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Abstract In this paper, we consider the discrete-time setting, and the market
model described by (S,F, τ). Herein F is the “public” flow of information
which is available to all agents overtime, S is the discounted price process
of d-tradable assets, and τ is an arbitrary random time whose occurrence
might not be observable via F. Thus, we consider the larger flow G which
incorporates F and makes τ an observable random time. This framework covers
the credit risk theory setting, the life insurance setting and the setting of
employee stock option valuation. For the stopped model (Sτ ,G) and for various
vulnerable claims, based on this model, we address the super-hedging pricing
valuation problem and its intrinsic Immediate-Profit arbitrage (IP hereafter for
short). Our first main contribution lies in singling out the impact of change
of prior and/or information on conditional essential supremum, which is a
vital tool in super-hedging pricing. The second main contribution consists of
describing as explicit as possible how the set of super-hedging prices expands
under the stochasticity of τ and its risks, and we address the IP arbitrage for
(Sτ ,G) as well. The third main contribution resides in elaborating as explicit
as possible pricing formulas for vulnerable claims, and singling out the various
informational risks in the prices’ dynamics.
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1 Introduction

In this paper, we consider a general initial discrete-time model represented
by the pair (S,F) and an arbitrary random horizon τ . Herein, S is the as-
sets’ price process and F is the “public” flow of information which is available
to all agents overtime, while the random time τ might not be observable via
the flow F. This random time represents the default of a firm in credit risk
theory, the death time of an insured in life insurance, the job’s termination
time of an employee-stock-option’s holder (called ESO hereafter) in finance, ...,
etcetera. Hence, our current setting covers these three aforementioned frame-
works, and for more about these we refer the reader to [3,5,28–31,26] and the
references therein to cite a few. As a random time can not be observable before
its occurrence, the progressive enlargement approach of F with τ seems the
tailor-fit method for our setting in modelling mathematically the large flow of
information which incorporates both F and τ . This larger flow will be denoted
throughout the paper by G and will be defined more precisely in the next sec-
tion. Therefore, our main objective lies in addressing the evaluation problem
for the stopped financial model (Sτ ,G, P ), and focus on the super-hedging
pricing approach and its intrinsic arbitrage called immediate-profit.

The super-hedging price of the financial claim/asset C is the infinimum
amount required to initiate a hedging strategy for C. The super-hedging pric-
ing concept was introduced in Bensaid et al. in [4] for the binomial framework
with transaction costs. Afterwards, the characterization and/or computation
of the super-hedging price became a central problem in mathematical finance,
and we refer the reader to [17,25] and the references therein to cite a few. These
studies were carried out under the main assumption of no-arbitrage using the
fundamental theorem of asset pricing theorem (FTAP hereafter). Using this
FTAP, the main results on the super-hedging pricing consist of establishing a
dual formulation for the price using martingale measures or deflators, see [16,
27,18] and the references therein.

Recently in [6], the authors consider the discrete-time model without trans-
action costs and addressed this super-hedging pricing issue differently and
without any non-arbitrage assumption. As a result, the authors discovered that
this infimum price is in fact a price if and only if the model fulfills a weaker
form of non-arbitrage, called Absence of Immediate Profit (AIP hereafter for
short). This novel notion of non-arbitrage is weaker than the classical non-
arbitrage concepts which all coincide in discrete-time setting. Besides the AIP
concept, using the conditional essential supremum as their main mathematical
tool, the authors derived a backward equation/algorithm for calculating the

super-hedging price process P̂ = (P̂t)t=0,...,T as follows

P̂t = P̂t,t+1

(
P̂t+1

)
, t = 0, .., T − 1, and P̂T = C. (1.1)
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Here P̂t,t+1(·) is the one-period super-hedging pricing operator for the period
t, which can also be seen as the concave envelop of the payoff relatively to the
convex envelop of the conditional support. The conditional essential supremum
notion was introduced in [2], [23] and developed in [15], [1], [6], [24] and the
references therein to cite a few.

What are our achievements? In this informational setting, generated by
the random horizon τ , we describe explicitly the expansion of the set of super-
hedging prices for various vulnerable claims. This expansion is quantified using
processes under F and/or super-hedging prices of models under the flow F. Be-
sides, this shows how τ affect the valuation process, which is an important step
towards addressing Immediate-Profit arbitrage for the stopped model (Sτ ,G).
Precisely, we connect one-to-one the G-Immediate-Profit arbitrage for the lat-
ter model to the Immediate-Profit arbitrage for (Tr(S),F, Q̂), where Tr(S) is a

transformed model of S and Q̂ is a probability measure quantifying the corre-
lation risks generated by τ and F. In this spirit, we show that the impact of τ
on classical arbitrage differs tremendously from its impact on immediate-profit
arbitrage. Our last achievement resides in determining the pricing formulas for
vulnerable claims, in different manners. On the one hand, we show that for any
vulnerable claim HG, there exists a unique pair (f(t, ω, x), HF) such that the
super-hedging price process of this claim coincide on ]]0, τ ]] with the solution
of the following backward stochastic differential equations

Xt = P̂t,t+1

(
f(t+ 1, Xt+1)

)
, XT = HF). (1.2)

Here f(t, ω, x) is an F-adapted functional intimately associated to the pay-
ment’s policy of the claim and τ , and it is not linear in x in general. This
extends the Carassus-Lepinette’s pricing formula (1.1) to more complex situ-
ation, and shows that (1.1) remains valid for a subclass of vulnerable options
only. On the other hand, we describe the dynamics of the super-hedging price
process of the vulnerable claim and single out precisely the various induced
informational risks. This latter decomposition formula is vital for risk manage-
ment in the extended markets, in particular for the securitization of mortality
and/or longevity risks in life insurance. All these aforementioned results rely
essentially on understanding how conditional essential supremum behave un-
der additional information and/or change of priors.

The paper has five sections including the current introductory section. The
second section presents the economical and mathematical model and gives
some preliminaries. The third section addresses the essential supremum under
change of probability and/or change of filtration. The fourth section discusses
the super-hedging prices’ set and the immediate-profit arbitrage, while the
fifth section derives the pricing formulas for various vulnerable claims.

2 The mathematical model and preliminaries

Throughout the paper, we suppose given a complete probability space (Ω,G, P )
and a fixed investment horizon T ∈ (0,∞). On this space, we suppose given the
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pair (S,F). F := (Ft)t=0,··· ,T is a filtration, which represents the flow of infor-
mation available to all agents through time. S = (St)t=0,...,T is a d-dimensional
and F-adapted process with values in Rd

+ = [0,∞)d, and represents the (dis-
counted) prices of d-risky assets. Besides S, we suppose that there exists a
bond whose (discounted) price is Bt = 1. Throughout the paper, the triplet
(S,F, P ) will be called the initial model. Throughout the paper, L0(E,H) de-
notes the set of random variables having values in E and are H-measurable,
for any set E and any sub-σ-algebra H. When E = IR, we simply write L0(H),
while L0

+(H) denotes its subset of nonnegative random variables.

2.1 Random horizon and its parametrization

Besides the initial model, we consider an arbitrary random time τ , which
might not be seen via F when it occurs. Thus, in order to take into account
the occurrence of this random time, we consider the progressive enlargement
of F with τ , and this yields to a larger flow G given by

G := (Gt)t=0,...,T , Gt := Ft ∨ σ ({τ = r} : r = 0, · · · , t) , t = 0, ..., T. (2.1)

The agent endowed with the flow F can see the occurrence of τ through the
pair (G, G̃) of two processes, called Azéma supermatingales, given by

Gt := P
(
τ > t

∣∣ Ft) , G̃t := P
(
τ ≥ t

∣∣ Ft) , t = 0, 1, · · · , T. (2.2)

The following lemma is a direct consequence of [22, Lemma 4.6], see also [8,
(2.7)], and is useful throughout the paper.

Lemma 2.1 For any t ∈ {1, ..., T}, for any positive integer n, we have

L0(Rn,Gt−1)I{τ≥t} = L0(Rn,Ft−1)I{τ≥t} and L0
+(Gt−1)I{τ≥t} = L0

+(Ft−1)I{τ≥t}.

The following lemma characterizes inequalities in G using inequalities in F.

Lemma 2.2 Let t ∈ {1, ..., T} and (Xt,Kt) ∈ L0(Ft)×L0(Ft). Then we have:
(a) Xt1{τ=t} ≥ Kt1{τ=t} P -a.s. iff Xt1{G̃t>Gt} ≥ Kt1{G̃t>Gt} P -a.s..

(b) Xt1{τ>t} ≥ Kt1{τ>t} P -a.s. iff Xt1{Gt>0} ≥ Kt1{Gt>0} P -a.s..
(c) Xt1{τ≥t} ≥ Kt1{τ≥t} P -a.s. iff Xt1{G̃t>0} ≥ Kt1{G̃t>0} P -a.s..

(d) Xt1{τ≥t} ≥ Kt1{τ=t} P -a.s. iff Xt1{G̃t>0} ≥ Kt1{G̃t>Gt=0}+K
+
t 1{G̃t>Gt>0}

P -a.s..

Proof It is clear that assertion (a) follows immediately due to (τ = t) ⊂ (G̃t >

Gt), while assertion (b) is due to (τ > t) ⊂ (Gt > 0). Also, {τ ≥ t} ⊆ {G̃t > 0}
hence (c) holds. Thus the rest of the proof focuses on proving assertion (d). To
this end, we notice that XtI{τ≥t} ≥ KtI{τ=t} P -a.s. iff XtI{τ=t} ≥ KtI{τ=t}
P -a.s. and XtI{τ>t} ≥ 0, P -a.s.. Thus, by combining these with assertions
(a) and (b), we conclude that XtI{τ≥t} ≥ KtI{τ=t} iff XtI{Gt>0} ≥ 0 P -
a.s. and XtI{G̃t>Gt} ≥ KtI{G̃t>Gt} P .a.s.. Furthermore, it is easy to check

that XtI{G̃t>Gt} ≥ KtI{G̃t>Gt} and XtI{Gt>0} ≥ 0 P -a.s. if and only if

Xt1{G̃t>0} ≥ Kt1{G̃t>Gt=0}+K+
t 1{G̃t>Gt>0} P -a.s.. This completes the proof

of assertion (d), and ends the proof of the lemma.
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2.2 Super-hedging prices and Immediate-profit

In this subsection, we consider an arbitrary market model (X,H) defined on
(Ω,G, P ), where H is a filtration and X is an H-adapted process.
The following proposition states the existence of the conditional supremum and
infimum of any family of random variables, as shown in [23, Section 5.3.1].

Proposition 2.3 Let H ⊆ F be two sub σ-algebras. For any family of random
variables Γ ⊆ L0([−∞,∞],F), there exists a unique (up to a negligible set)
H-measurable random variable γH ∈ L0([−∞,∞],H) such that γH ≥ γ, for
all γ ∈ Γ , and if γ1

H ∈ L0([−∞,∞],H) is such that γ1
H ≥ γ for all γ ∈ Γ ,

then γ1
H ≥ γH a.s..We call γH the conditional supremum of Γ knowing H and

we denote it by ess sup
H

(Γ ). Similarly, we define ess inf
H

(Γ ) = −ess sup
H

(−Γ ).

When H = G in the proposition above, we write ess sup
H

(Γ ) = ess sup(Γ ). Let

Pa(P) be the set of all absolutely continuous probability measures w.r.t. P.

Lemma 2.4 Let H1 ⊆ H2 ⊆ G be sub-σ-algebras and let Γ ⊆ L0([−∞,∞],G)
be a family of random variables. Then the following properties hold.

ess sup
H2

(Γ ) ≤ ess sup
H1

(Γ ), and ess sup
H1

(Γ ) = ess sup
H1

(
ess sup
H2

(Γ )

)
. (2.3)

Lemma 2.5 If H ⊆ G is a sub-σ-algebra and Γ ⊆ L0((−∞,∞],G), then(
ess sup
H

(Γ )

)+

= ess sup
H

(Γ+), and

(
ess sup
H

(Γ )

)−
= ess inf

H
(Γ−) (2.4)

Proof Note that the first equality in (2.4) can easily be shown, and hence its
proof will be omitted. From ess sup

H
(Γ ) ≥ Y P -a.s. for any Y ∈ Γ , we get(

ess sup
H

(Γ )

)−
≤ Y − P -a.s., and hence

(
ess sup
H

(Γ )

)−
≤ ess inf

H
(Γ−). Then

remark that ess inf
H

(Γ−) ≤ Y − yields Y + − ess infH(Γ−) ≥ Y + − Y −. Thus,

ess sup
H

(Γ+) − ess inf
H

(Γ−) ≥ Y , and ess sup
H

(Γ+) − ess inf
H

(Γ−) ≥ ess sup
H

(Γ ).

By the first equality in (2.4), ess sup
H

(Γ+) =

(
ess sup
H

(Γ )

)+

so we deduce that

−ess inf
H

(Γ−) ≥ −
(

ess sup
H

(Γ )

)−
and, finally ess inf

H
(Γ−) ≤

(
ess sup
H

(Γ )

)−
.

Then the second equality in (2.4) follows, and the proof is complete.

This lemma can be extended easily to increasing and decreasing functions.
Recall that a self-financing portfolio process in discrete-time is a stochastic
process (Vt)

T
t=0 satisfying ∆Vt := Vt − Vt−1 = θt−1∆Xt for some θt−1 ∈

L0(Rd,Ht−1). We denote by At,u := Rt,u − L0
+(Hu), t ≤ u ≤ T , the set of

all attainable claims at time u when starting a self-financing portfolio process
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from the zero initial endowment at time t. By definition, Vt,u ∈ Rt,u if and
only if Vt,u =

∑u
r=t+1 θr−1∆Sr for some θr ∈ L0(Rd,Hr), r = t, · · · , u− 1.

For any payoff ξ ∈ L0(HT ), we associate the pair (Pt(ξ), Π∗t (ξ)) of the set of
all super-hedging prices and the infimum price, for t = 0, 1, ..., T − 1, given by

Pt(ξ) :=
{
pt ∈ L0(R,Ht) : pt + Vt,T ≥ ξ, P -a.s. for Vt,T ∈ Rt,T

}
,

P̂t(ξ) := ess inf(Pt(ξ)), t = 0, 1, ..., T − 1.
(2.5)

Thus, it is easy to check that Pt(0) = (−At,T ) ∩ L0(Ht).

Definition 2.6 For a model (X,H := (Ht)Tt=0), a probability Q, two dates

t1, t2 such that 0 ≤ t1 < t2, and a payoff ξ ∈ L0(Ht2), we denote by P(X,H,Q)
t1,t2 (ξ)

the set of all super-hedging prices at time t1 of the payoff ξ. The infimum price

of ξ, denoted by P̂(X,H,Q)
t1,t2 (ξ) is given by

P̂(X,H,Q)
t1,t2 (ξ) := ess infP(X,H,Q)

t1,t2 (ξ). (2.6)

When Q = P , we omit the probability in the notation, and write P(X,H)
t1,t2 (ξ)

and P̂(X,H)
t1,t2 (ξ) instead.

Below, we recall, from [6], the mathematical definition of the AIP concept.

Definition 2.7 We say that the condition AIP holds at time t ≤ T − 1 if
At,T ∩L0

+(Ft) = {0}. We say that AIP holds if it holds at any time t ≤ T − 1.

Similarly, as for the classical non-arbitrage condition in discrete-time, the AIP
concept can be checked step-by-step and in various manners. This is the aim
of the following proposition.

Proposition 2.8 Let H = (Ht)t=0,..,T be a filtration, and X be an H-adapted
process. Then the following assertions are equivalent.
(a) The model (X,H) satisfies AIP.
(b) For t ∈ {1, ..., T} and θ ∈ L0(Rd,Ht−1), ess sup

Ht−1

(θ∆Xt) ≥ 0 P -a.s..

(c) For any t ∈ {1, ..., T}, P(X,H)
t−1,t (0) ⊆ L0

+(Ht−1).

(d) For any t ∈ {1, ..., T}, P̂(X,H)
t−1,t (0) = 0, P -a.s..

Proof By [6, Proposition 2.11], a model (X, (Ht)Tt=0) satisfies AIP at time
t − 1 ≥ 0 if and only if, 0 belongs to the closed convex hull of D̄t−1 =
suppHt−1

(∆Xt), the random conditional support of ∆Xt. By the Hahn-Banach
separation theorem for convex sets, this is equivalent to the property that
σD̄t−1

(x) ≥ 0, for all x ∈ Rd, a.s.(ω), where σD̄t−1
(x) = supz∈D̄t−1

(−xz). Note
that, by [15, Theorem 3.4], σD̄t−1

(x) = ess sup
Ht−1

(−x∆Xt). Therefore, a model

(X, (Ht)Tt=0) satisfies AIP at time t−1 ≥ 0 iff ess sup
Ht−1

(−x∆Xt) ≥ 0 for x ∈ Rd,

a.s.. Hence, we get ess sup
Ht−1

(θt−1∆Xt) ≥ 0 for θt−1 ∈ L0(Rd,Ht−1). Indeed, the

inequality ess sup
Ht−1

(θt−1∆Xt) ≥ 0 is immediate by the previous reasoning if AIP
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holds. Reciprocally, if ess sup
Ht−1

(θt−1∆Xt) ≥ 0 for θt−1 ∈ L0(Rd,Ht−1), then

ess sup
Ht−1

(−x∆Xt) ≥ 0 for all x ∈ Rd, a.s.. To see it, we argue by contradiction

and, by a measurable selection, it is possible to get ess sup
Ht−1

(θt−1∆Xt) < 0 on

a non null set, for some θt−1 ∈ L0(Rd,Ht−1), i.e. a contradiction. This ends
the proof of the proposition.

3 Essential supremum under change of priors or information

Herein, we derive novel properties on conditional essential supremum, which
are very useful throughout the paper. In fact, we investigate how the condi-
tional essential supremum behaves under a change of probability and change of
information (filtration). To this end, we start with the easy but crucial lemma,
which conveys that conditional essential supremum or infinimum of indicators
is always an indicator.

Lemma 3.1 Let H1 ⊆ H be two sub-σ-algebras, and H ∈ H. Then the fol-
lowing assertions hold.
(a) There exists H1 ∈ H1 satisfying

ess inf
H1

(IH) = IH1
= I{ess inf

H1
(1H)>0} = I{ess inf

H1
(1H)=1}, P -a.s., (3.1)

and it is the largest H1-measurable set contained in H.
(b) There exists H2 ∈ H1 such that

ess sup
H1

(IH) = IH2 = I{ess sup
H1

(1H)=1} = I{ess sup
H1

(1H)>0}, P -a.s., (3.2)

and it is the smallest H1-measurable set containing H.

Proof Remark that assertion (a) follows immediately from assertion (b) ap-
plied to H := Ω \H ∈ H, and the easy fact that ess sup

H1

(IH) = 1− ess inf
H1

(IH).

Thus, the rest of this proof focuses on assertion (b). To this end, we put

H2 :=
{

ess sup
H1

(IH) = 1
}
,

which belongs to H1. In virtue of the definition of conditional essential supre-
mum, we always have ess supH1

(IH) ≥ IH P -a.s., and hence IH ≤ IH2
, P -a.s..

Therefore, we get
ess sup
H1

(IH) ≤ IH2 , P -a.s..

As a result of this, we obtain

{ess sup
H1

(IH) > 0} = {ess sup
H1

(IH) = 1} = H2, P -a.s.,

and (3.2) follows immediately. This ends the proof of the lemma.
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Theorem 3.2 Let Hi, i = 1, 2 be two sub-σ-algebras of G such that H1 ⊆ H2,
and Z ∈ L+(H2) with E[Z] = 1, and put

ZH1 := E[Z
∣∣H1] and Q := Z · P.

Consider Γ ⊂ L0(H2), and denote by

γ̃Q :=
Q

ess sup
H1

(Γ ) and γ̃ := ess sup
H1

(ΓI{Z>0}). (3.3)

Then the following assertions hold.

(a) If X ∈ L0
+(H2) and Y := E

[
X
∣∣∣ H1

]
, then P -a.s. we have

ess sup
H1

(I{X>0}) = I{Y >0}, and ess inf
H1

(I{X>0}) = I{P(X>0|H1)=1},

ess sup
H1

(I{X=0}) = I{P (X=0|H1)>0}, and ess inf
H1

(I{X=0}) = I{Y=0}.
(3.4)

(b) We always have

γ̃ ≥ γ̃Q Q-a.s. and I{P (Z=0|H1)>0}γ̃ ≥ 0 P -a.s.. (3.5)

(c) We have γ̃Q = γ̃, Q-a.s. on (γ̃Q ≥ 0) ( i.e. γ̃QI{γ̃Q≥0} = γ̃I{γ̃Q≥0} Q-a.s.).
(d) If we denote Γ+ := {γ+ : γ ∈ Γ}, then we get(

γ̃Q
)+

=
Q

ess sup
H1

(Γ+) = (γ̃)+, Q-a.s.. (3.6)

(e) On (P (Z = 0| H1) = 0), we have

γ̃Q = γ̃ = ess sup
H1

(Γ ) P -a.s..

(f) If γ̃Q ≥ 0 Q-a.s., then γ̃ ≥ 0 P -a.s.. Furthermore, we have(
γ̃Q > 0

)
= (γ̃ > 0) Q-a.s. and ess sup

H1

(ΓI{Z=0}) ≥ 0 Q-a.s.. (3.7)

In particular, γ̃Q > 0 Q-a.s. if and only if γ̃ > 0 Q-a.s..
(g) For P -almost surely, we have(

γ̃Q < γ̃
)

=
(
γ̃Q < 0

)
∩ (P (Z = 0| H1) > 0) =

(
γ̃Q < 0 ≤ γ̃

)
, (3.8)

and

(γ̃ < 0) =
(
P (Z = 0

∣∣H1) = 0
)
∩
(
γ̃Q < 0

)
. (3.9)

It worths mentioning that similar results for essential infimum can be obtained
easily. In fact, thanks to the fact that ess inf

H1

(−Γ ) = −ess sup
H1

(Γ ) for any

Γ ⊂ L0(H2), the following corollary can be easily proved.
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Corollary 3.3 Consider the notations of Theorem 3.2. Then the following
assertions hold.
(a) Suppose Γ ⊂ L0(H2, P ). Then we have

ess inf
H1

(ΓI{Z>0}) ≤
Q

ess inf
H1

(Γ ), P -a.s. on
(
ZH1 > 0

)
,

ess inf
H1

(ΓI{Z>0}) ≤ 0 P -a.s. on
(
P
(
Z = 0

∣∣H1

)
> 0
)
.

(3.10)

(b) If Γ ⊂ L0(H2, P ) and
Q

ess inf
H1

(Γ ) ≤ 0 Q-a.s., then

Q

ess inf
H1

(Γ ) = ess inf
H1

(ΓI{Z>0}) P -a.s. on (ZH1 > 0). (3.11)

(c) If
Q

ess inf
H1

(Γ ) ≤ 0 Q-a.s., then ess inf
H1

(ΓI{Z>0}) ≤ 0 P -a.s..

The last two assertions in Theorem 3.2 clearly describes how the sign of γ̃Q is
related to the sign of γ̃. This fact is very important, as the sign of conditional
essential supremum plays a crucial role in arbitrage. In fact, the equality (3.8)
conveys that the two essential supremums, γ̃Q and γ̃, have different signs if and
only if they do not coincide. However, the two essential supremums coincide
when they have same sign, see (3.9) and assertion (c).
The converse of the first statement in assertion (f) is not true in general. In
the following, we illustrate an example to support this claim.

Example 3.4 Consider Q such that P (Z = 0 < ZH1) > 0, and for some
ε ∈ (0,∞) put Γ :=

{
−εI{P (Z=0 |H1)>0}

}
. Then direct calculations yield

ess sup
H1

(ΓI{Z>0}) = −εI{P (Z=0 |H1)>0}ess inf
H1

(I{Z>0})

= −εI
{P (Z=0

∣∣H1)>0}
I{P (Z>0 |H1)=1} = 0, P−a.s.,

Q
ess sup
H1

(Γ ) = −εI{P (Z=0 |H1)>0},

and Q(P (Z = 0 |H1) > 0) = E[ZH11{P (Z=0 |H1)>0}] > 0 by assumption.
Therefore, for this choice of Γ , these latter statements prove that we have

ess sup
H1

(ΓI{Z>0}) ≥ 0 P -a.s. and Q

(
Q

ess sup
H1

(Γ ) < 0

)
> 0. Similar conclusion

holds for Γ :=
{
−εI{P (Z=0 |H1)>0} + εI{P (Z=0 |H1)=0}

}
.

Proof of Theorem 3.2. On the one hand, by combining assertions (f) and (d),
we deduce that γ̃Q = γ̃ Q-a.s. as soon as γ̃Q ≥ 0 Q-a.s.. On the other hand,
in order to prove assertion (c), we apply the latter claim to Γ ′ := ΓI{γ̃Q≥0},

which satisfies
Q

ess sup
H1

(Γ ′) = (γ̃Q)+ ≥ 0 Q-a.s., and get

(γ̃Q)+ =
Q

ess sup
H1

(Γ ′) = ess sup
H1

(Γ ′I{Z>0}) = γ̃I{γ̃Q≥0}, Q-a.s..
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This ends the proof of assertion (c), and the rest of this proof focuses on
assertions (a), (b), (d), (e), (f) and (g) in three parts.
Part 1. Hereto we prove assertion (a). Let X ∈ L0

+(H2), put Xn := min(n,X)
and Yn := E[Xn

∣∣H1], and remark that both Xn and Yn increase to X and Y
respectively, and

(Xn > 0) = (X > 0) and (Yn > 0) = (Y > 0), n ≥ 1.

Thus, it is enough to prove the assertion for bounded X ∈ L0
+(H2), and

without loss of generality we assume that ‖X‖∞ = 1. On the one hand, it is
clear that we always have (Y = 0) ⊂ (X = 0), or equivalently I{X>0} ≤ I{Y >0}
P -a.s., which yields

ess sup
H1

(I{X>0}) ≤ I{Y >0}, P -a.s.. (3.12)

On the other hand, we have X = XI{X>0} ≤ I{X>0} ≤ ess sup
H1

(I{X>0}) P -a.s.,

and hence by taking conditional expectation, we get Y ≤ ess sup
H1

(I{X>0}), P -

a.s.. This clearly implies that {Y > 0} ⊂ {ess sup
H1

(I{X>0}) > 0}, and by

combining this with Lemma 3.1-(b), we deduce that

I{Y >0} ≤ I{ess sup
H1

(I{X>0})>0} = ess sup
H1

(I{X>0}).

Therefore, by combining this latter inequality with (3.12), the first equality in
(3.4) follows immediately, while the fourth equality is a direct consequence of
the first equality and

ess inf
H1

(I{X=0}) = 1− ess sup
H1

(I{X>0}).

Similarly, remark that the second equality in (3.4) is a direct consequence of
the third equality. To prove the third equality, we remark that

I{X=0} ≤ I{ess sup
H1

(I{X=0})>0} = ess sup
H1

(I{X=0}) P−a.s..

Then by taking conditional expectations on both sides, we get

P (X = 0|H1) ≤ I{ess sup
H1

(I{X=0})>0}.

On the one hand, this clearly yields

(P (X = 0|H1) > 0) ⊆
(

ess sup
H1

(I{X=0}) > 0

)
. (3.13)

On the other hand, due to the easy fact that (X = 0) ⊂ (P (X = 0|H1) > 0),
which is equivalent to I{X=0} ≤ I{P (X=0|H1)>0} P -a.s., we get

ess sup
H1

(I{X=0}) ≤ I{P (X=0|H1)>0} P−a.s..



Super-hedging prices under random horizon 11

Thus, by combining this last inequality with (3.13) and again Lemma 3.1, the
third equality in (3.4) follows immediately. This proves assertion (a).
Part 2. This part proves assertions (b) and (d). To this end, we consider
Γ ⊂ L0(H2), Q � P with density Z := dQ/dP , and ZH1 := E[Z

∣∣H1]. Then
it is clear that

ess sup
H1

(ΓI{Z>0}) ≥ γI{Z>0} P -a.s., ∀ γ ∈ Γ.

This is equivalent to

γ̃ ≥ γ Q-a.s., for any γ ∈ Γ, and I{Z=0}γ̃ ≥ 0 P-a.s. (3.14)

Hence, on the one hand, the first inequality above yields the first inequality in
(3.5) (i.e. γ̃ ≥ γ̃Q Q-a.s.). On the other hand, the second inequality in (3.14)
is equivalent to I{Z=0} ≤ I{γ̃≥0} P -a.s.. Then by taking conditional essential
supremum and using assertion (a), the second inequality in (3.5) follows. This
ends the proof of assertion (b). To prove assertion (d), on the one hand, we
notice that the first equality in (3.6) is due to Lemma 2.5. On the other hand,
we suppose that γ̃ ≥ 0 P -a.s. and thanks to assertion (b) (see (3.5)) we get

I{ZH1>0}γ̃ ≥ (γ̃Q)+I{ZH1>0}, P -a.s.. (3.15)

Furthermore, thanks to assertion (a), the definition of essential supremum,
and Lemma 2.5, we get for any γ ∈ Γ ,

I{ZH1>0}(γ̃
Q)+ = ess sup

H1

(
I{Z>0}(γ̃

Q)+
)
≥ γ+I{Z>0} ≥ γI{Z>0} P -a.s..

Hence, by taking conditional essential supremum, we obtain

I{ZH1>0}(γ̃
Q)+ ≥ ess sup

H1

(ΓI{Z>0}) ≥ I{ZH1>0}γ̃, P -a.s.

Therefore, by combining this latter inequality with (3.15), (3.6) holds under
the assumption γ̃ ≥ 0 P -a.s.. To prove (3.6) in general, we put Γ ′ := ΓI{γ̃≥0}
and derive

ess sup
H1

(Γ ′I{Z>0}) = (γ̃)+ ≥ 0 and
Q

ess sup
H1

(Γ ′) = γ̃QI{γ̃≥0}.

Thus, in particular we have ess sup
H1

(Γ ′I{Z>0}) ≥ 0 P -a.s., and hence we can

apply (3.6) to Γ ′ and derive

(γ̃Q)+ = (γ̃Q)+I{γ̃≥0} = (
Q

ess sup
H1

(Γ ′))+ = ess sup
H1

(Γ ′) = (γ̃)+, Q-a.s..

The first equality follows from (γ̃Q ≥ 0) ⊂ (γ̃ ≥ 0) Q-a.s., which is due to
assertion (b). This proves assertion (d), and ends part 2.
Part 3. Herein, we prove assertions (e), (f) and (g). For assertion (e), we
use Σ := (P (Z = 0|H1) = 0) ⊂ (Z > 0) ⊂ (ZH1 > 0), and obtain γ̃IΣ =
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ess sup
H1

(ΓIΣ∩{Z=0}) = ess sup
H1

(Γ ) and IΣ
Q

ess sup
H1

(Γ ) = IΣess sup
H1

(Γ ). Thus,

assertion (e) follows immediately from these equalities.
To prove assertion (f), we start by noticing that due to assertion (b), the
inequality γ̃Q ≥ 0 Q-a.s. implies that γ̃ ≥ 0 Q-a.s., and this is equivalent to
γ̃ ≥ 0 P -a.s. on (ZH1 > 0). Furthermore, thanks to (ZH1 = 0) ⊂ (Z = 0)
P -a.s., it is clear that γ̃ = 0 P -a.s. on (ZH1 = 0). Thus, we get γ̃ ≥ 0 P -a.s.,
and the first claim in assertion (f) is proved.
It is obvious that the first property in (3.7) follows immediately from (3.6). To
prove the second property in (3.7), we use ess sup

H1

(ΓI{Z=0}) ≥ γI{Z=0} P -a.s.

for any γ ∈ Γ , and hence we get ess sup
H1

(ΓI{Z=0}) ≥ 0 Q-a.e.. This proves the

third claim in assertion (f), and completes the proof of assertion (f).
To prove assertion (g), we derive (γ̃ < 0) ⊂ (P (Z = 0|H1) = 0) ∩ (γ̃Q < 0)
due to assertion (b), while (P (Z = 0|H1) = 0) ∩ (γ̃Q < 0) ⊂ (γ̃ < 0) follows
immediately from assertion (e). This proves (3.9).
Remark that (γ̃Q < γ̃) ⊂ (γ̃Q < 0), in virtue of assertion (c), and due to
assertion (e) we have (γ̃Q < γ̃) ⊂ (P (Z = 0|H1) > 0). Thus, by combining
these latter two remarks and the second property of assertion (b), we obtain

(γ̃Q < γ̃) ⊂ (γ̃Q < 0) ∩ (P (Z = 0|H1) > 0) ⊂ (γ̃Q < 0) ∩ (γ̃ ≥ 0) ⊂ (γ̃Q < γ̃).

This proves (3.8) and ends the proof of assertion (g). Hence, the proof of the
theorem is complete.

Corollary 3.5 For any t ∈ {0, 1, ..., T}, the following equalities hold.

ess sup
Ft

(I{τ≥t}) = I{G̃t>0}, and ess inf
Ft

(Iτ≥t) = I{G̃t=1} (3.16)

ess sup
Ft

(Iτ>t) = I{Gt>0}, and ess inf
Ft

(Iτ>t) = I{Gt=1} (3.17)

ess sup
Ft−1

(I{G̃t>0}) = I{Gt−1>0}, and ess inf
Ft−1

(I{G̃t=1}) = I{Gt−1=1} (3.18)

ess sup
Ft−1

(I{τ≥t}) = I{Gt−1>0}, and ess inf
Ft−1

(I{τ≥t}) = I{Gt−1=1}. (3.19)

Proof 1) By considering X = 1{τ≥t} (respectively X = 1{τ>t}), H2 = Gt,
H1 = Ft and Y = E[X|Ft] = G̃t (respectively Y = Gt), we conclude that
both (3.16) and (3.17) follow from Theorem 3.2-(a).

2) By considering X = G̃t, H2 = Ft, H1 = Ft−1 and Y = E[X|Ft−1] = Gt−1,
we deduce that (3.18) follows immediately from Theorem 3.2-(a).
3) Thanks to Lemma 2.4 and both (3.16) and (3.18), we derive

ess sup
Ft−1

(I{τ≥t}) = ess sup
Ft−1

(
ess sup
Ft

(I{τ≥t})

)
= ess sup

Ft−1

(I{G̃t>0}) = I{Gt−1>0}.

This proves the first equality in (3.19), while the second equality follows from
similar reasoning. This ends the proof of the corollary.
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The following lemma, which is borrowed from Choulli/Deng[7], plays a central
role in the rest of the paper.

Lemma 3.6 The following assertions hold.
(a) For any t ∈ {1, ..., T}, we have(

P (G̃t > 0|Ft−1) > 0
)

= (Gt−1 > 0) , P -a.s.. (3.20)

(b) The process ZF = (ZF
t )t=0,...,T , defined by ZF

0 = 1 and

ZF
t :=

t∏
s=1

(
I{G̃s>0}

P (G̃s > 0|Fs−1)
+ I{Gs−1=0}

)
, t = 1, ..., T, (3.21)

is an F-martingale, and hence Q̃ := ZF
T ·P is a well defined probability measure.

Corollary 3.7 Let Γt be a family of Ft-measurable random variables, Q̃ be
the probability measure defined in Lemma 3.6, and

γ̃Q̃t :=
Q̃

ess sup
Ft−1

(Γt) and γ̃t := ess sup
Ft−1

(ΓtI{G̃t>0}). (3.22)

Then the following assertions hold.

(a) If I{Gt−1>0}γ̃
Q̃
t ≥ 0 P -a.s., then γ̃t ≥ 0 P -a.s., and

I{Gt−1>0}γ̃
Q̃
t = γ̃t, P -a.s.. (3.23)

(b) If γ̃t ≥ 0 P -a.s., then we have(
γ̃Q̃t < 0

)
∩ (Gt−1 > 0) ⊆

(
P (G̃t = 0 < Gt−1|Ft−1) > 0

)
, P -a.s..

Proof To prove assertion (a), we apply Theorem 3.2-(c) to (Γ,Q,H1,H2) =

(I{Gt−1>0}Γt, Q̃,Ft−1,Ft), Q̃ = ZF
t · P on Ft, and we derive

Q̃
ess sup
Ft−1

(I{Gt−1>0}Γt) = ess sup
Ft−1

(I{Gt−1>0}ΓtI{ZF
t>0}) P -a.s. on (ZF

t−1 > 0).

As (ZF
t > 0) ∩ (Gt−1 > 0) = (G̃t > 0), we deduce that (3.23) holds on the set

(ZF
t−1 > 0). Due to (ZF

t−1 > 0) ∩ (Gt−1 > 0) = (Gt−1 > 0), we conclude that
(ZF

t−1 = 0) ⊂ (Gt−1 = 0). Thus, the two sides of (3.23) vanish on (ZF
t−1 = 0),

and the conclusion follows. Note that the first statement of (a) is immediate
from (3.23), and the proof of assertion (a) is complete.
To prove assertion (b), we suppose that γ̃t ≥ 0 P -a.s., and we apply Theorem

3.2-(g) to the (Γ,Q,H1,H2) = (Γt, Q̃,Ft−1,Ft) afterwards. As a result, we get(
γ̃Q̃t < 0

)
⊆
(
P (ZF

t = 0|Ft−1) > 0
)
.

Therefore, assertion (b) follows immediately from combining this latter inclu-

sion with (3.20) and (Gt−1 > 0) ∩ (ZF
t = 0) = (G̃t = 0 < Gt−1), which can be

easily proved. This ends the proof of the corollary.
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In the remaining part of this subsection, we elaborate the relationship between
G-conditional essential supremum and the F-conditional essential supremum.

Theorem 3.8 If Γ ⊆ L0(GT ), then the following assertions hold.
(a) For any t ≤ T , we have P -a.s.

ess sup
Gt−1

(ΓI{τ≥t}) ≤ ess sup
Ft−1

(ΓI{τ≥t}), and I{Gt−1<1}ess sup
Ft−1

(ΓI{τ≥t}) ≥ 0.

(3.24)

(b) Let t ≤ T and Σt :=

(
ess sup
Gt−1

(ΓI{τ≥t}) ≥ 0

)
. Then P -a.s. we get

ess sup
Gt−1

(ΓI{τ≥t}) = I{τ≥t}ess sup
Ft−1

(ΓI{τ≥t}), on Σt,

I{Gt−1=1}ess sup
Ft−1

(ΓI{τ≥t}) = I{Gt−1=1}ess sup
Gt−1

(ΓI{τ≥t}), on Ω \Σt,
(3.25)

(c) If Γ ⊆ L0
+(GT ) P -a.s. and t ≤ T , then P -a.s. on (τ ≥ t) we have

ess sup
Gt−1

(ΓI{τ≥t}) = ess sup
Ft−1

(ΓI{τ≥t}),

I{τ≥t}ess inf
Gt−1

(Γ ) = I{τ≥t}ess sup
Ft−1

(
ess inf
Gt−1

(ΓI{τ≥t})

)
.

(3.26)

(d) For any t ≤ T , P -a.s. we have

I{τ≥t}ess sup
Gt−1

(Γ ) = I{τ≥t}ess sup
Ft−1

(Γ+I{τ≥t}) + I{Gt−1=1}ess sup
Ft−1

(−Γ−I{τ≥t})

− I{τ≥t}I{Gt−1<1}ess sup
Ft−1

(
ess inf
Gt−1

(Γ−I{τ≥t})

)
.

(3.27)

The theorem clearly singles out fully the relationship between essential supre-
mum under G and that under F. In fact, in (3.24) the theorem states that
F-essential supremum is nonnegative on the set (Gt−1 < 1), while it is always
an upper bound for G-essential supremum. Thus, we conclude that P -a.s. on
(Gt−1 < 1) ∩ (ess sup

Gt−1

(Y I{τ≥t}) < 0) we have

ess sup
Gt−1

(Y I{τ≥t}) < 0 ≤ I{τ≥t}ess sup
Ft−1

(Y I{τ≥t}).

Proof of Theorem 3.8. The proof of the theorem is divided into four parts,
where we prove the four assertions respectively.
Part 1. Hereto, we prove assertion (a). To this end, we first consider the case
where Γ = {Y } is a singleton. We use the definition of essential supremum,
and deduce that ess sup

Ft−1

(Y I{τ≥t}) ∈ L0(Ft−1) ⊂ L0(Gt−1) and

ess sup
Ft−1

(Y I{τ≥t}) ≥ Y I{τ≥t}, P -a.s..
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Thus, the first inequality in (3.24) follows immediately from the above in-
equality and the definition of essential supremum again. To prove the sec-
ond inequality in (3.24), we combine its first inequality with the fact that
ess sup
Gt−1

(Y I{τ≥t}) = I{τ≥t}ess sup
Gt−1

(Y ) and get I{τ<t}ess sup
Ft−1

(Y I{τ≥t}) ≥ 0, P -

a.s.. This is equivalent to I{τ<t} ≤ I{ess sup
Ft−1

(Y I{τ≥t})≥0}, P -a.s.. Then by taking

conditional expectation on both sides of the latter inequality, we derive

1−Gt−1 ≤ I{ess sup
Ft−1

(Y I{τ≥t})≥0}, P -a.s..

Therefore, the second inequality in (3.24) is a direct consequence of this in-
equality. This proves (3.24). For the general case, it suffices to observe that
ess sup
Ft−1

(ΓI{τ≥t}) = ess sup
Y ∈Γ

ess sup
Ft−1

(Y I{τ≥t}) to obtain the same inequalities.

This ends the proof of assertion (a).
2) This part gives the proof of assertion (b). Thanks to Lemma 2.1 when n = 1,
we deduce the existence of γt−1 ∈ L0(Ft−1) such that

ess sup
Gt−1

(Γ1{τ≥t}) = 1{τ≥t}ess sup
Gt−1

(Γ ) = 1{τ≥t}γt−1, P -a.s.. (3.28)

As a result, we get (ess sup
Gt−1

(Γ1{τ≥t}) ≥ 0) = (τ ≥ t) ∩ (γt−1 ≥ 0) ∪ (τ < t),

and hence the first equality in (3.25) is equivalent to prove the equality on
(τ ≥ t) ∩ (γt−1 ≥ 0) P -a.s. instead. Indeed, the equality is trivial on the set
(τ < t). To this end, we combine (3.28), the tower property of Lemma 2.4,
and Corollary 3.5 and conclude that P -a.s. on (γt−1 ≥ 0) we have

ess supFt−1
(Γ1{τ≥t}) = ess supFt−1

(
ess sup
Gt−1

(ΓI{τ≥t})

)
= γt−11{Gt−1>0}.

Then by multiplying both sides with I{τ≥t}, and using (τ ≥ t) ⊂ (Gt−1 > 0)
afterwards, we obtain the first equality in (3.25). To prove the second equality
in (3.25), we notice that in virtue of (3.28), we have

(ess sup
Gt−1

(Γ1{τ≥t}) < 0) = (τ ≥ t) ∩ (γt−1 < 0), and (Gt−1 = 1) ⊂ (τ ≥ t).

Hence, the second equality in (3.25) reduces

ess sup
Ft−1

(ΓI{τ≥t}) = ess sup
Gt−1

(ΓI{τ≥t}), P -a.s. on (γt−1 < 0) ∩ (Gt−1 = 1).

Taking the essential supremum knowing Ft−1 on both sides of (3.28), we
deduce by Corollary 3.5 that P -a.s. on (γt−1 < 0) we have

ess sup
Ft−1

(Γ1{τ≥t}) = γt−1ess inf
Ft−1

(
I{τ≥t}

)
= γt−11{Gt−1=1}. (3.29)

As ess sup
Gt−1

(ΓI{τ≥t}) = γt−1I{τ≥t} and I{τ≥t}I{Gt−1=1} = I{Gt−1=1}, the second

equality in (3.25) is a direct consequence of (3.29). This ends the proof of
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assertion (b).
3) Herein, we prove assertion (c). To this end we suppose that Γ ⊆ L0

+(GT ),
and remark that ess sup

Gt−1

(ΓI{τ≥t}) ≥ ess inf
Gt−1

(ΓI{τ≥t}) ≥ 0 P -a.s.. Then, in

virtue of assertion (b), the first equality in (3.26) follows immediately from
the first equality in (3.25), while the second equality of (3.26) is also a direct
consequence of the first equality of (3.25) applied to ess inf

Gt−1

(ΓI{τ≥t}) instead

of Γ . This completes the proof of assertion (c).
4) This part deals with assertion (d). Thanks to Lemma 2.5, we derive

I{τ≥t}ess sup
Gt−1

(Γ ) = I{τ≥t}(ess sup
Gt−1

(Γ ))+ − I{τ≥t}(ess sup
Gt−1

(Γ ))−

= I{τ≥t}ess sup
Gt−1

(Γ+) + I{τ≥t}ess sup
Gt−1

(−Γ−)

= ess sup
Gt−1

(Γ+I{τ≥t}) + I{Gt−1=1}ess sup
Gt−1

(−Γ−I{τ≥t})

− I{Gt−1<1}ess inf
Gt−1

(Γ−I{τ≥t}).

Thus, by combining this latter equality with assertions (b) and (c), assertion
(d) follows immediately. This ends the proof of theorem.

The second equality in (3.26) and its proof convey the following interesting
identity.

Corollary 3.9 For any t ∈ {1, .., T} and any Y ∈ L0
+(Gt−1), we have

Y I{τ≥t} = I{τ≥t}ess sup
Ft−1

(Y I{τ≥t}), P−a.s.. (3.30)

Or equivalently

E
[
Y I{τ≥t}

∣∣Ft−1

]
= Gt−1ess sup

Ft−1

(Y I{τ≥t}), P−a.s.. (3.31)

This corollary gives more insight about the second equality in Lemma 2.1, us-
ing essential supremum instead of conditional expectation, for any nonnegative
random variable.

4 Super-hedging prices’ set and Immediate-Profit arbitrage

In this section we will address the pricing method adopted in Carassus-Lepinette
[6] for vulnerable claims. We call vulnerable claims, any claim H that involves
the occurrence random time τ somehow, and hence it is a GT -measurable ran-
dom variable and is characterized by a pair of F-adapted processes (C,R). Here
C is the payoff process of the claim and R is the recovery process, while the
binding relationship between (C,R) and H is dictated by the recovery policy.
The rest of this section is divided into two subsections. The first subsection
discusses the pricing set of one-step super-hedging prices for vulnerable claims,
while the second subsection elaborates the IP arbitrage results.
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4.1 Super-hedging prices’ sets for vulnerable claims

Throughout the rest of the paper, we consider (S,F) and (S̃,F) given by

S := S0 +

·∑
s=1

I{G̃s>0}∆Ss, S̃ := S0 +

·∑
s=1

I{Gs−1>0}∆Ss,

∆Ss := Ss − Ss−1, s = 1, ..., T,
∑
∅

= 0.

(4.1)

Furthermore, it is easy to see that St := S0 +
∑t
s=1 I{G̃s>0}∆S̃s. The following

theorem constitutes our main result of this subsection, and it explains how the
set of super-hedging prices for various vulnerable claims expands under the
effect of the randomness borne in τ .

Theorem 4.1 Let t ∈ {1, .., T}, ξ ∈ L0(Gt), (gs)s=0,...,T and (Ks)s=0,....,T be
two F-adapted processes, and consider the triplet (ĝ, κ(0), κ(g)) given by

κ(g) := κ(g,K) := gI{G̃=G>0} +KI{G̃>G=0} + max(g,K)I{G̃>G>0},

ĝ := κ(g, 0), κ(0) := κ(0,K), g := gI{G̃>0} = κ(g, g).
(4.2)

Then the following assertions hold.
(a) If ξ = gt1{τ>t}, then we have

P(Sτ ,G)
t−1,t (ξ)

= L0
+(Gt−1)I{τ≤t−1} +

⋃
δ∈L0(Ft−1)

P(S,F)
t−1,t(ĝt + δI{G̃t=0<Gt−1})I{τ≥t}

= L0
+(Gt−1)I{τ≤t−1} + P(S̃,F,Q̃)

t−1,t (ĝt)I{τ≥t}.

(4.3)

(b) If ξ = gtI{τ≥t}, then we have

P(Sτ ,G)
t−1,t (ξ)− L0

+(Gt−1)I{τ≤t−1}

=
⋃

δ∈L0(Ft−1)

P(S,F)
t−1,t(gt + δI{G̃t=0<Gt−1})I{τ≥t} = P(S̃,F,Q̃)

t−1,t (gt)I{τ≥t}.
(4.4)

(c) If ξ = KτI{τ≤t}, then

P(Sτ ,G)
t−1,t (ξt)−KτI{τ≤t−1} − L0

+(Gt−1)I{τ≤t−1}

=
⋃

δt∈L0(Ft−1)

P(S,F)
t−1,t(κ

(0)
t + δtI{G̃t=0<Gt−1})I{τ≥t}

= P(S̃,F,Q̃)
t−1,t (κ

(0)
t )I{τ≥t}.

(4.5)
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(d) If ξ = gtI{τ>t} +KτI{τ≤t}, then

P(Sτ ,G)
t−1,t (ξ)−KτI{τ≤t−1} − L0

+(Gt−1)I{τ≤t−1}

=
⋃

δt∈L0(Ft−1)

P(S,F)
t−1,t(κ

(g)
t + δtI{G̃t=0<Gt−1})I{τ≥t},

= P(S̃,F,Q̃)
t−1,t (κ

(g)
t )I{τ≥t}.

(4.6)

No matter what is the vulnerable claim, Theorem 4.1 shows that this ex-
pansion after τ , i.e. on the set (τ < t), consists of adding arbitrary nonnegative
price, and hence this will have no effect when taking the infinimum. However,
for the part before or at τ , i.e. on the set (τ ≥ t), and again no matter what the
vulnerable claim considered, the expansion mechanism of the super-hedging
prices’ set is obtained, by expanding the set of claims intrinsic to the inter-
play between F and τ described by the pair (G̃,G). Besides this expansion of
claims due to the correlation risks generated by τ , we describe precisely the F-
risks which the vulnerable claim entails, and how the set of prices are related.
This precise relationship, of quantifying F-risks for the vulnerable claims, is
established using the two F-models (S,F, P ) and (S̃,F, Q̃).

Proof of Theorem 4.1. The proof of the theorem is divided into three parts,
where we prove assertions (a)-(b), (c) and (d) respectively.
Part 1: Herein, we prove assertions (a) and (b). On the one hand, xGt−1 belongs

to P(Sτ ,G)
t−1,t (ξ) if and only if there exists θGt−1 ∈ L0(IRd,Gt−1) such that

xGt−1 + θGt−1∆S
τ
t ≥ gtI{τ>t}, P−a.s., (4.7)

or equivalently

I{τ≤t−1}x
G
t−1 ≥ 0, and 1{τ≥t}

(
xG

t−1 + θGt−1∆St

)
≥ gt1{τ>t} P-a.s.. (4.8)

On the other hand, in virtue of Lemma 2.1, there exists (xFt−1, θ
F
t−1) which

belongs to L0(Ft−1)× L0(IRd,Ft−1) satisfying

(xFt−1, θ
F
t−1)I{τ≥t} = (xGt−1, θ

G
t−1)I{τ≥t}.

Therefore, by inserting the above equality in (4.8), we deduce that xGt−1 belongs

to P(Sτ ,G)
t−1,t (ξ) iff there exists (xFt−1, θ

F
t−1) ∈ L0(Ft−1)×L0(IRd,Ft−1) such that

I{τ≤t−1}x
G
t−1 ≥ 0, P -a.s. I{τ=t}

(
xFt−1 + θFt−1∆St

)
≥ 0 P -a.s.,

and I{τ>t}
(
xF

t−1 + θFt−1∆St

)
≥ gtI{τ>t} P-a.s..

(4.9)

Thanks to Lemma 2.2, the last two equalities above are equivalent to

(G̃t −Gt)
(
xFt−1 + θFt−1∆St

)
≥ 0, and Gt

(
xFt−1 + θFt−1∆St

)
≥ gtGt. (4.10)

Clearly, these can be rewritten into the following equivalent form of

xFt−1 + θFt−1∆St ≥ gtI{G̃t=Gt>0} + g+
t I{G̃t>Gt>0} + δt−11{G̃t=0}, (4.11)
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for some δt−1 ∈ L0(Ft−1). Hence, we conclude that xGt−1 ∈ P
(Sτ ,G)
t−1,t (ξ) if and

only if there exists an Ft−1-measurable triplet (xFt−1, θ
F
t−1, δt−1) such that

I{τ≤t−1}x
G
t−1 ≥ 0, I{τ≥t}x

G
t−1 = I{τ≥t}x

F
t−1

xFt−1 + θFt−1∆St ≥ gtI{G̃t=Gt>0} + g+
t I{G̃t>Gt>0} + δt−1I{G̃t=0}. (4.12)

Or equivalently there exists (xFt−1, δt−1) ∈ P(S,F)
t−1,t(ξ

F
t )× L0(Ft−1) such that

I{τ≤t−1}x
G
t−1 ≥ 0, and I{τ≥t}x

G
t−1 = I{τ≥t}x

F
t−1, where ξFt := ĝt +δt−1I{G̃t=0}.

(4.13)
Therefore, the first equality in (4.3) follows immediately. To prove the second
equality, we combine (4.9), Lemma 2.2 again, (τ ≥ t) ⊂ (Gt−1 > 0) and the

fact that Q̃(G̃t = 0 < Gt−1) = 0, and conclude that xGt−1 ∈ P
(Sτ ,G)
t−1,t (ξ) iff there

exists (xFt−1, θ
F
t−1) ∈ L0(Ft−1)× L0(IRd,Ft−1) such that

I{τ≤t−1}x
G
t−1 ≥ 0 P -a.s., I{τ≥t}x

G
t−1 = I{τ≥t}x

F
t−1, P -a.s.,

and xFt−1 + θFt−1∆S̃t ≥ ĝt, Q̃-a.s..

This proves the second equality and ends the proof of assertion (a). The proof
of assertion (b) mimics exactly the proof of assertion (a) and will be omitted.
Part 2: Here we prove assertion (c). Suppose that ξt = Kτ1{τ≤t}. Then

xGt−1 ∈ P
(Sτ ,G)
t−1,t (ξt) if and only if there exists θGt−1 ∈ L0(IRd,Gt−1) such that

xGt−1 + θGt−1∆S
τ
t ≥ Kτ1{τ≤t}. Again thanks to Lemma 2.1, we deduce the

existence of a pair (xFt−1, θ
F
t−1) ∈ L0(Ft−1)× L0(IRd,Ft−1) such that

xGt−1I{τ≥t} = xFt−1I{τ≥t}, and θGt−1I{τ≥t} = θFt−1I{τ≥t}.

Hence, we deduce that xGt−1 ∈ P
(Sτ ,G)
t−1,t (ξt) is equivalent to

(xGt−1 + θGt−1∆St)I{τ≥t} =
(
xFt−1 + θFt−1∆St

)
1{τ≥t} ≥ Kt1{τ=t},

and xGt−11{τ≤t−1} ≥ Kτ1{τ≤t−1}.
(4.14)

Thus, on the one hand, the second inequality in (4.14) is equivalent to

xGt−11{τ≤t−1} −Kτ1{τ≤t−1} ∈ L0
+(Gt−1)I{τ≤t−1}. (4.15)

On the other hand, in virtue of Lemma 2.2, the first inequality in (4.14) is

equivalent to xFt−1 + θFt−1∆St ≥ κ
(0)
t + xFt−1I{G̃t=0}, or equivalently

xFt−1 ∈
⋃

δt−1∈L0(Ft−1)

P(S,F,P )
t−1,t (κ

(0)
t + δFt−1I{G̃t=0}).

Therefore, by combining this last fact with (4.15) and (4.14), the first equality
in (4.5) follows immediately, while the proof for the second equality mimics
the proof of the second equality in assertion (a) (see part 1). This ends the
proof of assertion (c).
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Part 3. Hereto, we prove assertion (d). Thus, consider ξ = gtI{τ>t}+KτI{τ≤t}.

Then xGt−1 ∈ P
(Sτ ,G)
t−1,t (ξ) iff there exists θGt−1 ∈ L0(IRd,Gt−1) such that

xGt−1 + θGt−1∆S
τ
t ≥ gtI{τ>t} +Kτ1{τ≤t} P -a.s.. (4.16)

On the one hand, due to Lemma 2.1, there exists a pair (xFt−1, θ
F
t−1), which

belongs to L0(Ft−1)× L0(IRd,Ft−1) and satisfies

(xGt−1, θ
G
t−1)I{τ≥t} = (xFt−1, θ

F
t−1)I{τ≥t}.

By inserting these in (4.16), we conclude that xGt−1 ∈ P
(Sτ ,G)
t−1,t (ξ) iff P -a.s.

xGt−1I{τ≤t−1} ≥ KτI{τ≤t−1} and (xFt−1+θFt−1∆St)I{τ≥t} ≥ gtI{τ>t}+Kτ1{τ≤t}.
Or equivalently P -a.s. we have

xGt−1I{τ≤t−1} ≥ KτI{τ≤t−1}, (xFt−1 + θFt−1∆St)I{τ=t} ≥ Kt1{τ=t}

and (xFt−1 + θFt−1∆St)I{τ>t} ≥ gt1{τ>t}.
(4.17)

Thanks to Lemma 2.2-(a)-(b), this equivalent to P -a.s.

xGt−1I{τ≤t−1} ≥ KτI{τ≤t−1}, (xFt−1 + θFt−1∆St)I{Gt>0} ≥ gt1{Gt>0},

and (xF
t−1 + θFt−1∆St)I{G̃t>Gt} ≥ Kt1{G̃t>Gt}.

(4.18)

Furthermore, it is easy to check that the two last inequalities above are equiv-

alent to (xFt−1 + θFt−1∆St)I{G̃t>0} ≥ κ
(g)
t 1{G̃t>0} P -a.s.,or equivalently

xFt−1 ∈
⋃

δt∈L0(Ft−1)

P(S,F)
t−1,t(κ

(g)
t + δtI{G̃t=0}).

By combining all these facts, the first equality in (4.6) follows, while the proof
of the second equality mimics exactly the proof of the second equality of as-
sertion (a). This proves assertion (d), and ends the proof of theorem.

4.2 The Immediate-Profit arbitrage under random horizon

This section analyzes the impact of random horizon on the absence-of-immediate-
profit arbitrage (called AIP hereafter), in many aspects.

The following theorem is our first main result of this subsection, and it
fully charaterizes the AIP for the model (Sτ ,G, P ) using the model (S̃,F, Q̃).

Theorem 4.2 Let (S,F, P ) and (S̃,F, Q̃) be the models given by (4.1) and
(3.21)-(4.1) respectively, and consider the following assertions.
(a) (Sτ ,G, P ) satisfies the AIP condition

(b) (S̃,F, Q̃) fulfills the AIP condition
(c) (S,F, P ) satisfies the AIP condition.
Then (a) ⇐⇒ (b) and (b) =⇒ (c).
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Proof of Theorem 4.2. The proof of the theorem will be given in two parts,
where we prove (a) ⇐⇒ (b) and (b) =⇒ (c) respectively.
Part 1. Hereto, we prove (a)⇐⇒ (b). To this end, we suppose that assertion
(a) holds. Thus, in virtue of Proposition 2.8-(b), assertion (a) is equivalent to

P(Sτ ,G)
t−1,t (0) ⊆ L0

+(Gt−1), t ∈ {1, ..., T}.

Thus, thanks to Theorem 4.1-(a), these inclusions imply that for t ∈ {1, ..., T},

P(S̃,F,Q̃)
t−1,t (0)I{τ≥t} ⊆ P

(S̃,F,Q̃)
t−1,t (0)I{τ≥t} + L0

+(Gt−1)I{τ≤t−1}

= P(Sτ ,G)
t−1,t (0) ⊆ L0

+(Gt−1).
(4.19)

Taking conditional expectation knowing Ft−1, we get P(S̃,F,Q̃)
t−1,t (0)Gt−1 ≥ 0.

Therefore, by combining these with P(S̃,F,Q̃)
t−1,t (0)I{Gt−1=0} ⊆ L0

+(Ft−1), we

deduce that P(S̃,F,Q̃)
t−1,t (0) ⊆ L0

+(Ft−1) ⊆ L0
+(Ft−1, Q̃), and assertion (b) fol-

lows. This proves (a)=⇒ (b). To prove the reverse, we assume that assertion
(b) holds. In virtue of Proposition 2.8-(b), this assumption is equivalent to

P(S̃,F,Q̃)
t−1,t (0) ⊆ L0

+(Ft−1, Q̃). Then, thanks to Theorem 4.1, we derive

P(Sτ ,G)
t−1,t (0) = L0

+(Gt−1)I{τ≤t−1} + P(S̃,F,Q̃)
t−1,t (0)I{τ≥t}

⊆ L0
+(Gt−1)I{τ≤t−1} + L0

+(Ft−1)I{τ≥t} = L0
+(Gt−1),

where the last equality is a consequence of Lemma 2.1. This ends part 1.
Part 2. This part proves (b) =⇒ (c). Thus, we suppose that assertion (b)
holds. Then, in virtue of Proposition 2.8-(c), this is equivalent to

Q̃
ess sup
Ft−1

(θ∆S̃t) ≥ 0, Q̃-a.s., for any (t, θt−1) ∈ {1, ..., T} × L0(IRd,Ft−1).

We deduce that ZF
t−1

Q̃
ess sup
Ft−1

(θt−1∆S̃t) ≥ 0. As (ZF
t−1 > 0) ∩ (Gt−1 > 0) =

(Gt−1 > 0), we get that 1{Gt−1>0}
Q̃

ess sup
Ft−1

(θt−1∆S̃t) ≥ 0 and Corollary 3.7-(a)

applies. Therefore, for any (t, θt−1) ∈ {1, ..., T} × L0(IRd,Ft−1), we obtain

ess sup
Ft−1

(θt−1∆St) = ess sup
Ft−1

(θt−1∆S̃tI{G̃t>0}) ≥ 0.

Thus, assertion (b) follows from combining this inequality with Proposition
2.8-(c). This ends the second part, and completes the proof of the theorem.

Theorem 4.2 gives a complete and full characterization of AIP for the stopped
model (Sτ ,G) using the model (S̃,F, Q̃), and shows that this is sufficient for
the AIP fulfillment of the model (S,F, P ). However, in general and in contrast
to the classical non-arbitrage (called NA afterwards), the AIP of (S,F, P ) does
not give enough information about the AIP for the stopped model. This shows
how the impact of τ can deepen the difference between AIP and NA, which is
pointed out in [6, Section 2.4].
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Corollary 4.3 If the pair (S, τ) satisfies

P
( T⋃
t=1

(
(∆St 6= 0) ∩ (G̃t = 0 < Gt−1)

))
= 0, (4.20)

then the three assertions of Theorem 4.2 are equivalent. More precisely,

(S̃,F, Q̃) fulfills AIP iff (S,F, P ) fulfills AIP iff (Sτ ,G, P ) satisfies AIP.

Proof Thanks to Theorem 4.2, the proof of this corollary boils down to prove
that, under (4.20), the AIP of (S,F, P ) implies the AIP of (S̃,F, Q̃). To this

end, note that ∆S̃t = I{Gt−1>0}∆St = I{Gt−1>0}∆StI{∆St 6=0}. By assumption,

I{Gt−1>0}I{∆St 6=0} = I{∆St 6=0}1{Gt−1>0}I{G̃t>0}. Due to (G̃t > 0) ⊆ (Gt−1 >

0), we get ∆S̃t = I{G̃t>0}∆St = ∆St, i.e. S̃ = S. Thus, by combining this with

the fact that Q̃ is equivalent to P on (Gt−1 > 0) which is due to (ZFt−1 >
0) ∩ (Gt−1 > 0) = (Gt−1 > 0), we easily derive

ess sup
Ft−1

(θt−1∆St) = ess sup
Ft−1

(θt−1∆S̃t) =
Q̃

ess sup
Ft−1

(θt−1∆S̃t), P -a.s..

for any θ ∈ L0(IRd,Ft−1). Therefore, the conclusion follows immediately from
these equalities.

Remark 4.4 (a) If the random time τ satisfies

P

(
T⋃
t=1

{
G̃t = 0 < Gt−1

})
> 0, (4.21)

then there exist models for S such that (S,F) satisfies AIP, while (Sτ ,G)
violates it. In fact, consider

∆St := I{G̃t=0<Gt−1} − P (G̃t = 0 < Gt−1

∣∣Ft−1), t = 1, ..., T,

and derive, by Theorem 3.2, the following

ess sup
Ft−1

(θ∆St) = θ−P (G̃t = 0 < Gt−1

∣∣Ft−1) ≥ 0, for any θ ∈ L0(Ft−1),

Q̃
ess sup
Ft−1

(θ∆S̃t) = −θP (G̃t = 0 < Gt−1

∣∣Ft−1), Q̃-a.s., for any θ ∈ L0(Ft−1),

P
ess sup
Gt−1

(θ∆Sτ t) = −θP (G̃t = 0 < Gt−1

∣∣Ft−1)I{τ≥t}, P -a.s., for θ ∈ L0(Gt−1).

Thus, it is clear that, the first inequality above proves that (S,F) fulfills AIP,

while the second and third equalities prove that both (S̃,F, Q̃) and (Sτ ,G, P )
violate AIP respectively.
(b) Suppose that τ satisfies (4.21), and consider the model for S given by
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∆St := I{G̃t=0}, t ∈ {1, ..., T} and S0 = 1. Then (S,F) violates the AIP and

hence violates NA also, due to

ess sup
Ft−1

(θt−1∆St) = θ+
t−1I{P (G̃t=0|Ft−1)>0} − θ

−
t−1I{Gt−1=0}.

Furthermore, we have Sτ = S0 and hence (Sτ ,G) fulfills AIP and NA.
(c) Suppose that τ satisfies (4.21), and consider S given by∆St := I{G̃t=0<Gt−1},

t ∈ {1, ..., T} and S0 = 1. Therefore, one can check that (S,F) fulfills AIP and
violates NA. In fact, there exists no positive F-martingale Z such that

E

[
∆St

Zt
Zt−1

∣∣Ft−1

]
= 0, and ess sup

Ft−1

(θ∆St) = θ+I{P (G̃t=0<Gt−1|Ft−1)>0} ≥ 0,

for any θ ∈ L0
+(Ft−1). However, we have Sτ = S0 and, as a consequence,

(Sτ ,G) fulfils NA and hence it satisfies AIP also.

Our second main theorem, of this subsection, describes the models of τ for
which the AIP condition is unaffected after stopping.

Theorem 4.5 The following assertions are equivalent.
(a) For any (X,F, P ) satisfying AIP, the model (Xτ ,G, P ) fulfills AIP.

(b) For any t ∈ {1, ..., T}, we have {Gt−1 = 0} = {G̃t = 0} P -a.s..

(c) The probability Q̃ defined in (3.21) coincides with P , i.e. ZF ≡ 1.

The proof of this theorem is based on the following simple but useful lemma.

Lemma 4.6 Consider any model (X,H := (Ht)t=0,...,T ). Then the following
assertions hold.
(a) Suppose that X is H-predictable. Then (X,H) satisfies AIP if and only if
X is a constant process, i.e., Xt = X0, P -a.s. for any t = 1, ..., T .
(b) (X,H) satisfies AIP if and only if (ψ • X,H) fulfills AIP, for any H-
predictable and bounded process ψ, where ψ•Xt :=

∑t
s=1 ψs∆Xs, t ∈ {1, ..., T}.

Proof 1) If X is a constant process, then it is clear that P(X,H)
t (0) = L0

+(Ht).
This implies that P(X,H)

t (0) ∩ L0
−(Ht) = {0}, or equivalently AIP holds for

(X,H). To prove the reverse sense, we suppose P(X,H)
t (0) ∩ L0

−(Ht) = {0},
and consider any t ∈ {1, .., T} and θ ∈ L0(Ht−1). Therefore, by combining all
these properties, we derive

ess sup
Ht−1

(−θt−1∆Xt) = −θt−1∆Xt ∈ P(X,H)
t−1 (0) ⊂ L0

+(Ht−1).

Thus, as θt−1 is arbitrary, we conclude that θt−1∆Xt = 0 P -a.s., for any
θt−1 ∈ L0(Ht−1). This implies that ∆Xt = 0 P -.a.s., and the proof of asser-
tion (a) is complete.
2) If (ψ • X,H) fulfills AIP, for any H-predictable and bounded process ψ,
then by taking ψ = 1 we deduce that (X − X0,H) satisfies AIP or equiv-
alently (X,H) satisfies AIP. The reverse sense is a direct consequence from
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combining Proposition 2.8-(b) and the fact that, for any t ∈ {1, ..., T} and any
H-predictable process ψ, we have

ess inf
θt−1∈L0(Ht−1)

ess sup
Ht−1

(θt−1∆Xt) ≤ ess inf
ϕt−1∈L0(Ht−1)

ess sup
Ht−1

(ϕt−1ψt∆Xt), P -a.s..

This ends the proof of the lemma.

Proof of Theorem 4.5. The equivalence between assertion (b) and (c) can be
found in Choulli/Deng [7], and for the sake of completeness we reproduce it
here. Thus, remark that ZF ≡ 1 –i.e. for any t ∈ {1, ..., T} we have ZF

t /Z
F
t−1 = 1

P -a.s.– is equivalent to

I{G̃t>0}

P (G̃t > 0|Ft−1)
= I{Gt−1>0}, P − a.s.,

or equivalently,

I{G̃t>0} = P (G̃t > 0|Ft−1)I{Gt−1>0} = P (G̃t > 0|Ft−1), P -a.s..

Therefore, this is equivalent to {P (G̃t > 0|Ft−1) = 1} = {G̃t > 0}, while the
latter equality holds if and only if {Gt−1 > 0} = {Gt > 0}. Hence, (b) ⇐⇒
(c) is proved, and the rest of this proof proves (b) ⇐⇒ (a).

Suppose that assertion (b) holds. Then we get (X,H, P ) = (X̃,H, P ) and it
satisfies AIP for any model (X,H) satisfying AIP, see Lemma 4.6 (b). Thus,
in virtue of Theorem 4.2 , (Xτ ,G) satisfies AIP. This proves the implication
(b) =⇒ (a). To prove the reverse, assume assertion (a) holds, and consider

Xt :=

t∑
s=1

(
I{G̃s=0} − P (G̃s = 0

∣∣Fs−1)
)
, t = 1, ..., T.

Then it is clear that (X,F) satisfies NA and a fortiori AIP due to Carassus-
Lepinette [6]. Due to assertion (a), the AIP for (Xτ ,G) follows, and due to

(τ ≥ s) ∩ (G̃s = 0) = ∅, we get Xτ = −
∑t
s=1 I{s≤τ}P (G̃s = 0

∣∣Fs−1) and
hence it is G-predictable. Thus, in virtue of Lemma 4.6-(a), we conclude that
Xτ is a null process, or equivalently for any t ∈ {1, ..., T}

I{t≤τ}P (G̃t = 0
∣∣Ft−1) = 0, P -a.s..

By taking conditional expectation with respect to Ft−1 on both sides of this

equality, we get Gt−1P (G̃t = 0
∣∣Ft−1) = 0, P -a.s., for any t ∈ {1, ..., T}. This

yields (Gt−1 > 0) ∩ (G̃t = 0) = ∅, P -a.s. for any t ∈ {1, ..., T} and assertion
(b) follows immediately. This ends the proof of the theorem.
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5 Pricing formulas for vulnerable claims

In this section, we elaborate super-hedging-pricing formulas for several vul-
nerable claims. Our pricing formulas relies on [6, Lemma 3.1], which we recall
below, and which elaborates a backward equation for the super-hedging prices
for an arbitrary model (X,H, Q).

Lemma 5.1 Let (X,H, Q) be an arbitrary model satisfying AIP and defined
on the probability space (Ω,G, P ), T ∈ (0,∞) is a fixed investment horizon,
and ξ ∈ L0(HT ) is a claim. Then the super-hedging price process for ξ, denoted

by P̂H, is given by the following backward formula.

P̂H
t = ess inf

θ∈L0(Ht)

Q
ess sup
Ht

(
P̂H
t+1 − θ∆Xt+1

)
= P̂H

t,t+1

(
P̂H
t+1

)
, t ≤ T − 1,

P̂H
T = ξ.

(5.1)

The vulnerable claims that we address herein can be classified into two main
classes. The first class consists of vulnerable claims that do not have recovery,
or equivalently there is no payment at the random time. The second class of
vulnerable claims is those claims which involve payment at the random time in
a way or another. In virtue of Lemma 5.1, an important step in describing the
G-price process for vulnerable claims lies in addressing the impact of τ on the

one-step pricing operator P̂(X,H,Q)
t,t+1 (·), defined in (2.6), for any model (X,H, Q).

The remaining part of this section is divided into three subsections. In the
first subsection, we outline the main results on the one-step pricing operators.
The second subsection elaborates the general pricing formulas, while the last
subsection proves the main theorems of the second subsection.

5.1 The one-step pricing formulas

In this subsection, we address the one-step-pricing operator under the random
horizon τ in many aspects. Precisely, following the same spirit as in arbitrage
theory, we aim to understand how the one-step-pricing under G can be de-
scribed using F-observable processes and pricing-operators.

Theorem 5.2 Let t ∈ {1, .., T}, ξ ∈ L0(Gt), (gs)s=0,...,T and (Ks)s=0,....,T be
two F-adapted processes, and consider (ĝ, κ(0), κ(g), g) given by (4.2).Then the
following assertions hold.
(a) If ξ = gtI{τ>t}, then we have

P̂(Sτ ,G)
t−1,t (ξ) = ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(ĝt + δI{G̃t=0})I{τ≥t} = P̂(S̃,F,Q̃)

t−1,t (ĝt)I{τ≥t}. (5.2)

(b) If ξ = gtI{τ≥t}, then we have

P̂(Sτ ,G)
t−1,t (ξ) = ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(gt + δI{G̃t=0})I{τ≥t} = P̂(S̃,F,Q̃)

t−1,t (gt)I{τ≥t}. (5.3)
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(c) If ξ = KτI{τ≤t}, then

P̂(Sτ ,G)
t−1,t (ξt) = KτI{τ≤t−1} + ess inf

δt∈L0(Ft−1)
P̂(S,F)
t−1,t(κ

(0)
t + δtI{G̃t=0})I{τ≥t}

= KτI{τ≤t−1} + P̂(S̃,F,Q̃)
t−1,t (κ

(0)
t )I{τ≥t}.

(5.4)

(d) If ξ = gtI{τ>t} +KτI{τ≤t}, then

P̂(Sτ ,G)
t−1,t (ξ) = KτI{τ≤t−1} + ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(κ

(g)
t + δI{G̃t=0})I{τ>t−1}

= KτI{τ≤t−1} + P̂(S̃,F,Q̃)
t−1,t (κ

(g)
t )I{τ≥t}.

(5.5)

This theorem quantifies the one-step-pricing operator for (Sτ ,G) in terms of

pricing operators for both models (S,F, P ) and (S̃,F, Q̃). However, the latter
model is the one that gives us full F-characterization. Assertion (a) addresses
the first class of vulnerable claims, where there is no recovery at all (i.e. no
payment at the random time τ when it occurs). In life insurance, this claim
belongs to the class when benefit is paid upon survival only. Assertion (c)
deals with vulnerable claims that have payments at the random time only,
and this also has a meaning in life insurance, which consists of getting benefit
when the insured dies and nothing in case of survival. Assertion (d) treats
another vulnerable claim with recovery, as it combines both previous cases by
paying benefits in both situation when the insured survives and when she dies.
The claim addressed in assertion (b) is somehow in between the two classes.
On the one hand, mathematically, it belongs to the second class by choosing
K = gT I[[T ]] as there is payment at τ which coincides with the payment upon
survival. On the other hand, its pricing formula in (5.3) tells us that this claim
falls into the first class immediately after the one-step-pricing.

Remark 5.3 (i) Assertion (a) conveys that the one-step super-hedging price
of the claim having no recovery (i.e. no payment at τ at all) has literally the
same form. This is due to the fact that (τ ≥ t) = (τ > t− 1). In other words,

by denoting P̂one-step(·) the one-step super-hedging pricing operator, then

P̂one-step(Class1) ⊆ Class1, and P̂one-step(claim-of-assertion-(b)) ∈ Class1.

(ii) Assertion (d) proves that the one-step super-hedging price of the claim has
exactly the same form as the claim, while the one-step super-hedging pricing
for the claim of assertion (c) transforms the claim into the claim of assertion
(d). In other words, even though there is no payment upon the survival, after
one-step super-hedging pricing the claim will have payment upon survival.

Theorem 5.2 conveys also, via the formulas, that the one-step pricing operators
for (S̃,F, Q̃) and (S,F, P ) might differ in general, while the resulting prices for
any claim are comparable. In the following remark, we discuss these points in
details.
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Remark 5.4 (a) For any δ ∈ L0(Ft−1), the following inequalities hold

P̂(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{P (G̃t>0|Ft−1)=1} = P̂(S,F)
t−1,t(ξ

F)I{P (G̃t>0|Ft−1)=1},

P̂(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{P (G̃t=0|Ft−1)>0} ≥ δI{P (G̃t=0|Ft−1)>0}.
(5.6)

(b) For Y ∈ {ĝ, g̃, g, κ}, and any t ∈ {1, ..., T}, we have

P̂(S̃,F,Q̃)
t−1,t (Yt) ≤ P̂(S,F)

t−1,t(Yt), P -a.s. on {Gt−1 > 0}. (5.7)

As a result, this gives us another proof for Theorem 4.2 using this inequality
and Proposition 2.8-(d).

In most of applications, K represents the recovery process and it is usually
nonnegative. Thus, as a particular case, we consider the case of vulnerable
options where both payoff process g and recovery process K are nonnegative.

Corollary 5.5 Consider the notation of Theorem 5.2, and assume that both
processes g and K are nonnegative. Then the following assertions hold.
(a) If ξ(1) := gtI{τ>t} and ξ(2) := gtI{τ≥t}, then we have

P̂(Sτ ,G)
t−1,t (ξ(1)) = ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(gtI{Gt>0} + δI{G̃t=0})I{τ≥t}

= P̂(S̃,F,Q̃)
t−1,t (gtI{Gt>0})I{τ≥t},

P̂(Sτ ,G)
t−1,t (ξ(2)) = ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(gt + δI{G̃t=0})I{τ≥t}

= P̂(S̃,F,Q̃)
t−1,t (gt)I{τ≥t}

(5.8)

(b) If ξ = KτI{τ≤t}, then

P̂(Sτ ,G)
t−1,t (ξt) = KτI{τ≤t−1} + P̂(S̃,F,Q̃)

t−1,t (KtI{G̃t>Gt})I{τ≥t}. (5.9)

(c) If ξ = gtI{τ>t} +KτI{τ≤t}, then

P̂(Sτ ,G)
t−1,t (ξ) = KτI{τ≤t−1} + P̂(S̃,F,Q̃)

t−1,t

(
max(gtI{Gt>0},KtI{G̃t>Gt})

)
I{τ≥t}.

(5.10)

The proof of the corollary follows from previous results, and will be omitted.

Proof of Theorem 5.2. The proof of the theorem will be achieved in three
parts. The first and second parts prove two roughly general claims, while the
third part outlines the proof for the theorem. To this end, we fix t ∈ {1, ..., T},
and we consider a triplet (Ξ, ξG, ξF) ∈ L0(Gt−1) × L0(Gt) × L0(Ft) such that
ξFI{G̃t=0} = 0 P -a.s..

Part 1. Herein, we prove that the equality

P(Sτ ,G)
t−1,t (ξG) = Ξ+L0

+(Gt−1)I{τ≤t−1}+
⋃

δ∈L0(Ft−1)

P(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{τ≥t},

(5.11)
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always implies

P̂(Sτ ,G)
t−1,t (ξG) = Ξ + ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{τ≥t}. (5.12)

To this end, we remark that (5.11) implies that

Ξ + P(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{τ≥t}

⊂ Ξ + L0
+(Gt−1)I{τ≤t−1} + P(S,F)

t−1,t(ξ
F + δI{G̃t=0})I{τ≥t} ⊂ P

(Sτ ,G)
t−1,t (ξG),

for any δ ∈ L0(Ft−1). Hence, after taking essential infimum, this inclusion
implies that

P̂(Sτ ,G)
t−1,t (ξG) ≤ Ξ + ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{τ≥t}. (5.13)

On the other hand, again due to (5.11), for any xG ∈ P(Sτ ,G)
t−1,t (ξG), we deduce

the existence of (xt−1, δ) ∈ P(S,F)
t−1,t(ξ

F +δI{G̃t=0})×L
0(Ft−1), such that P -a.s.,

xG ≥ Ξ + xt−1I{τ≥t} ≥ Ξ + P̂(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{τ≥t}

≥ Ξ + ess inf
δ∈L0(Ft−1)

P̂(S,F)
t−1,t(ξ

F + δI{G̃t=0})I{τ≥t}.

As a result, this implies that

P̂(Sτ ,G)
t−1,t (ξ) ≥ Ξ + I{τ≥t} ess inf

δ∈L0(Ft−1)
P̂(S,F)
t−1,t(ĝt + δI{G̃t=0}),

and by combining this with (5.13), we get (5.12). This ends the first part.
Part 2. This part proves that, for (Ξ, ξG, ξF) ∈ L0(Gt−1)× L0(Gt)× L0(Ft),

If P(Sτ ,G)
t−1,t (ξG) = Ξ + L0

+(Gt) + P(S̃,F,Q̃)
t−1,t (ξF)I{τ≥t}, then

we have P̂(Sτ ,G)
t−1,t (ξG) = Ξ + P̂(S̃,F,Q̃)

t−1,t (ξF)I{τ≥t}.
(5.14)

To this end we suppose that the left hand side of this implication holds. On
the one hand, we notice

Ξ + P(S̃,F,Q̃)
t−1,t (ξF)I{τ≥t} ⊂ P

(Sτ ,G)
t−1,t (ξG),

and hence by taking essential infinimum on both sides we get

P̂(Sτ ,G)
t−1,t (ξG) ≤ Ξ + P̂(S̃,F,Q̃)

t−1,t (ξF)I{τ≥t}. (5.15)

On the other hand, for any pG ∈ P(Sτ ,G)
t−1,t (ξG), there exists pF ∈ P(S̃,F,Q̃)

t−1,t (ξF)
such that

pG ≥ Ξ + pFI{τ≥t} ≥ Ξ + P̂(S̃,F,Q̃)
t−1,t (ξF)I{τ≥t}, P -a.s..
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Therefore, by taking essential infimum in the above inequality and combining
the resulting inequality with (5.15), the claim (5.14) follows immediately.This
ends the second part.
Part 3. Hereto, we summarize the proof of the theorem. In fact, in order
to prove assertion (a), we appeal to Theorem 4.1-(a). Then the proof of the
first equality in (5.2) is a direct combination of the first equality in (4.3)
and Part 1 applied to (ξG, Ξ, ξF) = (gtI{τ>t}, 0, ĝt). The second equality in
(5.2) follows from combining the second equality in (4.3) and Part 2 ap-
plied to (ξG, Ξ, ξF) = (gtI{τ>t}, 0, ĝt). Similarly, the first (respectively the
second) equality in (5.3) is a direct consequence of the first (respectively
the second) equality in (4.4) and Part 1 (respectively Part 2) applied to
(ξG, Ξ, ξF) = (gtI{τ≥t}, 0, gt). Assertion (c) follows from combining (4.5) and

Part 1 and 2 applied (ξG, Ξ, ξF) = (KτI{τ≤t},KτI{τ≤t−1}, κ
(0)
t ). Finally, asser-

tion (d) is direct consequence from combining (4.6) and Parts 1 and 2 applied

to (ξG, Ξ, ξF) = (gtI{τ>t} + KτI{τ≤t},KτI{τ≤t−1}, κ
(g)
t ). This completes the

proof of theorem.

5.2 The general pricing formulas and the prices’ dynamics

Hereto, we fully describe the pricing formulas for the three kind of vulnerable
claims, and afterwards we single out the various risks in their dynamics as
well. To this end, throughout the rest of the paper, for any two processes X
and Y , we denote by X • Y –the stochastic integral of X with respect to Y –,
[X,Y ], and 〈X,Y 〉 –when it exists– the processes given by

X • Y :=

·∑
s=1

Xs∆Ys :=

t∑
s=1

Xs(Ys − Ys−1), (X • Y )0 = 0,

[X,Y ] :=

·∑
s=1

∆Xs∆Ys, 〈X,Y 〉 :=

·∑
s=1

E
[
∆Xs∆Ys

∣∣∣Fs−1

]
,

(5.16)

where the convention
∑
∅ = 0 will be used throughout the paper. For further

notation and definitions about stochastic calculus in discrete-time, we refer
the reader to [21] and [19].

We recall the triplet (m,NG, Do,F) associated to τ , which plays central
roles in quantifying the various risks generated by τ , as follows,

mt :=1 +

t∑
s=1

(
G̃s − E[G̃s

∣∣Fs−1]
)
, NG

t := I{τ≤t} −
t∧τ∑
s=1

P (τ = s
∣∣Fs)

G̃s
,

Do,F
t :=

t∑
s=0

P (τ = s
∣∣Fs).

(5.17)

The process m is an F-martingale which is a BMO martingale, see [22] for
more details about this fact. Herein, m quantifies the correlation risk resulting
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from the interaction of τ with the flow F, see [9,11–13] for more about this.
The process NG is a G-martingale which was introduced in [9] and called
the main generator of pure-default-martingales of type 1. This process NG

quantifies the main generator of the pure-default-risk borne in the random
time, see [9,10,12,13] for more details and related works and results. The
process Do,F is an nondecreasing process F-adapted and is the F-optional dual
projection of D := 1[[τ,∞[[. We refer the reader to [10], for the role of Do,F in
quantifying correlation risks resulting from the interplay between τ and the
benefit policy in life insurance. The risks in G, which are mainly coming from
F, are represented by a transform operator T , defined for any process M by

T (M) :=

τ∧·∑
u=1

Gu−1

G̃u
(Mu−Mu−1)+

τ∧·∑
u=1

E[I{G̃u=0}(Mu−Mu−1)
∣∣Fu−1]. (5.18)

Herein, if M is an F-martingale, the T (M) is a G-martingale. For more details
about these and related properties, we refer the reader to [9, Theorem 2.14]
and the references therein.
Throughout the remaining part of the paper, we use the one-period-pricing

operator P̂(S̃,Q̃)
t,t+1 (·), given by Definition 2.6, which we recall below

P̂(S̃,Q̃)
t,t+1 (·) :=

Q̃

ess inf
θ∈L0(Ft)

Q̃
ess sup
Ft

(θ∆S̃t+1 + ·), (5.19)

and we will use the following notational abreviation

“CRRisk(Y1, Y2)” := Correlation Risk from (Y1, Y2),

and “PFRisk” := Pure Financial Risk.
(5.20)

Furthermore, for any recovery process R, we introduce an important functional
fR(t, x) = fR(t, ω, x), which is B(IR)⊗O(F)-measurable, and is given by

fR(t, x) := xI{G̃t=Gt>0} +RtI{G̃t>Gt=0} + max(x,Rt)I{G̃t>Gt>0}, (5.21)

for any (t, x) ∈ {0, ..., T, } × IR.

Theorem 5.6 Suppose (S̃,F, Q̃) fulfills AIP. Consider gT ∈ L1(FT ) and the
pair of vulnerable claim and its associated F-claim (ξ(G,1), ξ(F,1)) which belongs

to {(gT I{τ>T}, gT I{GT>0}), (gT I{τ≥T}, gT I{G̃T>0})}. Let P̂(G,1) be the super-

hedging price process for ξ(G,1) under (Sτ ,G, P ), and f0 be the functional de-
fined in (5.21) for the zero-recovery. Then the following assertions hold.

(a) The price process P̂(G,1) is given by P̂(G,1) = P̂(F,1)I[[0,τ [[ and

P̂(F,1)
t =


P̂(S̃,Q̃)
t,t+1

(
f0(t+ 1, P̂(F,1)

t+1 )
)
, if t < T,

ξ(F,1), if t = T.

(5.22)
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(b) The price process P̂(G,1) can be decomposed into

P̂(G,1) = P̂(F,1)
0 I{τ>0} +

τ∧·∑
s=1

E

[
Gs
Gs−1

P̂(F,1)
s − P̂(F,1)

s−1

∣∣Fs−1

]
︸ ︷︷ ︸

super-hedging price’s trend

+ T (M (1))︸ ︷︷ ︸
PFRisk

− P̂(F,1) •NG︸ ︷︷ ︸
Pure-Default-Risk

− G−1
− • T (N (1))︸ ︷︷ ︸

CRRisk(τ,benefit policy)

+G−1
− • T (N

(1)
)−G−2

− (∆Ṽ (1) +∆〈M (1),m〉) • T (m)︸ ︷︷ ︸
CRRisk(τ,F)

.

(5.23)

Here G− := G·−1 and the quadruplet (M (1), N (1), N
(1)
, Ṽ (1)) is given by

Ṽ (1) :=

·∑
s=1

E
[
P̂(F,1)
s (G̃s −Gs)

∣∣Fs−1

]
, N (1) := P̂(F,1) •Do,F − Ṽ (1),

N
(1)

:=

·∑
s=1

(
P̂(F,1)
s G̃s − E[P̂(F,1)

s G̃s
∣∣Fs−1]

)
−G− •M (1) − ξ(1) •m,

M (1) :=

·∑
s=1

(
P̂(F,1)
s − E[P̂(F,1)

s

∣∣Fs−1]
)
, ξ(1)

s := E
[
P̂(F,1)
s

∣∣Fs−1

]
.

(5.24)

The theorem claims that the super-hedging price process of the vulnerable
claim with payoff ξ(G,1), which does not involve payment after the occurrence
of τ , is given by the super-hedging price process under the model (S̃,F, Q̃)
for a corresponding F-claim The theorem presents two cases of this class of
vulnerable claims depending whether there is payment at τ or not. These two
cases differ slightly in the vulnerable claim’s payoff and hence in its corre-
sponding F-claim and subsequently in the super-hedging price process of this
latter claim. However, both G-super-hedging prices of these two cases have
the same structures before τ , and the same risk decomposition structure. The
decomposition (5.23) of the dynamics’ of the price process of the vulnerable
claim is important in the securitization and/or hedging as it singles out the
various risks and their origins.

Below, we discuss some particular cases of the pair (τ,F) which are fre-
quently addressed in the credit risk and life insurance literatures.

Remark 5.7 (a) The case of immersion, which is equivalent to the martingale
m being constant (i.e. mt = m0 P -a.s. for any t ∈ {1, ..., T}). If immersion
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holds, then

P̂(G,1) = P̃(1)
0 I{τ>0} +

τ∧·∑
s=1

E

[
Gs
Gs−1

P̂(F,1)
s − P̂(F,1)

s−1

∣∣Fs−1

]
︸ ︷︷ ︸

super-hedging-price’s trend

+ T (M (1))︸ ︷︷ ︸
PFRisk

− P̂(F,1) •NG︸ ︷︷ ︸
Pure-Default-Risk

− G−1
− • T (N (1))︸ ︷︷ ︸

CRRisk(τ,benefit policy)

.

(5.25)

(b) The case of independence between τ and F. This is a particular case of
immersion, and furthermore in this case we have

P̂(G,1) = P̂(F,1)
0 I{τ>0} +

τ∧·∑
s=1

(
Gs
Gs−1

E
[
P̂(F,1)
s

∣∣Fs−1

]
− P̂(F,1)

s−1

)
︸ ︷︷ ︸

super-hedging-price’s trend

+
G

G−
• T (M (1))− P̂(F,1) •NG︸ ︷︷ ︸

Pure-Default-Risk

.

(5.26)

The statements in the remark follows directly from Theorem 5.6, and hence
their proofs will be omitted herein. The second main result of this subsection
deals with vulnerable claims that involve payment at τ , and these claims take
two forms depending whether there is payment before the occurrence of τ or
not. In life insurance, these vulnerable claims are known as policies where the
beneficiaries receive payments at the moment of death, and for which there
are two types of policies depending whether there is benefit upon survival or
not. Below, we start with the case where there is no benefit upon survival.

Theorem 5.8 Let the recovery process K be an F-adapted and integrable pro-
cess, fK given by (5.21), ξG,2 = KτI{τ≤T} be the vulnerable claim’s payoff,

and P̂(S̃,Q̃)
t,t+1 (·) be the one-period-pricing operator given by (5.19). Suppose that

(S̃,F, Q̃) fulfills AIP (equivalently (Sτ ,G) fulfills AIP ) and denote by P̂(G,2)

the super-hedging price process for the claim ξG,2. Then the following asser-
tions hold.
(a) The process P̂(G,2) is given by P̂(G,2) = KτI[[τ,∞[[ + P̂(F,2)I[[0,τ [[ and

P̂(F,2)
t =

{
P̂(S̃,Q̃)
t,t+1

(
fK(t+ 1, P̂(F,2)

t+1 )
)
, if t < T

0 if t = T
. (5.27)
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(b) The dynamics of P̂(G,2) can be decomposed

P̂(G,2) =K0I{τ=0} + P̂(F,2)
0 I{τ>0} + T (M (2))︸ ︷︷ ︸

PFRisk

+ (K − P̂(F,2)) •NG︸ ︷︷ ︸
Pure-Default-Risk

+ G−1
− • T (N (2))︸ ︷︷ ︸

CRRisk(τ,benefit policy)

+G−1
− • T (N

(2)
)−G−2

− (∆Ṽ (2) +∆〈M (2),m〉) • T (m)︸ ︷︷ ︸
CRRisk(τ,F)

+

τ∧·∑
s=1

E

[
Ks

G̃s −Gs
Gs−1

+ P̂(F,2)
s

Gs
Gs−1

− P̂(F,2)
s−1

∣∣∣Fs−1

]
︸ ︷︷ ︸

super-hedging-price’s trend

.

(5.28)

Here, the quadruplet (M (2), A(2), N (2), Ṽ (2)) is given by

N (2) : = (K − P̂(F,2)) •Do,F − Ṽ (2),

Ṽ (2) :=

·∑
s=1

∆Ṽ (2)
s :=

·∑
s=1

E
[
(Ks − P̂(F,2)

s )(G̃s −Gs)
∣∣Fs−1

]
N

(2)
:=

·∑
s=1

(
P̂(F,2)
s G̃s − E[P̂(F,2)

s G̃s
∣∣Fs−1]

)
−G− •M (2) − ξ(2) •m,

M
(2)
t :=

t∑
s=1

(
P̂(F,2)
s − E[P̂(F,2)

s

∣∣Fs−1]
)
, ξ

(2)
t := E

[
P̂(F,2)
t

∣∣Ft−1

]
.

(5.29)

Below, we treat the case where there are both benefits, upon survival and at
the moment of death τ .

Theorem 5.9 Let gT ∈ L1(FT ), the recovery process K be integrable and F-
adapted, fK be the functional given by (5.21), ξ(G,3) := gT I{τ>T} +KτI{τ≤T}

be the vulnerable claim’s payoff. If (S̃,F, Q̃) fulfills AIP and P̂(G,3) denotes the
super-hedging price for ξ(G,3), then the following assertions hold.
(a) The process P̂(G,3) is given by P̂(G,3) = KτI[[τ,∞[[ + P̂(F,3)I[[0,τ [[ and

P̂(F,3)
t =


P̂(S̃,Q̃)
t,t+1

(
fK(t+ 1, P̂(F,3)

t+1 )
)
, if t < T,

gT I{GT>0}, if t = T.

(5.30)
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(b) The dynamics of P̂(G,3) can be decomposed

P̂(G,3) = K0I{τ=0} + P̂(F,3)
0 I{τ>0} + (K − P̂(F,3)) •NG︸ ︷︷ ︸

Pure-Default-Risk

+ T (M (3))︸ ︷︷ ︸
PFRisk

+
1

G−
• T (N (3))︸ ︷︷ ︸

CRRisk(τ,benefit policy)

+
1

G−
• T (N

(3)
)− (∆Ṽ (3) +∆〈M (3),m〉)

G2
−

• T (m)︸ ︷︷ ︸
CRRisk(τ,F)

+

τ∧·∑
s=1

E

[
Ks

G̃s −Gs
Gs−1

+ P̂(F,3)
s

Gs
Gs−1

− P̂(F,3)
s−1

∣∣∣Fs−1

]
︸ ︷︷ ︸

super-hedging price’s trend
(5.31)

Here (M (3), N (3), N
(3)
, Ṽ (3)) are given by

N (3) : = (K − P̂(F,3)) •Do,F − Ṽ (3),

Ṽ (3) :=

·∑
s=1

∆Ṽ (3)
s :=

·∑
s=1

E
[
(Ks − P̂(F,3)

s )(G̃s −Gs)
∣∣Fs−1

]
N

(3)
:=

·∑
s=1

(
P̂(F,3)
s G̃s − E[P̂(F,3)

s G̃s
∣∣Fs−1]

)
−G− •M (3) − ξ(3) •m,

M
(3)
t :=

t∑
s=1

(
P̂(F,3)
s − E[P̂(F,3)

s

∣∣Fs−1]
)
, ξ(3)

s := E
[
P̂(F,3)
s

∣∣Fs−1

]
,

(5.32)

We end this subsection by illustrating the main results of Theorems 5.6, 5.8
and 5.9 on the case of vulnerable options with and/or without recovery.

Theorem 5.10 Suppose that gT ∈ L0
+(FT ), and the recovery process K be

nonnegative integrable and F-adapted. Let ξ(F,1) ∈ {gT I{GT>0}, gT I{G̃T>0}}
and put K := KI{G̃>G}. Then the three processes P̂(F,i), i = 1, 2, 3, given in

Theorems 5.6, 5.8 and 5.9 respectively, satisfy the following

P̂(F,1)
t =

{
P̂(S̃,Q̃)
t,t+1

(
P̂(F,1)
t+1

)
, if t ≤ T − 1,

ξ(F,1), if t = T
,

P̂(F,2)
t =


P̂(S̃,Q̃)
t,t+1

(
max(P̂(F,2)

t+1 ,Kt+1)
)
, if t ≤ T − 1,

P̂(F,2)
T = 0, if t = T

,

and P̂(F,3)
t =


P̂(S̃,Q̃)
t,t+1

(
max(P̂(F,3)

t+1 ,Kt+1)
)
, if t ≤ T − 1,

P̂(F,3)
T = gT I{GT>0}, if t = T

.

(5.33)
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Proof For any nonnegative process R and any x ∈ IR+, consider fR(t, x) de-
fined in (5.21) and derive

fR(t, x)

:= xI{G̃t=Gt>0} +RtI{G̃t>Gt=0} + max(x,Rt)I{G̃t>Gt>0}

= max(xI{Gt>0}, RtI{G̃t>Gt})
(
I{G̃t=Gt>0} + I{G̃t>Gt=0} + I{G̃t>Gt>0}

)
= max(xI{Gt>0}, RtI{G̃t>Gt}).

(5.34)

Therefore, the proof of the three equalities in (5.33) follow immediately from
combining this last equality in (5.34), and assertion (a) for Theorems 5.6, 5.8
and 5.9 respectively. This ends the proof of the theorem.

Remark 5.11 Under the assumptions of Theorem 5.10, the following hold

P̂(G,3) ≥ max
(
P̂(G,1), P̂(G,2)

)
and P̂(F,3) ≥ max

(
P̂(F,1), P̂(F,2)

)
. (5.35)

5.3 Proofs of Theorems 5.6, 5.8 and 5.9

These proofs rely on the following three technical lemmas, which are interesting
in themselves.

Lemma 5.12 Suppose that (S̃,F, Q̃) satisfies the AIP condition, and let P̂(F,3)

be defined in (5.30). Then

P̂(F,3) ≥ 0, and P̂(F,3)I{G=0} ≡ 0. (5.36)

The proof of this lemma will be omitted herein.

Lemma 5.13 For any F-martingale M and F-predictable process V , we have

G−G̃
−1 • V τ = p,F(I{G̃>0}) • V

τ −G−1
− ∆V • T (m), (5.37)

and

Mτ =T (M) +G−1
− • T ([M,m]− 〈M,m〉)

−G−2
− ∆〈M,m〉 • T (m) +G−1

− • 〈M,m〉τ .
(5.38)

The proof of this lemma will be omitted herein.

Lemma 5.14 Let (X,H, Q) be a model defined on the probability space (Ω,G, P ),
and satisfying AIP. Consider H ∈ L0(HT ) and a functional f(t, ω, x) such
that for x ∈ R, (f(t, x))t=0,...,T is H-adapted. Then the following backward
stochastic equation

Yt = P̂(X,H,Q)
t,t+1 (f(t+ 1, Yt+1)), t ≤ T − 1, YT = H, (5.39)

has a unique solution.
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The proof of this lemma is immediate and will be omitted herein. The rest of
this subsection is devoted to the proof of the three theorems. To this end, and
for the sake of simplifying the notation, throughout the proofs we put

P̃(1) := P̂(F,1), P̃(2) := P̂(F,2), P̃(3) := P̂(F,3).

Proof of Theorems 5.6, 5.8 and 5.9: Throughout this proof, we assume that
(S̃,F, Q̃) fulfills AIP and consider gT ∈ L1(FT ) and an F-adapted and inte-
grable process K. The rest of this proof is divided into three parts, where we
prove Theorems 5.6, 5.8 and 5.9 respectively.
Part 1. This part addresses Theorem 5.6, and proves it using Theorem 5.9.
1) Suppose that (ξ(G,1), ξ(F,1)) = (gT I{τ>T}, gT I{GT>0}), and put K ≡ 0 in
the second equality of (5.30). Then we deduce that

ξ(G,3) = ξ(G,1) and P̃(3)
t =

{
P̂(S̃,Q̃)
t,t+1

(
f0(t+ 1, P̃(3)

t+1)
)
, t ≤ T − 1,

P̃(3)
T = gT I{GT>0}.

(5.40)

Hence, by combining this with Lemma 5.14, we conclude that P̃(3) = P̃(1),
and hence P̂(G,3) = P̂(G,1) follows immediately as well. This proves assertion
(a) for the pair of claims (gT I{τ>T}, gT I{GT>0}).

2) Suppose (ξ(G,1), ξ(F,1)) = (gT I{τ≥T}, gT I{G̃T>0}). By combining Lemma 5.1

and Theorem 5.2-(b), we derive the following

P̂(G,3)
T−1 = P̂(Sτ ,G)

T−1,T (ξ(G,1)) = P̂(S̃,F,Q̃)
T−1,T (gT I{GT>0})I{τ≥T}. (5.41)

Then, in virtue of (τ > T − 1) = (τ ≥ T ) and P̃(1)
T = gT I{G̃T>0}, we obtain

P̂(G,3)
T−1 = P̂(S̃,F,Q̃)

T−1,T (gT )I{τ≥T} = P̂(S̃,F,Q̃)
T−1,T (P̃(1)

T )I{τ>T−1} = P̃(1)
T−1I{τ>T−1}.

(5.42)
Thus, on the one hand, this latter equality proves (5.22) for t = T − 1. On the
other hand, as we stated in Remark 5.3-(a), this equality tells us that after
this one-step we fall into the setting of the first claim, i.e. the case of gtI{τ>t}

with t = T − 1 and gT−1 = P̃(1)
T−1 instead. Thus, thanks to step 1 above, we

deduce that (5.22) holds for any t ∈ {0, ..., T − 1}, and the proof of assertion
for the pair of claims (gT I{τ≥T}, gT I{G̃T>0}) is complete.

3) Thanks to steps 1 and 2 above, we deduce that when K ≡ 0 we get

(P̂(G,3), P̃(3)) = (P̂(G,1), P̃(1)). Then by combining this with Theorem 5.9-(b),

where we put K = 0, we conclude that the quadruplets (M (3), N (3), N
(3)
, Ṽ (3))

and (M (1), N (1), N
(1)
, Ṽ (1)) coincide, and hence assertion (b) follows immedi-

ately. This ends the proof of Theorem 5.6.
Part 2. Hereto, we prove Theorem 5.8 using again Theorem 5.9. In fact, in
this case we put gT = 0 in Theorem 5.9, and get

ξ(G,3) = ξ(G,2), and P̃(3)
t = P̂(S̃,Q̃)

t,t+1

(
fK(t+1, P̃(3)

t+1)
)
, t ≤ T−1, P̃(3)

T = 0.
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Hence, by combining these with Lemma 5.14, we obtain P̃(3) = P̃(2) and
P̂(G,3) = P̂(G,2). Therefore, the proof of Theorem 5.8-(a) follows immediately,

and both quadruplets (M (3), N (3), N
(3)
, Ṽ (3)) and (M (2), N (2), N

(2)
, Ṽ (2)) co-

incide. This yields assertion (b) of Theorem 5.8 and completes its proof.
Part 3. This part proves Theorem 5.9. To this end, we start proving (5.30). By
applying Lemma 5.1 to (Sτ ,G) for the claim ξG, and using Theorem 5.2-(d)
afterwards, we derive

P̂(G,3)
T−1 = P̂(Sτ ,G)

T−1,T (ξG) = KT−1I{τ≤T−1} + P̂(S̃,F,Q̃)
T−1,T (κ

(g)
T )I{τ>T−1}

= KT−1I{τ≤T−1} + P̂(S̃,F,Q̃)
T−1,T (fK(T, gT I{GT>0})I{τ>T−1}

= KT−1I{τ≤T−1} + P̂(S̃,F,Q̃)
T−1,T (fK(T, P̃(3)

T )I{τ>T−1}

= KT−1I{τ≤T−1} + P̃(3)
T−1I{τ>T−1}.

(5.43)

This proves the equality (5.30) for t = T − 1. Thus, to prove this equlity for
t = T − 2, we apply again Lemma 5.1 and Theorem 5.2-(d) afterwards for the

pair (K, P̃(3)) instead of (K, g), and write

P̂(G,3)
T−2 = P̂(Sτ ,G)

T−2,T−1(P̂(G,3)
T−1 )

= KT−2I{τ≤T−2} + P̂(S̃,F,Q̃)
T−2,T−1(κT−1(K, P̃(3)))I{τ>T−2}

= KT−2I{τ≤T−2} + P̂(S̃,F,Q̃)
T−2,T−1(fK(T − 1, P̃(3)

T−1)I{τ>T−2}

= KT−2I{τ≤T−2} + P̃(3)
T−2I{τ>T−2}

(5.44)

Therefore, we obtain the equality (5.30) for t = T − 2. Thus, we can prove
the equality (5.30) for any t by backward induction. In fact, we suppose that
(5.30) holds for t + 1, and we will prove it holds for t. To this end, we apply
then Lemma 5.1 and Theorem 5.2-(d) afterwards and get

P̂(G,3)
t = P̂(Sτ ,G)

t,t+1 (P̂(G,3)
t+1 ) = KtI{τ≤t} + P̂(S̃,F,Q̃)

t,t+1 (κt+1(K, P̃(3)))I{τ>t}

= KtI{τ≤t} + P̂(S̃,F,Q̃)
t,t+1 (fK(t+ 1, P̃(3)

t+1))I{τ>t}

= KtI{τ≤t} + P̃(3)
t I{τ>t}.

(5.45)

Hence, the equality (5.30) holds for t, and hence it holds for any t ∈ {0, ..., T −
1}. This completes the proof of (5.30), while the rest of this part addresses
(5.31). By combining (5.30) and the two facts XI[[0,τ [[ = Xτ − XτD and
XτD = XτI[[τ,∞[[ = X0I{τ=0} + X •D, which hold for any process X, we get

P̂(G,3)
0 = K0I{τ=0} + P̃(3)

0 )I{τ>0} and

P̂(G,3)

=(K0 − P̃(3)
0 )I{τ=0} + (K − P̃(3)) •D + (P̃(3))τ

=P̂(G,3)
0 + (K − P̃(3)) •NG +

K − P̃(3)

G̃
I[[0,τ [[ •D

o,F + (P̃(3))τ − P̃(3)
0 .

(5.46)
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The last equality is due to D = NG + G̃−1I]]0,τ ]] •D
o,F, see (5.17) for details.

Thanks to (5.32), it is clear that M
(3)
0 = A

(3)
0 = 0 and

P̃(3) = P̃(3)
0 +M (3)+A(3), whereA

(3)
t :=

t∑
s=1

E[P̃(3)
s −P̃

(3)
s−1

∣∣Fs−1], t = 1, ..., T.

Then by inserting these in (5.46) and applying Lemma 5.13 to Ṽ (3), M (3) and
N (3), we derive

P̂(G,3) = P̂(G,3)
0 + (K − P̃(3)) •NG +

K − P̃(3)

G̃
I[[0,τ [[ •D

o,F + (P̃(3))τ − P̃(3)
0

= P̂(G,3)
0 + (K − P̃(3)) •NG + (M (3))τ + (A(3))τ +

1

G̃
• (N (3) + Ṽ (3))τ ,

= P̂(G,3)
0 + (K − P̃(3)) •NG + T (M (3)) +

1

G−
• T (N

(3)
) +G−1

− • T (N (3))

− ∆〈M (3),m〉
G2
−

• T (m) +
1

G−
• 〈M (3),m〉τ − ∆Ṽ (3)

G2
−

• T (m)

+
p,F

G−
(I{G̃>0}) • (Ṽ (3))τ + (A(3))τ −G−1

− I[[0,τ [[ •

(
I{G̃=0} •N

(3)
)p,F

,

= P̂(G,3)
0 + (K − P̃(3)) •NG + T (M (3)) +

1

G−
• T (N

(3)
) +

1

G−
• T (N (3))

−
(
∆〈M (3),m〉+∆Ṽ (3)

)
G−2
− • T (m)

+G−1
− • (Ṽ (3))τ +G−1

− • 〈M (3),m〉τ + (A(3))τ .

(5.47)

The last equality is due to I{G̃=0} •D
o,F = 0. Thus, direct calculations yields

G−1
− • (Ṽ (3))τ +G−1

− • 〈M (3),m〉τ + (A(3))τ

=

τ∧·∑
s=1

E

[
Ks

G̃s −Gs
Gs−1

+ P̃(3)
s

Gs
Gs−1

− P̃(3)
s−1

∣∣∣Fs−1

]
.

This ends the proof of assertion (b), and the proof of the theorem is complete.
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