as CL reaches steady
state. An attractive enhancement of HSAP would be to automatically detect
the flatness in the convergence curve and trigger the AP switch. Such a mecha-
nism is not trivial to design, particularly because user-defined parameters must
be avoided. HCAP outperforms SMBOEA and SaaF in Figure 8 while SaaF
overtakes SMBOEA after 260 expensive evaluations. The bad performances of
the parallel surrogate-free GA illustrate again the profit brought by surrogate
models for both moderately and very expensive problems.

The length of the curves in Figure 8 yields indications about the compu-
tational cost of the methods. Among the hybrid methods, SMBOEA is the
more computationally costly as the surrogate is trained on the entire archive
and PC optimizations are run at each iteration. By reducing the training set
size as in HCAP, more expensive evaluations are enabled and by reducing the
computational effort dedicated to PC optimization as in HSAP, the number of
expensive evaluations gets closer to the one of SaaF. A possible way to relieve
the computational cost of HCAP would be to execute both APs in parallel as
it is the case in SMBOEA.

5.4.3. Analysis of parallel scalability

It is now proposed to study the behavior of the seven algorithms for different
computational budgets obtained by varying the number of available computing
units (ncores ∈ {3, 9, 18, 72, 144}) while the allocated time is still fixed to 30
minutes.

For the CL-like APs, the number of expensive evaluations per iteration is
set to the number of available computing cores q = ncores. The challenge of
acquiring multiple and diverse promising new candidates arises when the number
of computing cores is large. When ncores is small, more computational efforts
are engaged into full surrogate trainings thus limiting the affordable number of
expensive evaluations, but bringing the advantage of a more accurate surrogate.

For APs relying on reproduction operators, q = ncores is also applied. In
SaaF, the population size npop = 72 and the number of children nchld = 288
are kept unaltered and the number of discardings per iteration is set to ndisc =
288− ncores. In the parallel surrogate-free GA, the number of children is set to
the number of computing cores nchld = ncores while the population size is not
modified compared to Table 4.

In HCAP, to preserve q1 < q2 and to guarantee ncores = q = q1 + q2, the
following triplets are considered: (ncores, q1, q2) = (3, 1, 2), (9, 1, 8), (18, 2, 16),
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Figure 8: Hybridization for the COVID-19 contact reduction problem. Analysis of
optimization quality. Convergence profile in terms of best expensive objective values aver-
aged over the 10 repetitions of the experiment. Dotted lines represent qEGO-like approaches,
the dashed line represent the P-SAGA approach, the plain line represents the GA and the
dash-dotted lines represent the hybrid methods.

(72, 9, 63), (144, 18, 126).

Table 7 presents the average best expensive objective value found by the
algorithms on the COVID-19 problem. The overall best average solution for
this problem is provided by HSAP with ncores = 144.

For ncores ⩾ 9, HSAP is the best choice among the competing approaches
while (GP RBF RTS, CL, com-spf ) provides the best average for ncores = 3.
These observations are recovered when analyzing the box-plots of the final ex-
pensive objective values per ncores value exposed in Figure 9.

In both Table 7 and Figure 9, we observe very bad results for the CL meth-
ods for ncores = 144. During one iteration, the surrogate model is repeatedly
updated with more and more hallucinated samples (evaluations of the solutions
replaced by the mean of the objective values in the archive). The acquisition
process is likely misguided by this hallucinated surrogate model and both ac-
quisitions and expensive evaluations are misspent.

The box-plots of the final expensive values per algorithm are displayed in
Figure 10. The outstanding parallel scalability of HSAP and HCAP is reflected
by the enhancement of the quality of the resolutions when ncores increases. The
parallel surrogate-free GA, SaaF and SMBOEA also demonstrate a satisfying
parallel scalability but with less important improvement when ncores increases
compared to HSAP and HCAP. The difficulty of CL to benefit from large num-
ber of computing units is highlighted in Figure 10 where the optimization quality
decreases from ncores = 72 to ncores = 144. Adding too much new solutions per
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Table 7: Hybridization for the COVID-19 contact reduction problem. Analysis
of parallel scalability. Best expensive objective values averaged over the 10 runs of the
experiment for different numbers of available computing cores.

XXXXXXXXXXMethod
ncores 144 72 18 9 3

HSAP 3,791 3,865 4,617 7,118 8,950
HCAP 5,487 6,100 7,767 11,275 17,658
SaaF 6,463 7,728 6,779 9,951 21,641
CL (RTS) 13,894 9,443 8,416 8,234 7,624
CL (CTS) 12,820 8,981 8,822 9,579 9,954
GA 7,766 9,604 23,875 25,153 29,355
SMBOEA 18,011 17,892 22,865 29,479 31,613

iteration leads to propose unpromising candidates which wastes the budget by
investing too much in surrogate training as one surrogate training is realized to
obtain one new candidate.

Table 8 presents the average number of expensive evaluations per search.
The number of affordable expensive evaluations increases when the number of
computing cores increases for all the approaches except (GP RBF CTS, CL,
com-spf ). Because the surrogate is trained on the complete archive, the last
AP of CL with GP RBF CTS is not totally accomplished when ncores = 144,
therefore explaining the decrease in expensive evaluations compared to ncores ∈
{9, 18, 72}. The computational expensiveness of the AP in CL is directly re-
lated to q so these strategies present the lowest increase as indicated by Table
8. For ncores = 3, SMBOEA enables the highest number of expensive evalua-
tions (650) among the surrogate-based approaches because both the generation
and the evaluation of the candidates are performed in parallel. This is not true
anymore when ncores grows as the production of the ncores − 2 new decision
vectors by reproduction is executed by a unique computing core. The number
of expensive evaluations is high for SaaF and HSAP when ncores = 144 as the
participation of the AP based on PC optimization is null or restricted.

In the context of a very expensive problem – where the budget is only lim-
ited by few hundred expensive evaluations – maximizing the benefits of a large
number of computing cores is challenging as depicted by Figure 11. For an AP
built on reproduction operators, running multiple generations appears more ad-
equate. For an AP set up on PC optimization, the difficulty to generate large
new batches of promising solutions and the associated reduction of number of
iterations imply a waste of the computational budget. In this context, it is more
convenient to employ qEGO or HSAP with a curbed number of computing cores.

5.4.4. Landscape analysis

Landscape analysis is an entire research area that aims at characterizing the
shape of the graph (Ω, f(Ω)) produced by the objective function f [53]. Indica-
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Table 8: Hybridization for the COVID-19 contact reduction problem. Analysis of
parallel scalability. Average number of expensive evaluations per search over the 10 runs
of the experiment for different numbers of available computing cores.

XXXXXXXXXXMethod
ncores 144 72 18 9 3

GA 22,377 11,347 2,953 1,739 751
SaaF 8,654 5,522 1,818 1,134 483
SaaEF 8,481 4,975 1,792 1,121 488
HSAP 7,819 2,628 1,260 720 354
SMBOEA 3,960 3,355 1,324 1,079 650
HCAP 3,657 2,894 1,407 976 426
CL (RTS) 792 770 673 639 491
CL (CTS) 504 576 527 524 450

Table 9: Hybridization for the COVID-19 contact reduction problem. Landscape
analysis. Best decision vector to the COVID-19 contact reduction problem. xi represents
the contact mitigation factor for age-group i.

Age-group i 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40
xi 0.96 0.97 1.00 0.97 1.00 1.00 1.00 1.00

Age-group 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75+
x 0.97 0.76 0.00 0.00 0.00 0.00 0.00 0.00

tions such as the abundance of basins of attraction, the extent of the infeasible
region, the presence of flat regions or ridges are valuable to the designers of
optimization algorithms as well as to the experts of the targeted problem. In
this sub-subsection, after revealing the best contact reduction strategy found
so far, a landscape analysis is performed on the COVID-19 problem by analogy
with the artificial functions, Schwefel, Rastrigin, Rosenbrock, whose landscape
features are known.

The overall minimum objective value found so far amounts to 3,536 and has
been produced by the new HSAP method with ncores = 144. According to
the associated decision vector exposed in Table 9, contact for people aged less
than 50 years-old should only be slightly reduced. Conversely, drastic contact
reductions should be applied to seniors of 50+ years-old. Indeed, almost no re-
striction (less than 5%) is suggested for people from 0 to 45 years-old. Extreme
contact restrictions are suggested for the elders beyond 50 years-old surely as
they present the highest risk of medical complications.

An a posteriori analysis of the COVID-19 contact reduction problem is now
possible as the experiments conducted so far have produced a huge amount of
evaluations of f . Among the 12,463,182 solutions evaluated by f , 4,452,189
are infeasible, representing 36% of the whole set. The extent of the infeasible
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Table 10: Hybridization for the COVID-19 contact reduction problem. Landscape
analysis. Dispersion metric based on a subset of 800 samples for the benchmark and the
COVID-19 contact reduction problem. The dispersion metric is computed as the average
distance between the best ⌊800.pDM ⌋ solutions divided by the average distance between the
800 solutions. Higher values characterize a harder optimization problem with respect to multi-
modality and global structure.

pDM Schwefel COVID-19 Rastrigin Rosenbrock
0.02 0.7253051 0.6087193 0.3987407 0.2755931
0.05 0.7811394 0.7201954 0.4048308 0.3098171
0.1 0.8310808 0.7868463 0.4437553 0.3624034
0.25 0.8872491 0.8637474 0.5376603 0.4896596

search space is expected to be greater than 36% because the sampling is biased
towards the feasible region. Indeed, from the 720 initial solutions obtained via
Latin Hypercule Sampling, only one is feasible. This is actually the reason why
landscape analysis was not performed prior to the optimization.

Relying on surrogate models to characterize a search landscape is a tech-
nique that has already been proposed in [54, 55]. The empirical comparisons
led in Section 4 suggested an analogy between the landscape of the Schwefel
problem and the one of the COVID-19 application. Another tool for landscape
analysis, namely the dispersion metric, is leveraged to gain more knowledge
about the landscape of the COVID-19 problem. The dispersion metric [56] de-
tects the multi-modality and the presence of global structure by measuring the
average distance between the best solutions in the search space. The set of best
candidates is defined by a proportion pDM of the best solutions from the data
set. It is stated in [55], that a database made of 50.d samples is sufficient to
perform exploratory landscape analysis. Since d = 16 in this study, 800 samples
are drawn for each problem. For Schwefel, 11,169,468 expensive evaluations
are available, 11,161,044 ones for Rastrigin, 11,276,316 ones for Rosenbrock and
8,010,993 feasible solutions are accessible for the COVID-19 contact reduction
problem. Each of these sets is divided into 800 clusters using the K-Means al-
gorithm [50] implemented in Scikit-Learn [57] and the closest solution to each
cluster’s center is retained. The Flacco R package [55] is used to compute the
dispersion metric for multiple values of pDM and the outcomes are reported in
Table 10.

Large values of the dispersion metric indicate high dispersion of the best
solutions in the search space and consequently imply the presence of multiple
basins of attraction. For small values of pDM , high values of the dispersion
metric indicate a weak global structure in the sense that the multiple basins of
attraction are far from each other. According to Table 10, the landscape asso-
ciated to the COVID-19 problem is similar to the one of the Schwefel problem
in terms of multi-modality and global structure.

Other tools built on the concept of nearest neighbors have been elaborated
in [58] to bring out weak global structures. Let’s denote S the 800-samples set
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Table 11: Hybridization for the COVID-19 contact reduction problem. Landscape
analysis. Nearest neighbors-related metrics, as defined in Equation (18), based on a subset
of 800 samples for the artificial and the COVID-19 contact reduction problems. Values closer
to 1 indicate a more adequate global structure.

COVID-19 Schwefel Rastrigin Rosenbrock
nbf1 0.863 0.967 1.000 0.998
nbf2 0.884 0.926 0.986 0.991

generated previously for a given problem and let’s define the distance to the
nearest neighbor by:

dnn(x,S) = min({d2(x,y)|y ∈ S\{x}}) (14)

where d2(., .) is the Euclidean distance. Let’s define the distance to the better
nearest neighbors by:

dnb(x,S) = min({d2(x,y)|f(y) < f(x) and y ∈ S}) (15)

The set of the nearest neighbors distances is given by:

Dnn = {dnn(x,S)|x ∈ S} (16)

and the set of the better nearest neighbors distances is given by:

Dnb = {dnb(x,S)|x ∈ S} (17)

The two metrics used to compare the landscapes are:

nbf1 =
sd(Dnn)

sd(Dnb)
nbf2 =

mean(Dnn)

mean(Dnb)
(18)

The first metric nbf1 is the ratio of the standard deviation of the two dis-
tance sets. For highly multi-modal problems or problems with a weak global
structure, sd(Dnb) is expected to be high so nbf1 < 1 while for problems with
adequate global structure sd(Dnn) ≈ sd(Dnb) is expected such that ndf1 ≈ 1.
The same reasoning applies for the second metric nbf2 when considering the
ratio of the mean of the sets. Table 11 presents the nearest neighbors-related
metrics computed for the artificial and the real-world problems. According to
Table 11, the COVID-19 problem exhibits the less adequate topology followed
by the Schwefel problem. The Rastrigin adequate global structure is detected
by showing nbf1 = 1 for the associated samples set.

By the a posteriori landscape analysis conducted in this subsection, it can
be deduced that the constraint is severe and the landscape is multi-modal with
a weak global structure. Adding the fact that the simulation is moderately
expensive, the COVID-19 contact reduction problem is undoubtedly tedious to
solve. In such a critic case, the design and application of hybrid methods is thus
relevant as they yield the best resolution of the problem.
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6. Hybridization and robustness to search landscapes

In the previous section, the focus was on the design of hybrid acquisition
processes to solve the COVID-19 contact reduction problem. In this section, we
study the robustness of the algorithms with respect to the search landscape. To
this end, the CEC2015 benchmark test suite is invoked.

6.1. Experiments on the CEC2015 test suite

The algorithms studied in the previous section are now compared on the
broader set of problems defined by the CEC2015 test suite. A total of 30
objective functions are addressed for a computational budget of 30 minutes on
18 computing cores while assuming an expensive evaluation lasting 15 seconds
on one core.

The six algorithms employed in the COVID-19-related problem, CL (with
GP RBF CTS), SaaF, GA, HCAP, HSAP and SMBOEA are included in this
experiment. Because some of these algorithms are specifically calibrated to the
COVID-19 problem (e.g. the AP switch parameter of HSAP), three variants,
CL-lcb, HCAP-par and HSAP-lcb are added to the pool of competing algo-
rithms in an attempt to provide more generalizable performances. In CL-lcb,
Lower Confidence Bound is selected as PC. In HCAP-par, the Pareto-based PC
par-tian-fs is employed in the AP based on PC optimization. Indeed, both lcb
and par-tian-fs provide good performances across more different problems than
com-spf as shown in Subsection 4.2. In HSAP-lcb, lcb is also used as PC in the
CL-like AP and the switch from one AP to the other is automatically triggered
if no improvement of at least 2% is observed during three consecutive iterations.

The top-2 algorithms according to the average best expensive objective value
discovered after 108 expensive evaluations and at the end of the budget are re-
ported in Table 6.1. The new hybrid strategies HCAP, HCAP-par, HSAP and
HSAP-lcb do not generalize very well. For some problems, such as the 30-D
CEC2015-1 problem, HSAP-lcb behaves as expected by automatically trigger-
ing the switch from one AP to another and further improving the results as
shown by the convergence plot of Figure 12. However, for other problems such
as the 10-D CEC2015-15 instance, the extreme roughness of the landscape cuts
drastically the prediction accuracy of the surrogate model making GA and SM-
BOEA the best performing methods as exhibited in Figure 13.

The dispersion metric presented in the previous section is leveraged to try
explaining the different performances. The second column of Table 6.1 exposes
the average differences between the dispersion metric at 25% and the disper-
sion metric at 5%, denoted ddisp, computed on the 20 sets of solutions used
to initialize the algorithms. According to [56], a low value of ddisp reflects a
more difficult landscape to optimize as the multiple basins of attraction are far
from each other, therefore suggesting a weak global structure. The algorithms
primarily relying on reproduction operators without surrogate model, typically
GA and SMBOEA, demonstrate the best performances at the end of the search
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Figure 12: Hybrid algorithms robustness to search landscapes. Experiments on
the CEC2015 test suite. 30-D CEC2015-1 problem. Convergence profile in terms of best
objective values averaged over the 20 runs of the experiment. Dotted lines represent qEGO-
like approaches, the dashed line represent the P-SAGA approach, the plain line represents the
GA and the dash-dotted lines represent the hybrid methods.

and for landscape with small ddisp according to Table 6.1. This is especially the
case for the 30-D problems 2-5 and 9-12. On landscapes with stronger global
structures, HSAP-lcb and SaaF are much performing by the end of the search,
specifically on the 10-D problems 6-8 and 13-14 and on the 30-D problems 1
and 6-8. When considering smaller budgets, CL-lcb, CL, HSAP and HSAP-lcb
are good options as they recurrently appear in the top-2 after 108 expensive
evaluations in Table 6.1.

By the results, no significant difference of performance is identified between
CL and CL-lcb. Table G.28 in Appendix G presents the number of problems
for which one method is better than the other according to the average best
expensive objective value computed over the 20 runs. The same observation
applies for HSAP and HSAP-lcb (Table G.29) and for HCAP and HCAP-par
(Table G.30).

Based on these new evidences, we propose a new hybrid method relying on
the dispersion metric to drive the choice of AP at the beginning of the search.

6.2. Towards a Dispersion-Driven Hybrid Acquisition Process

The new hybrid approach is called Dispersion-Driven Hybrid Acquisition
Process (DDHAP) and is presented in Algorithm 4. The algorithm starts by
computing the difference ddisp between the dispersion metric at 25% and the
dispersion metric at 5% computed on the initial archive of already evaluated
solutions (line 3 in Algorithm 4). If ddisp is smaller than a specified threshold
indicating a weak global structure, optimization begins with SMBOEA for a
quarter of the affordable budget (lines 4-8). If ddisp is larger than the threshold,
SMBOEA is not run. Then, CL is run (lines 10-17) with a stopping mechanism
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Table 12: Hybrid algorithms robustness to search landscapes. Experiments on
the CEC2015 test suite. Top-2 algorithms according to the average best expensive
objective value over the 20 repetitions of the experiment. Ordering per dimension according
to ascending average difference between the dispersion metrics at 25% and at 5% (denoted
ddisp) from top to bottom. Smaller values of the average ddisp (darker backgrounds) suggest
a search landscape with a weak global structure while larger values (lighter background)
indicate a stronger global structure.

Problem Average Top-2 end of search Top-2 108 evaluations
index ddisp

CEC2015 10-D
15 -0.011 GA SMBOEA GA SMBOEA
4 0.006 SMBOEA GA CL-lcb HCAP
9 0.01 GA SMBOEA HCAP-par HCAP
3 0.019 CL-lcb GA CL-lcb SMBOEA
2 0.025 SMBOEA SaaF HSAP CL-lcb
11 0.03 SMBOEA GA HSAP CL
10 0.031 SaaF GA CL HSAP
5 0.036 GA SMBOEA HSAP SaaF
12 0.062 GA SaaF SMBOEA SaaF
14 0.065 HSAP HCAP HSAP CL
1 0.092 CL-lcb GA CL-lcb HSAP-lcb
13 0.093 SaaF HSAP-lcb SMBOEA HCAP
7 0.103 SaaF HSAP-lcb CL-lcb HSAP-lcb
6 0.111 GA SaaF CL-lcb HSAP-lcb
8 0.116 SaaF GA SMBOEA HCAP

CEC2015 30-D
2 -0.006 GA SaaF CL-lcb SMBOEA
5 -0.005 GA SMBOEA SMBOEA SaaF
3 0.002 GA SMBOEA CL-lcb HSAP
4 0.008 GA SMBOEA SaaF CL-lcb
10 0.008 GA SMBOEA CL HSAP
9 0.01 GA SMBOEA SaaF HCAP
14 0.013 HSAP HCAP-par CL HSAP
12 0.023 GA SMBOEA CL HSAP
11 0.029 GA SMBOEA CL CL-lcb
13 0.033 SaaF GA SMBOEA SaaF
8 0.034 SaaF HCAP HSAP CL
15 0.034 GA HSAP-lcb CL HSAP
6 0.039 HSAP-lcb SaaF CL-lcb HSAP-lcb
1 0.051 HSAP-lcb SaaF HSAP-lcb CL-lcb
7 0.06 HSAP-lcb SaaF HSAP-lcb CL-lcb
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Figure 13: Hybrid algorithms robustness to search landscapes. Experiments on
the CEC2015 test suite. 10-D CEC2015-15 problem. Convergence profile in terms of best
objective values averaged over the 20 runs of the experiment. Dotted lines represent qEGO-
like approaches, the dashed line represent the P-SAGA approach, the plain line represents the
GA and the dash-dotted lines represent the hybrid methods.

based on the lack of improvement during 3 iterations (lines 14-16). Finally, if
the CL stopping mechanism is triggered and some budget is still available then
SaaF is executed (lines 22-26). The surrogate in use in SaaF is either a GP if a
strong global structure was detected or a BNN MCD if a weak global structure
was detected (lines 18-21).

The new DDHAP method is compared experimentally to the previously con-
sidered approaches, CL-lcb, SaaF, GA, HCAP-par, HSAP-lcb and SMBOEA.
Moreover, a multi-start version of the qEI (MS-qEI) is added to the pool of com-
peting algorithms. The qEI algorithm is implemented via the BoTorch library
[59]. The qEI acquisition function [29] is sampled thanks to the reparametriza-
tion trick coupled with Monte-Carlo sampling [60, 61]. The restart mechanism
consists to run a new Latin Hypercube Sampling to reset the archive of evaluated
solutions when a lack of improvement is detected. The restart is triggered when
no improvement of at least 0.1% is observed during 5 consecutive iterations.
These values are fixed after few trials on the CEC2015 test suite.

The 30 problems from the CEC2015 test suite are tackled for a computa-
tional budget of 30 minutes on 18 computing cores and an expensive evaluation
of 15 seconds on one core. Twenty repetitions of the experiment are realized.
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Algorithm 4 Framework of DDHAP.

Input
th: threshold for dispersion-based choice of AP
A: initial archive of expensive evaluations
budget : computational budget allocated to the search

1: available budget ← budget
2: xmin, ymin ← update best(A)
3: ddisp ← compute difference dispersion(A)
4: while ddisp <th AND available budget < 0.25 budget do
5: A ← SMBOEA iteration(A, GP, pov, ei)
6: xmin, ymin ← update best(A)
7: available budget ← update budget()
8: end while
9: switch ← False

10: while switch==False and available budget> 0 do
11: A ← CL iteration(A, GP, lcb)
12: xmin, ymin ← update best(A)
13: available budget ← update budget()
14: if no improvement of at least 2% during 3 iterations then
15: switch ← True
16: end if
17: end while
18: surrogate ← GP
19: if ddisp <th then
20: surrogate ← BNN MCD
21: end if
22: while available budget> 0 do
23: A ← SaaF iteration(A, surrogate, par-fd-cd)
24: xmin, ymin ← update best(A)
25: available budget ← update budget()
26: end while
27: return xmin, ymin

Table 13 shows the average ranks of the algorithms over the CEC2015 prob-
lems for different budgets expressed as a limited time on 18 computing cores,
thus taking into account the surrogate training which reflects more realistically
the context of moderately expensive problems. According to this table, DDHAP
provides consistent results across the monitored budgets and consequently suc-
ceeds in providing more robustness with respect to the computational budget
than GA and CL. Similar results are obtained with SMBOEA which yields
slightly worst ranks than DDHAP in the 30-D case.

Table 14 exposes the average ranks of the methods over the CEC2015 prob-
lems for different budgets expressed as a limited number of expensive evaluations
reflecting the case of a very expensive problem. While DDHAP shows consis-
tent ranks, MS-qEI outperforms other strategies for a budget of less than 360
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Table 13: Hybrid algorithms robustness to search landscapes. Dispersion-Driven
Hybrid Acquisition Process. Friedmans average ranks of the competing algorithms
in case of moderately expensive problem (budget expressed as a limited execution time).
Smaller ranks (darker backgrounds) indicate better generalization performances across the
CEC2015 test suite while larger ranks (lighter backgrounds) indicate lower generalization
performances.
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CEC2015 10-D
60 5 5.2 3.4 4.8 2.2 5.53 5.8 4.06
120 4.06 4.93 3.13 5 3 5.66 6.2 4
240 3.6 4.86 3.13 5.4 3.66 5.73 6 3.6
480 3.13 5.13 2.8 5.53 4.26 5.93 6.2 3
960 2.73 4.33 3.53 5.6 4.66 6.33 5.93 2.86
1200 2.66 4 3.46 6 4.86 6.2 5.86 2.93
1800 2.86 2.86 4.13 6.46 5.26 5.53 5.8 3.06

CEC2015 30-D
60 5.26 5.53 3.8 4.26 3.53 5.66 5.06 2.86
120 4.73 5.8 4 3.8 2.46 5.66 5.46 4.06
240 4.46 5.6 3.66 4.93 2.46 5.73 5.46 3.66
480 3.80 5.40 3.33 6.33 3.13 6.20 5.13 2.66
960 2.33 4 3.53 7.4 4.66 6.26 4.73 3.06
1200 2.26 3.73 3.86 7.53 5.2 5.66 4.73 3
1800 2.33 3.2 4.2 7.93 5.86 4.93 4.59 2.93

expensive evaluations. It can be observed that DDHAP performs more poorly
for very tight budgets. This is certainly due to the wrong detection of the global
structure at the beginning of the search because the dispersion metric is a rough
indicator rather than a metric that completely describes the landscape. More-
over, the size of initial archive of expensive evaluations is restricted and only
represents sparsely the search landscape. It may be interesting to study the
applicability of other landscape analysis tools [54] to improve the decision made
at this step. Replacing CL by MS-qEI within the DDHAP should also improve
the new hybrid strategy as MS-qEI demonstrates better ranks than CL in both
Table 13 and Table 14. Analogically, employing a surrogate-free AP for larger
budgets in DDHAP may provide performance enhancement as GA produces the
best results for a budget of 30 minutes in Table 13.

The design and calibration of the new DDHAP is based on the previous
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Table 14: Hybrid algorithms robustness to search landscapes. Dispersion-Driven
Hybrid Acquisition Process. Friedmans average ranks of the competing algorithms in case
of very expensive problems (budget expressed as a limited number of expensive evaluations).
Smaller ranks (darker backgrounds) indicate better generalization performances across the
CEC2015 test suite while larger ranks (lighter backgrounds) indicate lower generalization
performances.
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CEC2015 10-D
72 6.66 5.13 4.06 4.13 1.86 4.4 5.6 4.13
108 6.2 5.26 3.93 4.06 2.33 4.59 5.93 3.66
144 5.8 4.86 3.66 4.13 2.66 4.46 6.2 4.2
216 5.13 4.86 3.46 4.73 3.4 4.93 5.86 3.6
288 4.66 4.93 3.06 5.06 3.53 5.53 5.93 3.26
360 4.33 5.33 3 4.93 3.6 5.66 5.93 3.2
432 3.93 5.46 2.93 4.8 3.93 5.73 6.2 3
504 3.66 5.26 2.8 5.06 4 5.93 6.26 3

CEC2015 30-D
72 7 5.93 4.93 2.2 2.53 4.8 4.59 4
108 6.66 5.66 4.66 2.86 2.26 4.93 4.8 4.13
144 6.4 5.73 4.59 3.46 2.2 4.59 4.59 4.4
216 6.06 5.8 4.06 4.13 2.06 5.26 5 3.6
288 5.53 5.4 4.4 4.66 2.4 5.26 5 3.33
360 5.53 5.4 4 4.73 2.4 5.46 5.2 3.26
432 5.2 5.46 3.86 5.06 2.73 5.66 5.26 2.73
504 5 5.53 3.6 5.66 3 5.6 5.26 2.33

results obtained on the CEC2015 test suite and exposed in Subsection 6.1.
This fact raises the question of the applicability of DDHAP to other problems.
Indeed, the CEC2015 test suite is only made of 30 optimization problems while
the whole space of possible objective functions one can think of is infinite. On
the one hand, we do not expect DDHAP to provide a good optimization quality
for problems with a high number of decision variables. Firstly, because the
numerical experiments considered in this study are limited to 30-D objective
functions. Secondly, recent algorithms proposed in the field of surrogate-based
optimization harness specific techniques to handle high dimensional decision
vectors such as sub-space embedding [62] or additive models [63]. None of
these techniques are considered in this study. On the other hand, the CEC2015
test suite covers multiple landscape features that are known to hamper the
optimization procedure [33]. Hybridization and composition of such landscape
features are also taken into account. Thanks to the CEC2015 test suite, we
expect DDHAP to be applicable to a large range of optimization problem.
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7. Conclusions

The acquisition process is in charge of identifying new promising solutions in
parallel surrogate-based optimization algorithms. Multiple ways were devised to
meet this purpose and it is of primary importance to study the suitability of each
type of acquisition process with respect to the characteristic of the optimization
problem at hand. This article specifically focuses on the Covid-19 contact reduc-
tion problem that consisted to determine the optimal per-age contact mitigation
plan to reduce the impact of the pandemic. This task is challenging because
of the computationally expensive evaluation of the black-box objective function
and the binary simulation-based constraint. The joint combination of parallel
computing, surrogate modeling and evolutionary computations is required to
address such complexities. The surrogate model, the promisingness criterion
and the acquisition process represent the three dimensions of the design space
of parallel surrogate-based algorithms as considered in this study. We compared
empirically different possible options for each dimension which allowed identify-
ing a bound value to classify problems as very or moderately expensive. Conse-
quently, we proposed a new hybrid successive acquisition process that yields the
best resolution of the Covid-19 contact reduction problem and demonstrates a
good parallel scalability when compared to competing approaches. The hybrid
scheme relies on both evolutionary operators and auxiliary optimization of the
promisingness criterion to issue new candidates for expensive evaluation. The
switch from one acquisition process to another ensures robustness over budgets
thus allowing to best address moderately and very expensive problems.

The generalization of hybridization to a large range of search landscapes is
an open research question. In this article, we proposed to invoke the dispersion
metric, a landscape analysis tools, to drive the selection of the acquisition pro-
cesses during the optimization exercise. The auspicious results reported in this
paper suggest to further investigate this topic in future works. Many strategies,
such as exploratory landscape analysis, are available to characterize the land-
scape at hand and many other acquisition processes can be employed such as
those of swarm optimization and probability density estimation. Another future
direction of study on the COVID-19 contact reduction problem is to build a sur-
rogate model for the simulation-based constraint. As this constraint is binary,
a classifier could be used to help identifying the feasible region.
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Figure B.14: Search landscape provided by the 2-D Schwefel function.

Figure B.15: Search landscape provided by the 2-D Rastrigin function.

Appendix C. Calibration of BNN MCD

The hyper-parameters of BNN MCD are listed in Table C.15 along with the
possible values for the grid search. Each of the 2500 possible BNN MCD config-
urations is tested on the Schwefel-Rastrigin-Rosenbrock test suite using training
sets of 256 samples and validation sets of 1024 samples obtained through Latin
Hypercube Sampling. The calibration is based on the bi-objective minimization
of the validation mean squared error (VMSE) and minimization of the negative
average validation log-likelihood (NAVLL), both calculated after a 50-epoch
training. For a validation sample (xval, yval), the validation log-likelihood is
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Figure B.16: Search landscape provided by the 2-D Rosenbrock function.

given by:

logsumexp

(
−τ
2

(yval − f̂i(xval))
2

)
− log(nsub)−

1

2
log(2π) +

1

2
log(τ)

where τ =
1− pdrop

2.n.l.λdecay

(C.1)

where the number of sub-networks is arbitrarily fixed to nsub = 5 for the mo-
ment. Averaging over the validation set yields the NAVLL. The NAVLL incor-
porates the model uncertainty and captures how well the model fits the data
with larger values indicating better accuracy [24].

Table C.15: Calibration of BNN MCD. Possible values for the hyper-parameters.

Symbol Name Calibration method
nhl number of fully-connected grid search {1; 2; 5; 8; 10}

hidden layers
mu number of units per layer grid search {256; 512; 1024; 2048; 4096}

λdecay weight decay coefficient grid search {10−3; 10−2; 10−1; 1}
l Normal standard deviation grid search {10−2; 10−1; 1; 10; 100}

for weights initialization
pdrop dropout probability grid search {0.005; 0.05; 0.1; 0.3; 0.5}
h() activation function Relu [23]
ξ Adam initial learning rate 0.001 [23]

The BNN MCD variants with two or three occurrences in the non-dominated
fronts of the benchmarks are identified. Among them, the configuration dis-
played in the middle of the non-dominated front for both Schwefel and Rosen-
brock is retained. In the middle of the non-dominated front, VMSE and NAVLL
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are balanced. Moreover, Schwefel and Rosenbrock are favored since the Covid-
19-related problem may exhibit similar characteristics. The best non-dominated
front according to simultaneous minimization of VMSE and NAVLL are pro-
vided in Table C.16, Table C.17 and Table C.18 for Schwefel, Rastrigin and
Rosenbrock respectively. The configurations with 2 or 3 occurrences in the
non-dominated fronts are provided in Table C.19.
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Table C.16: Calibration of BNN MCD. Best non-dominated front according to mini-
mization of the validation mean squared error (VMSE) and the negative average validation
log-likelihood (NAVLL) on the Schwefel problem. Ordering according to ascending VMSE
from top to bottom. The retained configuration appears in bold.

nhl mu λdecay l pdrop VMSE NAVLL
1 512 1e-3 1e-2 0.05 0.0281 6.0782
1 1024 1e-3 1e-2 0.1 0.0282 5.8554
10 2048 1e-3 1e-2 0.3 0.0284 5.2803
10 1024 1e-3 1e-2 0.3 0.0285 5.273
10 2048 1e-3 1e-2 0.5 0.0287 4.5629
1 1024 1e-3 1e-2 0.5 0.0289 4.5159
8 4096 1e-2 1e-2 0.005 0.0289 2.6749
8 4096 1e-2 1e-2 0.1 0.0289 2.5988
2 4096 1e-2 1e-2 0.1 0.0291 2.5987
1 1024 1e-2 1e-2 0.1 0.0291 2.591
10 4096 1e-2 1e-2 0.3 0.0292 2.4188
8 2048 1e-2 1e-2 0.3 0.0293 2.4183
1 2048 1e-2 1e-2 0.3 0.0293 2.4124
2 2048 1e-2 1e-2 0.5 0.0295 2.196
10 2048 1e-2 1e-2 0.5 0.0297 2.1956
1 2048 1e-1 1e-2 0.005 0.0299 1.2783
1 4096 1e-1 1e-2 0.005 0.0299 1.2782
1 4096 1e-1 1e-2 0.05 0.0301 1.2542
1 1024 1e-1 1e-2 0.1 0.0304 1.2257
2 2048 1e-1 1e-2 0.1 0.0305 1.2257
1 512 1e-1 1e-2 0.1 0.0308 1.2256
1 2048 1e-1 1e-2 0.3 0.0309 1.0946
1 512 1e-1 1e-2 0.3 0.0311 1.0946
1 2048 1e-1 1e-2 0.5 0.0312 0.9208
1 4096 1e-1 1e-2 0.5 0.0317 0.9208
2 4096 1e-1 1e-2 0.5 0.0321 0.9207
8 4096 1 1e-2 0.005 0.033 0.1026
10 4096 1 1e-2 0.05 0.0332 0.0793
5 4096 1 1e-2 0.1 0.0335 0.0521
10 4096 1 1e-2 0.3 0.034 -0.074
2 2048 1 1e-2 0.3 0.0348 -0.074
2 2048 1 1e-2 0.5 0.035 -0.2428
10 4096 1 1e-2 0.5 0.0351 -0.2428
1 256 1 1e-1 0.3 0.0925 -1.227
1 256 1 1e-1 0.5 0.1254 -1.3953
1 256 1 1 0.05 2667.34 -2.2039
1 256 1 1 0.3 3001.3754 -2.3104
1 256 1 1 0.5 3230.1306 -2.4348
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Table C.17: Calibration of BNN MCD. Best non-dominated front according to mini-
mization of the validation mean squared error (VMSE) and the negative average validation
likelihood (NAVLL) on the Rastrigin problem. Ordering according to ascending VMSE from
top to bottom.

nhl mu λdecay l pdrop VMSE NAVLL
8 2048 1e-3 1e-2 0.1 0.0323 6.3019
10 4096 1e-3 1e-2 0.3 0.0324 5.5486
10 2048 1e-3 1e-2 0.3 0.0328 5.546
10 4096 1e-3 1e-2 0.5 0.033 4.7496
10 4096 1e-2 1e-2 0.05 0.0332 2.6757
8 4096 1e-2 1e-2 0.05 0.0332 2.6757
10 4096 1e-2 1e-2 0.1 0.0334 2.6337
5 1024 1e-2 1e-2 0.1 0.0336 2.6328
2 4096 1e-2 1e-2 0.3 0.0337 2.4471
8 2048 1e-2 1e-2 0.3 0.0338 2.4454
10 2048 1e-2 1e-2 0.3 0.0339 2.4452
2 4096 1e-2 1e-2 0.5 0.0339 2.2152
1 4096 1e-1 1e-2 0.005 0.0345 1.2823
2 2048 1e-1 1e-2 0.05 0.0347 1.2577
2 4096 1e-1 1e-2 0.1 0.0348 1.229
1 4096 1e-1 1e-2 0.3 0.0356 1.0974
1 2048 1e-1 1e-2 0.3 0.0356 1.0972
5 4096 1e-1 1e-2 0.3 0.0364 1.0972
1 1024 1e-1 1e-2 0.5 0.0365 0.9229
1 2048 1e-1 1e-2 0.5 0.0372 0.9229
8 4096 1e-1 1e-2 0.5 0.0375 0.9228
10 4096 1e-1 1e-2 0.5 0.0378 0.9228
1 4096 1 1e-2 0.005 0.0384 0.1029
1 4096 1 1e-2 0.1 0.0385 0.0524
2 4096 1 1e-2 0.1 0.0399 0.0524
1 4096 1 1e-2 0.3 0.0403 -0.0736
5 4096 1 1e-2 0.3 0.0406 -0.0737
1 4096 1 1e-2 0.5 0.0411 -0.2426
2 4096 1 1e-2 0.5 0.0416 -0.2426
1 2048 1 1e-2 0.5 0.042 -0.2426
8 1024 1 1e-2 0.5 0.0461 -0.2426
1 256 1 1e-1 0.3 0.1234 -1.227
1 256 1 1e-1 0.5 0.129 -1.3953
1 512 1 1e-1 0.5 0.2099 -1.3953
1 1024 1 1e-1 0.5 0.4058 -1.3953
1 256 1 1 0.1 2634.2219 -2.2082
1 256 1 1 0.3 2967.1152 -2.2736
1 256 1 1 0.5 3345.4199 -2.3886
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Table C.18: Calibration of BNN MCD. Best non-dominated front according to minimiza-
tion of the validation mean squared error (VMSE) and the negative average validation log-
likelihood (NAVLL) on the Rosenbrock problem. Ordering according to ascending VMSE
from top to bottom. The retained configuration appears in bold.

nhl mu λdecay l pdrop VMSE NAVLL
1 2048 1e-3 1e-2 0.005 0.0235 5.6153
1 2048 1e-3 1e-2 0.05 0.0236 5.5204
1 4096 1e-3 1e-2 0.1 0.0243 5.2677
1 4096 1e-3 1e-2 0.3 0.0245 4.7687
1 2048 1e-3 1e-2 0.5 0.0252 4.2843
1 4096 1e-3 1e-2 0.5 0.0256 4.2509
2 4096 1e-3 1e-2 0.5 0.0309 4.2273
1 512 1e-2 1e-2 0.005 0.0311 2.6421
1 2048 1e-2 1e-2 0.1 0.0312 2.569
1 4096 1e-2 1e-2 0.1 0.0316 2.569
1 2048 1e-2 1e-2 0.3 0.0319 2.3986
1 4096 1e-2 1e-2 0.3 0.0319 2.3972
1 2048 1e-2 1e-2 0.5 0.0323 2.1841
1 4096 1e-2 1e-2 0.5 0.0325 2.1835
1 256 1e-2 1e-1 0.05 0.0385 1.2509
1 1024 1e-1 1e-2 0.1 0.0431 1.2362
1 1024 1e-1 1e-2 0.3 0.0436 1.1028
1 4096 1e-1 1e-2 0.3 0.0437 1.1026
1 512 1e-1 1e-2 0.3 0.0441 1.1025
1 1024 1e-1 1e-2 0.5 0.0443 0.9264
1 4096 1 1e-2 0.05 0.045 0.0805
2 4096 1 1e-2 0.05 0.0457 0.0805
2 4096 1 1e-2 0.1 0.0459 0.0532
1 4096 1 1e-2 0.3 0.0461 -0.0731
1 2048 1 1e-2 0.3 0.0461 -0.0731
1 1024 1 1e-2 0.3 0.0467 -0.0731
1 4096 1 1e-2 0.5 0.0468 -0.2421
1 512 1 1e-2 0.5 0.0477 -0.2421
8 2048 1 1e-2 0.5 0.0486 -0.2422
1 256 1e-1 1e-1 0.5 0.0659 -0.2423
1 512 1e-1 1e-1 0.5 0.0756 -0.2423
1 256 1 1e-1 0.1 0.1148 -1.1012
1 256 1 1e-1 0.5 0.132 -1.3952
1 512 1 1e-1 0.5 0.2207 -1.3953
1 2048 1 1e-1 0.5 0.7305 -1.3953
1 4096 1 1e-1 0.5 1.4349 -1.3953
2 4096 1 1e-1 0.5 424.7706 -1.3953
1 256 1 1 0.05 2658.1091 -2.1998
1 256 1 1 0.3 2677.07 -2.3144
1 256 1 1 0.5 3048.7062 -2.4446
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Table C.19: Calibration of BNN MCD. BNN MCD configurations that appear in the
non-dominated front of 2 or 3 benchmark problems. The retained configuration appears
in bold.

nhl mu λdecay l pdrop Occurrences
1 256 1 1 0.5 3
1 256 1 1 0.3 3
1 256 1 1e-1 0.5 3
1 512 1e-1 1e-2 0.3 2
1 2048 1e-1 1e-2 0.3 2
2 4096 1 1e-2 0.1 2
1 1024 1e-1 1e-2 0.5 2
1 4096 1 1e-2 0.3 2
1 4096 1e-1 1e-2 0.005 2
10 2048 1e-3 1e-2 0.3 2
1 2048 1e-2 1e-2 0.3 2
1 2048 1e-1 1e-2 0.5 2
1 1024 1e-1 1e-2 0.1 2
1 256 1 1 0.05 2
1 256 1 1e-1 0.3 2
1 512 1 1e-1 0.5 2
8 2048 1e-2 1e-2 0.3 2
1 4096 1 1e-2 0.5 2
1 4096 1e-1 1e-2 0.3 2

Appendix D. Calibration of GA

The parameters of the GA are listed in Table D.20 along with their val-
ues for the grid search. The Schwefel, Rastrigin and Rosenbrock functions are
optimized 10 independent times with each of the 20 instances of GA obtained
by varying the population size and cross-over probability. The computational
budget allocated to each search amounts to 30 minutes on 18 computing cores.

Table D.20: Calibration of the surrogate-free parallel GA. Possible values for the
parameters.

Symbol Name Calibration method
npop population size grid search {8; 18; 36; 72; 144}
pc cross-over probability grid search {0.3; 0.5; 0.7; 0.9}
ηc cross-over distribution index 10 [44]
pm mutation probability 1

d [45]
ηm mutation distribution index 50 [44]
nt tournament size 2 [32]

The grid search calibration outcomes are displayed as box-plot graphs in
Figure D.17, Figure D.18 and Figure D.19 for Schwefel, Rastrigin and Rosen-
brock respectively. The corresponding main statistics are reported in Table
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D.21, Table D.22 and Table D.23. The best configuration according to the av-
erage, median and minimum objective value found at the end of the search
is (npop = 72; pc = 0.9) for the Schwefel and the Rastrigin problems and
(npop = 18; pc = 0.9) for the Rosenbrock problem. Setting npop = 8 provides
consistently bad results because it induces the idling of 10 computing cores.

Figure D.17: Calibration of the surrogate-free parallel GA. Distribution of the best
objective values from the 10 repetitions of the experiments on the Schwefel problem. Average
values are depicted by red squares.

60



Figure D.18: Calibration of the surrogate-free parallel GA. Distribution of the best ob-
jective values from the 10 repetitions of the experiments on the Rastrigin problem. Average
values are depicted by red squares.
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Figure D.19: Calibration of the surrogate-free parallel GA. Distribution of the best
objective values from the 10 repetitions of the experiments on the Rosenbrock problem.
Average values are depicted by red squares.
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Table D.21: Calibration of the surrogate-free parallel GA. Statistics of the distribution
of the best objective values from the 10 repetitions of the experiments on the Schwefel
problem. Ordering according to ascending average best objective value from top to bottom.
The best value for each column appears in bold.

npop pc Average Median Minimum Variance
72 0.9 606.16 542.0 324.5 47011.53
72 0.7 889.47 902.62 409.36 118702.65
36 0.9 931.69 825.79 595.2 67856.63
72 0.5 1141.93 1157.35 718.28 32334.32
144 0.7 1239.44 1328.12 719.76 76650.15
144 0.9 1318.88 1276.17 1064.83 35878.64
36 0.7 1340.92 1231.3 761.9 175525.18
36 0.5 1599.24 1561.78 594.54 160909.86
144 0.5 1629.41 1623.04 1306.89 43485.15
72 0.3 1663.67 1701.82 849.11 259982.01
36 0.3 1872.68 1771.19 1111.97 208935.32
18 0.9 1892.87 1787.23 1304.08 161087.18
18 0.7 2043.18 1831.31 1470.45 273082.05
144 0.3 2079.94 2136.23 1505.05 62635.81
18 0.5 2286.32 2264.47 1887.0 55069.82
18 0.3 2452.32 2411.11 1840.13 109126.93
8 0.7 2750.68 2714.23 2047.0 278623.58
8 0.5 2821.03 2653.74 1907.67 312750.77
8 0.9 2846.3 2852.68 2106.74 173903.74
8 0.3 2987.9 3114.64 2378.45 144095.13
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Table D.22: Calibration of the surrogate-free parallel GA. Statistics of the distribution
of the best objective values from the 10 repetitions of the experiments on the Rastrigin
problem. Ordering according to ascending average best objective value from top to bottom.
The best value for each column appears in bold.

npop pc Average Median Minimum Variance
72 0.9 21.65 21.85 13.6 18.79
72 0.7 27.63 26.79 14.48 48.61
36 0.9 27.9 30.35 19.97 28.24
36 0.7 34.33 30.85 19.35 168.97
72 0.5 42.32 38.33 30.28 114.27
18 0.9 42.37 40.54 18.96 174.72
36 0.5 47.03 46.97 26.13 130.18
144 0.9 47.27 46.52 38.01 40.08
72 0.3 49.35 45.24 32.66 119.86
18 0.7 51.29 50.38 30.04 215.73
36 0.3 52.56 50.39 34.49 283.84
18 0.5 56.74 54.59 35.2 183.72
144 0.7 58.97 57.42 52.43 23.21
18 0.3 62.66 64.03 37.54 204.24
144 0.5 65.62 65.45 58.01 10.98
8 0.9 73.56 68.07 50.8 357.22
144 0.3 73.65 76.37 62.32 32.3
8 0.3 75.26 74.12 39.37 444.26
8 0.5 78.79 75.8 49.9 507.6
8 0.7 87.96 86.41 57.41 586.07
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Table D.23: Calibration of the surrogate-free parallel GA. Statistics of the distribution
of the best objective values from the 10 repetitions of the experiments on the Rosenbrock
problem. Ordering according to ascending average best objective value from top to bottom.
The best value for each column appears in bold.

npop pc Average Median Minimum Variance
18 0.9 433.91 259.33 74.26 191251.85
18 0.7 820.67 295.8 110.05 1466702.09
36 0.9 1092.0 592.06 336.37 658936.44
36 0.7 1261.31 984.69 216.17 1191134.25
18 0.5 1665.09 1477.32 184.67 1661523.63
72 0.9 1959.02 1872.94 373.53 1082062.41
18 0.3 2307.74 1843.04 110.43 2586536.83
36 0.5 2942.54 1875.14 736.89 12259372.39
144 0.9 4001.54 2935.33 1267.18 11060605.09
72 0.7 4252.02 3417.06 1469.76 6778061.45
8 0.9 6337.49 6684.22 358.06 11193763.83
72 0.5 6839.66 7021.64 1050.14 15688530.4
144 0.7 8099.69 8001.32 2850.41 11235759.19
72 0.3 10946.07 8896.91 1538.18 66445555.65
8 0.7 11717.1 9962.93 539.94 120357282.62
36 0.3 12901.81 12731.52 1088.82 78500881.02
144 0.5 16214.5 18213.14 6596.36 45565006.41
144 0.3 21415.34 23089.57 4840.79 63520417.44
8 0.3 24522.5 24112.23 7262.69 155115614.92
8 0.5 33595.52 31836.06 7229.95 395710854.33
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Appendix E. Calibration of SaaEF

The parameters of SaaEF are listed in Table E.24 along with their values for
the grid search. BNN MCD and par-fs-cd are arbitrarily chosen as surrogate
and PC respectively. The early stopping and cross-validation parameters of the
BNN MCD are also consider for tuning. The Schwefel-Rastrigin-Rosenbrock
test suite is tackled 10 independent times by every possible SaaEF configuration
for a budget amounting to 30 minutes on 18 computing cores.

Table E.24: Calibration of SaaEF. Possible values for the parameters.

Symbol Name Calibration method
nchld children per iteration grid search {144; 288}
q exp. eval. per iteration 72 = 0.25 ∗ nchld [26, 46]

npred predictions per iteration 72 = 0.25 ∗ nchld [26, 46]
ndisc discardings per iteration 144 = nchld − q − npred

(δES , nES) BNN MCD early stopping grid search
{(10−4, 8), (10−8, 32)}

2-fold cross-validation grid search {yes, no}

The main statistics of the results are exposed in Table E.25, Table E.26 and
Table E.27 for the Schwefel, Rastrigin and Rosenbrock functions respectively.
Increasing nchld grants major opportunity for the reproduction operators to
yield auspicious candidates. The number of new samples between consecutive
surrogate updates is given by q for which higher values are preferred according
to the calibration outcomes. In SaaEF, one surrogate update is carried out per
iteration. Increasing the number of surrogate updates per iteration by means
of partitioning the population of children into sub-batches has been attempted
in the framework of this study but has not demonstrated any benefit.

The retained tuning is the one showing the best average and median objec-
tive value at the end of the search on the Schwefel problem and the fourth on
the Rosenbrock problem. On Rastrigin, no configuration outperform the GA
without surrogate.
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Table E.25: Calibration of SaaEF. Statistics of the distribution of the best expensive
objective values from the 10 repetitions of the experiments on the Schwefel problem. Ordering
according to ascending average best expensive objective value from top to bottom. The best
value for each column appears in bold.

nchld (δES , nES) cross. val. Average Median Minimum Variance q
288 (10−8, 32) yes 516.82 480.87 190.58 66999.17 72
- No surrogate 607.91 503.25 253.29 71295.35 -

144 (10−8, 32) yes 685.72 558.1 276.4 210240.3 36
288 (10−8, 32) no 872.15 828.71 483.86 58040.28 72
288 (10−4, 8) yes 893.4 820.97 502.66 80785.52 72
288 (10−4, 8) no 1011.34 926.27 650.28 73748.54 72
144 (10−4, 8) yes 1060.04 1004.16 649.05 65682.39 36
144 (10−8, 32) no 1085.84 1103.41 686.69 66753.01 36
144 (10−4, 8) no 1125.48 1085.87 721.91 89206.08 36

Table E.26: Calibration of SaaEF. Statistics of the distribution of the best expensive ob-
jective values from the 10 repetitions of the experiments on the Rastrigin problem. Ordering
according to ascending average best expensive objective value from top to bottom. The best
value for each column appears in bold.

nchld (δES , nES) cross. val. Average Median Minimum Variance q
- No surrogate 23.30 22.66 12.99 30.58 -

144 (10−8, 32) no 29.31 28.47 16.02 86.36 36
288 (10−8, 32) yes 29.4 27.0 21.39 44.37 72
288 (10−4, 8) yes 31.06 34.95 15.98 68.34 72
288 (10−8, 32) no 33.41 31.92 19.56 67.76 72
144 (10−8, 32) yes 34.76 36.64 23.65 34.01 36
144 (10−4, 8) no 35.38 34.6 19.21 166.75 36
144 (10−4, 8) yes 35.68 35.87 28.79 17.78 36
288 (10−4, 8) no 38.08 33.3 21.93 193.38 72

Table E.27: Calibration of SaaEF. Statistics of the distribution of the best expensive
objective values from the 10 repetitions of the experiments on the Rosenbrock problem.
Ordering according to ascending average best expensive objective value from top to bottom.
The best value for each column appears in bold.

nchld (δES , nES) cross. val. Average Median Minimum Variance q
144 (10−8, 32) yes 1096.8 810.92 446.3 488068.36 36
144 (10−4, 8) yes 1105.28 755.04 339.37 1006032.14 36
- No surrogate 1191.14 757.03 246.71 1557771.06 -

288 (10−8, 32) yes 1359.59 1268.25 745.12 336182.97 72
288 (10−4, 8) yes 1407.53 1052.41 198.69 869984.37 72
288 (10−4, 8) no 1414.96 1293.39 280.94 732488.17 72
288 (10−8, 32) no 1989.58 1973.39 528.56 1482968.13 72
144 (10−4, 8) no 2019.27 1034.21 392.79 4621452.92 36
144 (10−8, 32) no 4387.67 3873.49 1389.24 5623346.82 36
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Appendix F. Calibration of the PC optimizer in qEGO

A surrogate-free GA is used to optimize the PC in the AP of qEGO. A
grid search calibration is performed on the population size and the number
of generations considering the values npop ∈ {50; 100; 150; 200} and ngen ∈
{50; 100; 150; 200}. The (GP RBF, CL, ada-wang) qEGO configuration is run
ten independent times on the Schwefel and Rosenbrock problem for a compu-
tational budget amounting to 30 minutes in 18 computing units. Although this
particular configuration creates a bias in the tuning procedure, the extreme
computing load of a full calibration is bypassed.

The box-plots of the final expensive objective values reached at the end of the
searches are shown in Figure F.20 and Figure F.21 for Schwefel and Rosenbrock
respectively. The configuration (npop, ngen) = (50, 100) provides competitive
results and is consequently retained for further experiments.

Figure F.20: Calibration of the PC optimizer in qEGO. Distribution of the best expen-
sive objective values from the 10 repetitions of the experiments on the Schwefel problem.
Average values are depicted by red squares.
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Figure F.21: Calibration of the PC optimizer in qEGO. Distribution of the best expen-
sive objective values from the 10 repetitions of the experiments on the Rosenbrock problem.
Average values are depicted by red squares.
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Appendix G. Comparing variants of CL, HSAP and HCAP on CEC2015

Table G.28: Hybrid algorithms robustness to search landscapes. Experiments on
the CEC2015 test suite. Comparison of CL and CL-lcb. Number of problems for which
one method is better than the other according to the average best expensive objective value
computed over the 20 repetitions of the experiments.

Computational budget Problem dimension CL CL-lcb
108 exp. eval. 10 7 8

30 7 8
30 min. 18 cores 10 2 13

30 6 9

Table G.29: Hybrid algorithms robustness to search landscapes. Experiments on
the CEC2015 test suite. Comparison of HSAP and HSAP-lcb. Number of problems for
which one method is better than the other according to the average best expensive objective
value computed over the 20 repetitions of the experiments.

Computational budget Problem dimension HSAP HSAP-lcb
108 exp. eval. 10 9 6

30 10 5
30 min. 18 cores 10 4 11

30 5 10

Table G.30: Hybrid algorithms robustness to search landscapes. Experiments on
the CEC2015 test suite. Comparison of HCAP and HCAP-par. Number of problems for
which one method is better than the other according to the average best expensive objective
value computed over the 20 repetitions of the experiments.

Computational budget Problem dimension HSAP HSAP-lcb
108 exp. eval. 10 9 6

30 9 6
30 min. 18 cores 10 7 8

30 8 7
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