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ABSTRACT
Machine learning is the art of generalizing a set of examples. Beside the efficiency
of the algorithms, the challenge is to define generalizations that make sense for a
data scientist. In this article, we consider generalizations of temporal sequences as
chronicles. A chronicle is a temporal model that represents a situation occurring
in temporal sequences, i.e. a series of event types with timestamps. A chronicle
is a collection of event types with metric temporal constraints on their delays of
occurrence.

Generalizing sequences by a set of event types can intuitively be the smallest
set of events that occur in all sequences. A question arises with the generalization
of metric temporal constraints. In the article, we study the admissibility of these
generalizations by deriving the notion of rule admissibility to the generalization as
chronicles. Through formalization, new insights about the notions of chronicles may
lead to conceive original chronicle mining algorithms.
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1. Introduction

Generalizing a given set of examples is essential in many machine learning techniques.
In principle, a machine learning algorithm builds an abstract model that represents a
set of examples. But representing the examples does not mean to represent the exam-
ples at hand strictly (rote learning). This would be of little interest. What is expected
from the result of such an algorithm is to find regularities that generalize examples.
A difficult question arises: what is a good generalization of examples? As a process,
a good generalization can be used to design efficient machine learning algorithms. As
an output, a good generalization matches the intuition of users.

In this work, we consider examples that are temporal sequences, i.e. a series of event
types with real-valued timestamps. A temporal sequence reports what’s happening and
at what time. This data type can be seen as the logs of a dynamic process. Such logs are
commonly collected from sensors, websites, organizations, etc. Doing machine learning
from temporal sequences aims to discover recurrent behaviours in them. It can be used
to describe a set of temporal sequences or to predict future events.

One standard machine learning technique to extract valuable information from tem-
poral sequences is temporal pattern mining. In the field of pattern mining, the problem
is to discover recurrent patterns in the dataset from structured examples (e.g. itemsets,
sequences, graphs). Temporal pattern mining is the branch of pattern mining dedi-



cated to extracting patterns from temporal data, such as temporal sequences. Each
extracted pattern abstracts a subset of the structured examples.

We focus on a certain type of temporal pattern called chronicle. A chronicle is a
collection of event types linked to each other, with metric temporal constraints on the
delays between event occurrences. For instance, the chronicle with two event types a,
b and a temporal constraint [2, 3] between them occurs in any sequence containing
both an a-event and an b-event whose difference between their occurrence date lies in
the range [2, 3]. Chronicles (Dousson & Duong, 1999) are interesting because of their
expressiveness: metric temporal intervals are specified upon pairs of events. It has
been investigated in different mining approaches (Álvarez, Félix, Cariñena, & Otero,
2010; Cram, Mathern, & Mille, 2012; Dauxais, Guyet, Gross-Amblard, & Happe, 2017;
Sahuguède, Le Corronc, & Le Lann, 2018). Moreover, the model of chronicle subsumes
other temporal models such as δ-patterns (Giannotti, Nanni, & Pedreschi, 2006) or
TGSP1 patterns (Yen & Lee, 2013) which also combine collections of event types and
metric temporal constraints.

The problem of pattern mining is a problem of generalization of examples. The
objective of such algorithm is to identify patterns that are the representatives of a
collection of examples in a dataset. Pattern mining algorithms have been widely inves-
tigated for domains such as sets of items or sequences of items. Usually, the topological
structure of these pattern spaces (lattice or semi-lattice) enables us to define the least
general generalizations (lgg). Then, the lgg provides a natural and intuitive candidate
for a generalization of examples. The extension of this approach to more complex
domains of patterns such as chronicles may have two limitations: 1) the topological
structure of the pattern domain makes it difficult to define a least general generaliza-
tion, and 2) the least general generalization does not match the intuition of a good
generalization by experts.

The particular case of a generalization of temporal sequences as a chronicle raises
the issue of determining which are the chronicles that generalize well from a collection
of sequences. At least, we expect from the chronicle to match all the sequences. But
the nature of temporal constraints, with temporal intervals, implies that for a given
set of sequences, there is an infinity of chronicles that match them. For computational
purposes, chronicle mining algorithms make implicit or explicit choices underlying the
task of determining what chronicles abstract a given set of sequences.

To address this issue, we propose a formalization of the problem of chronicle min-
ing, and then we propose different classes of generalization as chronicles derived from
the closure-like operators. Our formalization combines two different contributions we
jointly proposed with Philippe Besnard: the formalization of the space of chroni-
cles (Besnard & Guyet, 2023) and the formalization of rule learning with metric at-
tributes (Besnard, Guyet, & Masson, 2019). These two works have in common: 1) to
investigate formalizations with tools from topology theory and 2) to address a prob-
lem of making good generalizations from examples with metric attributes. It turns
out they can be merged to propose a new formalization of chronicle mining seen as a
generalization from temporal sequences.

The objective of such a work is to present a formalization of chronicle mining that
may help to better characterize existing algorithms. These algorithms have implicit or
explicit assumptions that specify what is a generalization as chronicle. We do not think
that there are a better generalization than the others. Through our formalization, we
can relate the technical choices to fundamental notions and thus we could help to

1TGSP stands for “Temporal Generalized Sequential Pattern”.
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choose which algorithm will behave as expected by a data scientist.

2. Temporal sequences and chronicles

In this section, we introduce the formal model of chronicles. We start by introducing
the definition of temporal sequence, chronicle, and we give their semantics through
the definition of an occurrence of a chronicle in a temporal sequence.

A chronicle is a temporal model that has been introduced by Dousson, Gaborit,
and Ghallab (1993) for situation recognition. In short, a chronicle is a set of events
and a set of real-valued temporal constraints on the delay between pairs of events.
A chronicle can be seen as a generalization of a set of temporal sequences when it is
recognized within each of them.

Given a finite alphabet Σ of atomic events, we first introduce the notion of temporal
sequence over Σ and then the notion of chronicle. ≤Σ denotes a total order on the
elements of Σ. In the sequel, we denote by [n] the set of the n-th first integers {1, . . . , n}.

Definition 2.1. A sequence (or temporal sequence) is a finite list of events
⟨(e1, t1), (e2, t2), . . . , (en, tn)⟩. The events in the temporal sequence are ordered by ⋖
defined as ∀i, j ∈ [n], i < j ⇔ (ei, ti)⋖ (ej , tj) ⇔ ti < tj ∨ (ti = tj ∧ ei <Σ ej).

A sequence S′ = ⟨(e′1, t′1), (e′2, t′2), . . . , (e′m, t′m)⟩ is a subsequence of another se-
quence S = ⟨(e1, t1), (e2, t2), . . . , (en, tn)⟩, denoted S′ ⪯ S iff there exists a strictly
increasing function τ : [m] 7→ [n] such that e′i = eτ(i) and t′i = tτ(i) for all i ∈ [m].

Definition 2.2 (Chronicle). A chronicle is an ordered pair C = (E , T ) where

• E is a finite multiset over Σ, i.e., E is of the form {{c1, . . . , cm}} such that ci ∈ Σ
for i = 1, . . . ,m and c1 ≤Σ · · · ≤Σ cm

• T is a set of temporal constraints, i.e, expressions of the form2

(c, oc)[t
−, t+](c′, oc′) such that

◦ c, c′ ∈ E
◦ t−, t+ ∈ R ∪ {−∞,+∞}
◦ oE(c), oE(c

′) ∈ [m] and oE(c) < oE(c
′)

◦ coE(c) = c and coE(c′) = c′.

The size of a chronicle (E , T ) is the size m of its multiset E .

In a chronicle (E , T ), oE(c) denotes the position of an event type c in the ordered
multiset E . Considering the fourth condition on the temporal constraints, the notation
(c, oE(c)) is redundant (oE(c) would be sufficient) but it enjoys more readability in
examples.

A chronicle can be visualized as a graph with one vertex per event. Edges repre-
sent the temporal constraints. Let Σ = {a, b, c, d}, Figure 1 illustrates the chronicle
({{a, b, c}}, {(a, 1)[−3, 2](b, 2), (a, 1)[−2, 1](c, 3), (b, 2)[−1, 5](c, 3)}).

The definition of a chronicle is close to the notion of simple temporal constraint
network (TCN) (Dechter, Meiri, & Pearl, 1991). However, TCN are oriented toward
the reasoning with temporal constraints while chronicles are oriented toward tasks in
handling temporal data. More specifically, it makes explicit certain aspects of temporal
data, such as repetitions of an event type. The way it is handled by chronicles make
the main difference.

2Here and in the sequel, we use a notation with closed intervals, [t−, t+], even when t− and/or t+ are infinite.
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a,1

b,2

c,3

[−3, 2]

[−
1
,5

]

[−2, 1]

Figure 1. Graphical representation of the chronicle detailed in the text.

One important notion for the generalization is the occurrence of a chronicle in a
sequence. Indeed, we require from a chronicle that generalizes a set of sequences S to
occur in every sequence of S.

Definition 2.3 (Chronicle occurrences and embeddings). An occurrence of a chron-
icle C = ({{c1, . . . , cm}}, T ) in a sequence S = ⟨(e1, t1), . . . , (en, tn)⟩ is a subsequence
⟨(eφ(1), tφ(1)), . . . , (eφ(m), tφ(m))⟩ of S such that:

(1) φ : [m] → [n] is an injective function,
(2) φ(i) < φ(i+ 1) whenever ci = ci+1,
(3) ci = eφ(i) for i = 1, . . . ,m,

(4) tφ(j) − tφ(i) ∈ [t−, t+] whenever (ci, i)[t
−, t+](cj , j) ∈ T .

We call φ an embedding.
A chronicle C occurs in S iff there is at least one occurrence of C in S.

The temporal constraints of a chronicle are conjunctive: an embedding of a chronicle
has to satisfy all of them. Then, in any chronicle, T can be assumed to contain at
most one temporal constraint per a pair of events. For a deeper understanding of the
semantics of chronicles, Guyet and Markey (2022) compared this temporal model with
classical temporal logics (MTL and TPTL).

Example 2.4. The chronicle depicted in Figure 1 occurs in the sequence
⟨(b, 0.2), (a, 2.9), (a, 3.5), (b, 3.9), (c, 4.1)⟩, as witnessed by the last three events. How-
ever, ⟨(b, 0.2), (a, 2.9), (c, 4.1)⟩ is not an occurrence of this chronicle because the
temporal constraint between a and c is not satisfied (4.1− 2.9 ̸∈ [−2, 1]).

The lgg seems intuitive to formalize a generalization of examples but the topological
structure of the space of chronicles does not allows us to define a simple and intuitive
lgg for chronicles. For more details about the space of chronicles, we invite the reader
to explore the formal account of chronicles by Besnard and Guyet (2023).

This motivates us to propose a formalization of chronicle mining in order to provide
a characterization of the ways the existing algorithms generalize temporal sequences
as chronicles.

3. Formalizing the process of chronicle mining

In this section, we present a formalization of chronicle mining. Following the approach
introduced in (Besnard et al., 2019), the main objective is to capture the general
principles of chronicle mining. This is helpful to characterize the behaviour of various
algorithms that exists or may be proposed.
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Figure 2. Illustration of the abstract process of chronicle mining. Figures in black point out the three-steps
of chronicle mining (see main text). Colours illustrate the event types.

The chronicle mining process is viewed as a three-step process illustrated in Figure 2:

(1) Some subsets of subsequences are selected,
(2) Each subset is transformed into a relational entity (or table) with metric at-

tributes,
(3) Each relational entity is generalized by a disjunction of chronicles.

It is worth noting that this article details mainly on the third step (see Section 4).
The two first steps are described briefly in the remaining of this section and illustrated
in Example 3.1.

The input of a chronicle mining algorithm is a set of sequences S. In the first step, a Φ
function yields subsets of sequences, denoted by R, restricted to some multiset of event
types σ.3 More formally, for all S ∈ R: ∃S′ ∈ S, S ⪯ S′ and {{x | (x, t) ∈ S}} = σ.

It is worth noting that Φ represents a choice among all possible collections of subse-
quences. More specifically, 1) it chooses a collection of subsequences having a multiset
of event types σ, but this subset does not necessarily contain all of them; and 2) if
there are more events of a certain type in a dataset sequence S′ than in the multiset
σ, the Φ function chooses which events of the sequence S′ are kept in the sequence S
to have the exact number of instances for each event types. For example, it can choose
the first occurrences of each event type in S. This means that the Φ function defines a
collection of subsequences to generalize. This is an important step in the formalization
of a temporal pattern mining algorithm but, in this article, the formalization of Φ is
put aside.

Another important remark is that Φ makes use of a multiset σ. Intuitively, a gen-
eralization involves the maximum multiset of event types that occurs in all sequences.
Thus, all smaller multisets are acceptable multisets to yield chronicles. The problem
of generalization arises when temporal constraints have to be defined.

In the second step, the subset of sequences is transformed into a relational entity
(or table) by computing delays between events. Each attribute of the entity represents
a temporal constraint, denoted A(c,oc)→(c′,oc′ ) between two event types in (c, c′) ∈ σ2,

3The notation R has been chosen because the subset can be represented as a Rectangle. When working on

generalizations as a rule, we make use of the term “square” in our internal discussions to denote similar objects.
It was obviously not a square, but we kept the notation S. I hope this notation change from S to R will suit

Philippe.
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oσ(c) < oσ(c
′). Each row corresponds to a sequence of S. The entity contains the

temporal delays between the occurrences of each pair of event types, for each sequence.
All these values exist and are unique thanks to the definition of a sequence generated
by Φ w.r.t to the multiset σ.

The third step processes each attribute A(c,oc)→(c′,oc′ ) independently. It generalizes
a set of real values – the time delays between occurrences of the corresponding events

in sequence – into a disjunction of intervals ̂A(c,oc)→(c′,oc′ ). We denote by f the function
that abstracts this third step. This step is more deeply investigated in the next section.
f is named a choice function as it makes a choice among all the possible sets of intervals
that include all values. Finally, a disjunctive collection of chronicles with the form
(σ, T ) is created from the selected sets of intervals. T is a set of temporal constraints

that uses one interval of Âc→c′ to define a temporal constraint between for each pair
of events (c, c′) ∈ σ, oσ(c) < oσ(c

′).

Example 3.1 (Illustration of the overall process). This example illustrates the steps
of the proposed process. Let Σ = {a, b, c, d, e} be a set of event types and S a set of
temporal sequences as follows:

S1 : ⟨(a, 1), (b, 5), (c, 5), (a, 6), (c, 8)⟩
...

...
S4 : ⟨(a, 3), (c, 4), (c, 10), (d, 10)⟩
...

...
S26 : ⟨(b, 1), (b, 3), (e, 3), (c, 8), (a, 10), (c, 12)⟩
...

...

A subset S of temporal sequences with σ = {{a, c, c}}, and sequences {S1, S4, S26}
is as follows:

S1 : ⟨(a, 1), (c, 5), (c, 8)⟩
S4 : ⟨(a, 3), (c, 4), (c, 10)⟩
S26 : ⟨(c, 8), (a, 10), (c, 12)⟩

In case of multiple occurrences of an event type, a sequence is here constructed by
taking the first occurrence of each event in σ = {{a, c, c}}.4 One can imagine having an-
other choice: last occurrence, the one with the shortest delay with the previous or even
to take all sequences in each temporal sequence. Different choices would lead to subse-
quences with different timestamps, and thus to different generalizations as chronicles.
This would correspond to different algorithm strategies that could be encountered in
the literature.

In the second step, the delay between each pair of event types is computed to yield
the relational dataset below. Note that there is no ambiguity about how to map the
two c of the multiset σ with events in sequences. According to the condition (2) in
Def. 2.3, the first (resp. the second) occurrence of c in a sequence is mapped to (c, 2)
(resp. (c, 3)). The dataset contains only metric attributes. The negative delay indicates
that the occurrence of a is before the one of c.

4This is a strategy that corresponds to the notion of chronicle reduct (Besnard & Guyet, 2023).
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a,1

c,2

c,3

[−2, 4
]

[2
,2

]

[3, 4]

a,1

c,2

c,3

[−2, 4
]

[2
,2

]

[4, 6]

a,1

c,2

c,3

[−2, 4
]

[6
,8

]

[3, 4]

a,1

c,2

c,3

[−2, 4
]

[6
,8

]

[4, 6]

Figure 3. Illustration of the four chronicles extracted in the Example 3.1.

̂A(a,1)→(c,2)
̂A(a,1)→(c,3)

̂A(c,2)→(c,3)

4 7 3
1 7 6
-2 2 4

Finally, the third step of the process generalizes each metric attribute by a set

of intervals. For instance, ̂A(a,1)→(c,2) = {[−2, 4]}, ̂A(a,1)→(c,3) = {[2, 2], [6, 8]} and

̂A(c,2)→(c,3) = {[3, 4], [4, 6]}. The previous intervals illustrate the wide range of possible
choices of intervals: we can use a unique interval that contains all values, or several
intervals; Boundaries of intervals can be set among the values of the entity or not;
etc. The next section will focus on the kinds of generalization that are admissible.
Then, the resulting collection of chronicles contains the four chronicles illustrated in
Figure 3.

Notation 1. For the sake of conciseness, a collection resulting
from the abstraction of the temporal delays is denoted by C =(
σS , {(a, 1)Â1→2(c, 2), (a, 1)Â1→3(c, 3), (c, 2)Â2→3(c, 3)}

)
. Considering that each

Âi→j = ̂A(σi,i)→(σj ,j) is a set of intervals, then each chronicle of C picks one of these
interval for each delay attribute.

As we already noticed, there is an intuitive choice for selecting the multiset of a
generalization as chronicles. The question that arises is how to generalize from delays
as temporal constraints. In the proposed framework, it amounts to the generalization
of a metric attribute. In the next section, we study the admissible generalizations of a
metric attribute.

4. Admissible generalizations of a metric attribute

Given the values {u1, . . . , un} of a delay attribute, an issue is to determine classes of
operator ·̂ that yields intuitive intervals, i.e., intuitive temporal constraints.

This question is similar to that of the notion of rule admissibility introduced
by Besnard et al. (2019). It is here adapted for the admissibility of the generaliza-
tion of delays as temporal constraints of a chronicle. Note that we do not provide a
definition of admissibility, the idea is to propose a framework to define different types
of admissibility that can be confronted to user intuition and practical results.

The starting point for defining an admissible generalization is the intuitive notion
of closure: all sets of delays S′ that are close enough to a given set S have the same (or
a close) generalization from the generalization of S. Then, our proposal is to derive
different notions of admissibility from closure-like operators.

7



4.1. Closure-like operators

The intuition we point out in the latter remark suggests that generalizing a set of
values to a superset thereof amounts to applying a closure-like operator ·̂ .5 For any
attribute Ai→j , generalizing the values Aij for Ai→j is identified with mapping Aij to

Âi→j with properties taken from the list of Kuratowski’s axioms:

∅̂ = ∅
S ⊆ Ŝ ⊆ R̂̂
S = Ŝ

Ŝ ∪ S′ = Ŝ ∪ Ŝ′ (pre-closure)

Actually, we downgrade the last axiom as follows (from the strongest to the weakest
operator)6:

Ŝ ⊆ Ŝ′ whenever S ⊆ S′ (closure)

Ŝ = Ŝ′ whenever S ⊆ S′ ⊆ Ŝ (cumulation)

Ŝ ∪ S′ ⊆ Ŝ whenever S′ ⊆ Ŝ (capping)

We thus arrive at four classes of weaker operators: preclosure, closure, cumulation
and capping operators.

An operator is defined through a choice function, denoted f in our formalization.
Let Z be a set, a choice function f : 22

Z → 2Z elicits one subset of Z among all the

possible subsets of Z. Letting ↑{X} def
= {Y | X ⊆ Y ⊆ R}, a closure-like operator on

metric attributes ·̂ is defined through a choice function as follows:

X̂ = f(↑{X})

The second Kuratowski’s axiom implies that the generalization of a set X has to be
taken among the supersets of X, i.e. ↑{X}.

The following sections illustrate three of these operators: we first propose a gener-
alization based on the convex hull of delays (closure), then we introduce the principle
of neighbourhoods (pre-closure) and finally the generalization based on splits on gaps
(capping).

4.2. Convex hull

An approach uses the convex hull principle of a set of delays. This approach is the
one followed in most of the chronicle mining algorithms (Cram et al., 2012; Dousson
& Duong, 1999). Formally, the choice function defines, for X ⊆ R,

f(↑{X}) def
=

{
∅ if X = ∅
[minx∈X(x),maxx∈X(x)] otherwise

Extend f to all of 22
Z

by taking f(X )
def
= [minminS∈minX (f(↑

{S})),maxmaxS∈maxX (f(↑{S}))]. Then, f induces a closure operator.

5Closure-like operators are topological operators.
6A capping is a cumulation, that is a closure, that is in turn a pre-closure.
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Figure 4. Illustration of generalizations based on convex hull. Each cross is an example (delay values on the
x-axis), the red bars illustrate the generalization as intervals (temporal constraints).

Figure 5. Illustration of generalizations based on example neighbourhoods. Each cross is an example (delay

values on the x-axis), a blue bar illustrates the neighbourhood of one example, the red bars illustrate the
generalization as intervals (temporal constraints).

Figure 4 illustrates the generalisation based on convex hull.
The notion of convex hull is only sensitive to the extreme values of a dataset. A set

of delays S1 = {1, 2, 9, 11} has the same generalization as the set S′
1 = {1, 2, 5, 7, 9, 11},

i.e. the interval [1, 11].

4.3. Neighbourhoods

In the previous example, we could be interested in considering that there is a large gap
between 2 and 9 that may justify splitting the interval into two distinct intervals. Then,
we can regard [1, 2] ∪ [9, 11] as more admissible temporal constraints than the large
[1, 11]. In this case, it would take into account the closeness between neighbourhoods,
and another notion of admissibility has to be defined.

In this case, the approach would use a neighbourhood principle. Since the delay δ
between two events a and b is encountered in examples, it seems rather reasonable to
consider that close delays can be abstracted by the same chronicle, meaning that it
represents almost the same situation. A temporal constraint exemplifying this would
be (a, 1)[δ − r, δ + r](b, 2), where r is a parameter that sets the notion of “closeness”
between delays.

For a datum u ∈ R, we look at a generalization for u in the form of the neighbour-
hood centred at u of radius r, for a given r > 0. Figure 5 illustrates the construction
of generalizations (set of intervals) based on neighbourhoods.

Formally, the choice function defines, for X ⊆ R,

f(↑{X}) def
=

{
∅ if X = ∅⋃

x∈X [x− r, x+ r] otherwise

Extend f to all of 22
Z

by taking f(X )
def
=

⋃
S∈minX f(↑{S}).

Then, f induces a pre-closure operator (Besnard et al., 2019). Obviously, it is not
a closure operator. A counterexample was given in the previous section. As expected,
we obtain a generalization [1 − r, 2 + r] ∪ [9 − r, 11 + r] for S′

1 and [1 − r, 11 + r] for
S1 ⊂ S′

1.
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Figure 6. Illustration of a generalization based on examples split on gaps. Each cross is an example (value

on the x-axis), ∆ is a threshold for splitting intervals, the red bar illustrates the generalization as intervals
(temporal constraints). The red tick at the bottom-left is a singleton interval.

One can note that the predefined radius r does not take into account the actual
distribution of values when it comes to finding intervals. The next section offers inter-
polation from pairs (u, v) of values.

4.4. Splits on gaps

Now, for generalization from X as interpolation of the kind: If u ∈ C and v ∈ X such
that the gap between u and v is smaller than some threshold, then generalize u and v
to all values between u and v. Figure 6 illustrates the principle of this construction of
the generalization as temporal constraints. Again, generalizing X amounts to applying
some closure-like operator ·̂, giving X̂.

Let f selects, among all supersets of X = ⟨x1, . . . , xm⟩,7 the union of the intervals
over R that have both endpoints inX and length (denoted by l) bounded by a threshold
value ∆(X) as follows:

φX(xj)
def
=

{
[xj , xj+1] if l([xj , xj+1]) ≤ ∆(X)
[xj , xj ] otherwise (including j = m)

(1)

where ∆ is a function on the increasing sequences over R.
For all finite X ⊆ R, define

f(↑{X}) def
=

⋃
x∈X

φX(x) (2)

where the φX : X → 2R functions can be required to satisfy, for all x ∈ X and all
finite X ′ ⊆ R, the following constraints:

(1) x ∈ φX(x),
(2) X ⊆ X ′ ⊆

⋃
φX(X) ⇒

⋃
φX′(X ′) ⊆

⋃
φX(X).

Extend f to all of 22
Z

by taking

f(X)
def
=

⋂
X whenever X ̸=↑{S} for all S ⊆ Z. (3)

The following instances to ∆ give choice functions, as per eq. (1)-(3), generating
rules according to capping (Besnard et al., 2019):

• Geometric mean: ∆(S) =
(∏m−1

i=1 (xi+1 − xi)
) 1

m−1

• Higher power means: ∆(S) = p

√
1

m−1

∑m−1
i=1 (xi+1 − xi)p

7S is identified with its enumeration in increasing order as this simplifies the formulation in eq. 1.
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In this notion of admissible generalization, the gap between two consecutive val-
ues is to be turned into an interval unless the gap is much greater than most of
the other gaps in the series. For instance, let S = {3.1, 3.3, 3.5, 3.6, 5.0, 5.5, 6.0} and
S′ = {3.1, 3.6, 5.0, 5.5, 6.0, 6.8, 7.1} the gaps in S from 5.0 to 6 have lengths equals
to 0.5 but all other gaps from 3.1 to 3.6 have lengths lower than 0.2. It is a coun-
terexample to cumulation because, according to the principle of the splitting on gaps,
the generalization of S would be [3.1, 3.6] ∪ [5.0, 6.0] but the generalization would be
[3.1, 6.0]. Then, it turns out to be only a capping operator.

5. Conclusions

We proposed a framework to formalize the generalization of temporal sequences as
chronicles. It is at the crossroad of two contributions of Philippe Besnard in the field
of machine learning: a contribution to the formalization of the space of chronicles and
a contribution to the formalization of admissible rules.

The objective of this work is not to propose an operational framework for chronicle
mining but a formalization to analyse the consequences of choices made by algorithm
designers. The different notion of admissible generalizations as chronicles can be used
to discuss the outputs of algorithms. Our intuition is that most of the pattern mining
algorithms behave more as a closure-admissibility, an algorithm like TGSP (Yen &
Lee, 2013) yields more preclosure-admissible chronicles, and DCM (Dauxais et al.,
2017) yields more cumulation or capping-admissible chronicles.8

The strength of the formalizations that have been proposed by Philippe Besnard
lies in the fact that they capture intuitions. For instance, the operators that have
been presented capture the idea that there are two different strategies to create the
temporal intervals from collections of delays: a merge vs split approach. This has been
proposed as an alternative algorithmics (Guyet & Quiniou, 2011). What makes this
work interesting is to bring the light on the underlying implications and to make them
intuitive. This is undoubtedly a meaningful and an original approach that may be
pursued for proposing an in-depth formalization of machine learning.
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