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Abstract. In this paper, we present a new functional depth called Principal Component
functional Depth (PCD) for square-integrable processes X over a compact set. This depth
involves a generic multivariate depth function which is evaluated at the projection of the
function on the basis formed by the first J vectors of the Karhunen-Loève decomposition
of X. We first investigate whether our Principal Component Decomposition (PCD) satisfies
the desirable properties of statistical functional depths, following the axiomatization of [21].
In a second step, we present a consistent estimator for our PCD and establish its uniform
consistency with a convergence rate. Finally, we complement our study with simulations and
various real-world applications in supervised classification, demonstrating that our maximum
PCD classifier equals or outperforms conventional competitors.
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Introduction

In multivariate data analysis, a depth function measures the extent to which a point is
’central’ in a given d-variate data cloud, d ≥ 1. Different notions of data depth in Rd have
been proposed as tools generalizing those of ranks, orderings, outliers and quantiles to the
multivariate setup [35, 51, 56]. A formal definition of statistical depth function has been
provided by Zuo and Serfling [56]: they have list four desirable properties that a d-variate
depth should satisfy, namely: affine-invariance, maximality at center provided that this center
exists, monotonicity on rays and vanishing at infinity. For a general account on depth in the
widely studied setup of finite-dimensional spaces, see [56] and the references therein.

For functional data, that is, when the data lies in an infinite-dimensional space such as a
functions space, it is more delicate to determine a general definition of the classical multivariate
depth and to establish which properties a functional depth should satisfy. In a recent paper,
Nieto-Reyes and Battey [44] provide a general definition for a statistical depth function for
functional data. This first formal definition has been revised by Gijbels and Nagy [21]. In
this work [21], the authors present an extensive update of the survey of [44], in which they
establish adaptations of the depth properties and prove that they are more easily met by
common functional depths.

In the present contribution, we provide a new definition of a specific functional depth
called Principal Component Functional Depth based on functional principal component anal-
ysis (FPCA). It uses projections to reduce the problem to a multivariate one. These finite
projections are obtained by representing the data in terms of the eigenfunctions of the covari-
ance operator and the associated functional principal components (FPCs) as usually done in
FPCA.

Let us point out that FPCA is a field of study that has proved to be a significant technique
in the development of functional data analysis. Indeed, Jones & Rice [30] presented an in-
teresting proposition to characterize samples of random curves through principal component
scores. Next, [29] built up an extension of FPCA which aimed at estimating harmonics from
fragments of curves. Further, [54] estimated functional principal component scores for sparse
longitudinal data by developping a FPCA procedure via a conditional expectation approach.
More recently, [27] suggested graphical tools in order to vizualise functional data and detect
functional outliers. References, along with theoretical and algorithmical details, can be found
in the work of [53, 50, 16].

On the other hand, we further study our PCD depth in combination with the basic analysis
of depth properties and uniform consistency results. For the latter, we upstream provide a
natural estimator of PCD, and its consistency is unsurprisingly linked to that of the estimated
covariance operator, hence that of the principal values and principal factors, as well as of the
involved multivariate depth. Originally, asymptotic distributions have already been derived
by [12] for the eigenvalues and eigenfunctions, as well as for the empirical projectors onto any
eigenspace. In recent years, [23] developed asymptotic Taylor expansions of the estimated
eigenfunctions in terms of the operator norm error between the theoretical and estimated co-
variance operator. Further, [22] investigated the properties of FPCA and provided insights
into methodology and convergence speed-rates for FPCA. Also, when the sample curves are
assumed to be observed, [26] gave explicit convergence rates for the differences between esti-
mated and true eigenelements. For more detailed limiting results upon the FPCs estimators
and associated eigenelements, see [12, 3, 2, 46] and references therein.

Among the wide functional applications and those stated above, an interesting one is to
compare the FPCs characterizing two given samples. Such a case study may be seen as
a functional generalization of the concept of "common functional principal components" as
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introduced by Flury [17] in multivariate analysis. This is notably of considerable importance in
implied volatility dynamics. Implied volatility is obtained from the pricing model introduced
by Black and Scholes [5] and is a key factor for quoting options prices. Such an application is
discussed in [2] over two log-returns datasets. In this work, they also show that J = 3 FPCs
suffice to explain 98.2 % of the variability of the sample functions. This is one example where
usefulness of low-dimensional components is exhibited and hence our interest in defining a
functional depth through J finite projections using a generic J-variate depth.

The interest of our FPCA-approach lies first in its ability to capture maximal information
from the underlying process while projecting it onto a finite set of elements. Moreover, our
depth estimator has demonstrated adaptability in functional classification problems, through
the selection of the parameter J via cross-validation. Indeed, this adaptability has proven
to enhance performance in practical scenarios when compared to existing maximum-depth
classifiers and other conventional ones in the literature. This study is detailed in Section 3.

The paper is organized as follows. In Section 1, we recall the properties of multivariate and
functional statistical depths following the definitions introduced by Gijbels and Nagy [21], then
Section 2 is devoted to our main contribution: Subsection 2.1 introduces the Principal Compo-
nent Depth (PCD) for functional data, in Subsection 2.2 we check that the PCD satisfies the
classical properties of functional depth, while Subsection 2.3 is dedicated to the construction
of our depth estimator along with the study of its asymptotic behavior in a general setting.
Illustrations and simulations are presented in Section 3 along with a real world application.
Section 4 gives a conclusion and some perspectives.

1. Preliminary: multivariate and functional data depths

For the sake of completeness, we further recall the definition of statistical functional depth
as introduced by [21] below. This definition itself is a generalization to the functional case of
the multivariate definition proposed in [56].

Fix a compact subset V of Rd and consider a space F of functions x : V → R endowed
with a norm ∥ · ∥ and its associated metric d (for example, (C (V), ∥ · ∥∞) or (L2(V), ∥ · ∥2) ).
Denote by P := P(F ) the set of Borel probability measures on F and, for a random variable
X on F , denote by PX its probability distribution. Remark that the following definition
encompasses the multivariate case ([56]) by choosing a finite set V.

Definition 1.1. A mapping D : F × P → R is a statistical functional depth if it satisfies
the following properties P-1 to P-6:

P-1: Distance invariance.
Let f : F → F be a mapping s.t. for any x, y ∈ F , d(f(x), f(y)) = afd(x, y),
for some fixed af > 0. Then, for any random variable X on F and any x ∈ F ,
D(f(x), Pf(X)) = D(x, PX).

P-2: Maximality at center.
For any distribution P ∈ P possessing a unique center of symmetry θ ∈ F w.r.t some
notion of symmetry, D(θ, P ) = supx∈F D(x, P ).

P-3: Decreasing w.r.t the deepest point.
For any P ∈ P and z ∈ F s.t. D(z, P ) = supx∈F D(x, P ) we have that D(z, P ) >

infx∈F D(x, P ) and for all x ∈ F and α ∈ [0, 1], D(x, P ) ≤ D(z + α(x− z), P ).
P-4: Vanishing at infinity.

For any P ∈ P,ve lim∥x∥→∞D(x, P ) = infx∈F D(x, P ).
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P-5: Upper semi-continuity in x.
Let P ∈ P and x ∈ F . For any ε > 0, there exists δ > 0 s.t.

sup
y∈F

d(x,y)<δ

D(y, P ) ≤ D(x, P ) + ε.

P-6: Continuity in P.
Let P ∈ P and x ∈ F . For any ε > 0, there exists δ > 0 s.t.

P -a.s. for all Q ∈ P, dP(P,Q) < δ =⇒ |D(x, P )−D(x,Q)| < ε,

where dP is a metric associated to the topology of weak convergence.

In practice, depth functions rarely satisfy all the properties stated in the definition; Property
P-2, in particular, depends on the chosen notion of symmetry. However, this remains an
objective for any new proposal of a depth function. We comment below on these different
properties and present alternatives for some.

Understanding the importance of property P-1 and its relation to its multivariate counter-
part, led [38] and [9] to distinguish two different further weaker properties of affine invariance:

P-1S: Scalar-affine invariance.
Let f : F → F be a scalar-affine mapping, that is, for some b ∈ F and a ∈ R\{0},

∀x ∈ F , f(x) = ax+ b .

Then, D(f(x), Pf(X)) = D(x, PX) for any random variable X and x ∈ F .
P-1F: Function-affine invariance.

Let f : F → F be a function-affine mapping, that is, for some b ∈ F and a ∈ F

where a(t) ̸= 0 for all t ∈ V and ax ∈ F

∀x ∈ F , f(x) = ax+ b .

Then, D(f(x), Pf(X)) = D(x, PX) for any random variable X and x ∈ F .
Note that, in P-1S and P-1F, point-wise product of functions is intended in the sense that

f(x) = ax + b means f(x)(t) = ax(t) + b(t) or f(x)(t) = a(t)x(t) + b(t) depending on the
property at hand.

As far as Property P-2 is concerned, it can be more meaningful to consider the behaviour
of D for particular P for which many notions of centre of symmetry coincide at θ. In Rd,
such P are the zero-mean Gaussian distributions, for which the mean is a center of central
and halfspace symmetry (e.g. [56]). This inspection is intuitively extended to the functional
setting with the Gaussian process in mind.
P-2G: Maximality at Gaussian process mean.

For P a zero-mean, stationary, almost-surely continuous Gaussian process on V, D(θ, P ) =

supx∈F D(x, P ) ̸= infx∈F D(x, P ), where the function θ ≡ 0 over V.
Having at hand a reasonable notion of symmetry for random functions, a stronger alternative

than P-2G is proposed in Lemma 1 of [21]:
P-2C: Maximality at center (central symmetry).

For any centrally symmetric P ∈ P, we have that D(θ, P ) = supx∈F D(x, P ) if and
only if P is centrally symmetric around θ ∈ F in the sense that X − θ = −(X − θ) in
distribution for F = L2[0, 1] or C.

Geometrically, P-3 means that the upper level sets of the depth D are star-shaped (and
thus connected) in F relative to the deepest point.

Of course, Property P-4 is one natural functional counterpart of the vanishing at infinity
property in the multivariate setting [21]. Regarding Property P-5, this is rather a technical
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requirement and is the functional counterpart of multivariate upper semi-continuity, which is
equivalent to stating that the upper level sets are closed.

Continuity of D in the distribution argument given in Property P-6 is of great interest
regardless of the precise nature of the application. Indeed, it first delivers almost sure con-
vergence of the empirical depth to its population counterpart. Further, it tacitly addresses
the intrinsic problem of partially observed functional data. The delicate challenge of Pn being
inaccessible in its entirety entails reconstructing the functional data object by some interpola-
tion or smoothing means. Then provided the reconstruction P̃n is such that P̃n → P , P -a.s.,
Property P-6 ensures the desired consistency of the functional depth. Last but not least, the
fulfilment of P-6 produces a qualitatively robust (see Theorem 2, Section 2.2, in [25]) empirical
depth and thus confirms that conclusions are not exceedingly affected by outliers.

Recently, [21] has proposed a uniform extension of Property P-6 as follows:
P-6U: Uniform continuity in P.

For any ε > 0, there exists δ > 0 s.t.

for any P,Q ∈ P, dP(P,Q) < δ =⇒ sup
x∈F

|D(x, P )−D(x,Q)| < ε,

where we recall dP metricises the topology of weak convergence.
Already in Rd, requirement P-6U is demanding in full generality. In addition, it is often

too strict to assume uniform convergence over the whole space F . But one appropriate weaker
condition can be local uniformity over compact sets in F .

Remark: when Property P-1S is satisfied, Property P-6 implies the continuity of the
depth in x (and therefore it implies Property P-5). Indeed, for any r.v. X and any x, h ∈ F ,

∥D(x+ h, PX)−D(x, PX)∥ = ∥D(x, PX−h)−D(x, PX)∥.

As PX−h converges weakly to PX when ∥h∥ goes to 0, this gives the continuity with respect
to x. The same argument shows that P-1S and P-6U imply the uniform continuity of the
depth in the variable x.

2. A projection-type functional depth

In the present section, we introduce a new type of functional depth using mainly two tools:
the Karhunen-Loève (K-L) decomposition of a square-integrable stochastic process X [31] and
a multivariate depth function DJ defined on RJ , J ≥ 1, where J is the number of principal
components to be chosen. This will be discussed further in the paper. The K-L expansion is
achieved analytically by projecting the process, considered over a compact time interval, onto
a deterministic orthonormal basis obtained from the covariance Hilbert-Schmidt operator’s
eigenfunctions, which correspond to positive eigenvalues.

2.1. The Principal Component Functional Depth. We consider
(
L2[0, 1], ⟨·, ·⟩

)
the Hilbert

space of square integrable functions over [0, 1] w.r.t. Lebesgue measure on R. This space is
equipped with the inner product

⟨f, g⟩ =
∫ 1

0
f(t)g(t)dt, f, g ∈ L2[0, 1] ,

which associated norm is given by

∥f∥ =

∫ 1

0
f(t)2dt, f ∈ L2[0, 1] .

We denote by P2(L2[0, 1]) the set of probability measures on L2[0, 1] such that a random
process (X(t))t∈[0,1] with probability measure PX ∈ P2(L2[0, 1]) satisfies the following condi-
tions:
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• the process X is square-integrable: for any t ∈ [0, 1], X(t) ∈ L2(Ω,A ,P)
• its covariance function KX , defined by

∀s, t ∈ [0, 1],KX(s, t) = E
[
X(s)X(t)

]
− E

[
X(s)

]
E
[
X(t)

]
,

is continuous.
We will also denote by mX(t) := E[X(t)], t ∈ [0, 1] the mean function of X. The function KX

above then defines a linear operator KX in the following way:

KX : L2[0, 1] → L2[0, 1]

f 7→ KXf(·) :=
∫ 1

0
KX(·, s)f(s)ds.

Theorem 2.1 (Karhunen-Loève theorem [31]).
Consider a zero-mean random process (X(t))t∈[0,1] such that PX ∈ P2(L2[0, 1]). There ex-
ists (ej)j≥1 an orthonormal basis on L2[0, 1] formed by eigenfunctions of KX with respective
eigenvalues (λj)j≥1. And the process X(t) admits the following representation

X(t) =

∞∑
j=1

Zjej(t).

where, for all j ≥ 1,

Zj =

∫ 1

0
X(t)ej(t)dt = ⟨X, ej⟩ .

Moreover, the r.v. Zj have zero-mean, are uncorrelated and have variance λj: for any i, j ≥ 1,

E[Zj ] = 0, and cov(Zi, Zj) = E[ZiZj ] = λjδij .

One of the main interests of the K-L decomposition is that the first J principal components
provide a "best basis" for approximating the process in terms of the total mean squared error:

XJ :=
J∑

j=1

Zjej = argmin
YJ orth. projection of X over

a subspace of dimension J of L2[0,1]

E
[
∥X −YJ∥2L2[0,1]

]
.

Notice that if there exists j0 ≥ 1 such that λj0 = λj0+1, meaning λj0 is of multiplicity two,
then the choice of the basis (ej)j≥1 is not unique even up to a sign.

This theorem lets us to introduce the notion of principal component functional depth.
In order to ensure readability, we start with some notations. For any x ∈ L2[0, 1] and some

integer J ≥ 1, we set

x(J) := (⟨x−mX , ej⟩)1≤j≤J ∈ RJ , (2.1)

xJ := mX +
J∑

j=1

⟨x−mX , ej⟩ ej ∈ L2[0, 1] . (2.2)

The parameter J denotes the maximal number of components to be considered in the basis.

Definition 2.2 (Principal Component functional depth). Fix an integer J ≥ 1 and DJ a J-
variate statistical depth function. Let X a random process with distribution PX ∈ P2(L2[0, 1]).
Based on a K-L decomposition (λj , ej)j≥1 of the centered process X − mX , we define the
principal component-functional depth as follows:

∀x ∈ L2[0, 1], PCDJ(x, PX) :=
DJ

(
x(J), PX(J)

)
1 +

(
∥x− xJ∥2/

∑∞
i=1 λj

)β (2.3)



PRINCIPAL COMPONENT FUNCTIONAL DEPTH 7

where x(J) and xJ are defined in (2.1) and (2.2) respectively and PX(J) is the J-variate distri-
bution of the centered random vector X(J) := (⟨X −mX , e1⟩ , . . . , ⟨X −mX , eJ⟩).

By construction, the (λj)j≥1 decay to zero as j → ∞ and are summable, that is
∑∞

j=1 λj <

∞. Notice further that the covariance operator of the centered process X − mX is that of
X since the covariance is translation-invariant. Another important observation is that the
variance of ∥X −mX∥ is nothing but the sum of the eigenvalues of the covariance operator of
X, that is :

E[∥X −mX∥2] =
∫ 1

0
var(X(t))dt =

∞∑
j=1

λj .

In particular, as long as the choice of the fixed integer J ≥ 1 is concerned, one can determine
J := Jγ such that the J-truncated expansion explains a proportion∑J

j=1 λj∑∞
j=1 λj

≥ 1− γ

of the variance with γ ∈ [0, 1] small.

The scalar

1 +
(
∥x− xJ∥2/

( ∞∑
i=1

λj

))β
= 1 +

(
∥x− xJ∥2/E

[
∥X −mX∥2

])β
is a "penalizing" coefficient in the sense that it decreases the value of the depth when x is
far from its projection xJ compared to the typical fluctuation of ∥X −mX∥. Observe further
that, for any P ∈ P2(L2[0, 1]) and any x ∈ L2[0, 1], PCDJ(x, P ) ≤ PCDJ(xJ , P ) with equality
if and only if x = xJ .

A first important property is that the expression of PCDJ above does not depend on the
choice of the K-L basis (ej)j whenever λJ > λJ+1 (which implies that the associated eigenspace
is not "cut through") as soon as the J-variate depth DJ is isometry-invariant. Also, denoting
by Ej the eigenspace associated to λj , we set

LJ :=

J

+
j=1

Ej

as the sum eigenspaces. As λJ > λJ+1, LJ is of dimension J . And as only λJ is supposed to
be strictly larger than λJ+1, for j < J , we can have Ej = Ej+1.

Proposition 2.3. If λJ > λJ+1 and the multivariate depth DJ is invariant under isometry
(Property P-1), then the principal component functional depth PCDJ (in Definition 2.2) does
not depend on the choice of the K-L basis. Moreover, any orthonormal basis of LJ , even if not
a K-L basis, will give the same result.

Proof. Let (ej)j≥1 and (ẽj)j≥1 be two orthonormal basis of L2[0, 1] such that

X(t) =
∞∑
j=1

Zjej(t) =
∞∑
j=1

Z̃j ẽj(t),

such that (ej)j≤J and (ẽj)j≤J are basis of LJ . (As λJ+1 < λJ , any K-L basis is such a basis.)
Our aim is to show that

DJ

(
x(J), PX(J)

)
= DJ

(
x̃(J), P

X̃(J)

)
,
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The bases (ej)j≥1 and (ẽj)j≥1 are linked through some linear isometry, that is there exists a
linear norm-preserving mapping Φ : L2[0, 1] → L2[0, 1] such that ẽj = Φ(ej). As the restriction
of the J first elements of the basis generates LJ , Φ induces an isometry on LJ . Then, it holds

x(J) = mX +
J∑

j=1

⟨x−mX , ej⟩ ej = mX +
J∑

j=1

⟨x−mX , ẽj⟩ ẽj ,

and with x(J) := (⟨x−mX , ej⟩)j=1,...,J ∈ RJ and x̃(J) := (⟨x−mX , ẽj⟩)j=1,...,J ∈ RJ , the
isometry-invariance of the multivariate depth DJ leads to

DJ

(
x(J), PX(J)

)
= DJ

(
x̃(J), P

X̃(J)

)
,

which proves the proposition. □

2.2. Properties of PCD depth. We study here the functional depth properties presented in
Section 1 satisfied by the PCDJ depth (2.3). These properties happen to be inherited from the
classical multivariate depth properties of DJ . This is summed up in the following proposition
as well as in Table 1.

Adherence of PCDJ to functional depth properties
P-1 P-1S P-1F P-2C P-2G P-3 P-4 P-5 P-6 P-6U
✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓∗ ✓∗∗

✓∗ : if DJ satisfies P-1, P-6 and Q is the empirical measure (Theorem 2.6)
✓∗∗ : if DJ satisfies P-1, P-5, P-6U and Q is the empirical measure (Theorem 2.6)

Table 1. Summary of the theoretical functional depths properties (P-1)-
(P-6U) for PCDJ . Fulfilment or failure of the depth properties are respectively
indicated by ✓ and ✗.

Proposition 2.4. Let DJ be a J-variate depth and PCDJ be the associated principal compo-
nent functional depth of Definition 2.2.

(i) P-1: If DJ is distance-invariant, then PCDJ depth is distance-invariant.
(ii) P-2C: If DJ meets multivariate maximality at center w.r.t. central symmetry, then

PCDJ depth is maximal at the center w.r.t. central symmetry.
(iii) P-3: If DJ is decreasing w.r.t. deepest point, then PCDJ is decreasing w.r.t. deepest

point.
(iv) P-4: If DJ is vanishing at infinity, then PCDJ is.
(v) P-5: If DJ is upper semi-continuous in its first argument, then PCDJ is.
(vi) If DJ is distance-invariant and satisfies P-6 then PCDJ depth is continuous in the

space variable x. And if DJ is scaling-invariant and satisfies P-6U then PCDJ depth
is uniformly continuous in the space variable x.

Proof. a
(i) P-1. Distance invariance. Let f be a mapping s.t. ∥f(x) − f(y)∥ = af∥x − y∥, for
some af > 0. This implies that f is of the form f(x) = afg(x) + f(0), with g a linear
isometry. For the sake of clarity, we denote in the current section (λX

j , eXj )j the eigenvalues

and eigenfunctions of the process X. So, we have immediately, for any j ≥ 1, λf(X)
j = a2fλ

g(X)
j

and e
f(X)
j = e

g(X)
j . Next, using the K-L decomposition X = mX +

∑∞
j=1

〈
X −mX , eXj

〉
eXj

and applying further the continuous linear isometry g to X, we obtain

g(X) = g(mX) +
∞∑
j=1

〈
X −mX , eXj

〉
g(eXj ) = g(mX) +

∞∑
j=1

〈
g(X −mX), g(eXj )

〉
g(eXj ).
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Hence,(g(eXj ))j≥1 is a basis associated to the covariance operator of the process g(X) in its

K-L decomposition and we can choose e
f(X)
j = e

g(X)
j = g(eXj ) for any j ≥ 1.

On one hand, remark that, when working under the distribution Pf(X), one clearly has

f(x)(J) =
〈
f(x)−mf(X), e

f(X)
j

〉
j
= af

〈
g(x−mX), g(eXj )

〉
j
= af

〈
x−mX , eXj

〉
j
∈ RJ ,

(2.4)
where the last equality holds as g preserves the inner product. On the other hand, using again
the linear isometry g along with some computations, it yields(

∥f(x)− (f(x))J∥2∑∞
j=1 λ

f(X)
j

)β

=
a2βf ∥g(x)− g(mX)−

∑J
j=1

〈
g(x−mX), g(eXj )

〉
g(eXj )∥2β(∑∞

i=1 a
2
fλ

X
j

)β
=

∥g(x)− g
(
mX +

∑J
j=1

〈
x−mX , eXj

〉
eXj

)
∥2β(∑∞

i=1 λ
X
j

)β
=

(
∥x− xJ∥2∑∞

i=1 λ
X
j

)β

.

Eventually, all together with the fact that P
f(X)(J) = PafX(J) based on (2.4), we obtain, by

scale-invariance of the multivariate depth,

DJ

(
f(x)(J), P

f(X)(J)

)
= DJ(af · x(J), Paf ·X(J)) = DJ

(
x(J), PX(J)

)
.

Therefore, PCDJ(f(x), Pf(X)) = PCDJ(x, PX).

(ii) P-2C. Maximality at center w.r.t central symmetry. Let X be a centrally symmetric
process w.r.t θ ∈ L2[0, 1], that is X − θ = −(X − θ) in distribution. This implies mX = θ

almost everywhere over [0, 1]. In particular, θ = θJ and hence θ(J) = 0 ∈ RJ in the definition
of PCDJ . We want to show that

PCDJ(θ, PX) = sup
x∈L2[0,1]

PCDJ(x, PX) (2.5)

First, it is clear that PCDJ(θ, PX) = DJ(θ
(J), PX(J)) = DJ(0, P(⟨X−θ,ej⟩)j=1,...,J

). Also, the
right-hand side of (2.5) rewrites as

sup
x∈L2[0,1]

PCDJ(x, PX) = sup
y∈L2[0,1]

DJ(⟨y, ej⟩j=1,...,J , P(⟨X−θ,ej⟩)j=1,...,J
)

= sup
z∈RJ

DJ(z, P(⟨X−θ,ej⟩)j=1,...,J
)

as one may write L2[0, 1] = Span(ej)1≤j≤J ⊕ Span(ej)
⊥
1≤j≤J , where Span(ej)

⊥
1≤j≤J is the or-

thogonal space associated to Span(ej)1≤j≤J , and the projection onto the orthogonal space
Span(ej)

⊥
j=1,...,J provides obviously null inner product w.r.t. ej for any j = 1, . . . J .

Since X−θ = θ−X in distribution, then the centered random vector (⟨X − θ, ej⟩)j=1,...,J =

− (⟨X − θ, ej⟩)j=1,...,J in distribution. Thereupon, from maximality at the center property of
the multivariate depth DJ , it holds

DJ(0, P(⟨X−θ,ej⟩)j=1,...,J
) = sup

z∈RJ

DJ(z, P(⟨X−θ,ej⟩)j=1,...,J
),

hence the desired result (2.5).
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(iii) P-3. Monotonicity w.r.t. deepest point. Let α ∈ [0, 1], P ∈ P and z ∈ L2[0, 1] s.t.
PCDJ(z, P ) = supx∈L2[0,1] PCD

J(x, P ). Letting x ∈ L2[0, 1], our goal is to show

PCDJ(x, P ) ≤ PCDJ(x+ α(z − x), P ) := PCDJ(xα, P ). (2.6)

Notice first that inequality (2.6) holds true if one shows that

∥xα − xJα∥2β ≤ ∥x− xJ∥2β and

DJ(x
(J)
α , PX(J)) ≥ DJ(x

(J), PX(J)), (2.7)

where we recall that x
(J)
α = (⟨xα −mX , ej⟩)j=1,...,J , x(J) = (⟨x−mX , ej⟩)j=1,...,J as in (2.1)

and xJ , xJα are defined accordingly in (2.2). By definition of z and PCDJ depth, one may write
z = mX + z0 for some z0 ∈ Span(e1, . . . , eJ), where mX is the mean function of the process
with distribution P . From definition (2.2) , we have

xα − xJα = (1− α)(x−mX) + αz0 −
J∑

j=1

⟨(1− α)(x−mX) + αz0, ej⟩ ej

= (1− α)(x− xJ),

where, in the before-last equality, we use the fact that
∑J

j=1 ⟨z0, ej⟩ ej = z0 since z0 ∈
Span(e1, . . . , eJ). Hence, we obtain the first desired inequality in (2.7):

∥xα − xJα∥2β ≤ ∥x− xJ∥2β.

Handling next the second equation in (2.7), we have

DJ(x
(J)
α , PX(J)) = DJ(α ⟨z0, ej⟩j + (1− α)x(J), PX(J)).

Therefore, it remains to show that

(⟨z0, ej⟩)j=1,...,J = arg sup
y∈RJ

DJ(y, PX(J)),

so that one immediately derives the needed second inequality (2.7) from the multivariate
monotonicity along rays property of DJ . Recall that PCDJ(z, P ) = supx∈L2[0,1] PCD

J(x, P )

and that
∑J

j=1 ⟨z0, ej⟩ ej = z0, so

DJ(⟨z0, ej⟩j , PX(J)) = sup
x∈L2[0,1]

1

1 +
(
∥x−xJ∥2∑∞

j=1 λj

)βDJ(x
(J), PX(J))

= sup
x∈Span(e1,...,eJ )

DJ(⟨x−mX , ej⟩j , PX(J))

= sup
y∈RJ

DJ(y, PX(J))

and the desired result (2.6) follows.

(iv) P-4. Vanishing at infinity. Fix some ϵ > 0. Using boundedness of the multivariate
depth DJ , we can find some M1 > 0 such that if ∥x−xJ∥2 > M1, |PCDJ(x, P )| ≤ ϵ. And, since

DJ is vanishing at infinity and
(
1 +

(
∥x−xJ∥2∑∞

j=1 λj

)β)−1

is bounded, we can find some M2 > 0

such that if ∥x(J)∥J = ∥xJ − mX∥ > M2, PCDJ(x, P ) ≤ ϵ. Hence, as for any x ∈ L2[0; 1],
∥x− xJ∥2 + ∥xJ∥2 = ∥x∥2, if ∥x∥ >

√
2max(M1,M2) then |PCDJ(x, P )| ≤ ϵ which gives the

result.
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(v) P-5. Upper semi-continuity in x. We show that for any function x0 ∈ L2[0, 1],

lim sup
x→x0

in L2[0,1]

PCDJ(x, P ) ≤ PCDJ(x0, P ). (2.8)

As PCDJ is the product of two positive functions, it holds

lim sup
x→x0

in L2[0,1]

PCDJ(x, P ) = lim sup
x→x0

1

1 +
(
∥x−xJ∥2∑∞

j=1 λj

)βDJ(x
(J), PX(J))

≤ lim sup
x→x0

1

1 +
(
∥x−xJ∥2∑∞

j=1 λj

)β lim sup
x→x0

DJ(x
(J), PX(J)).

Hence, by continuity of the inner product and the associated norm, we obtain

lim sup
x→x0

PCDJ(x, P ) ≤ 1

1 +
(
∥x0−xJ

0 ∥2∑∞
j=1 λj

)β · lim sup
x(J)→x

(J)
0

DJ(x
(J), PX(J))

where x
(J)
0 = ⟨x0 −mX , ej⟩j ∈ RJ . Under the assumption of upper semi-continuity of the

multivariate depth one obtains directly

lim sup
x(J)→x(J)

0

DJ(x
(J), PX(J)) ≤ DJ(x

(J)
0, PX(J))

and thus the inequality (2.8).

(vi) The result is a direct consequence of the remark at the end of the first section of the paper
and of the uniform continuity of function:

x →

1 +

∥x− xJ∥2/
∞∑
j=1

λj

β


−1

.

□

2.3. Sample depth consistency. Let Pn := 1
n

∑n
i=1 δXi be the empirical measure based on

the i.i.d. sample X1, . . . , Xn of L2[0, 1]-valued processes with distribution P ∈ P2(L2[0, 1]). A
natural estimator of PCDJ = PCDJ(·, P ) (2.3) is given by

PCDJ
n(x) := PCDJ(x, Pn) =

1

1 +
(
∥x−xJ

n∥2∑∞
i=1 λ

n
j

)βDJ

(
x(J)
n , P

n,X(J)
n

)
(2.9)

where (λn
j )j and (enj )j are respectively eigenvalues and eigenfunctions of a K-L decomposition

associated to Pn. They are driven by the empirical covariance operator:

K̂n(f)(·) :=
∫ 1

0
K̂n(·, s)f(s)ds with K̂n(s, t) =

1

n

n∑
i=1

(Xi(s)−Xn(s))(Xi(t)−Xn(t)).

and Xn(t) = 1
n

∑n
j=1Xi(t) denotes the empirical mean process. One may further highlight

that the empirical covariance operator K̂n may be written

K̂n(f) =
∑
j≥1

λn
j

〈
enj , f

〉
enj

with λn
j = 0 for all j ≥ n+ 1.

Let also introduce the following quantities

x(J)
n :=

(〈
x−Xn, e

n
1

〉
, . . . ,

〈
x−Xn, e

n
J

〉)
∈ RJ and
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xJn(·) := Xn(·) +
J∑

j=1

〈
x−Xn, e

n
j

〉
enj (·) ∈ L2[0, 1]

which are respectively the empirical analogues of (2.1) and (2.2). Eventually, the empirical
measure associated to PX(J) := P(⟨X−mX ,ej⟩)j=1,...,J

∈ P(RJ) is the probability measure

P
n,X(J)

n
:=

1

n

n∑
i=1

δ(⟨Xi−Xn,en1 ⟩,...,⟨Xi−Xn,enJ⟩) ∈ P(RJ).

The empirical counterpart of Proposition 2.3 is provided in the next proposition. This result
is driven by consistency of the estimated eigenvalues (λn

j )j . Indeed, assumption λJ+1 < λJ

implies that λn
J+1 < λn

J for n large enough since λn
J+1

a.s.−−−→
n→∞

λJ+1 and λn
J

a.s.−−−→
n→∞

λJ (see
Proposition 2 of [12]). Hence, as the theoritical one, the empirical eigenspace is not cut
through for large n and the estimated depth does not depend on the choice of the basis.

Proposition 2.5. If λJ+1 < λJ and the multivariate depth DJ is invariant under isometries
(Property P-1), then, a.s., for n large enough, PCDJ

n does not depend on the choice of or-
thonormal basis of the subspace of dimension J , Ln

J := +j=1,...,JE
n
j , where the En

j are the
empirical eigenspace associated to λn

j , 1 ≤ j ≤ J .

Taking into account the multiplicity of the K-eigenvalues λj , j = 1, . . . , J , plays an essential
role in the consistency of the empirical eigenvalues, eigenfunctions or projectors.

Distinctly, as long as the PCDJ depth consistency is concerned, the uniform regularity
requirement P-6 upon the multivariate depth DJ is needed as seen below in Theorem 2.6.

Theorem 2.6. Let J ≥ 1 and DJ be a J-multivariate depth. Consider the associated func-
tional depth PCDJ given in Definition 2.2. Let P ∈ P2(L2[0, 1]) satisfying λJ > λJ+1.

(1) if DJ satisfies Assumptions P-1 and P-6 then

∀x ∈ L2[0, 1], PCDJ(x, Pn)
a.s.−−−→

n→∞
PCDJ(x, P ).

(2) if DJ satisfies Assumptions P-1, P-4 and P-6U then

sup
x∈L2[0,1]

∣∣PCDJ(x, P )− PCDJ(x, Pn)
∣∣ a.s.−−−→

n→∞
0.

Property P-6 of continuity in the distribution argument, contestably, exhibits a relatively
weak formulation, and within the extensive body of literature, a more robust and uniform,
though demanding, version of it is embodied by Property P-6U as introduced in [21]. Ad-
ditionally, it is established that P-6/P-6U is fulfilled by most of the multivariate depths as
discussed thereafter.

The Mahalanobis depth adheres to P-6 for distributions with invertible covariance matrix.
With a minor regularity condition as outlined by [7], zonoid depth meets P-6 for distributions
with finite first moment: E[∥X∥] < ∞. The latter holds true in our case, since our setting
requires, at least, the existence of a finite second moment for the process under consideration.
A similar behavior is observed for Lp-depth, p ≥ 1. In contrast, halfspace and simplicial depths
are generally non-continuous in both their arguments, however they are when the distribution
admits Lebesgue-density on RJ . This characteristic is established in works by [36] (Th. 5)
and [40] (Prop. 1). Based on the summarized work of [42] (Table 2), we restitute in Table
2 continuity in the distribution properties P-6/P-6U of some multivariate depths commonly
encountered in the literature (the reader may refer to Appendix B for a precise definitions of
these different depth).
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Adherence of DJ to continuity in the distribution
Property MHD DLp DProj DHS DSimp DZon DSpa

P-6 ✓ ✓ ✓ ✓1 ✓1 ✓ ✓
P-6U ✓∗ ✓∗ ✓∗

✓1 : for absolutely continuous multivariate distributions.
✓∗ : when the probability space is equipped with the Wasserstein dis-
tance as metric dP .

Table 2. Analytical properties (P-6)-(P-6U) of some multivariate depths DJ ,
J ≥ 2 (Table 2 of [42]). Fulfilment of the involved property is indicated by ✓.

In Theorem 2.7 below, we provide a rate of convergence for our PCD estimator. For that,
we need further assumptions upon the multivariate depth DJ :

• Power decay of the multivariate depth DJ with respect to the space variable: there is a
continuous function M : P(RJ) →]0;∞[ s.t. for any P ∈ P(RJ),

∀z ∈ RJ , DJ(z, P ) ≤ M(P )

1 + ∥z∥2βJ
. (A1)

where β is the constant appearing in the definition of the PCD depth 2.2 and ∥ · ∥J is
the euclidean norm on RJ .

• Local Lipschitz regularity with respect to the probability measure: fix some p ≥ 1 and
consider Wp the p-Wasserstein distance on Pp(RJ), the set of p-integrable probability
measure on RJ , defined by

Wp(P,Q) := inf
X∼P,Y∼Q

E[∥X −Y ∥p]
1
p .

We suppose that for any P ∈ Pp(RJ) there is an open neighborhood UP ⊂ Pp(RJ)

of P and a constant KP such that

∀Q ∈ UP , sup
z∈RJ

|DJ(z, P )−DJ(z,Q)| ≤ KPWp(P,Q) . (A2)

Theorem 2.7. Let J ≥ 1 and p ≥ 1 and consider DJ be a J-multivariate depth which satisfies
P-1, P-4 and Assumptions (A1) and (A2) for the chosen p.

Fix some q > 2p and denote by Pq(L2[0, 1]) the set of probability measures in P2(L2[0, 1])

such that ∫
L2[0;1]

∥x∥qP (dx) < ∞.

Let P ∈ Pq(L2[0, 1]) such that λJ > λJ+1. Then, for any ϵ > 0,

n

(
1
2
∧ p

J
∧β
)
−ϵ
∣∣PCDJ(x, P )− PCDJ(x, Pn)

∣∣
and

n

(
β

1+2β
∧ p

J

)
−ϵ

sup
x∈L2[0,1]

∣∣PCDJ(x, P )− PCDJ(x, Pn)
∣∣

converge in probability to 0.

Remark 2.8. The proofs of Theorem 2.6 and Theorem 2.7 complement one another and may
be found in Appendix A.

Several common depth functions satisfy Assumptions (A1) and (A2) and therefore Theorem
2.7. Concerning assumption (A1), it can be readily verified that Mahalanobis depth satisfies
(A1) for any 0 < β ≤ 1, while 0 < β ≤ 1/2 holds for Lp-depth for any 1 ≤ p < ∞ (due to
the equivalence of all norms on RJ). Additionally, for the projection depth, taking u = z/∥z∥
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in its definition results in DProj(z,Q) ≤ CQ/(1 + ∥z∥), hence any 0 < β ≤ 1/2 holds. When
the depth is halfspace or simplicial, one may establish upper bounds by employing Markov’s
inequality, and this holds true for any β such that ∥X∥2β is integrable.

Moving on to (A2), using a triangular inequality and Hölder’s inequality, it is straightfor-
ward that |DLp(z, P )−DLp(z,Q)| ≤ EX∼P,Y∼Q[∥X−Y ∥p]. Thus, by Jensen’s inequality for
the concave function t 7→ t1/p, p ≥ 1, it yields supz∈RJ |DLp(z, P )−DLp(z,Q)| ≤ KWp(P,Q).
Consequently, Lp-depth satisfies (A2). Another example is Mahalanobis depth, which meets
(A2) with p = 2. Indeed, using the upper bound derived in [1] for MHD, one may write:

∥MHDP −MHDQ∥∞ ≤ ∥Σ−1
P − Σ−1

Q ∥+ ∥Σ−1/2
Q ∥2∥mQ −mP ∥

(
∥mQ −mP ∥+ ∥Σ1/2

P ∥
)
.

Notice when Q converges to P in the weak sense, by continuity, we have for some constant
K > 0 depending on P ,

∥MHDP −MHDQ∥∞ ≤ ∥Σ−1
P − Σ−1

Q ∥+ C∥mQ −mP ∥

≤ K
(
∥Σ−1

P (ΣP − ΣQ)Σ
−1
Q ∥+ E[∥X−Y ∥

)
≤ K (∥ΣP − ΣQ∥+ E[∥X−Y ∥) .

When P and Q have zero mean, some classical computations based on the matrix norm over
RJ yield

∥ΣP − ΣQ∥ ≤ C
√
E[∥X−Y ∥2],

and the same holds true when P and Q are not centered, since X−EP [X] and Y−EQ[Y] are.
Thus, ∥MHDP −MHDQ∥∞ ≤ CW2(P,Q).

Considering further the projection depth, as demonstrated by [55], we generally have, for
some constant C > 0 depending on P as Q converges to P ,

∥DProj,P −DProj,Q∥∞ ≤ C sup
∥u∥=1

(|σ(Pu)− σ(Qu)|+ |µ(Pu)− µ(Qu)|)

where Pu denotes the law of ⟨u,X⟩, X ∼ P , and µ and σ are univariate location and scale
functions such that µ(aZ + b) = aµ(Z) + b and σ(aZ + b) = |a|σ(Z) for any a, b ∈ R. Clearly,
by applying Cauchy-Schwarz and linearity of µ, we have

sup
∥u∥=1

|µ(Pu)− µ(Qu)| ≤ E[∥X−Y ∥].

Additionally, when σ(Z) := µ(|Z − µ(Z)|) represents the absolute mean deviation,

sup
∥u∥=1

|σ(Pu)− σ(Qu)| ≤ sup
∥u∥=1

2µ(|Pu −Qu|) ≤ 2E[∥X−Y ∥]].

Consequently, for some constant C > 0, it follows from Jensen’s inequality for concave func-
tions

∥DProj,P −DProj,Q∥∞ ≤ CE[∥X−Y ∥2] ≤ CW2(P,Q),

and DProj meets (A2) with p = 2. The result is still valid when σ is the median absolute
deviation as generally used in the definition of DProj.

3. Illustrations and simulations

Supervised k-class classification is a fundamental task in machine learning and statistics
where the goal is to categorize data points into one of the k predefined classes or categories.
It involves using labeled training data to train a model that can accurately assign new, un-
labeled data points to one of the k classes. This topic is of substantial interest in the fields
of machine learning, pattern recognition and is widely used in various applications, including
spam email detection, medical diagnosis, sentiment analysis, and fraud detection. The field
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of k-class classification encompasses a range of algorithms and techniques, including linear
classifiers, nearest neighbor methods (such as the classical k-NN), support vector machines,
and deep learning models. The performance of these models is evaluated using metrics such as
accuracy, precision, recall, F1-score... In our study, we confine our discussion to the simplest
case k = 2 of two-class classification. In this context, we consider two independent sets of data
samples, denoted as X

(0)
1 , X

(0)
2 , . . . , X

(0)
n and X

(1)
1 , X

(1)
2 , . . . , X

(1)
n , drawn from two different

distributions (or populations) labeled as P0 and P1 and characterized by the random variables
X(0) and X(1), respectively. Hence, as described above, the goal of classification procedures is
to allocate a newly observed data to either P0 or P1, leveraging the information acquired from
the training samples. More precisely, the data are made of pairs (Xi, Yi), where Xi represents
the input variables (upon which the classification is based), and Yi is the associated label
(usually equals 0 or 1), describing the membership of the corresponding observation to either
P0 or P1. In this context, considering a new observation X with unknown associated label,
the objective is to predict the value of this label. Using the functional depth we proposed (see
Section 2.1), we develop here a method to classify functional data.

The topic of functional classification has been widely studied over the years. For example
we can refer to [4, 8, 16, 19, 28, 33, 49]. On another side depth have already been used to pro-
pose classification methods. However, most of the time, only the case of low-dimensional data
is considered: we can cite for instance, the work of [19] who integrates linear discrimination
principles with aspects of data depth classifiers, or [41] solving multi-class classification. Other
maximum multivariate depth classifiers were studied in the literature; the reader may refer
to [20, 15, 34] and references therein. Finally, we can mention a few propositions to perform
functional classification with depths ([43, 10, 52, 47, 11]).

Using the works of [11] and [43] serving as benchmarks, we show strong performances of
our maximum PCDJ -based classifier.

3.1. Description of our classification method. Recall that when provided with a training
dataset where observations are accurately categorized as either P0 or P1, the goal is to classify
new test samples as either P0 or P1 based on their relative positions within the respective
training datasets. In our simulation below, we consider the maximum depth classifier as
originally introduced by [20] based on our depth definition PCDJ (definiton 2.2). Then, we
make use of the framework of [11] as a benchmark of comparison. In contrast to parametric
and semiparametric classification methodologies, maximum depth classifiers diverge from the
assumption of a specific parametric structure for the decision boundary or any particular
probability distribution governing the datasets. Instead, their classification procedure hinges
on assigning an observation to the set with respect to which it attains maximum depth value.
Formally, given n1, n2, . . . , nk observations from k competing classes, the maximum PCD
classifier of a new observation x, is expressed as:

dJ(x) := argmax
q=1,...,k

PCDJ(x, Pnq),

where Pnq is the empirical measure of the qth class. We recall that

PCDJ(x, Pn) =
1

1 +
(
∥x−xJ

n∥2∑∞
i=1 λ

n
j

)βDJ

(
x(J)
n , P

n,X(J)
n

)
,

with J the number of FPC’s as tuning parameter, and β can be an additional parameter
for optimization. However, for the sake of computational simplicity, our study is limited to
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optimization in J only, as will be illustrated later on.

Subsequently, in all examined classification schemes, our approach involves the following
steps, with the technical details rooted in the framework of [11], incorporating some adapta-
tions specific to our context:

• Discretization: all simulated curves are discretized along 51 evenly spaced grid points
that span the interval [0, 1]. Obviously, in the case of a real dataset, these time points
are inherently confined to a specified compact interval.

• Number of runs: the simulation results are established on 100 independent runs.
Conversely, with real observations, the procedure entails permuting a partition of the
datasets into a 90 % training set and a 10 % test set, followed by cross-validation.

• Training and test data: in each run, we generate 200 training curves for each
model. Specifically, 100 are selected from P0, and another 100 are chosen from P1.
Additionally, a test sample comprising 100 observations is created, with 50 originating
from P0 and 50 from P1. In the case of real datasets, these proportions adhere to the
previously mentioned configuration (90 % train / 10 % test).

• Maximum PCDJ - depth classifier criteria: Given a vector of number of projec-
tions (or pc’s) J⃗ = (0, 1, . . . , Jmax) and a given multivariate depth (in the definition
of PCDJ), we undertake a cross-validation procedure based on the 100 training data
for each single class P0 and P1 (dividing the 100 curves into 20 batches of 5 curves
where we consider 95 curves as train subset and 5 curves as test subset, and we swap
them over the 20 batches), in the aim to choose the best J∗ within J⃗ , in the sense that
it gives the best accuracy within J⃗ (it is a mean accuracy based the 20 swapings).

• Evaluation: At each run (k = 1, . . . , 100), the value of J∗ is updated, for which we
undertake again the classification procedure on the original train and test sets. Finally,
we compute the proportion of correctly classified observations within the test sample.

• Table interpretation: the values contained within the table cells provide funda-
mental descriptive statistics, including common measures such as the mean, median,
quantiles, and more. These statistics offer insights into the distribution of correctly
classified proportions across the 100 (or given) runs.

3.2. Simulation study with functional data. Here we use the two settings proposed by
[11]:

• Model 1: the population denoted as P0 comprises trajectories of the underlying pro-
cess X(t) := m0(t) + e(t), where m0(t) = 30(1 − t)t1.2 and e(t) is a centered Gauss-
ian process with covariance function cov(X(s), (X(t)) = 0.2 exp(−|s − t|/0.3). The
process associated with population P1 is essentially identical to the process X(t), ex-
cept for variations in its mean function. It is defined by Y(t) = m1(t) + e(t), with
m1(t) = 30(1− t)1.2t.

• Model 2: the population P0 consists of trajectories of the process X(t) = m0(t)+e(t),
where this time, m0(t) = 30(1 − t)t2 + 0.5| sin(20πt)| and e(t) is a centered Gaussian
process with cov(X(s), X(t)) = 0.2 exp(−|s − t|/0.3). The process from P1 is made
of spline approximations (with 8 knots) of trajectories from the previous process from
P0.
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Figure 1. Some trajectories from Model 1 and Model 2.

As visually represented in Figure 1 (left panel), Model 1 can be observed as depicting a
relatively consistent scenario characterized by rather smooth functions. In contrast, Model
2 (right panel) introduces a more irregular context where the mean function m0 exhibits
oscillations, deviating from the smooth function t 7→ 30(1− t)t2. The primary objective of this
setup is to assess the efficiency of detecting trajectories from P0 or P1 within each model. We
recall that the classification procedure is carried out with the methodology outlined in Section
3.1 above.
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Figure 2. Boxplots of the correct classification proportions under PCDJ∗ for
several β values and Model 1.



18 S. ARMAUT, R. DIEL, T. LALOË

0.4

0.6

0.8

1.0

0 0.5 0.75 1 2
β

ac
cu

ra
cy

PCDJ*,n via halfspace

0.4

0.6

0.8

1.0

0 0.5 0.75 1 2
β

ac
cu

ra
cy

PCDJ*,n via Mahalanobis

0.4

0.6

0.8

1.0

0 0.5 0.75 1 2
β

ac
cu

ra
cy

PCDJ*,n via projection

0.4

0.6

0.8

1.0

0 0.5 0.75 1 2
β

ac
cu

ra
cy

PCDJ*,n via spatial

0.4

0.6

0.8

1.0

0 0.5 0.75 1 2
β

ac
cu

ra
cy

PCDJ*,n via L2

Figure 3. Boxplots of the correct classification proportions under PCDJ∗ for
several β values and Model 2.

Boxplots in Figures 2 (representing Model 1) and 3 (representing Model 2) illustrate the
accuracy variations across selected values of β in both models. Take note that in this study,
opting for β = 1 generally results in slightly better outcomes in Model 1, emphasizing that
the choice of β does not affect accuracy results. Conversely, the opposite trend is observed
for Model 2 and β = 1/2 seems a better choice. Therefore, in addition to optimizing J∗, the
inclusion of the parameter β for further optimization in some β∗ may be considered, however,
this may significantly increase computation time.

The performances of our Monte Carlo procedure are succinctly summarized in Tables 3 and
4.

DJ∗ depth Min First Quartile Median Mean Third quartile Max
halfspace 0.88 0.96 0.98 0.9737 0.99 1

Mahalanobis 0.96 0.98 0.99 0.9853 0.99 1
projection 0.9 0.98 0.99 0.9891 1 1

spatial 0.96 0.98 0.99 0.9894 1 1
L2 0.96 0.98 0.99 0.9879 1 1

k-NN 0.98 1 1 0.9977 1 1
RP 0.97 0.99 1 0.9961 1 1
RP2 0.93 0.98 0.99 0.9849 0.9925 1
RPD 0.94 0.97 0.98 0.981 0.99 1

Table 3. Descriptive statistics for the correct classification proportions under
PCDJ∗ with β = 1 for Model 1. The second bloc in the table displays the
reference results within the same framework, based on the work of [11].
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DJ∗ depth Min First Quartile Median Mean Third quartile Max
halfspace 0.56 0.66 0.71 0.7204 0.7725 0.96

Mahalanobis 0.56 0.69 0.76 0.7645 0.8325 0.97
projection 0.62 0.79 0.835 0.8309 0.87 1

spatial 0.58 0.73 0.77 0.7826 0.83 0.97
L2 0.83 0.96 0.98 0.9694 0.99 1

k-NN 0.82 0.87 0.89 0.8912 0.91 0.97
RP 0.63 0.78 0.8 0.8042 0.84 0.93
RP2 0.95 0.9975 1 0.9962 1 1
RPD 0.9 0.98 0.99 0.9884 1 1

Table 4. Descriptive statistics for the correct classification proportions under
PCDJ∗ with β = 1/2 for Model 2. The second bloc in the table displays the
reference results within the same framework, based on the work of [11].

Under Model 1, one may observe from Table 3 that the k-Nearest Neighbors (k-NN) method
demonstrates superior efficiency, with the performance of the Random Projection (RP) method
being relatively comparable. In contrast, when still examining Model 1, our method based
on PCDJ -depth exhibits comparable performance, slightly outperforming RP2 and RPD. In
particular, it demonstrates significant enhancements in the minimum value, as seen when
employing parameters such as β = 1 and projection, spatial, Mahalanobis, or L2-depths.

In contrast, under Model 2, there is notably higher variability, but the methods based on
derivatives, specifically RP2 and RPD, clearly outperform the remaining classifiers (refer to
Table 4). Consequently, when anticipating differences in the smoothness of the functions be-
tween P0 and P1, there is a compelling argument for employing the double projection methods.

We highlight the persistent preference for J = 5, sporadically J = 4, rarely J = 3 and the
lack of J = 0, 1, 2 across all models throughout the procedure highlights the inherent capa-
bility of PCDJ to dynamically ascertain an optimal dimensionality for classification purposes.
This adaptive attribute is actualized through the process of cross-validation performed on the
parameter J, as expounded upon earlier.

Last but not least, we mention that the Karhunen-Loève decomposition can be extended to
more general Hilbert spaces, such as Sobolev spaces, where the principal components will as
such take into account the functions and their derivatives. This is indeed particularly relevant
in scenarios where the smoothness of functions holds significance. Hence, PCDJ depth can
be adapted in order to take into account regularity of functions, but this is beyond the scope
of this paper. Therefore, the PCDJ depth measure can be modified to accommodate the
regularity of functions, although this is beyond the scope of the present paper.

3.3. Application on real data. For the purpose of comparing performances, we align our
analysis with specific real data, as investigated in [43], which, in the next two subsections,
will consist of the Adelaide electricity demand 1 and the Tecator dataset 2 (loaded from the
ddalpha package in R).

Following the identical classification methodology detailed in Section 3.2, specifically requir-
ing optimization of the number of principal components J , we draw out accuracy outcomes
for both real datasets and compare them to those derived in [43].

1Available at https://rdrr.io/cran/fds/man/Electricitydemand.html
2Available at https://search.r-project.org/CRAN/refmans/ddalpha/html/dataf.tecator.html

https://rdrr.io/cran/fds/man/Electricitydemand.html
https://search.r-project.org/CRAN/refmans/ddalpha/html/dataf.tecator.html
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3.3.1. Adelaide electricity demand. The Adelaide electricity demand [39], encompasses the
daily electricity consumption in megawatts (MW) recorded in Adelaide between 1997 and 2007.
This dataset comprises 508 curves for each weekday, derived from half-hourly measurements
(thus, along 48 time points), which underwent B-splines smoothing.

For the classification focus, two business days—Monday and Tuesday—and the two weekend
days—Saturday and Sunday—were selected. Four leave-one-out classification schemes were im-
plemented, coupling each business day with each weekend day. The four considered datasets
can be visualized in Figure 4. Although there is a significant overlap in the electricity demand
curves as one may notice in figure 4, distinctive variations in shape serve to differentiate ob-
servations between business days and weekends. Naturally, business days are characterized by
a shorter duration of daily low demand and a more pronounced surge in demand preceding
office hours, in contrast to the two weekend days. Indeed, weekends demonstrate a lower daily
mean, usually achieved one to two hours later.

For the Adelaide dataset, once again, it happened that β = 1/2 serves as a suitable pa-
rameter for achieving the highest accuracies. Table 5 presents the leave-one-out classification
accuracy rates for the four described models, employing β = 1/2, as well as the reference rates
of [43]. The parameter J is determined through leave-one-out cross-validation, following the
same procedure led in Section 3.1.
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Figure 4. Adelaide electricity demand curves over Mondays, Tuesdays, Sat-
urdays and Sundays between years 1997 and 2007.
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halfspace projection MHD spatial L2 FDk
3 PC PLS k-NN

Monday-Saturday 0.8799 0.8622 0.8878 0.8868 0.9104 0.907 0.904 0.755 0.931
Monday-Sunday 0.8986 0.9045 0.933 0.9252 0.939 0.902 0.945 0.828 0.94

Tuesday-Saturday 0.874 0.8976 0.9242 0.9291 0.9488 0.923 0.92 0.778 0.948
Tuesday-Sunday 0.937 0.9576 0.9842 0.9862 0.9882 0.966 0.988 0.864 0.977

Table 5. Accuracy rates for the Adelaide-Electricity leave-one out classifica-
tion problem described above, based on maximum depth classification using
PCDJ∗ and β = 1/2. Reference accuracy rates based on the work of [43] are
represented in the last four columns.

Upon comparing our findings with the established reference results, notice that PCDJ sur-
prisingly consistently demonstrates strong performance w.r.t other methodologies across all
the examined models. For model 1 (Monday-Saturday), the k-NN classifier stands out as the
most effective, even though, our L2-depth based PCDJ demonstrates a competitive proximity
to the performance of k-NN in this particular model. It is intriguing to observe that L2-depth
based PCDJ , outperforms the reference depths FDk

J , J = 1, 2, 3 [43] for all four models.
Remarkably, L2-based PCDJ shows alignment with the top-performing classifiers (PC with
Model 2 and 4, k-NN with Model 3). Notice further, that MHD and spatial depths exhibit
analogous performances. However, it is important to mention that PC-classifier is acknowl-
edged as an optimal classifier within specific assumptions about the underlying generating
process, as outlined in [13].

On another note, the consistent selection of J = 6, occasionally J = 5, and the absence
of J = 0, 1, 2, 3, 4 for each model through the procedure, emphasizes PCDJ ’s capacity to
dynamically determine an optimal dimension for classification. This adaptability is achieved
through cross-validation on J as mentioned earlier.

In terms of computational complexity, PCDJ is akin to the computational cost of the in-
cluded multivariate depth added to the computational cost of the K-L decomposition in its
definition. The complexity of this multivariate depth, in turn, may exhibit either relatively
low or high complexity, depending on J and n. Specifically, the J-dimensional halfspace depth
is recognized for its higher complexity, scaling at an order of O(nJ−1 log(n)). Numerous
advancements have been made in developing both approximate and exact algorithms for ef-
ficiently computing halfspace depth (for comprehensive information, refer to works such as
[56, 24, 37, 48]). Whereas, computing Mahalanobis, spatial or L2 depth is, for instance, sig-
nificantly faster.

3.3.2. Tecator dataset. The Tecator spectrometric dataset, documented by [6], consists of the
light wavelength absorbance patterns of 215 finely chopped meat samples measured by the
Tecator Infratec spectrometer. Each meat sample’s absorbance was recorded at 100 equidistant
discretization points across the wavelength spectrum ranging from 850 to 1050 nanometers.

In the context of a binary classification problem, the meat samples have been categorized into
two groups based on their fat content. Indeed, the goal is to differentiate between meat samples
with low fat content (typically less than or equal to 20 % giving rise to 138 observations) and
those with high fat content (usually exceeding 20 %, consisting of 77 remaining observations).
Figure 5 depicts the previous classical binary grouping.

This dataset is a recurrent focus in the functional data analysis literature, often aiming to
classify meat samples into different groups based on their fat content as mentioned above,
posing challenges due to overlappings and similar smoothness properties in the spectrometric
curves (the reader may refer to [16]). Nonetheless, distinctions in curvature are remarkable
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among the observations (for instance, based on Figure 5, the blue curves display two slight
peaks compared to the red curves).
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Figure 5. Tecator light wavelength absorbance data of 215 curve samples of
meat. Curves with less (resp. more) than 20 % of fat content are in red (resp.
blue).

β halfspace projection MHD spatial L2 FDk
3 PC PLS k-NN

1/2 0.8573 0.8849 0.95 0.9681 0.9399 0.907 0.907 0.963 0.81
1 0.8799 0.8972 0.9537 0.9681 0.9435 0.907 0.907 0.963 0.81

Table 6. Accuracy rates for the Tecator classification problem described
above, based on maximum depth classification using PCDJ∗ . Reference ac-
curacy rates based on the work of [43] are represented in the last four columns.

As displayed in Table 6, PCDJ consistently delivers robust accuracy results, whatever β =

1/2 or β = 1. The spatial-based PCDJ is surpassing all other classifiers presented. Within
the Tecator dataset, the persistent selection of J = 5 by the blue curves and J = 4 by the
red curves, from the set J = 0, 1, 2, 3, 4, 5, 6, during the classification process, points out again
the adaptability of PCDJ to this specific dataset. Notably, the necessity for an additional
projection for the blue functions enables the capture of their more curved shapes, contrasting
with the less wavy red functions.

3.3.3. Functional CCTE based on Nice weather and power demand. As it is of keen inter-
est to us, the present section is dedicated to a real world environmental application. The
dataset, which was downloaded from RTE France3 and provided on demand by Meteo France4

consists of daily power consumptions (in MWh) and temperatures (in ◦C) for the region of
Nice (France) over a five-year period (2018-2022). This gives rise to n2 := 1825 observed
curves along 24 timepoints corresponding indeed to curves observed during a day/24hours.
We mention that the dataset of temperatures was provided to us since 1993. However, power
consumption data is available starting by the end of the year 2017, which is why we consider
the period 2018-2022 for our study in what comes next.

To be more precise, the considered dataset is made of n2 = 1825 observations of the form
{(Yi,Xi)}1≤i≤n2 ∈ (R × L2[0, 1])n2 , where Xi := (Xi(t))t=1,2,...,24 is the 24-hours curve of

3https://www.rte-france.com/
4https://meteofrance.com/

https://www.rte-france.com/
https://meteofrance.com/
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temperature on day i, 1 ≤ i ≤ n2 and Yi ∈ R is the average electricity consumption on day i.
We may underline the fact that Yi was computed using a 96-timepoints electricity statement
corresponding to electricity consumption measured each 15 minutes of the day i.

The goal of the present section is to study an empirical functional version of the multivariate
Covariate-Conditional-Tail-Expectation (CCTE) of [1]. The empirical CCTE is a multivariate
depth based risk measure defined by:

ĈCTE
n1,n2

PCDJ ,α
(Y,X) :=

n2∑
i=1

Yi1Xi∈Ln1,J
(α)

n2∑
i=1

1Xi∈Ln1,J
(α)

, (3.1)

with the convention 0/0 = 0. In the above, Sn2 := {(Yi,Xi)}i=1,..,n2 are i.i.d and Ln1,J(α) :=

LDJ,n1
(α) is the empirical functional level set associated to PCDJ,n1 and computed from a

n1-sample S̃n1 := (X̃i)i=1,..,n1 independent from Sn2 (n1 + n2 = n):

Ln1,J(α) :=
{
x ∈ L2[0, 1] : PCDJ,n1(x) ≤ α

}
.

Recall that DJ is the multivariate depth function involved in the definition of PCD-depth.
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Figure 6. Functional 10 % - PCDJ level sets Ln1,J(0.1) (golden curves) w.r.t
some randomly chosen curves (blue curves) among the large period of 1993-
2022. In this setting, J = 2 and β = 1.

As a reminder, the concept of CCTE was construed as a tool quantifying the cost associated
with a specific rare event characterized as ’high-risk’. In our case, for each temperature curve
Xi, we associate a cost variable Yi, representing the power consumption (in MWh) on day i. It’s
worth noting that the initial definition of depth-CCTE was formulated within a multivariate
context based on a multivariate depth [1], and as such, the depth level set existed in RJ .
In the current iteration of functional CCTE, the PCD-level set Ln1,J(α) is then a functional
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alternative of the multivariate depth level set. Thus, Ln1,J(α) is regarded as the region of risk
pertaining to temperature curves with elevated risk levels.

This category of problems has been extensively investigated for many years within the realm
of short and long-term load forecasting. Typically, the objective is to predict the electric daily
load one to five days in advance, relying on weather-related input variables such as temperature
and humidity for one or two preceding days (Dudek et al., 2016; Oreshkin et al., 2021) [14],
[45].

In the aforementioned setting, the empirical CCTE at level α can be explained as the average
power consumption when temperature curves deviate significantly from the norm (e.g., when
considering low values of α). This perspective holds value for electric utility companies like
EDF, a prominent French multinational electric utility company. For instance, if there are
anticipations of severe heatwaves or cold spells in the coming decade, EDF could use this
information to forecast future electricity investments over the specified period.

Subsequently, we explore the relationship between ĈCTEα and α, considering four distinct
multivariate depths (in the definition of PCD). These depths aim to encapsulate the general
’pattern’ of the functional risk factors dataset, which are the daily temperature curves Xi for
the years 2018-2022.
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Figure 7. Functional 10% - PCDJ level sets of the least deep temperature
curves, J = 2 and β = 1, for two overlaying periods: the period of 2000-2004
(red curves) and 2018-2022 (golden curves).

Based on Figure 7 above, it is noteworthy that the periods spanning from 2000 to 2004 and
from 2018 to 2022, exhibit similar patterns in the ’extreme’ functional temperature level sets
Ln1,J . In these figures, it appears that the PCDJ -level sets of the 10% least deep curves largely
overlap. Analogous findings were noted for time intervals such as 2008-2012 and 2018-2022 (see
Figure 11 in appendix C). Nonetheless, time periods such as 1993-1997 and 2018-2022 clearly
exhibit a shift which is one discernible aspect of climate change (see Figure 10 in appendix
C). As a result, it is reasonable to rather use the temperature curve data from 2000 to 2017
(and some 20 % curves of 2018-2022) for the purpose of estimating the PCD level set, while
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focusing our primary analysis on the dataset from 2018 to 2022 to compute the mean CCTE.

In our analysis, we partitioned the overall datasets at hand in a way s.t. the first set
S̃n1 :=

{
(X̃i)

}
i=1,..,n1

, consists in n1 = 2000 randomly chosen temperature curves between

2000 and 2017. Recall that the latter is used to estimate the functional PCD-level set and com-
prises only temperature curves (X̃i)i, since only the temperature curves X̃

′
is are required for

level set estimation. Meanwhile, the second subset Sn2 := {(Yi,Xi)}i=1,..,n2
, n2 = 1825 of the

period 2018-2022, is employed for the mean CCTE estimation. Nevertheless, we reclaim 20 %
of the n2-sample and exclusively select the temperature curves from it, which are subsequently
incorporated into the level-set defined by the n1-sample. Consequently, the final sizes of the
samples are adjusted to n1 = 2365 and n2 = 1460. In other words, Ln1,J(α) = L2365,2(α) in
the previous definition of functional CCTE.

We mention that, beforehand, we excluded instances with missing electricity records (NA
electricity data points) and subsequently calculated the mean power consumption. Therefore,
this computation was sometimes performed using fewer than 96 data points, specifically for
the days with incomplete data. On the other hand, from the level-set sample, we already
removed the curves corresponding to days having several missing temperature measures.

All the temperature curves in each datasets S̃n1 and Sn2 , were smoothed using B-splines
with degree four. The selection of the B-spline degree plays a critical role, as it determines
the degree of approximation that provides the closest representation of the actual curve (this
is depicted in figure 9, Appendix C).
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Figure 8. Functional PCDJ -based CCTE, J = 2, corresponding to 98.8% of
explained variance. The x-axis must be read from left to right according to the
decreasing order of qα = 50%, . . . , 0.1%.

In Figure 8 above, we draw the behavior of the ĈCTEα (3.1) as a function of the empirical
α-quantiles qα. Here, qα takes values in the set {50%, . . . , 1%, 0.1%} and represents the pro-
portion of the least deep observations Xi

′s in Sn2 that fall within the level set Ln1,J , resulting
in matching PCD depth values α allowing the computation of ĈCTEα (3.1) a. We consider
three configurations where β = 1, 0.5, 0, depicting an overall similar behavior of ĈCTEα. In
our study, we also draw the PCDJ -based CCTE for different classical multivariate depths
(Figure 3.1).
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As expected, similar to the multivariate setting, whatever the value of β, the functional
estimator ĈCTEα exhibits an upward trend as qα decreases, for all four chosen depths, as
illustrated in Figure 3.1 above. This behavior implies that as we move towards less central
and hence "riskier" curves (in the PCDJ sense), the associated cost becomes increasingly
significant. In simpler terms, low values of qα correspond to temperature curves Xi that
are notably ’extreme’ (either very low or very high temperatures, or simply unusual daily
temperatures, see Figures 6, leading naturally to higher power consumption.

4. Conclusion and perspectives

In this paper, we have introduced a new functional depth measure, PCDJ , constructed
by including finite projections via the J principal components. This essentially reduces the
definition to a finite-dimensional depth measure. We have established theoretical results to
demonstrate the consistency of its respective estimator under mild conditions. To showcase
our investigation, we have delved into binary classification problems—some simulated and
others based on real data—previously explored using existing functional depths, providing a
basis for comparison with our PCDJ classifier. Gratifyingly, our proposed classifier displayed
superior performances when compared to the reference methods, demonstrating adaptability
in selecting the number of principal components J according to the available data. Thus, there
is potential to enhance classification performances by optimizing in β through cross-validation
and similarly optimizing the choice of the J-variate depth; however, this would lead to a
substantial increase in computational cost.

On the other hand, we have observed limitations in the applicability of our PCDJ classifier
to functional data exhibiting significant regularity. Hence, a future challenge lies in refining
the PCDJ depth measure to fit such functions. This entails exploring the K-L decomposition
within general Hilbert spaces, representing an engaging avenue for future research.
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Appendix A. Proof of main theorems 2.6 and 2.7

To establish our convergence results, we introduce a new functional to separately handle
the projection component. Let us define for x ∈ L2, for any family v = (vj)1≤j≤J in L2 and
any PX ∈ P2(L2[0, 1]),

F (x, v, P ) :=
1

1 +

(
∥x−xv−(mX−mv

X)∥2∑∞
j=1 λ

PX
j

)β
DJ

(
x(v) −m

(v)
X , P

X(v)−m
(v)
X

)

where

xv :=
J∑

j=1

⟨x, vj⟩ vj , x(v) := (⟨x, vj⟩)1≤j≤J

mX =

∫
L2[0;1]

xP (dx), mv
X :=

J∑
i=1

⟨mX , vj⟩ vj , and m
(v)
X := (⟨mX , vj⟩)1≤j≤J

It is then obvious that

PCDJ(x, P ) = F (x, (ej)1≤j≤J , P ) and PCDJ(x, Pn) = F (x, (enj )1≤j≤J , Pn),

where (ej)1≤j is any K-L orthonormal basis associated to P and (enj )1≤j≤J any K-L orthonor-
mal basis associated to Pn.

We establish some regularity properties of the functional F which will be used to prove our
theorems.

Lemma A.1. Consider the set OJ(L2[0, 1]) of the orthonormal families of L2[0, 1] with J

elements.

(1) Suppose that depth DJ satisfies P-1 and P-6, then F is continuous as a function from
(L2[0, 1])J+1×P2(L2[0, 1]) to R where the space (L2)J+1×P2(L2[0, 1]) is equipped with
the distance

d((x, v, P ), (x̃, ṽ, P̃ )) := ∥x− x̃∥+
J∑

j=1

∥vj − ṽj∥+ dP(P,Q),

dP being the distance appearing in P-6.
(2) Suppose that the depth DJ satisfies Properties P-1, P-4 and P-6U. Fix some prob-

ability measure P ∈ P2(L2[0, 1]) and some orthnormal family e ∈ OJ(L2[0, 1]). Then
we have for any (ẽ, P̃ ) ∈ P2(L2[0, 1])×OJ(L2[0, 1]) converging to (e, P ),

lim
(ẽ,P̃ )→(e,P )

sup
x∈L2[0,1]

∣∣F (x, ṽ, P̃ )− F (x, v, P )
∣∣ = 0.

(3) Suppose that depth DJ satisfies P-1 and Assumptions A1 and A2 for some p ≥ 1 and
denote by β̄ = β ∧ 1

2 .
There is a continuous function M : P2(L2[0, 1]) →]0;∞[ s.t. for any PX ∈ P2(L2[0, 1]),

∀x ∈ L2[0, 1], ∀e ∈ OJ(L2[0, 1]), F (x, e, PX) ≤ M(PX)

1 + ∥x∥2β
.
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For any PX ∈ Pp(L2[0, 1]), there is a neighborhood VPX
⊂ Pp(L2[0, 1]) of PX and a

constant CPX
depending only on DJ and PX such that,

∀x ∈ L2[0, 1], ∀e, ẽ ∈ OJ(L2[0, 1]), ∀PX̃ ∈ VPX
,

|F (x, e, PX)− F (x, ẽ, PX̃)| ≤

CPX

(
∥mX −mX̃∥2β̄ +

∣∣(∑
j

λj(PX)
)1/2 − (∑

j

λj(PX̃)
)1/2∣∣2β̄ +Wp(PX(e) , PX̃(e))

+
(
∥x∥+ 1)2β̄

( J∑
j=1

∥ej − ẽj∥
)2β̄

+
(
∥x∥+ 1

) J∑
j=1

∥ej − ẽj∥
)

Proof.
(1) Recall that, when Assumptions P-1 and P-6 are fulfilled by DJ , the depth DJ is continuous
with respect to both variables x and P . As the J first eigenvalues and the functions (x, v) → xv

and (x, v) → x(v) are also continuous, this gives the continuity of the functional F .
(2) Remark first that, as DJ satisfies P-1, the expression of F can be simplified:

F (x, e, P ) :=
1

1 +

(
∥x−xe−(mX−me

X)∥2∑J
j=1 λ

PX
j

)β
DJ

(
x(e), PX(e)

)

Fix some x ∈ L2 and two orthonormal families e and ẽ in OJ(L2[0, 1]). The difference xe − xẽ

can be written:

xe − xẽ =

J∑
j=1

⟨x, ej − ẽj⟩ ej + ⟨x, ẽj⟩ (ej − ẽj).

Using triangular inequality and Cauchy-Schwarz inequality and the fact that e and ẽ are two
orthonormal families, we get:

∥xe − xẽ∥ ≤ 2∥x∥
J∑

j=1

∥ej − ẽj∥ (A.1)

Same kind of arguments give the bound

∥x(e) − x(ẽ)∥ ≤ ∥x∥

√√√√ J∑
j=1

∥ej − ẽj∥2 ≤ ∥x∥
J∑

j=1

∥ej − ẽj∥ (A.2)

Fix a probability measure PX in P2(L2[0, 1]), an orthonormal family e = (ej)1≤j≤J ∈ O(L2[0; 1]),
and some ϵ > 0. Property P-4 in the depth definition implies that there is a M1 > 0 such
that for any x ∈ L2[0; 1] if ∥x(e)∥ ≥ M1,

DJ(x
(e), PX(e)) ≤ ϵ (A.3)

and, as ∥xe∥ = ∥x(e)∥, there exists some value M2 depending on e and P such that (A.3) is
satisfied if ∥xe∥ ≥ M2. Up to increasing the value of M2, we have also, if ∥x− xe∥ ≥ M2,

1

1 +
(
∥x−xe−(mX−me

X)∥2∑∞
j=1 λj

)β ≤ ϵ/∥DJ(·, PX(e))∥∞.

So that if x ∈ L2[0; 1] is such that ∥x∥ ≥
√
2M2 then ∥xe∥ ≥ M2 or ∥x− xe∥ ≥ M2 and thus

F (x, e, P ) ≤ ϵ. Moreover, Property P-6U shows that for (ẽ, P̃ ) close enough to (e, P ),

sup
∥x∥≥2M2

F (x, ẽ, P̃ ) ≤ 2ϵ. (A.4)
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We now bound the two differences

|F (x, e, PX)− F (x, e, PX̃)| and |F (x, e, PX̃)− F (x, ẽ, PX̃)|

which will directly give the result. For the sake of clarity, we introduce the following notations:

a = ∥x− xe − (mX −me
X)∥, ã = ∥x− xe − (mX̃ −me

X̃
)∥

b =

√∑
j

λj(PX) and b̃ =

√∑
j

λj(PX̃) .

So that for any x ∈ L2[0; 1],

|F (x, e, PX)− F (x, e, PX̃)|

≤ 1

1 +
(
ã/b̃
)2β ∣∣∣DJ(x

(e), PX(e))−DJ(x
(e), PX̃(e))

∣∣∣+ ∣∣∣∣ 1

1 + (a/b)2β
− 1

1 +
(
ã/b̃
)2β ∣∣∣∣DJ(x

(e), PX(e))

≤ sup
y∈RJ

∣∣DJ(y, PX(e))−DJ(y, PX̃(e))
∣∣+ ∣∣∣∣ 1

1 + (a/b)2β
− 1

1 +
(
ã/b̃
)2β ∣∣∣∣ sup

y∈RJ

DJ(y, PX(e)) (A.5)

The application of the β-power onto the terms outlined above serves to differentiate between
two scenarios: the first, where 2β ≤ 1, and the second, where 2β > 1.

• Case β ≤ 1/2: In this case, for any t, s > 0, |t2β − s2β| ≤ |t − s|2β and some simple
computations give∣∣∣∣ 1

1 + (a/b)2β
− 1

1 +
(
ã/b̃
)2β ∣∣∣∣ ≤ 1

b2β

(
|b− b̃|2β + |a− ã|2β)

)

• Case β > 1/2: In this case, the mean value theorem used with z ∈ R+ 7→ z2β and
some simple computations show that∣∣∣∣ 1

1 + (a/b)2β
− 1

1 +
(
ã/b̃
)2β ∣∣∣∣ ≤ 2βmax(b̃2β, b2β, 1)

b2β

(
|b− b̃|+ |a− ã|

)

Thus, in any case, denoting β̄ = β ∧ 1
2 , we get∣∣∣∣ 1

1 + (a/b)2β
− 1

1 +
(
ã/b̃
)2β ∣∣∣∣ ≤ 2βmax(b̃2β, b2β, 1)

b2β

(
|b− b̃|2β̄ + |a− ã|2β̄

)
.

Remark now that

|a− ã| ≤ ∥(mX̃ −mX̃e)− (mX −mXe)∥ ,

therefore we obtain the overall upper bound for the first term (A.5),

|F (x, e,PX)− F (x, e, PX̃)| ≤ sup
y∈RJ

∣∣DJ(y, PX(e))−DJ(y, PX̃(e))
∣∣+ (A.6)

2β∥DJ(·, PX(e))∥∞
max

(
1,
(∑

j λj(PX)
)β
,
(∑

j λj(PX̃)
)β)(∑

j λj(PX)
)β ×

(
∥(mX −me

X)− (mX̃ −me
X̃
)∥2β̄ +

∣∣(∑
j

λj(PX)
)1/2 − (∑

j

λj(PX̃)
)1/2∣∣2β̄)
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Thus, the continuity of the total variance with respect to the distribution (represented by the
series of all eigenvalues), the continuity of the function x → x(e) and Properties P-4 and P-6U
lead to

lim
PX̃→PX

sup
x∈L2[0;1]

|F (x, e, PX)− F (x, e, PX̃)| = 0. (A.7)

We now give a bound when the orthonormal family e varies. Recall the notation previously
introduced

ã = ∥x− xe − (mX̃ −me
X̃
)∥ and b̃ =

√∑
j

λj(PX̃)

and denote moreover ˜̃a = ∥x− xẽ − (mX̃ −mX̃ ẽ)∥. We easily obtain that

|F (x, e, PX̃)− F (x, ẽ, PX̃)|

≤

∣∣∣∣∣∣∣
1

1 +
(
ã/b̃
)2β − 1

1 +
(
˜̃a/b̃
)2β

∣∣∣∣∣∣∣DJ(x
(e), PX̃(e)) +

1

1 +
(
˜̃a/b̃
)2β ∣∣∣DJ(x

(e), PX̃(e))−DJ(x
(ẽ), PX̃(ẽ))

∣∣∣
Using Property (P-1), we see that∣∣∣DJ(x

(e), PX̃(e))−DJ(x
(ẽ), PX̃(ẽ))

∣∣∣ = ∣∣∣DJ(x
(e), PX̃(e))−DJ(x

(e), PX̃(ẽ)+x(e)−x(ẽ))
∣∣∣

≤ sup
y∈RJ

∣∣DJ(y, PX̃(e))−DJ(y, PX̃(ẽ)+x(e)−x(ẽ))
∣∣

And same kind of computations as above give∣∣∣∣ 1

1 +
(
ã/b̃
)2β − 1

1 +
(
˜̃a/b̃
)2β ∣∣∣∣ ≤ 2βmax(b̃2β, 1)

b̃2β
|ã− ˜̃a|2β̄ .

where β̄ = β ∧ 1
2 . Remarking now that |ã− ˜̃a| ≤ ∥xe − xẽ∥+ ∥mX̃e −mX̃ ẽ∥, we get

|F (x, e, PX̃)− F (x, ẽ, PX̃)|

≤2βmax

(
1 ∨

(∑
j

λj(PX̃)
)−1/2

)
sup
y∈RJ

DJ(y, PX̃(e))
(
∥xe − xẽ∥+ ∥mX̃e −mX̃ ẽ∥

)2β̄
+ sup

y∈RJ

∣∣DJ(y, PX̃(e))−DJ(y, PX̃(ẽ)+x(e)−x(ẽ))
∣∣

≤22β̄+1βmax

(
1 ∨

(∑
j

λj(PX̃)
)−1/2

)
sup
y∈RJ

DJ(y, PX̃(e))
(
∥x∥+ ∥mX̃∥

)2β̄( J∑
j=1

∥ej − ẽj∥
)2β̄

+ sup
y∈RJ

∣∣DJ(y, PX̃(e))−DJ(y, PX̃(ẽ)+x(e)−x(ẽ))
∣∣ . (A.8)

where inequality (A.1) was used to obtain the last line.
Now, bound (A.8) and bound (A.4) prove that

lim sup
(ẽ,PX̃)→(e,PX)

sup
x∈L2

∣∣F (x, e, PX̃)− F (x, ẽ, PX̃)
∣∣ = 0.

With (A.7), this gives the required result.

(3) Once again, we have to control the two differences:

|F (x, ẽ, PX)− F (x, ẽ, PX̃)| and |F (x, e, PX)− F (x, ẽ, PX)|

which will directly give the global bound of the lemma. Therefore, the bound (A.6) and
Assumptions A1 and A2 and the fact that the sum of the eigenvalues is a continuous function
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of the distribution show that for some constant MPX
depending only on DJ and PX , for any

PX̃ in some neighborhood of PX we have

|F (x, e, PX)− F (x, e, PX̃)| ≤

MPX

(
∥mX −mX̃∥2β̄ +

∣∣(∑
j

λj(PX)
)1/2 − (∑

j

λj(PX̃)
)1/2∣∣2β̄)+Wp(PX(e) , PX̃(e))

)
For the second difference, (A.8) and Assumptions A1 and A2 show that for some constant

MPX
depending only on DJ and PX , for any PX̃ in some neighborhood of PX we have

|F (x, e, PX̃)− F (x, ẽ, PX̃)| ≤ (A.9)

MPX

((
∥x∥+ ∥mX̃∥

)2β̄ J∑
j=1

∥ej − ẽj∥
)2β̄

+Wp(PX̃(e) , PX̃(ẽ)+x(e)−x(ẽ))

)
.

Using Minkowski inequality, it is easily checked that

Wp(PX̃(e) , PX̃(ẽ)+x(e)−x(ẽ)) ≤ ∥x(e) − x(ẽ)∥+Wp(PX̃(e) , PX̃(ẽ)) .

And Hölder’s inequality gives,

Wp(PX̃(e) , PX̃(ẽ)) ≤ E[∥(< X̃, ej − ẽj >)j≤J∥p]
1
p ≤ E[∥X̃∥p]

1
p

√√√√ J∑
j=1

∥ej − ẽj∥2

≤ E[∥X̃∥p]
1
p

J∑
j=1

∥ej − ẽj∥.

As ∥mX̃∥ ≤ E[∥X̃∥], the bounds (A.1) and (A.2) and the above calculations, all give

|F (x, e, PX̃)− F (x, ẽ, PX̃)|

≤MPX

((
∥x∥+ E[∥X̃∥]

)2β̄ J∑
j=1

∥ej − ẽj∥
)2β̄

+
(
∥x∥+ E[∥X̃∥p]

1
p
) J∑
j=1

∥ej − ẽj∥
)
.

Moreover, if PX̃ is close enough to PX ,

∥x∥+ E[∥X̃∥] ≤ (1 + E[∥X∥])(∥x∥+ 1)

and
∥x∥+ E[∥X̃∥p]

1
p ≤ (1 + E[∥X∥p]

1
p )(∥x∥+ 1) .

Hence, the two inequalities for both terms of interest |F (x, e, PX)−F (x, e, PX̃)| and |F (x, e, PX̃)−
F (x, ẽ, PX̃)| lead to the desired bound of the third point of the lemma.

Finally, the existence of a positive continuous function M such that

F (x, e, PX) ≤ M(PX)

1 + ∥x∥2β

is a direct consequence of A1, and of the equality ∥xe∥ = ∥x(e)∥. □

With these new tools, we can now prove our convergence theorems.

Proof of Theorem 2.6 and 2.7. The proofs of both Theorem 2.6 and 2.7 rely on the control of
the difference

∆n(x) =
∣∣PCDJ(x, P )− PCDJ(x, Pn)

∣∣.
Remark first that any K-L basis associated to Pn does not necessarily converge to its theo-

retical counterpart, a K-L orthonormal basis associated to P when n goes to infinity as there is
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no unicity of the eigen-vectors basis. Thus, the first step is to construct a consistent empirical
basis from the previously fixed K-L basis associated to P , (ej)1≤j≤J . Precisely, for n ≥ 1 we
want to construct a sequence of orthonormal basis (enj )j≤J of the space generated by the first
J empirical eigenvalues, counted with multiplicity, such that

∥enj − ej∥
a.s.−−−→

n→∞
0, j = 1, . . . , J.

We underline that these basis will not necessarily be K-L ones, but, as explained in Proposition
2.5, it has no impact on the value of the empirical PCD depth.

For the sake of simplicity, we consider first the case λ1 = λ2 = . . . = λJ > λJ+1 that is λ1

is of full multiplicity J with associated theoretical eigenspace LJ := Eλ1 := Span(e1, . . . , eJ)

and (ej)1≤j≤J is the associated K-L basis. Let λn
1 ≥ . . . ≥ λn

J be the empirical eigenvalue(s)
associated to λ1, which may be different or not. Recall the notation

Ln
J :=

J

+
j=1

Eλn
j

corresponding to the empirical eigenspaces associated to λn
j , j = 1, . . . , J , whether these em-

pirical eigenvalues are equal or not.
It is important to underline the fact that assumption λJ+1 < λJ implies that λn

J+1 < λn
J

for n large enough as λn
J+1

a.s.−−−→
n→∞

λJ+1 and λn
J

a.s.−−−→
n→∞

λJ . Hence, the empirical eigenspaces
are not cut through for large n and the estimated depth does not depend on the choice of the
basis (see Proposition 2.5).

Now, the idea is to project all true eigenfunctions e1, . . . , eJ ∈ LJ over the empirical spaces
Ln
J , that is, we set

vnj := Pn
J(ej), j = 1, . . . , J

where Pn
J is the projector over Ln

J .

Lemma A.2. Almost surely, for n large enough, the family (vnj )j=1,...,J is linearly independent
and therefore is a basis of Ln

J .

Proof. Let (anj )j≤J ∈ RJ be scalars such that
∑J

j=1 a
n
j v

n
j = 0. This is equivalent to having

Pn
J

( J∑
j=1

anj ej

)
= 0 or (Pn

J − PJ)
( J∑

j=1

anj ej

)
+

J∑
j=1

anj ej = 0.

Now, we have

∥
J∑

j=1

anj ej∥ = ∥(Pn
J − PJ)(

J∑
j=1

anj ej)∥ ≤ ∥Pn
J − PJ∥op

J∑
j=1

|anj |.

According to Proposition 3 of [12], Pn
J converges almost surely to its theoretical counterpart

PJ w.r.t. the Hilbert Schmidt norm and thus w.r.t. to the operator norm ∥ · ∥op. Therefore,
for n large enough,

∥
J∑

j=1

anj ej∥ ≤ 1

2
∥

J∑
j=1

anj ej∥

and the sum is necessarily equal to zero. The family (ej)j≤J being linearly independent, this
implies that anj = 0 for all j = 1, . . . , J which proves the result of the lemma. □

Starting from the newly constructed basis (vn1 , . . . , v
n
J ) (see Lemma A.2) we may obtain an

orthonormal basis (en1 , . . . , enJ) using the Gram-Schmidt process: en1 = vn1 /∥vn1 ∥, en2 = un2/∥un2∥
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where un2 := vn2 − ⟨vn2 , en1 ⟩ en1 , . . . and enj = unj /∥unj ∥ with unj := vnj −
∑j−1

k=1

〈
vnj , e

n
k

〉
enk ,

2 ≤ j ≤ J.

Lemma A.3. Under notations and assumptions of Theorem 2.6, we have for n large enough

∥enj − ej∥ ≤ 5j∥Pn
J − PJ∥op, j = 1, . . . , J.

In particular, it holds
∥enj − ej∥

a.s.−−−→
n→∞

0, j = 1, 2, . . . , J.

Proof of Lemma A.3. Fix 1 ≤ j ≤ J. We prove the lemma by induction on j ≤ J . It is simple
to prove that

∥en1 − e1∥ ≤ 4∥Pn
J − PJ∥.

Suppose now that
∀k < j, ∥enk − ek∥ ≤ (5k − 1)∥Pn

J − PJ∥.
Since ej ∈ LJ , PJ(ej) = ej , and recalling the definition of unj , it holds

∥unj − ej∥ = ∥vnj −
j−1∑
k=1

⟨Pn
J(ej), e

n
k⟩ enk − PJ(ej)∥

≤ ∥Pn
J − PJ∥op +

j−1∑
k=1

| ⟨Pn
J(ej), e

n
k⟩ |

where the last inequality holds from having ∥enk∥ = 1 by construction. Now, notice that for
any 1 ≤ k ≤ j − 1, ⟨ej , ek⟩ = 0, therefore

| ⟨Pn
J(ej), e

n
k⟩ | = | ⟨Pn

J(ej)− PJ(ej), e
n
k⟩+ ⟨ej , enk − ek⟩+ ⟨ej , ek⟩ |

≤ ∥Pn
J − PJ∥op + ∥enk − ek∥.

Particularly, with the previous calculations, it yields

∥unj − ej∥ ≤ j∥Pn
J − PJ∥op +

j−1∑
k=1

∥enk − ek∥

≤ ∥Pn
J − PJ∥

(
1 +

j−1∑
k=1

5k
)
=

5j − 1

4
∥Pn

J − PJ∥

Coming back to enj , we get

∥enj − ej∥ =
1

∥unj ∥
∥unj − ej∥unj ∥∥ ≤ 1

∥unj ∥
(
∥unj − ej∥+ |1− ∥unj ∥|

)
≤ 2

∥unj ∥
∥unj − ej∥ ≤ 5j − 1

2∥unj ∥
∥Pn

J − PJ∥

Recall further that the operator norm is dominated by the Hilbert-Schmidt (H-S) norm. Thus,
from Proposition 3 of [12] describing almost-sure convergence of the empirical projector Pn

J

to its true counterpart PJ w.r.t. the H-S norm, we derive its convergence w.r.t. the operator
norm, meaning

∥Pn
J − PJ∥op

a.s.−−−→
n→∞

0.

Thus, the previous computations show that ∥unj − ej∥ goes almost surely to 0 and for large
n, ∥unj ∥ ≥ |1 − ∥unj − ej∥| ≥ 1/2 for n large enough. That way, all the above will imply the
desired result of Lemma A.3. □
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Accordingly, the proof of Lemma A.3 still applies when the eigenvalue λ1 is not necessarily
of full multiplicity. Indeed, by concatenation, the Gram-Schmidt procedure yields in the same
way an overall consistent orthonormal basis (enj )j=1,...,J of Ln

J satisfying the same inequality.
For the seek of clarity, we introduce now some notations using the basis (enj )j=1,...,J as

follows:

xJn =
J∑

j=1

〈
x, enj

〉
enj , x(J)

n :=
〈
x, enj

〉
j=1,...,J

∈ RJ and X(J)
n :=

〈
X, enj

〉
j=1,...,J

.

and the two empirical distributions on RJ which will appear in our proof:

Pn,X(J) :=
1

n

n∑
i=1

δ(⟨Xi,ej⟩)j=1,...,J
P
n,X(J)

n
:=

1

n

n∑
i=1

δ(⟨Xi,enj ⟩)j=1,...,J

.

The isometry-invariance property of Proposition 2.5 leads to the following expression for
PCD(x, Pn),

∀x ∈ L2[0, 1], PCD(x, Pn) =
1

1 +
(
∥x−xJ

n∥2∑∞
j=1 λ

n
j

)βDJ

(
x(J)
n , P

n,X(J)
n

)
.

So, we write for any x ∈ L2[0, 1], using the functional F :

∆n(x) :=
∣∣PCDJ(x, P )− PCDJ(x, Pn)

∣∣ = |F (x, e, P )− F (x, en, Pn)|

The simple convergence of ∆n(x) is direct as F is continuous (Point (1) of Lemma A.1),
Pn converges to P and en converges to e. The uniform convergence of supx∈L2 ∆n(x) to 0 is,
meanwhile, a direct consequence of Point (2) of Lemma A.1.

We finish with the proof of Theorem 2.7. According to Point (3) of Lemma A.1, as Pn,X

converges to PX , there is some constant CPX
depending on DJ and PX , such that almost

surely for n large enough, for any x ∈ L2

∆n(x) ≤ CPX

(
∥mX −

n∑
i=1

Xi/n∥2β̄ +
∣∣(∑

j

λj

)1/2 − (∑
j

λn
j

)1/2∣∣2β̄)

+
(
∥x∥+ 1

)2β̄( J∑
j=1

∥ej − enj ∥
)2β̄

+
(
∥x∥+ 1

) J∑
j=1

∥ej − enj ∥

+Wp(PX(J) , Pn,X(J))

)
According to Lemma A.3, for some constant depending only on J ,

J∑
j=1

∥ej − enj ∥ ≤ CJ∥Pn
J − PJ∥op

and limn→∞ ∥Pn
J − PJ∥op = 0. Thus, as 2β̄ ≤ 1, for n large enough,

∥Pn
J − PJ∥op ≤ ∥Pn

J − PJ∥2β̄op .

Moreover, the polynomial decrease of the functional F (hence, that of depth DJ) of Point (3)
in Lemma A.1:

F (x, e, PX) ≤ M(PX)

1 + ∥x∥2β
,

the convergence of Pn to PX and Assumption A2 show that, for ∥x∥ >
(
∥Pn

J −PJ∥op
)−β̄/(β̄+β)

(that is when ∥x∥ is large),

∆n(x) ≤ CPX
∥Pn

J − PJ∥2ββ̄/(β̄+β)
op .
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All these points taken together prove that a.s. for n large enough, up to a change in the
constant CPX

,

∀x ∈ L2, ∆n(x) ≤ CPX

(
∥mX −

n∑
i=1

Xi/n∥2β̄ +
∣∣(∑

j

λj

)1/2 − (∑
j

λn
j

)1/2∣∣2β̄)

+
(
1 + ∥x∥+ ∥x∥2β̄

)
∥Pn

J − PJ∥2β̄op +Wp(PX(J) , Pn,X(J))

)
(A.10)

and

sup
x∈L2

∆n(x) ≤ CPX

(
∥mX −

n∑
i=1

Xi/n∥2β̄ +
∣∣(∑

j

λj

)1/2 − (∑
j

λn
j

)1/2∣∣2β̄)

+∥Pn
J − PJ∥2ββ̄/(β̄+β)

op +Wp(PX(J) , Pn,X(J))

)
(A.11)

Fix some ϵ > 0. Propositions 7 in [12] shows that n
1
2
−ϵ∥PJ −PJ

n ∥ converges in probability
to 0 when n goes to infinity, while by the central limit theorem n

1
2
−ϵ
∣∣(∑j λj) − (

∑
j λ

n
j )
∣∣

converges in probability to 0 when n goes to infinity and the same is true for n
1
2
−ϵ∥Xn−mX∥.

To deal with the term Wp(PX(J) , Pn,X(J)), we use concentration inequalities for the empirical
measure in p-Wasserstein distance, p ≥ 1, presented in the paper of Fournier and Guillin
[18]. More precisely, using Theorem 2 in [18], under the assumptions of Theorem 2.7 and in
particular the existence of a given q-th moment, with q > 2p, we have for any n ≥ 1, any t > 0

and any η ∈ (0, q),

P
(
Wp

(
PX(J) , Pn,X(J)

)
≥ t
)
≤ an(t)1t≤1 + Cn(nt)

− q−η
p

where

an(t) = C


exp(−cnt2) if p > J/2

exp(−cn(t/ log(2 + 1/t))2) if p = J/2

exp(−cnt
J
p ) if p ∈ (0, J/2).

In the above, the positive constants C and c depend only on J and eP∥X(J)∥q . Using this
result with η = q/2− p and

tn = δ

{
n−1/2+ϵ if p ≥ J/2

n−p/J+ϵ if p < J/2,

for any δ > 0, we easily obtain that n
(

1
2
∧ p

J

)
−ϵW1

(
PX(J) , Pn,X(J)

)
converges to 0 in probability

for any ϵ.
These convergences combined to bounds (A.10) and (A.11), prove that for any ϵ > 0, for

any x ∈ L2,

n

(
1
2
∧ p

J
∧β
)
−ϵ∆n(x)

converges in probability to 0 and

n

(
β

1+2β
∧ p

J

)
−ϵ

sup
x∈L2

∆n(x)

converges in probability to 0. □
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Appendix B. Some depth notions

Many depth notions have been proposed in the literature, however, in this section, we review
some of them in order to recall their definitions (the reader may refer to [56], [42] and references
therein).

• Mahalanobis depth. The Mahalanobis depth is given by:

MHD(x, PX) =
(
1 + d2Σ(X)(x, µ(X))

)−1
, (B.1)

where d2Σ(X)(x, µ(X)) := ∥x − µ(X)∥2Σ(X) := (x− µ(X))⊤Σ(X)−1 (x− µ(X)) is the
Mahalanobis distance (1936).

• Lp depth. For x ∈ RJ and a r.v X ∈ RJ ,

DLp(x, P ) = (1 + E(∥x− X ∥p))−1, (B.2)

1 ≤ p < ∞. The depth DLp measures the outlyingness of a point w.r.t the (multivari-
ate) Lp-distance. For p = 2, the depth is also mentioned as Euclidean depth.

• Projection depth.

DProj(x, Pn) =

(
1 + sup

∥u∥=1

| ⟨u, x⟩ − Med(⟨u,X⟩)|
MAD(⟨u,X⟩)

)−1

, (B.3)

where Med(Y) denotes the median of a univariate r.v. Y, while MAD(Y) = Med(|Y -
Med(Y)|) is its median absolute deviation from the median.

• Halfspace depth.

DHS(x, P ) = inf
v∈RJ , ∥v∥=1

P
(
⟨v,X−x⟩ ≥ 0

)
, (B.4)

where X denotes a random variable with distribution P .
• Simplicial depth.

DSD(x, P ) = P(x ∈ S[X1, . . . ,XJ+1]), (B.5)

where X1, . . . ,XJ+1 is a (J + 1)-sample with distribution P and S[X1, . . . ,XJ+1] is
the convex hull (or simplex based on these observations).

• Simplicial Volume depth.

Dα
SimpVol(x, P ) :=

(
1 + E

[(
∆(S[x,X1, . . . ,XJ ])√

det(ΣX)

)α])−1

, α > 0, (B.6)

where ΣX denotes the covariance matrix of X ∼ P and ∆ is the J-dimensional volume.
• Zonoid depth[32]. For 0 < α ≤ 1,

Dα
Zon(P ) = {E[X g(X)] | g : RJ 7→ [0, 1/α] measurable and E[g(X)] = 1}

is the zonoid α-region of X . For α = 0 set D0
Zon = RJ . The zonoid depth is defined as

DZon(x, P ) = sup{α : x ∈ Dα
Zon(P )}. (B.7)

The empirical counterpart of the zonoid depth is then given by:

DZon(x, Pn) = sup

{
α : αλi ≤ 1/n, x =

n∑
i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0∀i

}
.

• Spatial depth. The spatial depth is defined as

DSpa(x, P ) = 1−
∥∥∥∥E [ x− X

∥x− X ∥

]∥∥∥∥ , (B.8)

with the covention 0/0 = 0.
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Appendix C. Real temperature dataset
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Figure 9. B-spline approximation of two temperature curves (solid blue and
solid black lines) with degree 3 and 4 resp. The dashed lines corresponds to
the B-spline approximation of the solid line with according degree.
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Figure 10. Functional 10% - PCDJ level sets of the least deep temperature
curves, J = 2 and β = 1, for two overlaying periods: the period of 1993-1997
(red curves) and 2018-2022 (golden curves).
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Figure 11. Functional 10% - PCDJ level sets of the least deep temperature
curves, J = 2 and β = 1, for two overlaying periods: the period of 2008-2012
(red curves) and 2018-2022 (golden curves).
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