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Abstract 

Much of our basic understanding of cognitive and social processes in infancy relies on measures 

of looking time, and specifically on infants’ visual preference for a novel or familiar stimulus. 

However, despite being the foundation of many behavioral tasks in infant research, the 

determinants of infants’ visual preferences are poorly understood, and differences in the 

expression of preferences can be difficult to interpret. In this large-scale study, we test 

predictions from the Hunter and Ames model of infants' visual preferences.1 We investigate the 

effects of three factors predicted by this model to determine infants’ preference for novel versus 

familiar stimuli: age, stimulus familiarity, and stimulus complexity. Drawing from a large and 

diverse sample of infant participants (N = XX), this study will provide crucial empirical evidence 

for a robust and generalizable model of infant visual preferences, leading to a more solid 

theoretical foundation for understanding the mechanisms that underlie infants’ responses in 

common behavioral paradigms. Moreover, our findings will guide future studies that rely on 

infants' visual preferences to measure cognitive and social processes. 

Keywords: looking time methods; familiarity preference; novelty preference  

https://www.zotero.org/google-docs/?5haSdj
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Introduction 

Scholars and parents alike have long been fascinated by questions concerning the infant 

mind. What are infants thinking, seeing, hearing, and feeling, and from where and when do these 

abilities arise? Because it is not possible to query infants directly, scientists must rely on indirect 

techniques to study early development. However, many of the measures and procedures used 

with older children and adults, such as button presses or responding to questions, are difficult or 

impossible to use with infants. This has led researchers to adopt an indirect behavioral measure – 

infants’ looking toward visual stimuli – as one of the primary measures for uncovering the 

development of psychological processes in infancy.2 

Much of the prior research using infants’ looking time is based on the seminal finding 

that infants, following repeated exposure to a particular stimulus, typically demonstrate a 

preference to look at a relatively new stimulus.3 This novelty preference has been well-

documented for both visual and auditory stimuli.4–7 The approach in these looking time studies is 

often to present one or more stimuli until infants’ interest in the familiar stimuli is reduced, 

thereby inducing preferences for novelty.8 However, infants’ responses, as well as scientists’ 

interpretations of these responses, vary substantially.2 Although many studies have found that 

infants show a robust novelty preference9–11, there are also conditions under which infants prefer 

familiar stimuli over novel stimuli4,12–15. Even within specific research areas, there are usually 

examples of both directions of preference, and there are no clear reasons as to why 6,16. 

Furthermore, in some cases, the same type of stimulus that draws infants’ attention in one 

paradigm can fail to draw attention in another.17,18 

Despite this variability, scientists have generally focused on novelty preferences as a 

basis for making inferences about infants’ cognitive processing. This idea is consistent with 

https://www.zotero.org/google-docs/?yWkhux
https://www.zotero.org/google-docs/?AuFLTl
https://www.zotero.org/google-docs/?69BymR
https://www.zotero.org/google-docs/?RBYIph
https://www.zotero.org/google-docs/?p09HZn
https://www.zotero.org/google-docs/?EgpISb
https://www.zotero.org/google-docs/?FJ4rHG
https://www.zotero.org/google-docs/?n4DKq6
https://www.zotero.org/google-docs/?hgfJpb


3 

 

arguments from multiple disciplines suggesting that stimulus novelty may serve as a key signal 

for exploration and learning.19 That is, the novelty of a stimulus may engage intrinsic motivation 

mechanisms that, in turn, drive organisms to invest cognitive resources in learning under 

conditions of uncertainty.20 Preferences for novelty have been identified in numerous diverse 

species21 and have been linked with both basic survival processes like locomotor adaptation22 

and high-level constructs like curiosity23–26. Understanding the determinants of infants’ 

familiarity and novelty preferences, therefore, is important not only for methodological reasons 

but also for clarifying mechanisms of cognitive development. 

The most influential account of looking preferences in the human infant literature is the 

conceptual model put forth by Hunter and Ames (henceforth, the Hunter and Ames model)1, 

which was based on several studies.4,27,28 Hunter and Ames aimed to account for the 

circumstances under which infants show familiarity vs. novelty preferences while processing 

information presented in stimuli. The model assumes that when one stimulus is repeatedly 

presented, infants gradually develop a preference for this familiar stimulus compared to a 

second, novel stimulus. After continued exposure to the familiar stimulus, infants’ preferences 

eventually switch, and they begin to show a preference for the novel stimulus (see Figure 1). The 

key premise of the model is that the degree to which infants prefer familiar vs. novel stimuli 

depends on three main factors and their interactions (see Figure 1): 

(1)  Familiarization time. With increasing familiarization to a stimulus, infants 

transition from preferring a familiar stimulus to preferring a novel stimulus. 

(2) Infant age. The transition from preferring a familiar stimulus to preferring a novel 

stimulus is faster for older infants than younger infants. 

https://www.zotero.org/google-docs/?yILsiv
https://www.zotero.org/google-docs/?3VNOuM
https://www.zotero.org/google-docs/?Ivxz6h
https://www.zotero.org/google-docs/?nemCds
https://www.zotero.org/google-docs/?lJZwIV
https://www.zotero.org/google-docs/?Sy4Ugu
https://www.zotero.org/google-docs/?8Uuqpf
https://www.zotero.org/google-docs/?BlIQGM
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(3) Task difficulty. As task difficulty increases (operationalized in the current study as 

stimulus complexity), infants make a slower transition from preferring a familiar 

stimulus to preferring a novel stimulus. 

At the time of writing, this influential model has been used to explain findings within a broad 

range of papers examining visual attention, speech segmentation, object categorization, face 

recognition, quantification, memory, knowledge of the physical world, and social cognition, 

among others.5,12,29–31 

 

Figure 1. This figure (adapted from Bergmann and Cristia6) depicts Hunter & Ames’ model1 of 

infant looking to familiar (plotted up) and novel (plotted down) stimuli at different levels of pre-

test familiarization time (shown on the x-axis). The dashed line indicates equal preference for 

familiar and novel stimuli. The grey line represents the model’s prediction for older infants, and 

the black line for younger infants. The “lower complexity” and “higher complexity” arrows 

indicate how the proposed relationship between age and familiarization time might shift with 

variation in stimulus complexity (i.e., the current operationalization of task difficulty). 

https://www.zotero.org/google-docs/?k3lHYg
https://www.zotero.org/google-docs/?M1hS2A
https://www.zotero.org/google-docs/?dYsAVR
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However, this model has not undergone a rigorous and comprehensive test, and the 

predictions from the model have not been supported unequivocally by the existing literature. 

Whereas several studies have demonstrated the proposed shift from familiarity to novelty 

preferences32–35, other studies have found limited evidence for this shift.6,36–38 More generally, 

there is minimal consensus on the factors that drive a familiarity preference in some conditions 

and a novelty preference in others. This gap in understanding about a core component of visual 

preferences in infancy has raised numerous interpretive challenges over the decades, including 

when to predict a preference for novelty versus familiarity and how to interpret unexpected, 

unstable, or null preferences across studies.33,34,39 

A large-scale investigation into the fundamental tenets of the Hunter and Ames model is 

an important step toward quantifying relationships between infant age, familiarization time, task 

difficulty, and preference for familiar vs. novel stimuli. In the present study, we bring together 

researchers from around the world to create and implement a best-test of key predictions of the 

Hunter and Ames model. This investigation will enable a broad community of researchers to 

improve their interpretations of infants’ visual preferences and thereby enable new and more 

robust insights into the infant mind. 

There are two main challenges in evaluating the Hunter and Ames model. First, most 

behavioral studies with infants have lacked sufficient statistical power due to the inherent 

limitations within any given lab in testing large numbers of participants.40,41 Recruiting 

participants and obtaining a high data ‘yield’ are notoriously challenging in infant research. 

Moving forward, infant research is in need of solutions to achieve higher statistical power in 

order to improve its reliability and replicability.42 A second, related challenge is that most 

behavioral studies with infants have reported findings based on a geographically and culturally 

https://www.zotero.org/google-docs/?TCdukv
https://www.zotero.org/google-docs/?yhBnb6
https://www.zotero.org/google-docs/?h78cAI
https://www.zotero.org/google-docs/?ICXcJy
https://www.zotero.org/google-docs/?eTftfk
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restricted sample, causing limited generalizability across populations. This is in part a 

consequence of the over-representation of researchers in North America and Western Europe, 

who tend to recruit primarily local families who have the means and the time for a lab visit. The 

result of this tradition of convenience has been an overreliance on samples of White infants from 

middle-class families – a biased sample of the world’s population when making conclusions 

about both human development and human nature.43,44 Overcoming these challenges is essential 

to the development of a robust and generalizable model of infants’ visual preferences. 

 We address these challenges by providing a large-scale, high-powered test of the Hunter 

and Ames model through an international collaboration, harnessing the infrastructure of 

ManyBabies.45 ManyBabies is a six-continent network of scientists who are interested in 

understanding key theoretical questions about early child development, promoting best practices 

in developmental research, and broadening participation to include scientists and families from a 

broad range of communities and cultures. Drawing on this network, we designed an experiment 

testing visual preferences for familiar and novel stimuli that will include an infant sample of 

unprecedented size and diversity (N = XX, from XX labs in XX countries), enabling an 

evaluation of the extent to which the Hunter and Ames model generalizes across cultures and 

communities. We test three specific hypotheses (see Table 3): Infants’ preferences for novel 

stimuli will be stronger (1) following longer familiarization time, (2) as infants grow older, and 

(3) for simpler vs. more complex stimuli. 

Method 

Ethics 

Prior to beginning data collection, all labs contributing data will be asked to complete a 

survey that asks for information about, among other things, their lab’s ethics approval 

https://www.zotero.org/google-docs/?Qu0A6n
https://www.zotero.org/google-docs/?fDKsVl


7 

 

procedures. Labs will indicate whether they have new or existing approval from their local ethics 

committee or institutional review board to conduct this study or whether the current study does 

not require ethics approval at their institution.  

For all labs, we will require the following consent procedure: A parent or legal guardian 

will provide informed consent for each participating infant, though the specifics of consenting 

procedures will vary across labs to comply with local legal requirements and cultural norms. 

Families will be compensated according to each lab’s standard practices as approved by their 

local ethics board. All de-identified data will be stored on the ManyBabies5 OSF repository 

(https://osf.io/g3udp/?view_only=0f4f6e3b48d8456999d6459c0bfe5510). 

Participation Details 

An initial open call to participate in “ManyBabies 5: Hunter and Ames” was issued on 

July 23, 2020 via social media and developmental science listservs. Over the next two years, 

scientists from around the world (see Figure 2) contributed in various ways to study design. The 

initial Stage 1 manuscript was submitted for review on January 10, 2023. Between February 1, 

2023 and June 30, 2023 we will address reviewer comments, finalize study design and 

procedural documents, and work with individual teams to get IRB approval.  Data collection will 

begin on July 1, 2023 with a goal of finishing one year later on June 30, 2024. Data analysis and 

Stage 2 manuscript writing will begin on July 1, 2024 with a target submission date of December 

31, 2024. 

https://osf.io/g3udp/?view_only=0f4f6e3b48d8456999d6459c0bfe5510
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Figure 2. Map depicting the geographic locations of the ManyBabies 5 contributors. 

 

Each participating lab will be asked to contribute a sample of at least 32 infants between 

the ages of 3 and 15 months; effort will be made across labs to ensure that age is distributed 

evenly across this age span, to the extent possible. Because many of our analyses will examine 

effects across labs rather than within a single lab, we will also allow labs to contribute a “half 

sample” of 16 infants. As in the ManyBabies1 project46, allowing “half samples” will increase 

the number of labs capable of contributing to data collection and will enable participation from 

more labs, especially those from under-resourced and/or underrepresented communities. We will 

ask that the sample size per lab (a full sample of 32 or half-sample of 16) includes any infant that 

https://www.zotero.org/google-docs/?3xwRnB
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enters the lab and not the number of infants retained after exclusion criteria are implemented 

because final decisions about participant exclusion will take place centrally. 

Participants 

The final sample will include XX infants between the ages of 3 and 15 months, recruited 

and tested by XX labs across XX countries and XX continents (see Table 2 for by-lab details). 

Based on initial surveys of potential contributors, we expect to be able to recruit a sample size of 

at least 1,280 infants (at least 40 labs plan to contribute data from approximately 32 infants 

each). The 3- to 15-month age span was chosen because it covers the majority of ages for which 

the Hunter and Ames model has been used to describe infants’ responses to stimuli in previous 

research. Because the ManyBabies model makes it possible to collect a sizable sample of infants 

with a variety of developmental histories, we will adopt an inclusive recruitment strategy. Labs 

will be encouraged to recruit (using lab-standard practices) any infant who meets just two 

criteria: (1) the infant’s age falls within the 3- to 15-month age range, and (2) the infant has no 

known issues that would directly impede their ability to process visual stimuli (i.e., visual 

impairments). However, we will additionally collect data about the criteria on which infants are 

typically excluded in developmental studies, such as prematurity, developmental delays or 

disorders, family history of colorblindness, and hearing status. For the analyses of interest in the 

current paper, we will exclude infants when there is a reason to expect that the predictions of our 

model would differ based on their developmental history (such as prematurity; see inclusion 

criteria below). However, all data will be retained for potential future analyses beyond the scope 

of the current paper (e.g., investigating the effects of prematurity on infants’ preferences for 

novel versus familiar stimuli47). 

https://www.zotero.org/google-docs/?T85UOp
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In some labs, we expect that infants will also be tested in other experiments during their 

visit. In these cases, we will strongly encourage labs to administer the current study first because 

it is commonly observed in infant studies that “second session” experiments result in greater 

dropout rates. If labs absolutely must administer this study second, we will ask them to report 

whether infants participated in the current study first or second and, when the infant participated 

in the current study second, we will ask for information about the first study. All infants will be 

included in the primary analyses (following previous ManyBabies studies46), but information 

about first versus second session will be retained for exploratory analyses examining the effect of 

first versus second session testing. 

Table 2 

Overview of participating labs and contributed participants (see below for additional details 

about method and procedure). 

 

Lab 

Name 

University Method Procedure Mean age 

(days) 

N Country 

XX XX central fixation / 

eye-tracking 

fixed-length / 

infant-controlled 

XX XX XX 

… … … … … … … 

 

Participant Demographics 

Basic demographic data will be collected for all participants using the ManyBabies 

Demographics questionnaire (Singh, Barokova, Baumgartner, Lopera, Okyere, et al., 

unpublished manuscript). This questionnaire asks about participants’ biographical information, 

race and ethnicity, gestational age, caregiver information, family socio-economic status, 

language exposure, and relevant developmental concerns. Researchers from different 

communities, nations, and cultures will be able to modify the content of the questionnaire in 

https://www.zotero.org/google-docs/?aLgj3R
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structured ways to ensure appropriateness of the questions for local contexts while preserving, to 

the extent possible, comparability across test sites.  

Materials 

Visual Stimuli. In the current experiment, we chose to operationalize task difficulty in 

terms of stimulus complexity: we assume that task difficulty increases as stimuli become more 

complex. Because the sample size possible in ManyBabies projects provides a unique 

opportunity to test generalizability across multiple stimulus types, we chose two different 

categories of stimuli: fribbles48–52 and fractals53,54. Fribbles are colorful, computer-generated 

models of 3D figures. All fribbles are made up of one of three possible body shapes and up to 

four appendages that can be chosen from a set of possible options for heads, legs, and two parts 

of a tail. Fractals are geometric shapes in which the same structure is repeated iteratively at 

different levels of scale. These two classes of stimuli were chosen because: (1) they allow for 

variation in stimulus complexity within the same stimulus category (i.e., by manipulating the 

number of features); (2) infants are unlikely to have previous experience with either set of 

stimuli; and (3) the inclusion of two stimulus sets allow us to begin examining the 

generalizability of any observed effect.  

We created 12 unique fribbles and 12 unique fractals, operationalizing complexity as the 

number of features present (these features are appendages in the case of fribbles and iterations of 

the same structure for fractals; see Figure 3). Within each stimulus type, 6 items were designed 

to be low-complexity and 6 were designed to be high-complexity. Specifically, low-complexity 

fribbles are constructed of one body shape and one appendage while high-complexity fribbles 

have one body shape and four appendages. In the case of fractals, low-complexity items consist 

https://www.zotero.org/google-docs/?oXKypE
https://www.zotero.org/google-docs/?g3vP6d
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of 3 iterations of the same fractal pattern whereas high-complexity items are made of 9 iterations 

of the same pattern. 

 Fribbles Fractals 

Low Complexity  

 
 

High Complexity  

 
 

Figure 3. Examples of low- and high-complexity Fribble and Fractal stimuli.  

 

Procedure 

Full procedural instructions provided to each lab will be available in Supplementary 

Materials on the OSF. Before data collection begins, all labs will be asked to complete a pre-

data-collection survey (which will be viewable on the OSF) and submit a walkthrough video 

depicting a standard testing session (described in further detail below). During the experiment, 

infants will be seated on their caregiver’s lap or in a high-chair or car seat (whichever option 

corresponds to labs’ standard procedures for testing infants, as reported in the pre-data-collection 

survey). Each trial will be made up of a familiarization phase, in which infants are first exposed 

to a stimulus, and two test phases where infants are presented with both the item they viewed 

during the familiarization phase and a novel test item. These phases will be repeated on each of 

12 total trials and are described in further detail below.  

Infant-controlled versus fixed-length methods.  Familiarization can be achieved either 

by presenting a fixed amount of exposure, i.e. a fixed-length design, or by ending the 
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familiarization phase of an experiment after infants have acquired a certain amount of looking at 

the target, i.e. an infant-controlled design. Both approaches have been used in the literature. In 

the fixed-length condition the familiarization stimulus is presented for a fixed duration regardless 

of how much the infant looks.55 This procedure allows for variation in how much time infants 

look at the stimulus before their visual preference is assessed while controlling for the amount of 

time from the start of the familiarization phase to the test phase. Thus, in the fixed-length design, 

the length of the familiarization phase is fixed while the duration of visual attention directed 

towards the stimulus varies. 

In the infant-controlled design, in contrast, the familiarization stimulus is presented until 

infants accumulate the same amount of looking.4,56 This procedure ensures that all infants receive 

the same amount of familiarization before their preferences for novel stimuli are tested. It also 

means that the length of the familiarization phase is determined by how long it takes infants to 

accumulate the required amount of looking (e.g., if they have one or two long looks, with little 

looking away time, or multiple short looks interspersed with variable length looks away). Thus, 

in the infant-controlled design, the length of the familiarization phase varies while the duration 

of infants’ visual attention directed towards the stimulus remains consistent. 

The consensus across the ManyBabies 5 community was that an infant-controlled design, 

which facilitates equating infants’ familiarization time, represented the best test of our main 

research questions. Participating labs will be encouraged to use and supported in their use of an 

infant-controlled procedure. However, because infant-controlled procedures require either well-

trained testers who can reliably code infant looking time in the moment or eye-tracking systems 

that can support gaze-contingent protocols, it may not be possible for some labs to use this 

procedure. In line with ManyBabies’ philosophy of inclusive participation, we will attempt to 

https://www.zotero.org/google-docs/?SOZhaf
https://www.zotero.org/google-docs/?by56Y4
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support all labs in implementing infant-controlled familiarization, but allow for use of a fixed-

length procedure in cases in which infant-controlled is not possible (i.e., labs lacking the required 

personnel or equipment to implement an infant-controlled procedure). This will allow labs to 

flexibly choose the option that works best for their resources and maximizes overall data 

collection, while also working towards a high proportion of labs implementing the desired 

procedure. In total, XX labs will use an infant-controlled procedure and XX labs will use fixed-

length familiarization (as reported in the pre-data-collection survey). To ensure that any observed 

differences across labs using infant-controlled and fixed-length procedures will not be due to 

selection effects (as labs self-selected into one paradigm or the other), a subset of XX labs who 

use the infant-controlled design will be asked to collect a second sample of infants using a fixed-

length procedure.  

Trial structure. The trial sequence is patterned after classic work by Rose and 

colleagues.4 On each trial, a single stimulus is presented centrally on the screen for a 

familiarization phase, followed by two test phases in which the now-familiar stimulus is paired 

with a novel stimulus (the novel stimulus will be the same across the two test phases). Following 

Rose and colleagues4, each test phase will be 5 s in duration, and they will differ only in the left-

right placement of the novel and familiar stimulus, i.e. the location of the paired test item will be 

switched between the two test phases.  

In order to test the effect of familiarization time, we will vary the duration of the 

familiarization phase, yielding three types of trials. In the infant-controlled design, following 

Rose and colleagues4, the familiarized stimulus will be presented until infants accumulate 5, 10, 

or 15 s of looking to the familiarization stimulus (thus, the actual trial length will vary across 

infants depending on how long it takes each infant to accumulate the required looking time). We 

https://www.zotero.org/google-docs/?e6jXeF
https://www.zotero.org/google-docs/?j3HPa7
https://www.zotero.org/google-docs/?QppD4r
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will additionally implement a maximum trial length criterion; if infants do not accumulate the 

required looking time within twice the target familiarization time (i.e., 10, 20, or 30 s), the 

familiarization phase will end. In the fixed-length design, the familiarized stimulus will be 

presented for 5, 10, or 15 s total, regardless of the duration of infants’ looking.   

Immediately following familiarization (in both designs), a central-fixation stimulus – 

looming circles accompanied by chimes (as used in ManyBabies 146) – will be presented in the 

center of the screen for a fixed duration of 500 ms to reorient infants’ gaze in both the infant-

controlled and the fixed-length design. The central-fixation stimulus will be immediately 

followed by the two test phases, which each will be a fixed length of 5 s, for a total of 10 s of 

test.4 The test phases will be a fixed duration, even if familiarization was infant-controlled. In 

each test phase, infants will now see a familiar and novel item side by side, left-right position of 

the two stimuli reversed on the second phase. The novel item for each test will be from a 

different family within the same stimulus set (i.e., fribbles or fractals) that is the same level of 

complexity as the one they were familiarized with. The central-fixation stimulus will additionally 

be presented between the two test phases. Figure 4 depicts the structure of an example trial. 

To retain infants’ attention between trials, an attention-getter will be played before the 

first trial and between every trial. Labs will have the option of using a default attention-getter 

video of a laughing baby, which is effective in drawing infants’ attention to the screen, but will 

be encouraged to use any attention-getter that is a better match for their lab or community. For 

example, a different attention-getter may be needed for researchers working with deaf or 

hearing-impaired infants. 

 

https://www.zotero.org/google-docs/?ivob97
https://www.zotero.org/google-docs/?uNgR99
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Figure 4. This figure depicts the design of an example trial. At familiarization, a single image is 

shown for 5, 10, or 15 s. After the desired familiarization time is reached (based on the infant-

controlled or fixed-length design criteria), infants are presented with a central fixation stimulus 

for 500 ms. During the two test phases (5 s each), infants view the same image to which they 

were familiarized paired with a new stimulus from the same set (e.g., fribbles or fractals) and the 

same level of complexity. The side on which the familiar and novel images are presented is 

counterbalanced across test phases, but the images remain the same. 

 

Counterbalancing. Each infant will view both stimulus sets (fribbles and fractals), with 

presentation blocked by stimulus set and presentation order (fribbles first or fractals first) and 

counterbalanced across infants. Additionally, within each stimulus set, infants will experience all 

combinations of complexity level and familiarization time. As a result, infants will view a total 

of 6 trials per stimulus set, or 12 trials total. If infants successfully view all 12 trials, this 

represents approximately 4.5 minutes of looking to the screen (note that the total study time will 
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increase when the amount of time it takes for infants to accumulate each familiarization time is 

taken into account in the infant-controlled version). 

We will additionally impose a number of constraints during counterbalancing. First, we 

will ensure that: (1) the familiar item does not occur on the same side inTest Phase 1 on more 

than two trials in a row, (2) no more than two trials in a row feature stimuli from the same level 

of complexity, (3) the same familiarization time is not used for more than two trials in a row. 

Additionally, each familiar and novel stimulus will only be used in one trial, as repeating stimuli 

will impact how familiar or novel a given stimulus is for the infant. Across infants, we will 

counterbalance which stimulus is used as the familiar or novel stimulus. 

Apparatus. To facilitate standardization across labs, we will create infant-controlled and 

fixed-length versions of the experiment on a variety of software platforms (e.g., Habit, PyHab, 

EyeLink Experiment Builder, Tobii Studio; or, in the case of the fixed-length design, 

experimenters will be able to use video-presentation software57,58). Individual labs will be 

instructed to present the program using the setup with which they are most familiar (e.g., TV 

screen, projection screen, or computer monitor). Labs will additionally choose to collect data 

using central fixation methods or an eye tracker (see Table 2). 

Coding. In labs that assess looking time by coding all or part of their videos offline, 

coding of infants’ looking to the familiar versus novel stimulus at test (for both the infant-

controlled and fixed-length procedures) and during the familiarization phase (during the fixed-

length procedure only) will be conducted via standard procedures in each lab. We will 

additionally provide a “best practices” manual that includes information about training and 

reliability standards that can be used by labs without existing standard procedures or those 

interested in revising their current procedures. 

https://www.zotero.org/google-docs/?uK2QHL
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While labs will be allowed to code videos according to their existing lab practices, labs 

will be asked to report inter-coder reliability by independently re-coding a minimum of 20% of 

videos and reporting the average frame agreement, i.e., the proportion of frames on which both 

coders agree on the gaze location. The target reliability for this coding is 90% frame agreement.  

Minimizing bias. To minimize caregiver bias, each lab will be asked to ensure (using lab-

standard methods) that caregivers remain unaware of the visual stimuli being presented (e.g., by 

asking them to wear darkened glasses, close their eyes, or keep their gaze directed toward the 

infant’s head). To minimize experimenter bias, experimenters making online decisions about 

infants’ looking to or away from the screen will not be aware of which visual stimulus is being 

presented nor the side of the familiar stimulus during the test phase. Off-line coding, including 

reliability coding, will be conducted with these same efforts to minimize bias. Reliability coders 

will also not have access to the original coder’s decisions. 

General Lab Practices 

Each lab will be responsible for maintaining good practices, conducting this study using 

the same rigorous standards applied to all other studies in their lab. Labs will be asked to provide 

information about their standard protocols for testing, such as researcher training practices and 

basic practices for greeting families, obtaining consent, and debriefing. Labs that are new to 

infant testing will be paired with more established laboratories for support and guidance 

throughout the data collection process. 

 Prior to data collection, labs will be asked to submit a walkthrough video depicting a 

standard testing session. This video can be of an infant participant or of a placeholder toy (e.g., a 

teddy bear). Before labs are invited to move on to data collection, this video will be reviewed by 

the ManyBabies 5 study implementation team to address any questions or inconsistencies that 
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arise in study implementation. Labs will also be asked to upload a practice data file to ensure that 

each lab’s data format is in compliance with the ManyBabies 5 data structure. After data 

collection is complete, participating investigators will submit their data to the analysis team. We 

will ask labs to refrain from analyzing the data independently prior to submission and analysis by 

the ManyBabies 5 team (with exceptions for trainees’ educational timelines). Labs will be asked 

to provide experimental and participant data for any participant who enters the lab to participate 

regardless of whether the participant began or completed the study. The purpose of this request is 

to ensure that researchers do not selectively submit data based on their own impressions of data 

quality. For each participant, labs will be asked to report on any unusual events, such as 

equipment failure, parental interference, infant fussiness, or infants taking a break during the 

session. Whenever possible (i.e., the lab has appropriate permissions from an ethics board), 

sessions will be video recorded, and video recordings will be submitted together with coded data 

or uploaded to repositories such as Databrary. 

Inclusion Criteria 

 All data collected for the study will be handed to the analysis team for confirmatory 

analyses (i.e., demographic and experimental data for every infant who entered a participating 

lab, regardless of how many trials they complete). As mentioned previously, infants will be 

included in the primary analyses if they meet the following criteria: (1) their age falls within the 

3- to 15-month age range, (2) they have no known vision or eye movement problems (e.g., no 

nystagmus), (3) they were born at 37 or more weeks gestation (if known) and/or do not meet 

local definitions of preterm birth, and (4) they do not have known developmental delays. In some 

cases, infants who do not meet these criteria will have been recruited in error (e.g., infants 

recruited outside of the target age range). Thus, XX infants (XX% of the total sample) will be 
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excluded for failing to meet the recruitment criteria. Additionally, infants will be excluded for 

session-level errors, such as experimenter error, equipment failure, or other forms of interference 

that impede infants’ ability to attend to at least one trial in the experiment or that affect all trials 

(N = XX, XX% of infants remaining after recruitment-based exclusions have been implemented). 

All infants will otherwise be eligible for inclusion in analyses. 

 Finally, we will exclude individual trials for which issues are reported (e.g., infant 

fussiness, incorrect stimulus, single instance of parental interference, failure to accumulate the 

required familiarization time). A total of XX (XX%) trials will be excluded due to trial-level 

errors. To be included in the final analyses, eligible infants (as defined above) will be required to 

contribute nonzero looking times for at least 1 trial after trial-level exclusions are applied. XX 

infants (XX%) will be excluded for failing to meet this criterion. 
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Table 3. 
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Data Analysis Plan 

Dependent and Independent Variables 

The analyses will include the following variables: 

● Novelty preference (model term: novelty_preference). Infants’ preference for the 

novel stimulus over the familiar stimulus during the entire test phase for each trial 

(summed across the two test phases) will be measured as the proportion looking to the 

novel stimulus.4 

 

● Infant age (age). Infant age (mean-centered and scaled), will be a continuous predictor. 

● Familiarization time (familiarization_time). Familiarization time will be treated as a 

continuous predictor and centered. Specifically, the three familiarization times 5, 10, and 

15 s will be coded as -0.5, 0, 0.5. 

● Stimulus complexity (stimulus_complexity). The two levels of stimulus complexity 

will be centered and coded as -0.5 (low) and 0.5 (high). 

● Participant. The unique identifier for each individual infant participating in the study. 

● Item. The unique familiar/novel stimulus pair in a given trial. 

● Lab. The unique identifier for each individual lab that collected data for the study. 

Statistical Modeling Approach 

Modeling Approach. In the main model, we will use a linear mixed-effects model to 

predict infants’ novelty preference from age, familiarization time, and stimulus complexity, as 

well as all two- and three-way interactions between the three predictors. We will include random 

effects for participant, item, and lab. The planned model will include the maximal random effects 

structure 59, which we will prune as necessary to allow the model to converge (see 

https://www.zotero.org/google-docs/?LDM88W
https://www.zotero.org/google-docs/?guW1h5
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Supplementary Materials S1 for details on our planned approach for handling model non-

convergence). Models will be fit using the lme4 package in R60,61, and p-values will be estimated 

using the Satterthwaite approximation implemented in the R package lmerTest.62 

 Model. The main model will be specified as: 

novelty_preference ~ 1 + age + familiarization_time + stimulus_complexity +  

 age : familiarization_time +  

age : stimulus_complexity +  

familiarization_time : stimulus_complexity + 

age : familiarization_time : stimulus_complexity +  

(1 + familiarization_time * stimulus_complexity | participant) + 

(1 + age * familiarization_time * stimulus_complexity | lab) +  

(1 + age * familiarization_time | item) 

Hypothesis Tests  

Our main hypotheses are that familiarization time, age, and stimulus complexity will each 

systematically predict infants’ novelty preference (see Table 3). In addition to the main effects of 

interest, the model will also allow us to test for two- and three-way interactions between the 

main effects of interest. These possible interaction effects are not the main focus of our 

confirmatory analyses, and thus we will interpret these tests as exploratory (rather than 

confirmatory). Table 4 lists the question tested by the two- and three-way interactions in the 

model and how significant coefficients for each of these terms will be interpreted. 

 

 

 

https://docs.google.com/document/d/19_xzYtTKUlCj2O8bSg4C9pZivWjyp1BocmHqQMtLJKA/edit?usp=sharing
https://www.zotero.org/google-docs/?vaS3d4
https://www.zotero.org/google-docs/?fNi6OL
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Table 4. 

Interpretation of the interactions in the linear mixed-effects model 

Question Model term 

To what extent does the effect of familiarization time on novelty 

preference change with infant age? 

age * familiarization_time 

To what extent does the effect of stimulus complexity on novelty 

preference change with infant age? 

age * stimulus_complexity 

To what extent does the effect of stimulus complexity on novelty 

preference change as familiarization time increases? 

familiarization_time * 

stimulus_complexity 

To what extent does the interaction between familiarization time 

and complexity of the stimulus depend on infant age? 

age * familiarization_time * 

stimulus_complexity 

 

Power Analysis 

We used a simulation-based approach to evaluate whether the expected sample size (i.e., 

1,280 infants) can provide sufficient power to detect effect sizes of interest. All code associated 

with these simulations is publicly available on the project’s OSF page 

(https://osf.io/g3udp/?view_only=0f4f6e3b48d8456999d6459c0bfe5510), and the main 

simulation-based results are summarized in our Data Simulation and Power Analysis 

Supplement. In order to calculate the statistical power from this expected sample size, we 

simulated 500 datasets with a Cohen’s d effect size of 0.2, 0.3, 0.4, and 0.5 for the three main 

effects of interest (i.e., stimulus type, age, and familiarization time) as well as their two- and 

three-way interactions. We chose these effect size magnitudes based on estimates from previous 

large-scale preferential-looking studies (e.g., in ManyBabies 1, the main meta-analytic effect size 

was d = 0.35, with effect sizes ranging from d = 0.24 to d =0.51 depending on the experimental 

method) as well as median effect size estimates in meta-analyses within infant populations.40,46 

https://osf.io/g3udp/?view_only=0f4f6e3b48d8456999d6459c0bfe5510
https://drive.google.com/file/d/14xmxYRaZa7kyFqR4YMg-yJkrGrj5NMfC/view?usp=share_link
https://www.zotero.org/google-docs/?3yrRD7
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For each of these simulated datasets, we ran a linear mixed-effects regression model with the 

following structure:  

novelty_preference  ~ 1 + stimulus_complexity * age * familiarization_time + 

(1 + stimulus_complexity * familiarization_time | participant) + 

(1 | lab) + 

(1 | item) 

Based on preliminary simulations, we chose to focus on this model because it was the 

maximal random effects structure that reliably converged on the vast majority of simulation runs 

(i.e., >90%). Given past evidence that models including random slopes may not converge 46, we 

also simulated power for a model with a simpler random effects structure that included only 

random intercepts for participants, labs, and items. We then evaluated the statistical power by 

counting the number of times the effect displayed a significantly non-zero (i.e., p < .05) 

coefficient. The main goal was to establish that we had sufficient power to detect each of the 

three main effects of interest (age, familiarization time, and stimulus type), i.e., to test the three 

main predictions of the Hunter and Ames model. As shown in Table 5, the analysis indicates 

ample power to detect each of these three main effects for medium effect sizes (>80% power for 

all main effects and d = 0.4 to 0.5), with somewhat weaker power to detect a main effect of 

familiarization time at the lower end of the effect size range (d = 0.3: power = 63.4%; d = 0.4: 

power = 86.4%). The power analysis also demonstrates reasonable power to detect age and any 

interactions, including age, even if the effect size is small (i.e., d = 0.2). Notably, the current 

design has reasonable power to detect a three-way interaction between the main effects (>80% 

power for d = 0.2 or larger). Overall, the power analysis indicates that the current design has 

sufficient power to detect each of the three main predictions of the Hunter and Ames model. 

https://www.zotero.org/google-docs/?kVuMyQ
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Table 5.  

Overview of results in power simulation for the model with the maximal converging random 

effects structure. The numbers in each effect size column indicate the percentage of significant 

results in the 500 simulated datasets. stim_type refers to stimulus type,  fam_time refers to 

familiarization time, and age refers to infant age in months. Sample size is 1,280 included 

participants, with 24 trials. See section 7 in the Data Simulation and Power Analysis Supplement 

for details. 

 

Outcome Types Model Terms d = 0.2 d = 0.3 d = 0.4 d = 0.5 

main effects stim_type 47.4% 83.8% 96.6% 99.2% 

age 99.0% 100% 100% 100% 

fam_time 36.0% 63.4% 86.4% 96.8% 

two-way 

interactions 

stim_type*fam_time 12.4% 24.4% 35.0% 48.6% 

stim_type*age 89.4% 98.6% 100% 100% 

fam_time*age 86.4% 96.6% 99.4% 100% 

three-way 

interaction 

age*stim_type* 

fam_time  

80.8% 85.6% 93.8% 95.6% 

 

Robustness and Exploratory Analyses 

 The analytic strategy described above represents our main confirmatory approach, 

consistent with contemporary analytic approaches used in the infant literature, and our main 

conclusions will be based on the results of these confirmatory models. However, the large dataset 

https://drive.google.com/file/d/14xmxYRaZa7kyFqR4YMg-yJkrGrj5NMfC/view?usp=share_link
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collected in the current study presents a unique opportunity to explore the relationship between 

the underlying assumptions of these models and the distributional properties of infant-looking 

time data. We will therefore examine the robustness of the effects of interest across various 

analytic decisions and inclusion criteria. The main results from the confirmatory models will be 

interpreted in light of the consistency or variability of the main findings across these exploratory 

analyses (see S.2 and S.3 in the Supplementary Materials for details on specific robustness and 

exploratory analyses).  

https://docs.google.com/document/d/19_xzYtTKUlCj2O8bSg4C9pZivWjyp1BocmHqQMtLJKA/edit?usp=sharing


28 

 

Data Availability 

Full data will be publicly available at 

https://osf.io/g3udp/?view_only=0f4f6e3b48d8456999d6459c0bfe5510. 

Code Availability 

All analysis code is publicly available at 

https://osf.io/g3udp/?view_only=0f4f6e3b48d8456999d6459c0bfe5510.  
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Supplementary Materials 

 

S1. Model Non-Convergence and Pruning Random Effects 

If the maximal model does not converge using default settings in the lme4 package, our 

first step will be to attempt a series of remedies to help the model including the full random 

effects structure achieve convergence (Brauer & Curtin, 2018). Specifically, we will (a) increase 

the number of iterations in the estimation procedure, (b) provide the model with improved 

starting values, and (c) check whether convergence is achieved using any of the other 

optimization functions available with the lme4 package. 

If the model does not converge after attempting these remedies, we will next prune 

random effects until convergence is achieved. We will first remove random effects that are of 

lesser theoretical interest before removing random effects that are more crucial to the main 

hypotheses of the study (i.e., random slopes of critical main effects of interest and random 

intercepts). In practice, we expect that models including random slopes (although consistent with 

the experiment design) will be difficult to fit and will require further pruning of the random 

effects structure. For example, in ManyBabies 1 (ManyBabies Consortium, 2020), the maximal 

random effects structure that allowed the main model to converge included random intercepts 

only. 

We will proceed as follows in pruning random effects step-by-step. In each instance, we 

would only proceed to the next pruning step if the model still fails to converge. Each of steps 1-3 

will be repeated within each of the three types of random effects (item, lab, participant) 

separately until the model with the overall maximal random effects structure across the three 

random effect types is achieved. We will first prune random slopes (following steps 1-3) for 

https://www.zotero.org/google-docs/?YXwMa0
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item-based random effects, followed by random slopes for lab-based random effects. Random 

slopes and covariances for participant-based random effects will be pruned last. 

1. We will first sequentially remove random slopes for interaction terms since the 

interactions are of lesser theoretical interest (compared to the main effects), checking for 

non-convergence after each interaction term is removed. Random slopes for the three-

way interaction will be removed first, followed by the interaction for stimulus complexity 

and age, stimulus complexity and familiarization time, and finally, familiarization time 

and age.  

2. We will next remove any covariances between random effects that approach 0 or 1 

(likely leading to a singular fit in the main linear mixed-effects model). 

3. If convergence is still not achieved, we will successively remove random slopes for 

each of the main effects of interest. We will remove random slopes in the following 

order, checking for convergence after each random slope is removed: (a) stimulus 

complexity, (b) infant age, and (c) familiarization time. 

Finally, if the model still fails to converge after removing all random slopes for item, lab, and 

participant, we will successively remove random intercepts, first removing random intercepts 

for item, followed by random intercepts for lab and (if necessary) random intercepts for 

participant last. 

S2. Analysis of Model Assumptions and Robustness 

In this section, we outline a series of analyses to test for violations of model assumptions 

and to investigate the robustness of the results from the main model across alternative model 

specifications. 

S2.1. Model Diagnostics 
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First, we will conduct diagnostic tests to inspect two key properties of the data and 

model: missingness and heteroskedasticity. 

S2.1.1. Missingness 

We expect there to be a significant amount of missing data due to a variety of infant-

related (e.g., “fussiness”) and experimenter-related (e.g., technical errors) factors. A relatively 

large proportion of missing data is common in infant research (e.g., around 20% of the data in 

ManyBabies1; The ManyBabies Consortium, 2020). Taking missingness into account is 

particularly important in the context of the current study because the main phenomenon of 

interest — infants’ visual attention — is systematically connected with a possible major source 

of missingness, namely infant inattention or lack of engagement leading to trial exclusion or 

failure to measure infant looking behavior. A possible risk is that our estimates of infants’ 

patterns of novelty preference may be biased. Therefore, we will investigate whether and how 

different factors influence the presence of missingness in the data. Specifically, we will fit a 

logistic mixed-effects model predicting the trial-by-trial presence or absence of the data (i.e., 

coded as 0 = data is present; 1 = data is missing) from several key predictors: the main predictors 

of interest (age,  complexity, familiarization time) and trial number (the strongest predictor of 

missingness in ManyBabies1). We will include random effects for participant, lab, and item, 

following the same approach for specifying and pruning random effects as in the main model. 

The model will be specified as: 

NAs ~ familiarization_time + age + stimulus_complexity + trial_number +  

(... | participant) + (... | lab) + (...| item) 

In exploratory analyses, we will also test a more complex model including a series of additional 

predictors of interest (e.g., time of testing, time of last nap). If we find evidence of systematicity 

https://www.zotero.org/google-docs/?Mnlg6O
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in missingness, we will explore routes for handling this systematicity, in particular conducting 

multiple imputation, and discuss limitations in the interpretation of the results from the main 

model in light of missingness issues. 

S2.1.2. Heteroskedasticity 

A particular concern in evaluating our main model is the possibility of heteroskedasticity. 

Specifically, it is likely that variance in looking times will increase across trials, which may in 

turn lead to higher variance in our measures of preferential looking at later trials in the 

experiment. To check for issues related to heteroskedasticity, we will use the performance 

package in R (Lüdecke et al., 2021) to conduct a Breusch-Pagan test (Breusch & Pagan, 1979) of 

non-constant error. If we find evidence of heteroskedasticity, we will explore the use of location-

scale modeling and general additive modeling approaches to model and account for sources of 

variability (e.g., trial number). 

S2.2. Alternative Link Functions 

We chose the primary dependent variable, infants’ novelty preference score, based on its 

prevalence in the literature on infant preferential looking (e.g., Rose et al., 1982). However, 

because this dependent measure is a proportion variable, it raises several potential analytical 

issues. For example, one possible concern is that the residuals (i.e., the error variance) from the 

model may not be normally distributed, violating an assumption of linear mixed-effects models. 

Therefore, in the event that the observed data do violate this assumption, we will explore 

alternative models that incorporate specialized link functions (i.e., beta regression) that may be 

better suited for the properties of proportion score data.  

S3. Exploratory Analyses 

 

https://www.zotero.org/google-docs/?yKUScC
https://www.zotero.org/google-docs/?S7OxPZ
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Below, we outline a series of analyses we plan to conduct to explore other possible 

sources of variation in infant-looking behavior and the impact of specific methodological choices 

(e.g., inclusion criteria, stimulus choices). 

S3.1. Infant-Controlled vs. Fixed-Length Familiarization 

We will test for a moderating effect of familiarization method (infant-controlled vs. 

fixed-length familiarization) (a) in the overall dataset and (b) in the subsample of the data 

contributed by labs randomly assigned to collect both infant-controlled and fixed-length samples. 

Specifically, we will fit the 4-way interaction model predicting novelty preference from stimulus 

type, age, familiarization time, and familiarization method. 

novelty_preference ~  

1 + age * familiarization_time * stimulus_complexity * familiarization_method + 

(1 + familiarization_time * stimulus_complexity | participant) + 

(1 + age * familiarization_time * stimulus_complexity * familiarization_method | lab) +  

(1 + age * familiarization_time * familiarization_method | item) 

If familiarization method exerts a moderating influence on any of the main predictors of interest, 

we will interpret its implications in the General Discussion. 

S3.2. Stimulus Fixation Time vs. Familiarization Manipulation 

In the main confirmatory model, we do not distinguish between infants’ accumulated 

looking to the familiarized stimulus and the duration of the familiarization phase. Since labs can 

choose to either use an infant-controlled or a fixed familiarization design, this will allow us to 

assess each of these predictors independently. We will therefore fit a linear mixed-effects model 

in which we predict novelty preference from the duration of the familiarization phase 
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(familiarization_duration) and infants’ time fixating the stimulus during the familiarization phase 

(stimulus_fixation) while controlling for age and stimulus complexity. 

novelty_preference ~ 1 +  

age + familiarization_duration + stimulus_fixation + stimulus_complexity +  

(1 + familiarization_duration+ stimulus_fixation + stimulus_complexity | participant) + 

(1 + age + familiarization_duration + stimulus_fixation + stimulus_complexity | lab) + 

(1+ age + familiarization_duration + stimulus_fixation | item) 

We expect that familiarization duration and stimulus fixation will be correlated. We will 

therefore run diagnostic tests to check for issues related to multicollinearity (specifically, we will 

test for variance inflation). If the variance inflation factor indicates a concerning degree of 

multicollinearity (i.e., exceeds a value of at least 5), we will treat any results from the model with 

caution. If the model including both factors is high, we will instead consider a model 

comparisons approach in which we fit two models, one including only familiarization duration 

(in addition to the other main effects of age and stimulus complexity) and one with only stimulus 

fixation. This will allow us to investigate how well each of the two possible operationalizations 

of familiarization time predict preferential looking. 

S3.3. Investigating Stimulus Types Separately 

One possible concern with the analysis outlined above is that there may be fundamental 

differences in how infants process the two types of stimuli, fribbles and fractals (and, e.g., their 

associated levels of relative complexity). In particular, fitting a model including both item kinds 

may lead to poor model fit if the estimates for the two item types systematically differ. To check 

for inconsistencies in the model predictions across the two stimulus types, we will therefore fit a 

linear mixed-effects model in which we predict novelty preference from the 4-way interaction 
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between the main effects of interest (age, familiarization time, and stimulus complexity) and 

stimulus type (centered; coded as fribbles = 0.5 vs. fractals = -0.5): 

novelty_preference ~ 1 +  

age * familiarization_time * stimulus_complexity * stimulus_type +  

(1 + familiarization_time * stimulus_complexity * stimulus_type | participant) + 

(1 + age * familiarization_time * stimulus_complexity * stimulus_type | lab) +  

(1 + age * familiarization_time | item) 

We will follow the same random effects pruning approach as with the main model. Effects of the 

model  – especially interactions between stimulus type and the effects of age, familiarization 

time, and stimulus complexity – will be qualified in light of any interactions observed with 

stimulus type. 

S3.4. Inclusion Criteria 

We will also explore the consequences of varying the inclusion criteria on the main 

effects of interest, in particular: 

● Minimum looking times: We will also fit the main model at various cutoffs for 

minimum looking times. Specifically, we will fit the main model after excluding any 

trials that do not meet successively more restrictive inclusion criteria for a given trial: 

○ Trials must include 1 second of looking in each of the two 5s test periods. 

○ Trials must include 2 seconds of looking in each of the two 5s test periods. 

● Number of trials completed: We will fit the main model with successively more strict 

inclusion criteria based on trial number. We will fit the model when only including 

infants who complete at least 4, 8, 12, 16, 20, and 24 trials and discuss any observed 

systematic changes in effect magnitude. 
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S3.5. Variation across Demographic Predictors 

We will explore the degree to which preferential-looking behavior varies across a range 

of demographic factors and participant characteristics that will be collected along with infants’ 

looking behavior, including variation across testing location, cultural and linguistic experiences, 

and the backgrounds of infants and their families. 
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1 Data Simulation

my_sim_data <- function(
n_subj = 1280, # number of subjects
n_simple = 12, # number of complex stimuli
n_complex = 12, # number of complex stimuli
n_small_fam = 8, #small familiarization time
n_medium_fam = 8, #medium familiarization time
n_high_fam = 8, #high familiarization time
n_lab = 40,

beta_0 = 0, # intercept; i.e., the grand mean
beta_c = 0.3, # main effect for complexity
beta_f = 0.3, # main effect for familiarization time
beta_a = 0.3, # main effect for age

beta_ca = 0.3,
beta_af = 0.3,
beta_cf = 0.3,

beta_cfa = 0.3, #main effect for interaction between complexity and familiarization.

subject_0 = 0.2, # by-subject random intercept sd

subject_c = 0.2, # by-subject slope complexity sd
subject_f = 0.2, # by-subject slope familiarization sd
subject_a = 0.2, # by-subject slope age sd

subject_ca = 0.2,# by-subject slope for interaction between age and complexity sd
subject_af = 0.2, # by-subject slope for interaction between age and familiarization sd
subject_cf = 0.2, # by-subject slope complexity*familiarization sd

subject_cfa = 0.2, # by-subject slope for interaction between age, complexity and familiarization sd

subj_rho = .2, # correlations between by-subject random effects

lab_0 = 0.2, # by-lab random intercept sd

lab_c = 0.2, # by-lab slope complexity sd
lab_f = 0.2, # by-lab slope familiarization sd
lab_a = 0.2, # by-lab slope age sd

lab_ca = 0.2, # by-lab slope for interaction between age and complexity sd
lab_af = 0.2, # by-lab slope for interaction between age and familiarization sd
lab_cf = 0.2, # by-lab random slope complexity*familiarization sd

lab_cfa = 0.2, # by-lab slope for interaction between age, complexity and familiarization sd

lab_rho = 0.2, # correlations between by-lab random effects

item_0 = 0.2, # by-item random intercept sd

item_c = 0.2, # by-item slope complexity sd
item_f = 0.2, # by-item slope familiarization sd
item_a = 0.2, # by-item slope age sd

item_ca = 0.2, # by-item slope for interaction between age and complexity sd
item_af = 0.2, # by-item slope for interaction between age and familiarization sd
item_cf = 0.2, # by-item random slope complexity*familiarization sd

item_cfa = 0.2, # by-item slope for interaction between age, complexity and familiarization sd
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item_rho = 0.2, # correlations between by-item random effects

sigma = 0.3 # residual (error) sd
) { # residual (standard deviation)

# simulate a sample of items
items <- data.frame(
category = rep(c("simple", "complex"), c(n_simple, n_complex)),
X_c = rep(c(-0.5, 0.5), c(n_simple, n_complex)),
familiarization = rep(c("short", "medium", "long"), (n_simple + n_complex)/3),
X_f = rep(c(-0.5, 0, 0.5), (n_simple + n_complex)/3),
faux::rnorm_multi(
n = n_simple + n_complex, mu = 0, sd = c(item_0,

item_c,
item_f,
item_a,
item_ca,
item_af,
item_cf,
item_cfa), r = item_rho,

varnames = c("I_0", "I_c","I_f","I_a",
"I_ca","I_af", "I_cf",
"I_cfa"))

) %>%
mutate(item_id = faux::make_id(nrow(.), "I"))

# simulate a sample of subjects
subjects <-
faux::rnorm_multi(
n = n_subj, mu = 0, sd = c(subject_0,

subject_c,
subject_f,
subject_a,
subject_ca,
subject_af,
subject_cf,
subject_cfa), r = subj_rho,

varnames = c("S_0", "S_c","S_f","S_a",
"S_ca","S_af", "S_cf",
"S_cfa")

) %>%
mutate(subj_id = faux::make_id(nrow(.), "S")) %>%
mutate(X_a = runif(n_subj, min = -0.5, max = 0.5))

#add subject age measure, sample from distribution from -0.5 to 0.5. #subjects$subj_id <- 1:n_subj

labs <- faux::rnorm_multi(
n = n_lab, mu = 0, sd = c(lab_0, lab_c, lab_f, lab_a,

lab_ca, lab_af, lab_cf,
lab_cfa), r = lab_rho,

varnames = c("L_0", "L_c","L_f","L_a",
"L_ca","L_af", "L_cf",
"L_cfa")

) %>%
mutate(lab_id = faux::make_id(nrow(.), "L"))

#create lab and subj nesting structure
#Number of subjects must be a multiple of number of labs
lab_multiplier = n_subj/n_lab
lab_subj_dict <- data.frame(
subj_id = subjects$subj_id,
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lab_id = rep(labs$lab_id,lab_multiplier)
)

# cross subject and item IDs
temp <- crossing(subjects, items) %>%
left_join(lab_subj_dict, by = "subj_id") %>%
left_join(labs, by = "lab_id") %>%
group_by(subj_id, item_id) %>%
mutate(item_id = sample(item_id)) %>%
ungroup() %>%
mutate(trial_num = rep(seq(n_simple + n_complex), n_subj))

temp <- temp %>%
mutate(
B_0 = beta_0 + S_0 + L_0 + I_0,

B_c = beta_c + S_c + L_c + I_c,
B_f = beta_f + S_f + L_f + I_f,
B_a = beta_a + S_a + L_a + I_a,

B_ca = beta_ca + S_ca + L_ca + I_ca,
B_af = beta_af + S_af + L_af + I_af,
B_cf = beta_cf + S_cf + L_cf + I_cf,

B_cfa = beta_cfa + S_cfa + L_cfa + I_cfa,

e_si = rnorm(nrow(temp), mean = 0, sd = sigma),

DV = B_0 +
(B_a * X_a) + (B_c * X_c) + (B_f * X_f) +
(B_cf * X_c * X_f) + (B_af * X_a * X_f) + (B_ca * X_c * X_a) +
(B_cfa * X_c * X_f * X_a) + e_si

)
}

dat_sim <- my_sim_data()

2 Visualisation of Simulated Data

2.1 Familiarization:

dat_sim_plot_familiarization <- dat_sim %>%
group_by(X_f) %>%
dplyr::summarise(med_DV = median(DV))

plot_familiarization <- dat_sim %>%
mutate(X_f = as.factor(X_f)) %>%
ggplot() + geom_point(aes(y = DV, x = X_f), position = "jitter",
alpha = 0.2, size = 0.2) + geom_violin(aes(y = DV, x = X_f,
fill = familiarization), alpha = 0.2) + geom_line(aes(y = med_DV,
x = as.factor(X_f), group = 1), data = dat_sim_plot_familiarization) +
geom_point(aes(y = med_DV, x = as.factor(X_f)), alpha = 0.8,

size = 2, data = dat_sim_plot_familiarization) + scale_fill_manual(values = viridis(n = 3)) +
ggtitle("Familiarization") + xlab("Familiarization") + theme_bw()

plot_familiarization <- plot_familiarization + theme(plot.title = element_text(hjust = 0.5,
size = 20))

plot_familiarization
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2.2 Complexity:

dat_sim_plot_complexity <- dat_sim %>%
group_by(X_c) %>%
dplyr::summarise(med_DV = median(DV))

plot_complexity <- dat_sim %>%
mutate(X_c = as.factor(X_c)) %>%
ggplot() + geom_point(aes(y = DV, x = X_c), position = "jitter",
alpha = 0.2, size = 0.2) + geom_violin(aes(y = DV, x = X_c,
fill = category), alpha = 0.2) + geom_line(aes(y = med_DV,
x = as.factor(X_c), group = 1), data = dat_sim_plot_complexity) +
geom_point(aes(y = med_DV, x = as.factor(X_c)), alpha = 0.8,

size = 2, data = dat_sim_plot_complexity) + scale_fill_manual(values = viridis(n = 2)) +
ggtitle("Stimulus Complexity") + xlab("Stimulus Complexity") +
theme_bw()
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plot_complexity <- plot_complexity + theme(plot.title = element_text(hjust = 0.5,
size = 20))

plot_complexity
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2.3 Age:

plot_age <- dat_sim %>%
ggplot() + geom_point(aes(y = DV, x = X_a), position = "jitter",
alpha = 0.2, size = 0.2) + geom_smooth(method = "lm", se = TRUE,
formula = y ~ x, aes(y = DV, x = X_a)) + ggtitle("Age") +
xlab("Age") + theme_bw()

plot_age <- plot_age + theme(plot.title = element_text(hjust = 0.5,
size = 20))

plot_age
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2.4 Age*Familiarization:

plot_age_familiarization <- dat_sim %>%
ggplot() + geom_point(aes(y = DV, x = X_a), position = "jitter",
alpha = 0.2, size = 0.2) + geom_smooth(method = "lm", formula = y ~
x, se = TRUE, aes(y = DV, x = X_a)) + facet_wrap(~X_f) +
ggtitle("Age x Familiarization Interaction") + xlab("Age") +
theme_bw()

plot_age_familiarization <- plot_age_familiarization + theme(plot.title = element_text(hjust = 0.5,
size = 20))

plot_age_familiarization
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2.5 Age*Complexity:

plot_age_complexity <- dat_sim %>%
ggplot() + geom_point(aes(y = DV, x = X_a), position = "jitter",
alpha = 0.2, size = 0.2) + geom_smooth(method = "lm", formula = y ~
x, se = TRUE, aes(y = DV, x = X_a)) + facet_wrap(~X_c) +
ggtitle("Age x Complexity Interaction") + xlab("Age") + theme_bw()

plot_age_complexity <- plot_age_complexity + theme(plot.title = element_text(hjust = 0.5,
size = 20))

plot_age_complexity
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2.6 Familiarization*Complexity:

dat_f_c_interaction <- dat_sim %>%
mutate(X_c = as.factor(X_c)) %>%
mutate(X_f = as.factor(X_f)) %>%
group_by(X_f, X_c) %>%
dplyr::summarise(med_DV = median(DV))

## `summarise()` has grouped output by 'X_f'. You can override using the `.groups`
## argument.

plot_familiarization_complexity <- dat_sim %>%
mutate(X_c = as.factor(X_c)) %>%
mutate(X_f = as.factor(X_f)) %>%
ggplot() + geom_point(aes(y = DV, x = X_f), position = "jitter",
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alpha = 0.2, size = 0.2) + geom_point(aes(y = med_DV, x = as.factor(X_f)),
alpha = 0.8, size = 2, data = dat_f_c_interaction) + geom_line(aes(y = med_DV,
x = as.factor(X_f), group = 1), data = dat_f_c_interaction) +
geom_violin(aes(y = DV, x = X_f, fill = familiarization),

alpha = 0.2) + scale_fill_manual(values = viridis(n = 3)) +
facet_wrap(~X_c) + ggtitle("Familiarization x Complexity Interaction") +
xlab("Familiarization") + theme_bw()

plot_familiarization_complexity <- plot_familiarization_complexity +
theme(plot.title = element_text(hjust = 0.5, size = 20))

plot_familiarization_complexity
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2.7 Variability by Lab
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2.8 Variability by Item
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3 Power Calculation with Full Data and Varying Intercepts and Varying Slopes

3.1 Effect Size = 0.5

# Number of simulations:
reps <- 350

# Simulation function:
run_sims <- function(filename_full, ef) {

dat_sim <- my_sim_data(beta_c = ef,
beta_f = ef,
beta_a = ef,

beta_ca = ef,
beta_af = ef,
beta_cf = ef,

beta_cfa = ef)

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f +
(1 + X_c * X_f | subj_id) +
(1 | lab_id) +
(1 | item_id),

data=dat_sim)

sim_results <- broom.mixed::tidy(mod_sim)

# append the results to a file
append <- file.exists(filename_full)
write_csv(sim_results, filename_full, append = append)

# return the tidy table
sim_results

}

filename_full_0.5 = 'run_sims_full_0.5.csv'
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.5, ef = 0.5))
end_time <- Sys.time()
end_time - start_time

3.2 Effect Size = 0.4

filename_full_0.4 = "run_sims_full_0.4.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.4,

ef = 0.4))
end_time <- Sys.time()
end_time - start_time

3.3 Effect Size = 0.3

filename_full_0.3 = "run_sims_full_0.3.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.3,
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ef = 0.3))
end_time <- Sys.time()
end_time - start_time

3.3.1 Visualise Estimates for Fixed Effects:

sims_full_0.3 <- read_csv(filename_full_0.3, col_types = cols(group = col_factor(ordered = TRUE),
term = col_factor(ordered = TRUE)))

fixed_full_plot <- sims_full_0.3 %>%
filter(effect == "fixed") %>%
ungroup() %>%
arrange(term, estimate) %>%
mutate(row = rep(seq(1:reps), 8)) %>%
ggplot(aes(x = row, y = estimate, ymin = estimate - std.error,

ymax = estimate + std.error)) + facet_wrap(~term, scales = "free") +
geom_pointrange(fatten = 1/2) + ylab("Estimates") + xlab("Simulations") +
ggtitle("Estimates of Fixed Effects for Full Data and Varying Intercepts and Varying Slopes, ef = 0.3") +
theme_bw()

fixed_full_plot <- fixed_full_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

fixed_full_plot
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3.3.2 Visualise Estimates for Random Effects:

ran_full_plot <- sims_full_0.3 %>%
filter(effect == "ran_pars") %>%
ungroup() %>%
arrange(group, term, estimate) %>%
mutate(row = rep(seq(1:reps), 13)) %>%
ggplot(aes(x = row, y = estimate)) + geom_point(alpha = 0.7) +
facet_wrap(~group + term, scales = "free_y") + theme_bw() +
ylab("Estimates") + xlab("Simulations") + ggtitle("Estimates of Random Effects Full Random-Effects Structure, ef = 0.3") +
theme_bw()

ran_full_plot <- ran_full_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

ran_full_plot
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3.4 Effect Size = 0.2

filename_full_0.2 = "run_sims_full_0.2.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.2,

ef = 0.2))
end_time <- Sys.time()
end_time - start_time

3.5 Effect Size = 0.1

filename_full_0.1 = "run_sims_full_0.1.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.1,
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ef = 0.1))
end_time <- Sys.time()
end_time - start_time

4 Power Calculation with Full Data and Varying Intercepts

4.1 Effect Size = 0.5

# Simulation function:
run_sims <- function(filename_full, ef) {

dat_sim <- my_sim_data(beta_c = ef,
beta_f = ef,
beta_a = ef,

beta_ca = ef,
beta_af = ef,
beta_cf = ef,

beta_cfa = ef)

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f +
(1 | subj_id) +
(1 | lab_id) +
(1 | item_id),

data=dat_sim)

sim_results <- broom.mixed::tidy(mod_sim)

# append the results to a file
append <- file.exists(filename_full)
write_csv(sim_results, filename_full, append = append)

# return the tidy table
sim_results

}

filename_full_int_0.5 = 'run_sims_full_int_0.5.csv'
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_int_0.5, ef = 0.5))
end_time <- Sys.time()
end_time - start_time

4.2 Effect Size = 0.4

filename_full_int_0.4 = "run_sims_full_int_0.4.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_int_0.4,

ef = 0.4))
end_time <- Sys.time()
end_time - start_time

4.3 Effect Size = 0.3
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filename_full_int_0.3 = "run_sims_full_int_0.3.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_int_0.3,

ef = 0.3))
end_time <- Sys.time()
end_time - start_time

4.3.1 Visualise Estimates for Fixed Effects:

sims_full_int_0.3 <- read_csv(filename_full_int_0.3, col_types = cols(group = col_factor(ordered = TRUE),
term = col_factor(ordered = TRUE)))

fixed_full_int_plot <- sims_full_int_0.3 %>%
filter(effect == "fixed") %>%
ungroup() %>%
arrange(term, estimate) %>%
mutate(row = rep(seq(1:reps), 8)) %>%
ggplot(aes(x = row, y = estimate, ymin = estimate - std.error,

ymax = estimate + std.error)) + facet_wrap(~term, scales = "free") +
geom_pointrange(fatten = 1/2) + ylab("Estimates") + xlab("Simulations") +
ggtitle("Estimates of Fixed Effects for Full Data and Random Intercepts, ef = 0.3") +
theme_bw()

fixed_full_int_plot <- fixed_full_int_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

fixed_full_int_plot
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4.3.2 Visualise Estimates for Random Effects:

ran_full_int_plot <- sims_full_int_0.3 %>%
filter(effect == "ran_pars") %>%
ungroup() %>%
arrange(group, estimate) %>%
mutate(row = rep(seq(1:reps), 4)) %>%
ggplot(aes(x = row, y = estimate)) + geom_point(alpha = 0.7) +
facet_wrap(~group, scales = "free_y") + theme_bw() + ylab("Estimates") +
xlab("Simulations") + ggtitle("Estimates of Random Effects for Full Data, ef = 0.3") +
theme_bw()

ran_full_int_plot <- ran_full_int_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

ran_full_int_plot
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4.4 Effect Size = 0.2

filename_full_int_0.2 = "run_sims_full_int_0.2.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_int_0.2,

ef = 0.2))
end_time <- Sys.time()
end_time - start_time

4.5 Effect Size = 0.1

filename_full_int_0.1 = "run_sims_full_int_0.1.csv"
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_int_0.1,
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ef = 0.1))
end_time <- Sys.time()
end_time - start_time

5 Power Calculation with 20 pct. Missing Data and Varying Intercepts and
Varying Slopes

5.1 Effect Size = 0.5

run_sims_missing <- function(filename_missing, ef) {

dat_sim <- my_sim_data(beta_c = ef,
beta_f = ef,
beta_a = ef,

beta_ca = ef,
beta_af = ef,
beta_cf = ef,

beta_cfa = ef)

missing_samples <- dat_sim %>%
mutate(nas = rbinom(nrow(dat_sim), 1, 1 - .20)) %>%
mutate(DV = ifelse(nas == 1, DV, NA)) %>%
drop_na()

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f +
(1 + X_c * X_f | subj_id) +
(1 | lab_id) +
(1 | item_id),

data=missing_samples)

sim_results <- broom.mixed::tidy(mod_sim)

# append the results to a file
append <- file.exists(filename_missing)
write_csv(sim_results, filename_missing, append = append)

# return the tidy table
sim_results

}

filename_20_missing_0.5 = 'run_sims_20_missing_0.5.csv'
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_20_missing_0.5, ef = 0.5))
end_time <- Sys.time()
end_time - start_time

5.2 Effect Size = 0.4

filename_20_missing_0.4 = "run_sims_20_missing_0.4.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_20_missing_0.4,

ef = 0.4))
end_time <- Sys.time()
end_time - start_time

23



5.3 Effect Size = 0.3

filename_20_missing_0.3 = "run_sims_20_missing_0.3.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_20_missing_0.3,

ef = 0.3))
end_time <- Sys.time()
end_time - start_time

5.3.1 Visualise Estimates for Fixed Effects:

# read saved simulation data
sims_20_missing_0.3 <- read_csv(filename_20_missing_0.3, col_types = cols(

# makes sure plots display in this order
group = col_factor(ordered = TRUE),
term = col_factor(ordered = TRUE)

))

fixed_missing_plot <- sims_20_missing_0.3 %>%
filter(effect == "fixed") %>%
ungroup() %>%
arrange(term, estimate) %>%
mutate(row = rep(seq(1:reps), 8)) %>%
ggplot(aes(x = row, y = estimate, ymin = estimate-std.error, ymax = estimate+std.error)) +
facet_wrap(~term, scales = "free") +
geom_pointrange(fatten = 1/2) +
ylab("Estimates") +
xlab("Simulations") +
ggtitle('Estimates of Fixed Effects for 20 pct. Missing Data, ef = 0.3') +
theme_bw()

fixed_missing_plot <- fixed_missing_plot + theme(plot.title = element_text(hjust = 0.5, size=20))
fixed_missing_plot
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5.3.2 Visualise Estimates for Random Effects:

ran_missing_plot <- sims_20_missing_0.3 %>%
filter(effect == "ran_pars") %>%
ungroup() %>%
arrange(group, term, estimate) %>%
mutate(row = rep(seq(1:reps), 13)) %>%
ggplot(aes(x = row, y = estimate)) + geom_point(alpha = 0.7) +
facet_wrap(~group + term, scales = "free_y") + theme_bw() +
ylab("Estimates") + xlab("Simulations") + ggtitle("Estimates of Random Effects for 20 pct. Missing Data, ef = 0.3") +
theme_bw()

ran_missing_plot <- ran_missing_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

ran_missing_plot
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5.4 Effect Size = 0.2

filename_20_missing_0.2 = "run_sims_20_missing_0.2.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_20_missing_0.2,

ef = 0.2))
end_time <- Sys.time()
end_time - start_time

5.5 Effect Size = 0.1

filename_20_missing_0.1 = "run_sims_20_missing_0.1.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_20_missing_0.1,
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ef = 0.1))
end_time <- Sys.time()
end_time - start_time

6 Power Calculation with 50 pct. Missing Data and Varying Intercepts and
Varying Slopes

6.1 Effect Size = 0.5

run_sims_missing <- function(filename_missing, ef) {

dat_sim <- my_sim_data(beta_c = ef,
beta_f = ef,
beta_a = ef,

beta_ca = ef,
beta_af = ef,
beta_cf = ef,

beta_cfa = ef)

missing_samples <- dat_sim %>%
mutate(nas = rbinom(nrow(dat_sim), 1, 1 - .50)) %>%
mutate(DV = ifelse(nas == 1, DV, NA)) %>%
drop_na()

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f +
(1 + X_c * X_f | subj_id) +
(1 | lab_id) +
(1 | item_id),

data=missing_samples)

sim_results <- broom.mixed::tidy(mod_sim)

# append the results to a file
append <- file.exists(filename_missing)
write_csv(sim_results, filename_missing, append = append)

# return the tidy table
sim_results

}

filename_50_missing_0.5 = 'run_sims_50_missing_0.5.csv'
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_50_missing_0.5, ef = 0.5))
end_time <- Sys.time()
end_time - start_time

6.2 Effect Size = 0.4

filename_50_missing_0.4 = "run_sims_50_missing_0.4.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_50_missing_0.4,

ef = 0.4))
end_time <- Sys.time()
end_time - start_time
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6.3 Effect Size = 0.3

filename_50_missing_0.3 = "run_sims_50_missing_0.3.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_50_missing_0.3,

ef = 0.3))
end_time <- Sys.time()
end_time - start_time

6.3.1 Visualise Estimates for Fixed Effects:

# read saved simulation data
sims_50_missing_0.3 <- read_csv(filename_50_missing_0.3, col_types = cols(

# makes sure plots display in this order
group = col_factor(ordered = TRUE),
term = col_factor(ordered = TRUE)

))

fixed_missing_plot <- sims_50_missing_0.3 %>%
filter(effect == "fixed") %>%
ungroup() %>%
arrange(term, estimate) %>%
mutate(row = rep(seq(1:reps), 8)) %>%
ggplot(aes(x = row, y = estimate, ymin = estimate-std.error, ymax = estimate+std.error)) +
facet_wrap(~term, scales = "free") +
geom_pointrange(fatten = 1/2) +
ylab("Estimates") +
xlab("Simulations") +
ggtitle('Estimates of Fixed Effects for 50 pct. Missing Data, ef = 0.3') +
theme_bw()

fixed_missing_plot <- fixed_missing_plot + theme(plot.title = element_text(hjust = 0.5, size=20))
fixed_missing_plot
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6.3.2 Visualise Estimates for Random Effects:

ran_missing_plot <- sims_20_missing_0.3 %>%
filter(effect == "ran_pars") %>%
ungroup() %>%
arrange(group, term, estimate) %>%
mutate(row = rep(seq(1:reps), 13)) %>%
ggplot(aes(x = row, y = estimate)) + geom_point(alpha = 0.7) +
facet_wrap(~group + term, scales = "free_y") + theme_bw() +
ylab("Estimates") + xlab("Simulations") + ggtitle("Estimates of Random Effects for 50 pct. Missing Data, ef = 0.3") +
theme_bw()

ran_missing_plot <- ran_missing_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

ran_missing_plot
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6.4 Effect Size = 0.2

filename_50_missing_0.2 = "run_sims_50_missing_0.2.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_50_missing_0.2,

ef = 0.2))
end_time <- Sys.time()
end_time - start_time

6.5 Effect Size = 0.1

filename_50_missing_0.1 = "run_sims_50_missing_0.1.csv"
start_time <- Sys.time()
sims_missing <- purrr::map_df(1:reps, ~run_sims_missing(filename_missing = filename_50_missing_0.1,
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ef = 0.1))
end_time <- Sys.time()
end_time - start_time

7 Overview of Power Simulation Results

7.1 Summary Statistics for Power Calculation with Full Data and Varying Intercepts and Varying
Slopes:

Table 1: Power for Simulations with Full Data and Varying Intercepts and Varying Slopes
term power, ef = 0.1 power, ef = 0.2 power, ef = 0.3 power, ef = 0.4 power, ef = 0.5

(Intercept) 0.050 0.056 0.070 0.056 0.026
X_a 0.844 0.990 1.000 1.000 1.000
X_c 0.170 0.474 0.838 0.966 0.992
X_f 0.118 0.360 0.634 0.864 0.968

X_a:X_c 0.690 0.894 0.986 1.000 1.000
X_a:X_f 0.748 0.864 0.966 0.994 1.000
X_c:X_f 0.072 0.124 0.244 0.350 0.486

X_a:X_c:X_f 0.770 0.808 0.856 0.938 0.956

7.2 Summary Statistics for Power Calculation with Full Data and Varying Intercepts:

Table 2: Power for Simulations with Full Data and Varying Intercepts
term power, ef = 0.1 power, ef = 0.2 power, ef = 0.3 power, ef = 0.4 power, ef = 0.5

(Intercept) 0.050 0.056 0.050 0.080 0.058
X_a 0.822 0.994 1.000 1.000 1.000
X_c 0.162 0.482 0.810 0.998 0.966
X_f 0.136 0.352 0.644 0.970 0.884

X_a:X_c 0.868 0.958 0.990 1.000 0.998
X_a:X_f 0.848 0.932 0.990 1.000 0.998
X_c:X_f 0.092 0.136 0.220 0.564 0.348

X_a:X_c:X_f 0.798 0.832 0.882 0.964 0.934

7.3 Summary Statistics for Power Calculation with 20 pct. Missing Data and Varying Intercepts
and Varying Slopes:

Table 3: Power for Simulations with 20 pct. Missing Data and Varying Intercepts and Slopes
term power, ef = 0.1 power, ef = 0.2 power, ef = 0.3 power, ef = 0.4 power, ef = 0.5

(Intercept) 0.040 0.054 0.042 0.064 0.052
X_a 0.832 0.996 1.000 1.000 1.000
X_c 0.162 0.476 0.806 0.950 0.998
X_f 0.122 0.348 0.658 0.842 0.972

X_a:X_c 0.686 0.928 0.982 1.000 1.000
X_a:X_f 0.674 0.872 0.974 0.996 1.000
X_c:X_f 0.062 0.132 0.266 0.376 0.498

X_a:X_c:X_f 0.762 0.800 0.862 0.926 0.950
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7.4 Summary Statistics for Power Calculation with 50 pct. Missing Data and Varying Intercepts
and Varying Slopes:

Table 4: Power for Simulations with 50 pct. Missing Data and Varying Intercepts and Slopes
term power, ef = 0.1 power, ef = 0.2 power, ef = 0.3 power, ef = 0.4 power, ef = 0.5

(Intercept) 0.036 0.058 0.054 0.044 0.046
X_a 0.822 0.986 1.000 1.000 1.000
X_c 0.168 0.540 0.840 0.970 0.996
X_f 0.120 0.366 0.658 0.836 0.964

X_a:X_c 0.666 0.902 0.992 0.998 1.000
X_a:X_f 0.680 0.826 0.966 0.992 1.000
X_c:X_f 0.066 0.174 0.232 0.372 0.460

X_a:X_c:X_f 0.690 0.754 0.840 0.896 0.942

8 Overview of Bias Results

sim_stats_full_bias_int_slope %>%
kbl(caption = "Bias for Simulations with Full Data and Varying Intercepts and Varying Slopes",

digits = 3, align = "c") %>%
kable_styling(full_width = T, latex_options = c("striped",

"HOLD_position"))

Table 5: Bias for Simulations with Full Data and Varying Intercepts and Varying Slopes
term bias, ef = 0.1 bias, ef = 0.2 bias, ef = 0.3 bias, ef = 0.4 bias, ef = 0.5

(Intercept) 0.000 0.003 0.003 -0.003 0.003
X_a 0.000 -0.001 -0.003 0.002 -0.003
X_c 0.001 -0.003 -0.007 0.000 -0.004
X_f 0.012 0.002 0.002 0.014 -0.021

X_a:X_c -0.001 0.004 0.005 0.006 0.006
X_a:X_f -0.007 0.013 -0.007 0.000 -0.002
X_c:X_f 0.024 -0.001 -0.015 0.001 0.011

X_a:X_c:X_f 0.009 0.003 0.008 0.018 -0.018

sim_stats_full_bias_int %>%
kbl(caption = "Bias for Simulations with Full Data and Varying Intercepts",

digits = 3, align = "c") %>%
kable_styling(full_width = T, latex_options = c("striped",

"HOLD_position"))

Table 6: Bias for Simulations with Full Data and Varying Intercepts
term bias, ef = 0.1 bias, ef = 0.2 bias, ef = 0.3 bias, ef = 0.4 bias, ef = 0.5

(Intercept) 0.002 0.006 0.001 0.003 -0.003
X_a 0.001 0.002 -0.002 -0.098 0.094
X_c 0.007 0.000 -0.003 -0.103 0.095
X_f 0.004 0.012 -0.001 -0.094 0.094

X_a:X_c -0.011 0.008 -0.013 -0.105 0.105
X_a:X_f -0.003 0.006 -0.011 -0.105 0.093
X_c:X_f -0.005 0.014 -0.005 -0.136 0.101

X_a:X_c:X_f 0.004 0.027 -0.003 -0.075 0.113

sim_stats_20_missing_bias %>%
kbl(caption = "Bias for Simulations with 20 pct. Missing Data and Varying Intercepts and Slopes",

digits = 3, align = "c") %>%
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kable_styling(full_width = T, latex_options = c("striped",
"HOLD_position"))

Table 7: Bias for Simulations with 20 pct. Missing Data and Varying Intercepts and Slopes
term bias, ef = 0.1 bias, ef = 0.2 bias, ef = 0.3 bias, ef = 0.4 bias, ef = 0.5

(Intercept) 0.001 0.002 0.002 -0.005 0.001
X_a 0.010 0.000 -0.006 0.006 0.001
X_c 0.002 -0.003 -0.011 0.007 0.000
X_f 0.000 0.001 -0.006 0.005 -0.002

X_a:X_c -0.001 -0.009 -0.005 0.004 -0.014
X_a:X_f 0.014 0.005 -0.007 0.001 0.000
X_c:X_f 0.008 0.002 -0.008 0.011 -0.008

X_a:X_c:X_f 0.009 -0.014 -0.003 0.003 0.020

sim_stats_50_missing_bias %>%
kbl(caption = "Bias for Simulations with 50 pct. Missing Data and Varying Intercepts and Slopes",

digits = 3, align = "c") %>%
kable_styling(full_width = T, latex_options = c("striped",

"HOLD_position"))

Table 8: Bias for Simulations with 50 pct. Missing Data and Varying Intercepts and Slopes
term bias, ef = 0.1 bias, ef = 0.2 bias, ef = 0.3 bias, ef = 0.4 bias, ef = 0.5

(Intercept) -0.006 -0.003 0.002 0.000 -0.003
X_a -0.002 0.002 -0.004 0.004 0.000
X_c 0.006 -0.011 0.000 -0.005 0.000
X_f -0.003 -0.008 0.007 0.016 0.005

X_a:X_c 0.000 -0.002 0.002 0.004 -0.007
X_a:X_f 0.004 0.004 0.010 0.012 0.007
X_c:X_f 0.010 -0.031 0.029 -0.012 0.014

X_a:X_c:X_f 0.000 0.016 0.000 0.020 -0.009

9 Increasing Variance with Trial Number

9.1 Extracting estimates of increasing variance from the adult pilot data

# download data from adult pilot study:
adult_data <- read.csv("02_processed_lt_data.csv")

stimulus_info_df <- adult_data %>%
filter(phase == "pref") %>%
mutate(familiar_item = case_when(left_stimulus == "familiar" ~

stimulus_processed_left, right_stimulus == "familiar" ~
stimulus_processed_right), novel_item = case_when(left_stimulus ==
"novel" ~ stimulus_processed_left, right_stimulus ==
"novel" ~ stimulus_processed_right)) %>%

select(subject, block_number, familiar_item, novel_item) %>%
distinct(subject, block_number, .keep_all = TRUE)

lt_comparison_df <- adult_data %>%
filter(phase == "pref") %>%
group_by(subject, exposure_time, block_number, complexity,

gaze_location_type) %>%
summarise(sum_dwell_time = sum(dwell_time)) %>%
pivot_wider(names_from = gaze_location_type, values_from = sum_dwell_time) %>%
ungroup() %>%
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left_join(stimulus_info_df, by = c("subject", "block_number")) %>%
rename(familiarization_time = exposure_time, stimulus_complexity = complexity,

trial_number = block_number, familiar_looking_time = familiar,
novel_looking_time = novel, participant = subject) %>%

# currently excluding all the empty trials
filter(!is.na(familiar_looking_time) & !is.na(novel_looking_time))

## `summarise()` has grouped output by 'subject', 'exposure_time', 'block_number',
## 'complexity'. You can override using the `.groups` argument.

lt_comparison_df <- lt_comparison_df %>%
mutate(familiarization_time_scaled_centered = log10(familiarization_time) -

log10(2000), contrast_coded_complexity = ifelse(stimulus_complexity ==
"complex", 0.5, -0.5))

proportion_df <- adult_data %>%
filter(phase == "pref") %>%
group_by(block_number, exposure_time, complexity, gaze_location_type,

subject) %>%
summarise(sum_dwell_time = sum(dwell_time, na.rm = TRUE)) %>%
pivot_wider(names_from = gaze_location_type, values_from = sum_dwell_time) %>%
mutate(familiar = ifelse(is.na(familiar), 0, familiar), novel = ifelse(is.na(novel),

0, novel)) %>%
mutate(novelty_looking_proportion = novel/(familiar + novel))

## `summarise()` has grouped output by 'block_number', 'exposure_time',
## 'complexity', 'gaze_location_type'. You can override using the `.groups`
## argument.

dwell_proportion_mean <- mean(proportion_df$novelty_looking_proportion,
na.rm = T)

dwell_proportion_sd <- sd(proportion_df$novelty_looking_proportion,
na.rm = T)

adult_data_z <- proportion_df %>%
mutate(dwell_time_z = (novelty_looking_proportion - dwell_proportion_mean)/dwell_proportion_sd)

data_on_increase_in_sd <- adult_data_z %>%
group_by(block_number) %>%
summarise(n = n(), dwell_time_median = median(dwell_time_z,

na.rm = T), sd_block = sd(dwell_time_z, na.rm = T))

increase_sd_value <- data_on_increase_in_sd$sd_block[12] - data_on_increase_in_sd$sd_block[1]
increase_sd_value

## [1] 0.3098641

9.2 Visualisation of adult data in proportions

adult_proportion_plot <- proportion_df %>%
ggplot(aes(x = as.factor(block_number), y = novelty_looking_proportion,

color = complexity)) + geom_jitter(alpha = 0.3, width = 0.2) +
stat_summary(aes(x = as.factor(block_number), y = novelty_looking_proportion,

color = complexity), position = position_dodge(width = 0.2)) +
geom_hline(yintercept = 0.5) + scale_color_manual(values = viridis(n = 3)) +
ggtitle("Adult Pilot Data in Proportions") + theme_bw()

adult_proportion_plot <- adult_proportion_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

adult_proportion_plot
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9.3 Visualisation of adult data in z-score

adult_data_z_plot <- adult_data_z %>%
ggplot(aes(x = as.factor(block_number), y = dwell_time_z,

color = complexity)) + geom_jitter(alpha = 0.3, width = 0.2) +
stat_summary(aes(x = as.factor(block_number), y = dwell_time_z,

color = complexity), position = position_dodge(width = 0.2)) +
geom_hline(yintercept = 0) + scale_color_manual(values = viridis(n = 3)) +
ggtitle("Adult Pilot Data in z-scores") + theme_bw()

adult_data_z_plot <- adult_data_z_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

adult_data_z_plot
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9.4 Modification of simulation function to include variance increase

my_sim_data_variance <- function(
increase_sd = increase_sd_value, #Add variance to increase with trial number

n_subj = 1280, # number of subjects
n_simple = 12, # number of complex stimuli
n_complex = 12, # number of complex stimuli
n_small_fam = 8, #small familiarization time
n_medium_fam = 8, #medium familiarization time
n_high_fam = 8, #high familiarization time
n_lab = 40,

beta_0 = 0, # intercept; i.e., the grand mean
beta_c = 0.3, # main effect for complexity
beta_f = 0.3, # main effect for familiarization time
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beta_a = 0.3, # main effect for age

beta_ca = 0.3,
beta_af = 0.3,
beta_cf = 0.3,

beta_cfa = 0.3, #main effect for interaction between complexity and familiarization.

subject_0 = 0.2, # by-subject random intercept sd

subject_c = 0.2, # by-subject slope complexity sd
subject_f = 0.2, # by-subject slope familiarization sd
subject_a = 0.2, # by-subject slope age sd

subject_ca = 0.2,# by-subject slope for interaction between age and complexity sd
subject_af = 0.2, # by-subject slope for interaction between age and familiarization sd
subject_cf = 0.2, # by-subject slope complexity*familiarization sd

subject_cfa = 0.2, # by-subject slope for interaction between age, complexity and familiarization sd

subj_rho = .2, # correlations between by-subject random effects

lab_0 = 0.2, # by-lab random intercept sd

lab_c = 0.2, # by-lab slope complexity sd
lab_f = 0.2, # by-lab slope familiarization sd
lab_a = 0.2, # by-lab slope age sd

lab_ca = 0.2, # by-lab slope for interaction between age and complexity sd
lab_af = 0.2, # by-lab slope for interaction between age and familiarization sd
lab_cf = 0.2, # by-lab random slope complexity*familiarization sd

lab_cfa = 0.2, # by-lab slope for interaction between age, complexity and familiarization sd

lab_rho = 0.2, # correlations between by-lab random effects

item_0 = 0.2, # by-item random intercept sd

item_c = 0.2, # by-item slope complexity sd
item_f = 0.2, # by-item slope familiarization sd
item_a = 0.2, # by-item slope age sd

item_ca = 0.2, # by-item slope for interaction between age and complexity sd
item_af = 0.2, # by-item slope for interaction between age and familiarization sd
item_cf = 0.2, # by-item random slope complexity*familiarization sd

item_cfa = 0.2, # by-item slope for interaction between age, complexity and familiarization sd

item_rho = 0.2, # correlations between by-item random effects

sigma = 0.3 # residual (error) sd
) { # residual (standard deviation)

# simulate a sample of items
items <- data.frame(
item_id = seq_len(n_simple + n_complex),
category = rep(c("simple", "complex"), c(n_simple, n_complex)),
X_c = rep(c(-0.5, 0.5), c(n_simple, n_complex)),
familiarization = rep(c("short", "medium", "long"), (n_simple + n_complex)/3),
X_f = rep(c(-0.5, 0, 0.5), (n_simple + n_complex)/3),
faux::rnorm_multi(

37



n = n_simple + n_complex, mu = 0, sd = c(item_0,
item_c,
item_f,
item_a,
item_ca,
item_af,
item_cf,
item_cfa), r = item_rho,

varnames = c("I_0", "I_c","I_f","I_a",
"I_ca","I_af", "I_cf",
"I_cfa"))

) %>%
mutate(item_id = faux::make_id(nrow(.), "I"))

# simulate a sample of subjects
subjects <-
faux::rnorm_multi(
n = n_subj, mu = 0, sd = c(subject_0,

subject_c,
subject_f,
subject_a,
subject_ca,
subject_af,
subject_cf,
subject_cfa), r = subj_rho,

varnames = c("S_0", "S_c","S_f","S_a",
"S_ca","S_af", "S_cf",
"S_cfa")

) %>%
mutate(subj_id = faux::make_id(nrow(.), "S")) %>%
mutate(X_a = runif(n_subj, min = -0.5, max = 0.5))

#add subject age measure, sample from distribution from -0.5 to 0.5. #subjects$subj_id <- 1:n_subj

labs <- faux::rnorm_multi(
n = n_lab, mu = 0, sd = c(lab_0, lab_c, lab_f, lab_a,

lab_ca, lab_af, lab_cf,
lab_cfa), r = lab_rho,

varnames = c("L_0", "L_c","L_f","L_a",
"L_ca","L_af", "L_cf",
"L_cfa")

) %>%
mutate(lab_id = faux::make_id(nrow(.), "L"))

#create lab and subj nesting structure
#Number of subjects must be a multiple of number of labs
lab_multiplier = n_subj/n_lab
lab_subj_dict <- data.frame(
subj_id = subjects$subj_id,
lab_id = rep(labs$lab_id,lab_multiplier)

)

# cross subject and item IDs
temp <- crossing(subjects, items) %>%
left_join(lab_subj_dict, by = "subj_id") %>%
left_join(labs, by = "lab_id") %>%
group_by(subj_id, item_id) %>% mutate(item_id = sample(item_id)) %>%
ungroup() %>%
mutate(trial_num = rep(seq(n_simple + n_complex), n_subj))

temp <- temp %>%
mutate(trial_i_var = ifelse(trial_num > 0, rnorm(nrow(temp), 0, trial_num*(increase_sd / 24)), 0))
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temp %>%
mutate(
B_0 = beta_0 + S_0 + L_0 + I_0,

B_c = beta_c + S_c + L_c + I_c,
B_f = beta_f + S_f + L_f + I_f,
B_a = beta_a + S_a + L_a + I_a,

B_ca = beta_ca + S_ca + L_ca + I_ca,
B_af = beta_af + S_af + L_af + I_af,
B_cf = beta_cf + S_cf + L_cf + I_cf,

B_cfa = beta_cfa + S_cfa + L_cfa + I_cfa,

e_si = rnorm(nrow(temp), mean = 0, sd = sigma) + trial_i_var,

DV = B_0 +
(B_a * X_a) + (B_c * X_c) + (B_f * X_f) +
(B_cf * X_c * X_f) + (B_af * X_a * X_f) + (B_ca * X_c * X_a) +
(B_cfa * X_c * X_f * X_a) + e_si

)
}

dat_sim <- my_sim_data_variance()

9.5 Visualise the variance increase

# The increase in variance is over 24 trials in this
# ManyBabies5 case:
dat_sim <- my_sim_data_variance(increase_sd = increase_sd_value)

plot_trial_num <- dat_sim %>%
mutate(trial_num = as.factor(trial_num)) %>%
ggplot() + geom_point(aes(y = DV, x = trial_num), position = "jitter",
alpha = 0.2, size = 0.2) + geom_violin(aes(y = DV, x = trial_num,
fill = trial_num), alpha = 0.2, show.legend = FALSE) + scale_fill_manual(values = viridis(n = 24)) +
ggtitle("Increase in Variance across Trial Number") + xlab("Trial Number") +
theme_bw()

plot_trial_num <- plot_trial_num + theme(plot.title = element_text(hjust = 0.5,
size = 20))

plot_trial_num
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9.6 Model building and bias assessment

dat_sim <- my_sim_data_variance(increase_sd = increase_sd_value)

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f + (1 | subj_id) + (1 |
lab_id) + (1 | item_id), data = dat_sim)

summary(mod_sim)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: DV ~ 1 + X_a * X_c * X_f + (1 | subj_id) + (1 | lab_id) + (1 |
## item_id)
## Data: dat_sim
##
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## REML criterion at convergence: 35957.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.6460 -0.6486 -0.0005 0.6571 4.5024
##
## Random effects:
## Groups Name Variance Std.Dev.
## subj_id (Intercept) 0.04078 0.2019
## lab_id (Intercept) 0.02656 0.1630
## item_id (Intercept) 0.06894 0.2626
## Residual 0.17278 0.4157
## Number of obs: 30720, groups: subj_id, 1280; lab_id, 40; item_id, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.737e-02 5.978e-02 2.993e+01 0.458 0.65040
## X_a 3.720e-01 2.133e-02 1.243e+03 17.437 < 2e-16 ***
## X_c 5.855e-01 1.073e-01 2.000e+01 5.457 2.43e-05 ***
## X_f 4.687e-01 1.314e-01 2.000e+01 3.567 0.00193 **
## X_a:X_c 1.976e-01 1.627e-02 2.941e+04 12.144 < 2e-16 ***
## X_a:X_f 3.844e-01 1.992e-02 2.941e+04 19.294 < 2e-16 ***
## X_c:X_f 6.772e-01 2.628e-01 2.000e+01 2.577 0.01801 *
## X_a:X_c:X_f 7.447e-01 3.985e-02 2.941e+04 18.690 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) X_a X_c X_f X_:X_c X_:X_f X_c:X_
## X_a -0.002
## X_c 0.000 0.000
## X_f 0.000 0.000 0.000
## X_a:X_c 0.000 0.000 -0.001 0.000
## X_a:X_f 0.000 0.000 0.000 -0.001 0.000
## X_c:X_f 0.000 0.000 0.000 0.000 0.000 0.000
## X_a:X_c:X_f 0.000 0.000 0.000 0.000 0.000 0.000 -0.001

plot(mod_sim)
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check_normality(mod_sim)

## OK: residuals appear as normally distributed (p = 0.250).

check_outliers(mod_sim)

## OK: No outliers detected.
## - Based on the following method and threshold: cook (0.92).
## - For variable: (Whole model)

check_collinearity(mod_sim)

## # Check for Multicollinearity
##
## Low Correlation
##
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## Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
## X_a 1.00 [1.00, ] 1.00 1.00 [ , 1.00]
## X_c 1.00 [1.00, Inf] 1.00 1.00 [0.00, 1.00]
## X_f 1.00 [1.00, Inf] 1.00 1.00 [0.00, 1.00]
## X_a:X_c 1.00 [1.00, Inf] 1.00 1.00 [0.00, 1.00]
## X_a:X_f 1.00 [1.00, Inf] 1.00 1.00 [0.00, 1.00]
## X_c:X_f 1.00 [1.00, Inf] 1.00 1.00 [0.00, 1.00]
## X_a:X_c:X_f 1.00 [1.00, Inf] 1.00 1.00 [0.00, 1.00]

check_heteroscedasticity(mod_sim)

## Warning: Heteroscedasticity (non-constant error variance) detected (p = 0.014).

9.7 Test how many of the models violate homoskedasticity

reps <- 200

run_sims_heteroskedasticity <- function(filename_heteroskedasticity) {

dat_sim <- my_sim_data_variance(increase_sd = increase_sd_value)

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f + (1 | subj_id) +
(1 | lab_id) + (1 | item_id), data = dat_sim)

heteroskedasticity_results <- as_tibble(check_heteroscedasticity(mod_sim)[1])

# append the results to a file
append <- file.exists(filename_heteroskedasticity)
write_csv(heteroskedasticity_results, filename_heteroskedasticity,

append = append)

# return the tidy table
heteroskedasticity_results

}

filename_heteroskedasticity = "sims/filename_heteroskedasticity.csv"
start_time <- Sys.time()
heteroskedasticity_results_data <- purrr::map_df(1:reps, ~run_sims_heteroskedasticity(filename_heteroskedasticity = filename_heteroskedasticity))
end_time <- Sys.time()
end_time - start_time

9.8 Overview of how many of the models exhibit homoskedasticity

heteroskedasticity_results <- read.csv(filename_heteroskedasticity)

homoskedastic_models <- heteroskedasticity_results %>%
filter(value > 0.05)

print(paste0(nrow(homoskedastic_models), "/", nrow(heteroskedasticity_results),
" of the models exhibit homoskedasticity"))

## [1] "156/200 of the models exhibit homoskedasticity"

9.9 Bayesian robust location-scale regression model
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model_formula <- bf(DV ~ 1 + X_a * X_c * X_f +
(1 | subj_id) + (1 | lab_id) + (1 | item_id),

sigma ~ 1 + trial_num + (1 | subj_id) + (1 | lab_id) + (1 | item_id))

#get_prior(model_formula, data = dat_sim, family = student)

priors1 <- c(prior(normal(0, 0.5), class = Intercept),
prior(normal(0, 0.5), class = b),
prior(normal(0, 0.5), class = b, dpar = sigma),
prior(normal(0.25, 0.3), class = sd),
prior(gamma(2, 0.1), class = nu)
)

heteroskedasticity_fit <-
brm(data = dat_sim,

family = student,
model_formula,
prior = priors1,
sample_prior = "yes",
iter = 4000,
warmup = 500,
#backend = "cmdstanr",
#threads = threading(2),
file = "heteroskedasticity_fit",
cores = 64,
chains = 2,
save_pars = save_pars(all = TRUE))

pp_check(heteroskedasticity_fit, ndraws = 100)
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## Family: student
## Links: mu = identity; sigma = log; nu = identity
## Formula: DV ~ 1 + X_a * X_c * X_f + (1 | subj_id) + (1 | lab_id) + (1 | item_id)
## sigma ~ 1 + trial_num + (1 | subj_id) + (1 | lab_id) + (1 | item_id)
## Data: dat_sim (Number of observations: 30720)
## Draws: 2 chains, each with iter = 4000; warmup = 500; thin = 1;
## total post-warmup draws = 7000
##
## Group-Level Effects:
## ~item_id (Number of levels: 24)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.00 0.00 0.00 0.01 1.00 3967 4291
## sd(sigma_Intercept) 0.01 0.01 0.00 0.02 1.00 3111 3651
##
## ~lab_id (Number of levels: 40)
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## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.17 0.02 0.13 0.22 1.00 1881 3066
## sd(sigma_Intercept) 0.04 0.01 0.03 0.06 1.00 3176 5234
##
## ~subj_id (Number of levels: 1280)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 0.21 0.01 0.20 0.22 1.00 2481 3755
## sd(sigma_Intercept) 0.05 0.01 0.03 0.07 1.00 1260 1282
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -0.01 0.03 -0.06 0.05 1.00 1051 1816
## sigma_Intercept -1.07 0.01 -1.09 -1.04 1.00 6208 5953
## X_a 0.26 0.02 0.22 0.31 1.00 2180 3628
## X_c 0.30 0.01 0.29 0.32 1.00 11577 5326
## X_f 0.39 0.01 0.38 0.40 1.00 14033 5762
## X_a:X_c 0.45 0.02 0.42 0.49 1.00 17307 5375
## X_a:X_f 0.67 0.02 0.62 0.71 1.00 14751 5860
## X_c:X_f 0.73 0.01 0.70 0.75 1.00 16307 5246
## X_a:X_c:X_f 0.36 0.04 0.27 0.44 1.00 15476 5133
## sigma_trial_num 0.02 0.00 0.02 0.02 1.00 7882 5137
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## nu 81.74 19.02 52.07 125.80 1.00 11984 5331
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

9.9.1 Prior-Posterior Update Checks

# Sample the parameters of interest:
Posterior_m1 <- as_draws_df(heteroskedasticity_fit)

# Plot the prior-posterior update plot for the intercept:
ggplot(Posterior_m1) + geom_density(aes(prior_Intercept), fill = "steelblue",

color = "black", alpha = 0.6) + geom_density(aes(b_Intercept),
fill = "#FC4E07", color = "black", alpha = 0.6) + theme_classic()
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ggplot(Posterior_m1) + geom_density(aes(prior_b_sigma), fill = "steelblue",
color = "black", alpha = 0.6) + geom_density(aes(b_sigma_trial_num),
fill = "#FC4E07", color = "black", alpha = 0.6) + theme_classic()
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ggplot(Posterior_m1) + geom_density(aes(prior_sd_item_id), fill = "steelblue",
color = "black", alpha = 0.6) + geom_density(aes(sd_subj_id__Intercept),
fill = "#FC4E07", color = "black", alpha = 0.6) + geom_density(aes(sd_lab_id__Intercept),
fill = "#FC4E07", color = "black", alpha = 0.6) + geom_density(aes(sd_item_id__Intercept),
fill = "#FC4E07", color = "black", alpha = 0.6) + theme_classic()
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ggplot(Posterior_m1) + geom_density(aes(prior_b), fill = "steelblue",
color = "black", alpha = 0.6) + geom_density(aes(b_X_a),
fill = "#FC4E07", color = "black", alpha = 0.6) + geom_density(aes(b_X_c),
fill = "#FC4E07", color = "black", alpha = 0.6) + geom_density(aes(b_X_f),
fill = "#FC4E07", color = "black", alpha = 0.6) + theme_classic()
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ggplot(Posterior_m1) + geom_density(aes(prior_b), fill = "steelblue",
color = "black", alpha = 0.6) + geom_density(aes(`b_X_a:X_c`),
fill = "#FC4E07", color = "black", alpha = 0.6) + geom_density(aes(`b_X_a:X_f`),
fill = "#FC4E07", color = "black", alpha = 0.6) + geom_density(aes(`b_X_c:X_f`),
fill = "#FC4E07", color = "black", alpha = 0.6) + geom_density(aes(`b_X_a:X_c:X_f`),
fill = "#FC4E07", color = "black", alpha = 0.6) + theme_classic()
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ggplot(Posterior_m1) + geom_density(aes(prior_nu), fill = "steelblue",
color = "black", alpha = 0.6) + geom_density(aes(nu), fill = "#FC4E07",
color = "black", alpha = 0.6) + theme_classic()
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10 Data missing not completely at random

10.1 Simulation of missing data according to increasing infant age

# back to assumptions of equal variance across trials:
dat_sim <- my_sim_data()

# Proportion of missing data increases with age:
missing_samples_age <- dat_sim %>%

mutate(nas = rbinom(n(), 1, 0.95 - ifelse(X_a > -0.5, (X_a +
0.5) * 0.5, 0))) %>%

mutate(DV = ifelse(nas == 1, DV, NA))

missing_age_plot <- missing_samples_age %>%
drop_na() %>%
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ggplot() + ggtitle("DV as a function of age, missing data") +
geom_point(aes(x = X_a, y = DV), alpha = 0.3, size = 0.2,

position = "jitter") + geom_smooth(aes(x = X_a, y = DV),
method = "lm", se = TRUE, formula = y ~ x) + theme_bw()

missing_age_plot <- missing_age_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))
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10.1.1 Simulation of models

# Number of simulations:
reps <- 100

# Simulation function:
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run_sims <- function(filename_full, ef) {

dat_sim <- my_sim_data(beta_c = ef,
beta_f = ef,
beta_a = ef,

beta_ca = ef,
beta_af = ef,
beta_cf = ef,

beta_cfa = ef)

missing_samples_age <- dat_sim %>%
mutate(nas = rbinom(n(), 1, 0.95 - ifelse(X_a > -0.5, (X_a+0.5)*0.50, 0))) %>%
mutate(DV = ifelse(nas == 1, DV, NA))

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f +
(1 | subj_id) +
(1 | lab_id) +
(1 | item_id),

data=missing_samples_age)

sim_results <- broom.mixed::tidy(mod_sim)

# append the results to a file
append <- file.exists(filename_full)
write_csv(sim_results, filename_full, append = append)

# return the tidy table
sim_results

}

filename_full_0.3_missing_age = 'sims/run_sims_0.3_age_missing.csv'
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.3_missing_age, ef = 0.3))
end_time <- Sys.time()
end_time - start_time

10.1.2 Visualise Estimates for Fixed Effects:

# read saved simulation data
sims_50_missing_age_0.3 <- read_csv(filename_full_0.3_missing_age, col_types = cols(

# makes sure plots display in this order
group = col_factor(ordered = TRUE),
term = col_factor(ordered = TRUE)

))

reps <- 100

fixed_missing_age_plot <- sims_50_missing_age_0.3 %>%
filter(effect == "fixed") %>%
ungroup() %>%
arrange(term, estimate) %>%
mutate(row = rep(seq(1:reps), 8)) %>%
ggplot(aes(x = row, y = estimate, ymin = estimate-std.error, ymax = estimate+std.error)) +
facet_wrap(~term, scales = "free") +
geom_pointrange(fatten = 1/2) +
ylab("Estimates") +
xlab("Simulations") +
ggtitle('Estimates of Fixed Effects for Missing Data with Age, ef = 0.3') +
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theme_bw()

fixed_missing_age_plot <- fixed_missing_age_plot + theme(plot.title = element_text(hjust = 0.5, size=20))
fixed_missing_age_plot
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Estimates of Fixed Effects for Missing Data with Age, ef = 0.3

10.1.3 Visualise Estimates for Random Effects:

ran_missing_age_plot <- sims_50_missing_age_0.3 %>%
filter(effect == "ran_pars") %>%
ungroup() %>%
arrange(group, term, estimate) %>%
mutate(row = rep(seq(1:reps), 4)) %>%
ggplot(aes(x = row, y = estimate)) + geom_point(alpha = 0.7) +
facet_wrap(~group + term, scales = "free_y") + theme_bw() +
ylab("Estimates") + xlab("Simulations") + ggtitle("Estimates of Random Effects for Missing Data with Age, ef = 0.3") +
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theme_bw()
ran_missing_age_plot <- ran_missing_age_plot + theme(plot.title = element_text(hjust = 0.5,

size = 20))
ran_missing_age_plot
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10.2 Simulation of missing data according to increasing trial number

# Proportion of missing data increases with trial number:
missing_samples_trial <- dat_sim %>%

mutate(nas = rbinom(n(), 1, 0.95 - ifelse(trial_num > 0,
trial_num * 0.025, 0))) %>%

mutate(DV = ifelse(nas == 1, DV, NA))

missing_trialnum_plot <- missing_samples_trial %>%
drop_na() %>%
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ggplot() + geom_point(aes(x = trial_num, y = DV), alpha = 0.3,
size = 0.2, position = "jitter") + geom_smooth(aes(x = trial_num,
y = DV), method = "lm", se = TRUE, formula = y ~ x) + ggtitle("DV as a function of trial number, missing data") +
theme_bw()

missing_trialnum_plot <- missing_trialnum_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

missing_trialnum_plot
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10.2.1 Simulation of models

# Number of simulations:
reps <- 100

# Simulation function:
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run_sims <- function(filename_full, ef) {

dat_sim <- my_sim_data(beta_c = ef,
beta_f = ef,
beta_a = ef,

beta_ca = ef,
beta_af = ef,
beta_cf = ef,

beta_cfa = ef)

missing_samples_trial <- dat_sim %>%
mutate(nas = rbinom(n(), 1, 0.95 - ifelse(trial_num > 0, trial_num*0.025, 0))) %>%
mutate(DV = ifelse(nas == 1, DV, NA))

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f +
(1 | subj_id) +
(1 | lab_id) +
(1 | item_id),

data=missing_samples_trial)

sim_results <- broom.mixed::tidy(mod_sim)

# append the results to a file
append <- file.exists(filename_full)
write_csv(sim_results, filename_full, append = append)

# return the tidy table
sim_results

}

filename_full_0.3_missing_trial = 'sims/run_sims_0.3_trial_missing.csv'
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.3_missing_trial, ef = 0.3))
end_time <- Sys.time()
end_time - start_time

10.2.2 Visualise Estimates for Fixed Effects:

# read saved simulation data
sims_50_missing_trial_0.3 <- read_csv(filename_full_0.3_missing_trial, col_types = cols(

# makes sure plots display in this order
group = col_factor(ordered = TRUE),
term = col_factor(ordered = TRUE)

))

fixed_missing_trial_plot <- sims_50_missing_trial_0.3 %>%
filter(effect == "fixed") %>%
ungroup() %>%
arrange(term, estimate) %>%
mutate(row = rep(seq(1:reps), 8)) %>%
ggplot(aes(x = row, y = estimate, ymin = estimate-std.error, ymax = estimate+std.error)) +
facet_wrap(~term, scales = "free") +
geom_pointrange(fatten = 1/2) +
ylab("Estimates") +
xlab("Simulations") +
ggtitle('Estimates of Fixed Effects for Missing Data with Trial Number, ef = 0.3') +
theme_bw()
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fixed_missing_trial_plot <- fixed_missing_trial_plot + theme(plot.title = element_text(hjust = 0.5, size=20))
fixed_missing_trial_plot
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10.2.3 Visualise Estimates for Random Effects:

ran_missing_trial_plot <- sims_50_missing_trial_0.3 %>%
filter(effect == "ran_pars") %>%
ungroup() %>%
arrange(group, term, estimate) %>%
mutate(row = rep(seq(1:reps), 4)) %>%
ggplot(aes(x = row, y = estimate)) + geom_point(alpha = 0.7) +
facet_wrap(~group + term, scales = "free_y") + theme_bw() +
ylab("Estimates") + xlab("Simulations") + ggtitle("Estimates of Random Effects for Missing Data with Trial, ef = 0.3") +
theme_bw()

ran_missing_trial_plot <- ran_missing_trial_plot + theme(plot.title = element_text(hjust = 0.5,
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size = 20))
ran_missing_trial_plot
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10.3 Simulation of missing data according to increasing familiarisation

# Proportion of missing data increases with
# familiarisation:
missing_samples_fam <- dat_sim %>%

mutate(nas = rbinom(n(), 1, 0.95 - ifelse(X_f > -0.5, (X_f +
0.5) * 0.6, 0))) %>%

mutate(DV = ifelse(nas == 1, DV, NA))

missing_samples_fam %>%
mutate(X_f = as.factor(X_f)) %>%
drop_na() %>%
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ggplot() + geom_point(aes(x = X_f, y = DV), alpha = 0.3,
size = 0.2, position = "jitter") + geom_violin(aes(y = DV,
x = X_f, fill = familiarization), alpha = 0.2) + theme_bw()
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10.3.1 Simulation of models

# Number of simulations:
reps <- 100

# Simulation function:
run_sims <- function(filename_full, ef) {

dat_sim <- my_sim_data(beta_c = ef,
beta_f = ef,
beta_a = ef,
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beta_ca = ef,
beta_af = ef,
beta_cf = ef,

beta_cfa = ef)

missing_samples_fam <- dat_sim %>%
mutate(nas = rbinom(n(), 1, 0.95 - ifelse(X_f > -0.5, (X_f+0.5)*0.6, 0))) %>%
mutate(DV = ifelse(nas == 1, DV, NA))

mod_sim <- lmer(DV ~ 1 + X_a * X_c * X_f +
(1 | subj_id) +
(1 | lab_id) +
(1 | item_id),

data=missing_samples_fam)

sim_results <- broom.mixed::tidy(mod_sim)

# append the results to a file
append <- file.exists(filename_full)
write_csv(sim_results, filename_full, append = append)

# return the tidy table
sim_results

}

filename_full_0.3_missing_fam = 'sims/run_sims_0.3_fam_missing.csv'
start_time <- Sys.time()
sims <- purrr::map_df(1:reps, ~run_sims(filename_full = filename_full_0.3_missing_fam, ef = 0.3))
end_time <- Sys.time()
end_time - start_time

10.3.2 Visualise Estimates for Fixed Effects:

# read saved simulation data
sims_50_missing_fam_0.3 <- read_csv(filename_full_0.3_missing_fam, col_types = cols(

# makes sure plots display in this order
group = col_factor(ordered = TRUE),
term = col_factor(ordered = TRUE)

))

fixed_missing_fam_plot <- sims_50_missing_fam_0.3 %>%
filter(effect == "fixed") %>%
ungroup() %>%
arrange(term, estimate) %>%
mutate(row = rep(seq(1:reps), 8)) %>%
ggplot(aes(x = row, y = estimate, ymin = estimate-std.error, ymax = estimate+std.error)) +
facet_wrap(~term, scales = "free") +
geom_pointrange(fatten = 1/2) +
ylab("Estimates") +
xlab("Simulations") +
ggtitle('Estimates of Fixed Effects for Missing Data with Familiarisation, ef = 0.3') +
theme_bw()

fixed_missing_fam_plot <- fixed_missing_fam_plot + theme(plot.title = element_text(hjust = 0.5, size=20))
fixed_missing_fam_plot
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### Visualise Estimates for Random Effects:

ran_missing_fam_plot <- sims_50_missing_fam_0.3 %>%
filter(effect == "ran_pars") %>%
ungroup() %>%
arrange(group, term, estimate) %>%
mutate(row = rep(seq(1:reps), 4)) %>%
ggplot(aes(x = row, y = estimate)) + geom_point(alpha = 0.7) +
facet_wrap(~group + term, scales = "free_y") + theme_bw() +
ylab("Estimates") + xlab("Simulations") + ggtitle("Estimates of Random Effects for Missing Data with Familiarisation, ef = 0.3") +
theme_bw()

ran_missing_fam_plot <- ran_missing_fam_plot + theme(plot.title = element_text(hjust = 0.5,
size = 20))

ran_missing_fam_plot
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11 Summary Statistics for Power Calculation with Data missing not completely
at random

Table 9: Power for Simulations with Non-Random Missing Data and Varying Intercepts
term missing with age missing with trial missing with fam

(Intercept) 0.07 0.01 0.06
X_a 1.00 1.00 1.00
X_c 0.79 0.79 0.78
X_f 0.66 0.62 0.58

X_a:X_c 0.98 0.99 0.99
X_a:X_f 0.94 1.00 0.98
X_c:X_f 0.22 0.24 0.12

X_a:X_c:X_f 0.81 0.85 0.85
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Table 10: Bias for Simulations with Non-Random Missing Data and Varying Intercepts
term age bias, ef = 0.3 trial bias, ef = 0.3 fam bias, ef = 0.3

(Intercept) -0.010 0.020 -0.011
X_a -0.008 -0.005 0.008
X_c -0.003 -0.001 0.004
X_f -0.019 -0.003 0.029

X_a:X_c -0.001 -0.009 -0.007
X_a:X_f 0.005 0.014 -0.012
X_c:X_f 0.019 -0.031 0.055

X_a:X_c:X_f 0.022 -0.002 0.006

12 Logistic Regression Models

m_missing_age <- glmer(nas ~ X_f + X_a + X_c + trial_num + (1 |
subj_id) + (1 | lab_id) + (1 | item_id), data = missing_samples_age,
family = binomial)

summary(m_missing_age)

m_missing_fam <- glmer(nas ~ X_f + X_a + X_c + trial_num + (1 |
subj_id) + (1 | lab_id) + (1 | item_id), data = missing_samples_fam,
family = binomial)

summary(m_missing_fam)

m_missing_trial <- glmer(nas ~ X_f + X_a + X_c + trial_num +
(1 | subj_id) + (1 | lab_id) + (1 | item_id), data = missing_samples_trial,
family = binomial)

summary(m_missing_trial)
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