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Abstract

We study repeated bilateral trade where an adaptive σ-smooth adversary generates the valuations

of sellers and buyers. We completely characterize the regret regimes for fixed-price mechanisms under

different feedback models in the two cases where the learner can post the same or different prices to

buyers and sellers.

We begin by showing that, in the full-feedback scenario, the minimax regret after T rounds is of

order
√
T . Under partial feedback, any algorithm that has to post the same price to buyers and sellers

suffers worst-case linear regret. However, when the learner can post two different prices at each round,

we design an algorithm enjoying regret of order T 3/4, ignoring log factors. We prove that this rate is

optimal by presenting a surprising T 3/4 lower bound, which is the paper’s main technical contribution.

keywords two-sided markets, online learning, regret minimization, smoothed analysis

1 Introduction

In the bilateral trade problem, two strategic agents—a seller and a buyer—wish to trade some good. They

both privately hold a personal valuation for it and strive to maximize their quasi-linear utility. The solution

to the problem consists of designing a mechanism that intermediates between the two parties to make the

trade happen. In general, an ideal mechanism for the bilateral trade problem would optimize the efficiency,

i.e., the gain in social welfare resulting from trading the item from seller to buyer, while enforcing incentive

compatibility (IC) and individual rationality (IR). The assumption that makes a two-sided mechanism design

more complex than its one-sided counterpart is budget balance (BB): the mechanism cannot subsidize the

market. Unfortunately, as Vickrey [1961] observed in his seminal work, the optimal incentive compatible

mechanism maximizing social welfare for bilateral trade may not be budget balanced. A more general result

due to Myerson and Satterthwaite [1983] shows some problem instances where a fully efficient mechanism

for bilateral trade that satisfies IC, IR, and BB does not exist. This impossibility result holds even if prior
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information on the buyer and seller’s valuations is available and the truthful notion is relaxed to Bayesian

incentive compatibility.

To circumvent this obstacle, the subsequent vast body of work primarily aims at approximately max-

imize expected efficiency (where the expectation is with respect to the valuations’ randomness). There

are many incentive compatible, individually rational, and budget balanced mechanisms that give a constant

approximation to the social welfare [see, e.g., Blumrosen and Dobzinski, 2014, Dütting et al., 2021], and

more recently to the more challenging problem of approximating the gain from trade [Deng et al., 2022].

Although in some sense necessary—without any information on the priors there is no way to extract any

meaningful approximation to the social welfare [Dütting et al., 2021]—the Bayesian assumption of perfect

knowledge of the valuations’ underlying distributions is unrealistic.

Following recent work [Cesa-Bianchi et al., 2021, Azar et al., 2022, Cesa-Bianchi et al., 2023a, Bolić et al.,

2023], we study this fundamental mechanism design problem in an online learning setting where at each

time t, a new seller/buyer pair arrives. The seller has a private valuation st ∈ [0, 1] representing the smallest

price they are willing to accept in order to trade. Similarly, the buyer has a private value bt ∈ [0, 1] repre-

senting the highest price they would pay for the item. We assume an adversary generates both valuations.

Independently, the learner posts two (possibly randomized) prices: pt ∈ [0, 1] to the seller and qt ∈ [0, 1] to

the buyer. We require budget balance: it must hold that pt ≤ qt for all t or, equivalently, that the pair (pt, qt)
belongs to the upper triangle U =

{
(x, y) ∈ [0, 1]2 | x ≤ y

}
. A trade happens if and only if both agents

agree to trade, i.e., when st ≤ pt and qt ≤ bt. When this is the case, the learner observes some feedback zt
and is awarded the gain from trade at time t:

GFTt(p, q) =
(
(bt − q) + (p− st)

)
· I{st ≤ p ≤ q ≤ bt}*.

When the two prices p and q are equal, we omit one of the arguments to simplify the notation. When we

want to stress the dependence on the valuations, we use the notation GFT(p, q, st, bt) instead of GFTt(p, q).
We consider the following learning protocol (the definition of σ-smoothness is recalled below).

Learning protocol for sequential bilateral trade against a σ-smooth adversary

for time t = 1, 2, . . . do

The adversary privately chooses the σ-smooth distribution of a r.v. (St, Bt) on [0, 1]2

Seller and buyer valuations (st, bt) are drawn from (St, Bt)
The learner posts prices (pt, qt) ∈ U
The learner receives a (hidden) reward GFTt(pt, qt) ∈ [0, 1]
Feedback zt is revealed to the learner

The regret of a learning algorithm A against an adversary S generating the sequence of random pairs

(St, Bt) is defined by:

RT (A,S) = max
(p,q)∈U

E

[
T∑

t=1

GFTt(p, q)−
T∑

t=1

GFTt(Pt, Qt)

]
.

We use Pt, Qt to stress that the prices are possibly randomized, with the convention that uppercase letters

refer to random variables and the corresponding lowercase letters to their realizations. The expectation in

the previous formula is then with respect to the internal randomization of the learning algorithm and the

*Other works consider the similar definition (bt − st) · I{st ≤ p ≤ q ≤ bt}. Our results translate with minimal effort to this

definition.
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adversary. The regret RT (A) of a learning algorithm A is defined as its performance against the hardest

adversary, i.e., as the supremum over all adversaries S (in a certain class we describe in the next paragraph)

of RT (A,S). Our goal is to study the minimax regret R⋆
T , which measures the performance of the best

algorithm against the worst possible adversary, i.e., the infimum over all algorithms A of RT (A). The set

of learning algorithms we allow varies with the settings we consider, i.e., with how many prices are posted

and what feedback is available—see below.

Smoothed analysis of algorithms, initially introduced by Spielman and Teng [2004] and later formal-

ized for online learning by Rakhlin et al. [2011] and Haghtalab et al. [2020], is an approach to the analysis

of algorithms in which the instances at every round are generated from a distribution that is not too concen-

trated. Recent works on the smoothed analysis of online learning algorithms include Haghtalab et al. [2020],

Haghtalab et al. [2022], and Block et al. [2022]—see Section 1.3 for additional related works.

In this work, we consider a (stochastic) smoothed valuation-generating model that, in the limit, recov-

ers the adversarial regime. This is a natural choice for the bilateral trade problem, where algorithms with

sublinear regret only exist for the stochastic i.i.d. setting (with additional assumptions) and where the adver-

sarial model is known to be intractable [Cesa-Bianchi et al., 2023a]. At each time step t, a pair of valuations

(st, bt) is sampled according to the random variable (St, Bt), whose distribution is chosen by the adversary.

Our adversary is adaptive because the distribution of (St, Bt) may depend on the past realizations of the val-

uations and the past internal randomization of the algorithm. We focus on σ-smoothed adversaries, where

the distributions of (St, Bt) are not too concentrated, according to the following notion.

Definition 1 (Haghtalab et al. [2021]). Let X be a domain supporting a uniform distribution ν. A measure

µ on X is said to be σ-smooth if for all measurable subsets A ⊆ X, we have µ(A) ≤ ν(A)
σ .

We say that a random variable is σ-smooth if its distribution is σ-smooth. We consider two families of

learning algorithms, corresponding to two ways of being budget balanced:

• Single-price mechanisms. If we want to enforce a stricter notion of budget balance, namely strong

budget balance, the mechanism is neither allowed to subsidize nor extract revenue from the system. This

is modeled by imposing pt = qt, for all t.

• Two-price mechanisms. If a budget balanced algorithm enforces (weak) budget balance, then two differ-

ent prices can be posted, pt to the seller and qt to the buyer, as long as pt ≤ qt at each time step. Namely,

we only require that trades are never subsidized; the mechanism can still make a profit.

Observation 1. The only reason for a budget balanced algorithm to post two different prices is to obtain

more information. A direct verification shows that the expected gain from trade can always be maximized

by posting the same price to both the seller and the buyer.

We consider three natural types of feedback models presented in increasing order of difficulty for the learner.

The last two are partial feedback models that enjoy the desirable property of requiring only a minimal

amount of information from the agents:

• Full feedback. zt = (st, bt): The learner observes both seller and buyer valuations. This model corre-

sponds to a direct revelation mechanism.

• Two-bit feedback. zt =
(
I{st ≤ pt}, I{qt ≤ bt}

)
: The learner observes separately if the two agents

accept the prices offered to each of them.

• One-bit feedback. zt = I{st ≤ pt ≤ qt ≤ bt}: The learner only observes whether or not the trade occurs.

This is arguably the minimal feedback the learner could get.
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Full Feedback Two-bit Feedback One-bit Feedback

Single Price Õ
(√

T
)

Theorem 1 Ω(T ) Ω(T )

Two Prices Ω
(√

T
)

Ω(T 3/4) Theorem 3 Õ
(
T 3/4

)
Theorem 4

Table 1: Overview of the regret regimes against a σ-smooth adversary. The lower bound for the full feedback model is from

Cesa-Bianchi et al. [2023a, Thm. 3.3], the one for single price with two-bit feedback is from Theorem 5 in the same paper. Our

classification identifies three minimax regret regimes:
√
T (green), T

3/4 (orange), and T (red).

We remark that by Observation 1, the only reason to post two distinct prices in a given round is to get

information. This implies that, in the full feedback model, there is no reason to do that, as all the relevant

information is revealed anyway.

1.1 Overview of Our Results

We characterize (up to logarithmic factors) the dependence in the time horizon of the minimax regret regimes

for the online learning version of the bilateral trade problem against an adaptive σ-smooth adversary for

various feedback models and notions of budget balance, as outlined in Table 1. We prove the following

results:

• For the full feedback model, we analyze a continuous version of Hedge, posting a single price at each

time step and enjoying a O(
√
T lnT ) bound on the regret (Theorem 1). By Cesa-Bianchi et al. [2023a,

Theorem 3.3], this rate is optimal up to logarithmic factors.

• For the one-bit feedback model, we design the Blind-Exp3 algorithm, posting two prices at each time step

and enjoying a Õ(T 3/4) bound on the regret (Theorem 4). The same rate was already obtained by the

Scouting Blindits algorithm in Cesa-Bianchi et al. [2023a], but only under the additional assumptions that

the adversary chooses the seller/buyer valuations according to an i.i.d. process. In this work, we drop this

assumption and show that smoothness alone is the crucial property enabling sublinear regret.

• We prove that, surprisingly, the T 3/4 rate is optimal up to logarithmic terms (Theorem 3), even if the

adversary is forced to choose valuations according an i.i.d. process and the learner has access to the more

informative two-bit feedback. Notably, our lower bound closes –in an unexpected way– an open problem

in Cesa-Bianchi et al. [2023a].

• We prove that no algorithm can achieve worst-case sublinear regret when the platform is allowed to post

a single price but receives partial feedback (one or two bits), even in the case where the seller/buyer

evaluations are σ-smooth, independent of each other, and form an independent sequence (Theorem 2).

This complements a result in Cesa-Bianchi et al. [2023a, Theorem 5], where the same lower bound was

proven for an i.i.d. smoothed adversary.

We highlight three salient qualitative features of our results. First, we construct a (surprising) lower bound

of order T 3/4 for the minimax regret of the problem with partial feedback where the learner is allowed to

post two prices. This lower bound, which is also our main technical contribution, is strictly worse that

the T 2/3 rate that can be obtained with access to bandit feedback,† and substantially departs from the rates

†Although our decision space is two-dimensional, one can see that, in a bandit feedback with a smooth adversary, a regret of

order T 2/3 can be obtained by running an optimal bandit algorithm (e.g., MOSS Audibert and Bubeck 2009, whose upper bound on

the regret is of order
√
KT ) on a discretization of K = Θ(T 1/3) equispaced prices on the diagonal {(p, q) ∈ U | p = q}. Similar

results appeared, e.g., in Kleinberg [2004], Auer et al. [2007].
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√
T , T 2/3, T that can be found in the two most closely related partial feedback models in the literature: online

learning with feedback graphs [Alon et al., 2017] and partial monitoring [Bartók et al., 2014]. Second, we

introduce the first sublinear-regret learning algorithm for the partial feedback version of the bilateral trade

problem beyond the (strict) stochastic i.i.d. assumption on the valuations. Third, our results imply that, from

the online learning perspective, there is no difference between receiving one or two bits of feedback when

two prices can be posted. This is in agreement, and extends beyond the i.i.d. case, what was already noted

in Cesa-Bianchi et al. [2023a, Section 8] for the smoothed i.i.d. case, and it is in stark contrast with what

happens in the stochastic case when only one price can be posted.

1.2 Technical Challenges and Our Techniques

The repeated bilateral trade problem is characterized by two key features that set it apart from the standard

model of online learning with full or bandit feedback: the nature of the action space and the partial feedback

structure. Both these features need to be taken into account to construct the T 3/4 lower bound, which is the

main technical endeavor of this work.

The action space & the smooth adversary. The action space of the bilateral trade problem is continuous

(the prices live in a subset of [0, 1]2), while the gain from trade is discontinuous. This entails that, without any

smoothness assumptions on the distributions, the problem turns out to be utterly intractable in the standard

adversarial setting—see the “needle in a haystack” phenomenon in Cesa-Bianchi et al. [2023a, Theorem 6]

and Azar et al. [2022, Theorem 3]. We show that the σ-smoothness induces regularity on the expected

gain from trade (Lemma 1), which in turn allows us to prove a key discretization result (Claim 1). In the

full feedback model, we actually prove something stronger: a continuous version of the Hedge algorithm

directly exhibits sublinear regret with respect to the best continuous price, without resorting to a finite grid

of candidate prices (Theorem 1). We expand on this technique, which may be of general and independent

interest, in Appendix A.

Partial feedback. The main peculiarity of the bilateral trade problem lies in the partial feedback models

that are naturally associated with it. Receiving only information about the relative ordering of the prices

posted and the realized valuations does not allow the learner to directly reconstruct the gain from trade

received at each time step. For instance, if the learner posts the same price 0.5 to both agents and they

both accept, there is no way of assessing whether its gain from trade is constant (e.g., (s, b) = (0, 1)) or

arbitrarily small (e.g., s = 0.5 − ε and b = 0.5 + ε). Conversely, if one of the two agents rejects the

price posted, the learner can only infer loose bounds on the lost trade opportunity. The key technical tool

to address this challenge is given by a one-bit estimation technique that exploits the possibility of posting

two prices to estimate the gain from trade it would have achieved by posting one single price to both agents

[Cesa-Bianchi et al., 2023a, Azar et al., 2022]. This tool, together with our discretization result (Lemma 1)

are behind our Blind-Exp3 algorithm achieving a T 3/4 regret.

Our T 3/4 lower bound. At a (very) high level, we show that bilateral trade with partial feedback contains

instances that are closely related to instances of online learning with feedback graphs [Alon et al., 2015].

The corresponding feedback graph GK is over 2K actions: K of them are “exploring” and the others are

“exploiting”. Exploring actions are costly and reveal feedback on the corresponding exploiting actions. One

of the exploiting actions is optimal, but none of them returns any feedback. We build “hard” instances so that

any algorithm is forced to spend a long time playing each one of the many exploring actions. By selecting
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optimally the number of arms in the reduction and the difference in reward between exploiting actions, we

obtain the T 3/4 rate. This proof sketch hides many technical challenges; crucially, we need to carefully

design σ-smooth distributions of the adversary with the desired properties. This presents two problems: on

the one hand, the gains from trade achievable at different prices are related (while in usual lower bound

constructions for online learning with feedback graphs, the rewards can be chosen independently, Alon et al.

2015); on the other hand, the embedding needs to preserve the feedback structure, which is significantly

different from the standard bandit or expert feedback and requires novel and subtle arguments.

1.3 Additional Related Work

Further applications of smoothed analysis to online learning problems include the works by Block and Simchowitz

[2022] and Block et al. [2023]. Sachs et al. [2022] study a related stochastic adversary in the more general

online convex optimization setting; however, they do not insist on the smoothness of the distributions.

In online learning settings with partial feedback, like the one we study here, smoothed analysis has been

primarily applied to linear contextual bandits [Kannan et al., 2018, Raghavan et al., 2020, Sivakumar et al.,

2020, 2022], where contexts are drawn from smooth distributions. However, the focus of those works has

been on improving regret bounds specifically for the greedy algorithm, whose worst-case regret is linear.

Although the smoothed adversary causes the expected gain from trade to be Lipschitz, the best possible

regret rates for the partial feedback models considered here are provably worse than those achievable with

bandit feedback. To the best of our knowledge, bilateral trade with a smoothed adversary was previously

studied only by Cesa-Bianchi et al. [2023a] in the two-bit feedback model. Another line of work considers

regret bounds parameterized by variations of losses across time and other related measures of smoothness

[Hazan and Kale, 2010, Chiang et al., 2012, Steinhardt and Liang, 2014]. See also Chen et al. [2021] for

recent results in this area.

The minimax regret of online learning with partial feedback is rather well understood when the learner

selects actions from a finite set—see, e.g., the vast literature on feedback graphs and the recent work by

Lattimore [2022] on partial monitoring. General analyses of settings with infinitely many actions sets are

mostly limited to bandit feedback [Kleinberg et al., 2019]

Conference Version. A preliminary version of this paper appeared in the Conference of Learning Theory

as Cesa-Bianchi et al. [2023b].

2 Warm-up: One-Price Setting

In this section, we present our discretization error result (sharpening by a constant the bound in Cesa-Bianchi et al.

2023a) and present our results in the single-price setting.

2.1 Regret due to Discretization

Our first theoretical result concerns the study of how discretization impacts the regret against σ-smooth

adversaries. Although the gain from trade is, in general, discontinuous, its expectation is 1/σ-Lipschitz, thus

opening the way to discretization methods, as formalized by the following result.
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Lemma 1 (Lipschitzness). Let (S,B) be a σ-smooth random variable on [0, 1]2, then the induced expected

gain from trade GFT is 1/σ-Lipschitz:

|E [GFT(y)− GFT(x)] | ≤ 1

σ
|y − x|, ∀x, y ∈ [0, 1] (1)

Proof. Let x > y be any two prices in [0, 1], and U and V , two independent uniform random variables in

[0, 1], we have the following chain of inequalities:

|E [GFT(y)− GFT(x)] | = |E [(B − S)(I{S ≤ y ≤ B} − I{S ≤ x ≤ B})] |
= |E [(B − S)(I{S ≤ y ≤ B ≤ x} − I{y ≤ S ≤ x ≤ B})] |
≤ P [S ≤ y ≤ B ≤ x] + P [y ≤ S ≤ x ≤ B]

= P [(S,B) ∈ [0, y]× [y, x]] + P [(S,B) ∈ [y, x]× [x, 1]]

≤ 1
σP [(U, V ) ∈ [0, y] × [y, x]] + 1

σP [(U, V ) ∈ [y, x]× [x, 1]]

= 1
σ [y · (x− y) + (1− x)(x− y)] ≤ 1

σ (x− y).

Note that in the second to last inequality we used the smoothness of (S,B).

This regularity result implies that the definition of regret we are considering is well posed, as there

always exists a single price maximizing the gain from trade in hindsight. To see this, consider any choice

of the sequence of σ-smooth distributions of the adversary; by Observation 1, we know that we only need

to focus on one single price, and from Lemma 1 that the total gain from trade is Lipschitz and therefore

continuous on [0, 1]. We prove now that for any fixed grid of prices G in [0, 1], it is possible to relate the

gain from trade of the best price in G with that of the best fixed price in [0, 1], paying a discretization error

that depends on the smoothness parameter and the coarseness of the grid. To this end, for any finite grid G,

we define the parameter δ(G) as follows:

δ(G) = max
p∈[0,1]

min
g∈G
|p− g|.

Claim 1 (Discretization error). Let G be any finite grid of prices in [0, 1], then for any sequence of σ-smooth

distributions S = (S1, B1), . . . , (ST , BT ), we have the following:

max
p∈[0,1]

E

[
T∑

t=1

GFTt(p)

]
−max

g∈G
E

[
T∑

t=1

GFTt(g)

]
≤ δ(G)

σ
T .

Proof. Let p∗ be the best fixed price in hindsight in [0, 1] with respect to the sequence S . We have two

cases. If p∗ ∈ Q, then there is nothing to prove. If this is not the case, then there exists pG ∈ G, such that

|p∗ − pG| ≤ δ(G). We have the following:

E

[
T∑

t=1

GFTt(p
∗)

]
−max

p∈G
E

[
T∑

t=1

GFTt(p)

]

≤ E

[
T∑

t=1

GFTt(p
∗)

]
− E

[
T∑

t=1

GFTt(pG)

]

≤ |p
∗ − pQ|
σ

≤ δ(G)

σ
,

where, in the second to last inequality, we used the Lipschitz property of the expected gain from trade as in

Lemma 1.
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Learning algorithm with full feedback: Continuous-Price Hedge

Input: Learning rate η ∈ (0, 1)
Initialization: Initialize W1(x) = 1, for all x ∈ [0, 1]

for time t = 1, 2, . . . do

Let µt be a distribution with pdf defined by ft(x) =
Wt(x)
‖Wt‖1

, for all x ∈ [0, 1]

Post price pt drawn according to distribution µt

Update Wt+1(x) = Wt(x) · exp
(
η GFTt(x)

)
, for each x ∈ [0, 1]

2.2 Posting a Single Price in Full Information

In the full feedback model, the learner observes a realization zt = (st, bt) of (St, Bt) at the end of each

round t, allowing for a reconstruction of the gain from trade that would have been achieved by any other

pair of prices. We show that running Hedge [Freund and Schapire, 1997] on the continuum of arms/prices in

[0, 1] gives a regret rate that is optimal in T and exponentially better in the smoothness parameter compared

to the direct “discretization + discrete Hedge” approach.‡. Our algorithm, Continuous-Price Hedge, is a

version of the classic Hedge algorithm played on a continuum of prices where, at time t, a price pt is drawn

according to the continuous distribution µt with density ft defined on [0, 1] as follows:

ft(p) =
exp
(
η ·∑t−1

s=1 GFTs(p)
)

∫
[0,1] exp

(
η ·∑t−1

s=1 GFTs(x)
)
dx

We refer to the pseudocode for the choice of η and further details. Crucially, it is possible to efficiently

sample prices from the distributions ft because the function
∑t−1

s=1 GFTs (and consequently, the density ft)
is piece-wise constant with Θ(t) discontinuities.

While continuous versions of Hedge have already been studied, we are the first to provide positive

results under the assumption that expected rewards are Lipschitz. Previous work [Maillard and Munos, 2010,

Krichene et al., 2015] assumes Lipschitzness of the rewards for any realization. The latter assumption is,

however, not applicable for gain from trade, which is discontinuous and not even one-sided Lipschitz in

general. This seemingly small difference –from a rewards family that is realization-wise Lipshitz to one that

is regular only in expectation– entails significant technical issues in the analysis that we bypass by proving

two general results that we believe are of independent interest: a log-exp analogous of Minkowski’s integral

inequality (Lemma 3 in Appendix B) and a generalized freezing lemma (Lemma 5 in Appendix C). Given

the technical nature of the arguments, we postpone the proof of these results to the Appendices, and we

report here the statement of our result.

Theorem 1. Consider the problem of repeated bilateral trade against a σ-smooth adaptive adversary in the

full feedback model, for any σ ∈ (0, 1]. If we run Continuous-Price Hedge with learning rate η ∈ (0, 1),
then, for each time horizon T ∈ N, we have that

RT (Continuous-Price Hedge) ≤ 1

η
ln

(
ηT max( 1σ , 2)

1− e−ηT

)
+ (e− 2)ηT .

‡We refer to the conference version for further details [Cesa-Bianchi et al., 2023b, Theorem 2].
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Figure 1: The squares Q1, . . . , Q6 appearing in the proof of Theorem 2.

In particular, if η =
√

ln(2T )
(e−2)T we have

RT (Continuous-Price Hedge) ≤
√

(e− 2)T ln(2T ) ·
(
5

2
+

ln
(
max( 1σ , 2)

)

ln(2T )

)
.

Besides this specific result for gain from trade, in Appendix A, we prove a general version of this

Theorem, namely Theorem 5, that holds for any situation where the expected reward function is Lipshitz,

without requiring realization-wise regularity.

The bound in Theorem 1 is optimal in the time horizon [Cesa-Bianchi et al., 2023a, Theorem 3.3] up

to logarithmic terms, and exhibits an extremely mild dependence on 1/σ —disappearing completely if T is

larger than 1/σ— without requiring the knowledge of σ to tune the parameter learning rate η. This depen-

dence in the smoothness parameter is exponentially better than the one achievable by directly combining

Claim 1 with Hedge on a finite set of candidates. Indeed, this latter, simpler approach yields a regret bound

of O(
√
T log T/σ).§ In regimes where σ is small, e.g., 1/σ = Tα, with α ≥ 1, the latter bound guarantees

are vacuous, while Theorem 1 maintains a near-optimal
√
T regret, only paying α multiplicatively.

2.3 Posting a Single Price in Partial Information

Cesa-Bianchi et al. [2023a] proved that sublinear regret is achievable with one price and partial information

in the stochastic i.i.d. case, when seller and buyer distributions are smooth and independent of each other.

They also showed that removing either the smoothness assumption or the independence of S and B leads

to linear lower bounds. They did not, however, investigate whether the i.i.d. assumption could be lifted in

a setting other than the classic adversarial one while still achieving sublinear regret. In contrast to the full

information scenario above (and the one with two prices and partial feedback that we discuss later), we give

a negative answer to this question.

Theorem 2. Consider the problem of repeated bilateral trade against a σ-smooth adversary in the two-bit

feedback model, for any σ ≤ 1
64 . Then any learning algorithm that posts a single price per time step suffers

at least T
24 regret, even if S1, B1, S2, . . . is an independent family of random variables.

§We refer to the conference version [Cesa-Bianchi et al., 2023b] for further details
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Proof. Consider the following six squares, depicted in Figure 1:

Q1 =
[
0, 18
]
×
[
3
8 ,

1
2

]
, Q2 =

[
1
4 ,

3
8

]
×
[
7
8 , 1

]
, Q3 =

[
1
2 ,

5
8

]
×
[
5
8 ,

3
4

]
,

Q4 =
[
1
2 ,

5
8

]
×
[
7
8 , 1

]
, Q5 =

[
0, 1

8

]
×
[
5
8 ,

3
4

]
, Q6 =

[
1
4 ,

3
8

]
×
[
3
8 ,

1
2

]
.

To each square Qi, we associate a uniform probability distribution over it: we say that the random valuations

(S,B) are distributed uniformly over Qi under Pi and Ei, for each i = 1, . . . , 6. Starting from these

distributions, we construct two other distributions: the “red” one and the “blue” one. When (S,B) is

sampled from the blue one, it is sampled u.a.r. from the union of the blue squares: (Q1, Q2 and Q3). In

formula, the probability measure Pblue is just a uniform mixture of P1, P2 and P3. The same can be done for

the red distribution over the red squares (Q4, Q5 and Q6). Note that both the red and the blue distributions

are 1/64 smooth.

From Cesa-Bianchi et al. [2023a, Theorem 4.3], we know that any learning algorithm A that can only

post one price pt suffers linear regret against at least one of the following i.i.d. instance: the adversary

chooses at the beginning of time either the red or the blue distribution and extracts valuations from it i.i.d.

over the rounds. In formula:

max
color∈{blue,red}

(
max
p∈[0,1]

T∑

t=1

Ecolor
[
GFTt(p)− GFTt(pt)

])
≥ 1

24
T. (2)

We cannot use directly this construction for our result, as seller and buyer valuations are not independent in

the blue and red distributions. However, we can exploit the non i.i.d. structure of the smooth adversary, to

generate an equivalent random sequence of smooth distributions such that each one of them has independent

seller and buyer valuations.

Consider the following family F of 1/64-smooth oblivious adversaries: each S of them is characterized

by a color red or blue, and a sequence {it} of T indices, where red adversaries have it ∈ {4, 5, 6} and

blue adversaries have it ∈ {1, 2, 3}. We denote with F red the set of all such adversaries and with F blue the

blue ones. Any S in the sequence generates the valuations as follows: (St, Bt) is drawn independently and

uniformly at random from Qit . Note that any S ∈ F enjoys the property that the distribution chosen at each

time step has independent seller and buyer. We argue that any learning algorithm A suffers linear regret

against at least one of these adversaries. In formula:

RT (A) ≥ max
S∈F

[
max
p∈[0,1]

(
T∑

t=1

Eit [GFTt(p)− GFTt(pt)]

)]

= max
color∈{red,blue}

max
S∈F color

[
max
p∈[0,1]

(
T∑

t=1

Eit [GFTt(p)− GFTt(pt)]

)]

≥ max
color∈{red,blue}

[
max
p∈[0,1]

(
T∑

t=1

Ecolor [GFTt(p)− GFTt(pt)]

)]
(3)

Note that the it are the indices induced by S . The previous inequality, combined with Equation (2) concludes

the proof. The only delicate step we need to clarify is the last inequality in Equation (3). To this end, fix any

color, let’s say red (same argument holds for blue). The regret of A against the worst sequence in F red is at

least the expected regret ofA against a randomized adversary that is obtained by drawing u.a.r. S from F red

(note that the adversaries in F red are oblivious). Now, the crucial argument is that the sequence of valuations

(St, Bt) obtained by choosing u.a.r. an adversary S from F red follows the exact same distribution as drawing

(St, Bt) i.i.d. from the red distribution. In fact, the valuations at different steps are independent and every

square has the same probability of being chosen at each time step.
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Q1

Q2

Q3

Q4

Q5

Q6

0 v 1

R1
v,ε

R2
v,ε

R3
v,ε

R4
v,ε

Q6

p
0 v 2/3 1

Θ(ε)

Θ(ε)

Θ(1)

Figure 2: Left/center: The six squares Q1, . . . , Q6 (in green) are the support of the base density f , and the four rectangles

R1
v,ε, . . . , R

4
v,ε (in red and blue) inside Q6 are the regions where the density is perturbed with gv,ε. Right: The corresponding

qualitative plots of p 7→ E[GFT(p, S,B)] (black, dotted) and p 7→ Ev,ε[GFT(p, S,B)] (red, solid).

3 A T
3/4 Lower Bound: Two Bits and Two Prices

In this section, we present the main contribution of this paper: an unexpected and intriguing lower bound of

order T 3/4. This result has two notable implications. First, it provides a formalization to the intuition that

partial feedback (both one and two-bit models) is strictly less informative than the bandit feedback, being

the regret of the latter of order at most T 2/3. Second, noting that the hard instances used in the proof are

i.i.d., we solve an open problem in Cesa-Bianchi et al. [2023a], where it was erroneously conjectured that

the correct minimax rate was T 2/3.

We prove this result —formally stated in Theorem 3— in Section 3.2. Preliminarly, in Section 3.1

we introduce the hard family of adversaries used in Section 3.2, while Section 3.3 is devoted to the for-

mal derivation of a technical passage of the proof of Theorem 3, which is postponed there for the sake of

readability.

3.1 A hard family of adversaries

We construct a “hard” family of i.i.d. σ-smooth adversaries for the repeated bilateral trade learning problem.

Under each such adversary the valuations (St, Bt) are drawn i.i.d. from a fixed distribution, for this reason,

each adversary is identified by a probability measure over [0, 1]2, according to which the random valuations

are drawn. These probability measures are absolutely continuous with respect to the Lebesgue measure and

are obtained by suitable perturbations over a base distribution f , whose support is given by the union of the

six squares Q1, . . . , Q6 (see Figure 2, left):

Q1 =
[
0, 16
]
×
[
1
3 ,

1
2

)
, Q2 =

[
0, 16
]
×
[
1
2 ,

2
3

]
, Q3 =

[
0, 16
]
×
[
5
6 , 1
]
,

Q4 =
[
5
6 , 1
]
×
[
5
6 , 1
]
, Q5 =

[
5
6 , 1
]
×
[
0, 16
]
, Q6 =

[
1
3 ,

1
2

]
×
[
2
3 ,

5
6

]
.

The base probability density function f is defined for all (x, y) ∈ [0, 1]2 by

f(x, y) =
36

1 + 8a
·
(
5− 6(y + x)

6(y − x)
IQ1(x, y) + aIQ2(x, y) + 2aIQ3∪Q4∪Q5(x, y) + IQ6(x, y)

)
,

where a is set to 2 · ln(27/16) for normalization. Each perturbations is parametrized by a center v and a scale

ε, with (v, ε) ∈ Ξ =
{
(v, ε) ∈

(
1
3 ,

1
2

)
×
(
0, 1

12

)
| 13 + ε ≤ v ≤ 1

2 − ε
}
, and has support on four disjoint
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rectangles (Figure 2, left):

R1
v,ε = [v − ε, v) ×

[
3
4 ,

5
6

]
, R2

v,ε = [v − ε, v) ×
[
2
3 ,

3
4

)
,

R3
v,ε = [v, v + ε)×

[
3
4 ,

5
6

]
, R4

v,ε = [v, v + ε)×
[
2
3 ,

3
4

)
.

The Ri
v,ε rectangles are included in Q6 and are the support of the corresponding perturbation gv,ε defined

for all (x, y) ∈ [0, 1]2 by

gv,ε(x, y) =
36

1 + 8a
·
(
IR1

v,ε∪R
4
v,ε
(x, y)− IR2

v,ε∪R
3
v,ε
(x, y)

)
.

The perturbed density functions are obtained by summing together the base probability density function f
and one of the perturbations gv,ε. Formally, for all (v, ε) ∈ Ξ, we let fv,ε = f + gv,ε.

Let P (resp., Pv,ε, for all (v, ε) ∈ Ξ) be a probability measure such that the sequence of seller/buyer

evaluations (S,B), (S1, B1), (S2, B2), . . . is i.i.d. and the distribution of (S,B) has density f (resp., fv,ε)

with respect to the Lebesgue measure. We denote the expectation with respect to P (resp., Pv,ε, for all

(v, ε) ∈ Ξ) by E (resp., Ev,ε). Note that P(S,B) (resp., P
v,ε
(S,B), for all (v, ε) ∈ Ξ) is 1/9-smooth. Therefore,

each adversary corresponding to these distributions is σ-smooth for any σ ≤ 1/9.

Expected gain from trade. The choice of distributions fv,ε is due to the specific structure of the expected

gain from trade and feedback they induce. We start analyzing the former. For each (v, ε) ∈ Ξ, and p ∈ [0, 1],
it is easy to argue, by linearity, that

Ev,ε
[
GFT(p, S,B)

]
= E

[
GFT(p, S,B)

]
+

∫

[0,p]×[p,1]
(y − x)gv,ε(x, y) dxdy

= E
[
GFT(p, S,B)

]
+ ε

864(1+8a) · Λv,ε(p) +
ε2

72(1+8a) · Λ 3
4
, 1
12
(p) , (4)

where Λu,r is the tent map centered at u with radius r, Λu,r(x) =
(
1− |x−u|

r

)+
. Equation (4) nicely

decomposes the expected gain from trade in a fixed term that depends only on the base distribution, a

perturbation term centered in v and a second order Θ(ε2) term. Simple calculations yields the analytical

expression of E [GFT(p, S,B)]:

E
[
GFT(p, S,B)

]
=

1

6(1 + 8a)
·





3p
(
5 + 29a − 6(1 + 3a)p

)
if p ∈

[
0, 16
]

2 + 13a if p ∈
(
1
6 ,

1
2

]

−18ap2 + 3ap+ 2(1 + 8a) if p ∈
(
1
2 ,

2
3

]

−18p2 + 15p + 10a if p ∈
(
2
3 ,

5
6

]

72ap(1 − p) if p ∈
(
5
6 , 1
]

(5)

To have a qualitative understanding of Equation (5) we refer to Figure 2 (dotted black plot on the right):

it is clear that the maximum is attained in the plateau, for p ∈ [16 ,
1
2 ]. Furthermore, for each (v, ε) ∈ Ξ,

price v is the unique maximizer of the perturbed expected gain from trade Ev,ε
[
GFT(p, S,B)

]
, which is

increasing on
[
0, 16
]
, constant on

[
1
6 , v − ε

]
, has a symmetric spike on [v − ε, v + ε], becomes constant

again on
[
v + ε, 12

]
, and decreases on

[
1
2 , 1
]

(Figure 2, red plot on the right). Recalling that, as noted in

Observation 1, the expected gain from trade is maximized on the diagonal
{
(p, p) | p ∈ [0, 1]

}
, we obtain

that the expected gain from trade under Ev,ε is maximized by posting (v, v); it holds:

max
(p,q)∈U

Ev,ε
[
GFT(p, q, S,B)

]
= Ev,ε

[
GFT(v, S,B)

]
,

12



where we denote with U the upper right triangle of the [0, 1]2 squares, which corresponds to the set of budget

balanced prices that the learner can post.

Two-bit feedback. We move our attention to the description of the distribution of the 2-bit feedback(
I
{
S ≤ p

}
, I
{
q ≤ B

})
. It is the same regardless of the underlying perturbed probability measure unless

the learner selects a pair of prices (p, q) in one of the four rectangles Rj
v,ε where the perturbations occur.

We denote with Rv,ε the union of the four rectangles Rj
v,ε. For the sake of simplicity, we use the random

variable Z to denote
(
I
{
S ≤ p

}
, I
{
q ≤ B

})
.

Claim 2. Fix any (v, ε) ∈ Ξ, (p, q) ∈ U \ Rv,ε, and let Z = (I{S ≤ p}, I{q ≤ B}). Then Z follows the

same distribution both under P and Pv,ε. Formally, the following holds

Pv,ε
[
Z = (i, j)

]
= P

[
Z = (i, j)

]
∀ (i, j) ∈ {0, 1}2.

Proof. For each (v, ε) ∈ Ξ, and each (p, q) ∈ U , the distribution under Pv,ε of the 2-bit feedback Z is given

by:

• P [Z = (0, 0)] = Pv,ε
[
S > p ∩B < q

]
=
∫ 1
p

∫ q
0 f(x, y) dxdy +

∫ 1
p

∫ q
0 gv,ε(x, y) dxdy

• P [Z = (0, 1)] = Pv,ε
[
S > p ∩B ≥ q

]
=
∫ 1
p

∫ 1
q f(x, y) dxdy +

∫ 1
p

∫ 1
q gv,ε(x, y) dxdy

• P [Z = (1, 0)] = Pv,ε
[
S ≤ p ∩B < q

]
=
∫ p
0

∫ q
0 f(x, y) dxdy +

∫ p
0

∫ q
0 gv,ε(x, y) dxdy

• P [Z = (1, 1)] = Pv,ε
[
S ≤ p ∩B ≥ q

]
=
∫ p
0

∫ 1
q f(x, y) dxdy +

∫ p
0

∫ 1
q gv,ε(x, y) dxdy.

By symmetry, all integrals of gv,ε in the previous formulae vanish if (p, q) does not belong to Rv,ε, so that

the only non-zero contribution is the one of f , which is shared by all distributions.

The cost of exploration and of suboptimality. The family of adversaries has two crucial features: first,

prices that are ε-far from the optimal one yield Θ(ε) instantaneous regret; second, the learner is forced to

post prices in a suboptimal region Q6 to locate the actual perturbation (see Claim 2), incurring in constant

instantaneous regret. We formalize these two properties in the following claims. By the analytic expression

of the expected gain from trade it is easy to derive a bound on the cost of posting prices far from the optimal

one.

Claim 3 (Cost of suboptimality). Fix any perturbation pair (v, ε) ∈ Ξ and let (p, q) be any price not in

([v − ε, v + ε]× [1/3, 2/3]) ∩ U , then the following holds:

Ev,ε
[
GFT(v, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ 1

104
ε

To bound the istantaneous regret when posting prices in the exploration region Q6 we need to resort

once again to the analytic expression of the gain from trade in Equations (4) and (5).

Claim 4 (Cost of exploration). Fix any perturbation pair (v, ε) ∈ Ξ and let (p, q) ∈ Q6, the following

holds:

Ev,ε
[
GFT(v, S,B)

]
− Ev,ε

[
GFT(p, q, S,B)

]
≥ 1

20

13



Proof. Fix any perturbation pair (v, ε) ∈ Ξ and consider any pair of prices (p, q) ∈ Q6. The expected

gain from trade corresponding to (p, q) is dominated by the one attainable by posting (12 ,
2
3) (each pair of

valuations (s, b) such that a trade happens for (p, q) also yields a trade under (12 ,
2
3) ). Thus the following

holds:

Ev,ε
[
GFT(p, q, S,B)

]
≤ Ev,ε

[
GFT

(
1
2 ,

2
3 , S,B

)]
≤ Ev,ε

[
GFT

(
2
3 , S,B

)]
.

On the other hand, posting v is at least as good as posting 1/2:

Ev,ε
[
GFT(v, S,B)

]
≥ Ev,ε

[
GFT

(
1
2 , S,B

)]
.

Putting the two inequalities together we get the claimed bound:

Ev,ε
[
GFT(p′, S,B)− GFT(p, q, S,B)

]
≥ Ev,ε

[
GFT

(
1
2 , S,B

)
− GFT

(
2
3 , S,B

)]
=

a

2 + 16a

The statement follows by plugging in the value of the normalization parameter a = 2 · ln(27/16).

3.2 The T
3/4 Lower Bound

The family of adversaries we introduced are the crucial ingredient for our lower bound. Set K =
⌈
T 1/4

⌉
,

ε = 1/K and, for each i ∈ {1, . . . ,K}, let vi = 1/3 + (2i − 1)ε be a candidate center. For the sake of

convenience, for each i ∈ [K] denote Pvi,ε by Pi and the corresponding expectation by Ei, and similarly,

denote P by P0 and the corresponding expectation by E0.

Price regions. The family of measures P0,P1, . . . ,PK naturally partitions the [0, 1]2 square into price

regions characterized by similar feedback and similar expected gain from trade:

• The expolaration regions: the square Q6 contains the K disjoint supports of the perturbations. Denote

with Rj
i (i ∈ [K]) the support of the perturbations characterizing Pi (Rj

(vi,ε)
for our choice of ε)

and with Ri the union for j = 1, . . . , 4 of the Rj
i . Recall, posting prices in Rj

i is the only way to

discriminate between Pi and the other distributions (Claim 2), but induces Ω(1) instantaneous regret

(Claim 4).

• The (exploitation) candidate regions: for each i ∈ [K], let Oi be the trapezoid induced by the inter-

section of [vi − ε, vi + ε]× [1/3, 2/3) with U . The learner gets no information by posting prices there,

but each Oi contains (vi, vi) which is optimal under Pi and guarantees Θ(ε) regret under Pj for j 6= i
(Claim 3).

We have all the ingredients for proving the main result of the paper. We constructed a family of K i.i.d.

σ-smooth adversaries for the repeated bilateral trade problem, each characterized by a probability measure

Pi where the valuations (S,B) are sampled from. Under each Pi the expected gain from trade is maximized

in a different pair of prices (vi, vi). Every time the learner posts a price that is Ω(ε) far from the optimal

vi it suffers instantaneous regret that is Ω(ε) (Claim 3). To identify the optimal vi, the learner needs to

identify the actual perturbation. There are K = Θ(1/ε) different possible perturbations and, due to the

feedback structure, the learner needs to probe separately the K disjoint exploration regions in Q6 (Ω(1/ε2)
times each) to identify the actual perturbation it is playing against. Recall, posting prices in the suboptimal

region Q6 leads to a constant instantaneous regret (Claim 4). All in all any learner suffers a regret of order

Ω
(
min

(
K/ε2, εT

))
= Ω(T 3/4), given our choices of K and ε. We formalize this intuition in the following

theorem.
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Theorem 3. Consider the problem of repeated bilateral trade against a σ-smooth adversary in the two-bit

feedback model, for any σ ≤ 1
9 . If T ≥ 6562, then any learning algorithm A that posts two prices per time

step suffers at least a regret of

RT (A) ≥
1

56
T

3/4 .

Proof. We prove the lower bound via Yao’s Principle: there exists a randomized family of adversaries that

induces any deterministic algorithm A to suffer Ω(T 3/4) regret. Let K and ε as above, (K =
⌈
T 1/4

⌉
, and

ε = 1/K) and consider the K + 1 adversaries corresponding to the probability measures P0, P1, . . . PK

described at the beginning of the Section. A suitable mixture over these adversary is the randomized family

we apply Yao’s Principle on.

For any fixed deterministic algorithm A, we introduce some notation. Let (P1, Q1), (P2, Q2) . . . be

the prices played by A on the basis of the sequential feedback received Z1, Z2, . . . . For any i ∈ [K],
define Nt(i) as the random variables counting the number of times the learning algorithm A plays in the

exploration region Ri; similarly, Mt(i) counts the number of times that A plays in candidate region Oi:

Nt(i) =

t∑

s=1

I{(Ps, Qs) ∈ Ri}, Mt(i) =

t∑

s=1

I{(Ps, Qs) ∈ Oi}.

Using these variables, we can define the Nt and Mt as the counters of how many times exploring, respec-

tively exploiting, actions have been played up to time t, for any t ∈ [T ]:

Nt =
∑

i∈[K]

Nt(i) , Mt =
∑

i∈[K]

Mt(i) .

In the following Claim, whose proof is deferred to Section 3.3, we relate the expected values of MT (i) under

P0 and Pi as a function of the expected number of times the algorithm plays the corresponding exploring

actions, i.e., NT (i). This formalizes the intuition that to discriminate between the different Pi the learner

needs to play exploring actions.

Claim 5. The following inequality holds true for any i ∈ [K]:

Ei
[
MT (i)

]
− E0

[
MT (i)

]
≤ 2εT ·

√
E0[NT (i)].

We are now ready to bound directly the performance of the learner against the adversaries. Consider any

Pi, for i ∈ [K]; algorithm A suffers Θ(1) instantaneous regret when it posts prices in the exploration region

Q6 (we count these events with NT ) and suffers at least Θ(ε) instantaneous regret when posts prices that

are nor in Q6, nor in Oi, which contains the optimal price vi (we count these events with T −NT −MT (i)).
All in all, we have the following lower bound on the regret suffered by A:

Ei [RT (A)] ≥ ε
104︸︷︷︸

Claim 3

Ei [T −NT −MT (i)] +
1
20︸︷︷︸

Claim 4

Ei [NT ]

≥ ε
104

(
T − E0 [MT (i)]− 2εT

√
E0 [NT (i)]

)
(by Claim 5)
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Averaging with respect to Pi, i = 1, . . . ,K, we get:

1

K

K∑

i=1

Ei [RT (A)] ≥
ε

104

(
T − E0 [MT ]

K
− 2εT

√
E0 [NT ]

K

)
(by Jensen Inequality)

≥ ε

104

(
9

10
− 2ε

√
E0 [NT (i)]

K

)
T (T ≥ 6562 =⇒ K ≥ 10)

≥ 1

105

(
9− 4

√
E0 [NT ]

T 3/4

)
T

3/4, (6)

where the last inequality follows by the definition of ε and K . We can quantify the regret suffered by A in

a simpler way: every time A plays in the exploration region Q6 it suffers constant regret:

E0 [RT (A)] ≥ 1
20E

0 [NT ] (7)

Consider now the randomized family of adversaries generated as follows: with probability 1/2, the se-

quence of valuations is drawn i.i.d. according to P0, while with the remaining probability one of the K
probability measures Pi is chosen, uniformly at random. We conclude by Yao’s principle, showing that any

deterministic algorithm A suffers Ω(T 3/4) regret:

R∗
T ≥

1

2
E0 [RT (A)] +

1

2K

K∑

i=1

Ei [RT (A)] (by Yao’s principle)

≥ 1

2

[
1

20
E0 [NT ] +

T 3/4

105

(
9− 4

√
E0 [NT ]

T 3/4

)]
(by Equations (6) and (7))

≥ 1

56
T

3/4,

where the last inequality holds for any possible value of E0 [NT ].

3.3 The Final Ingredient: Claim 5

This Section is devoted to the proof of the technical Claim 5, which quantifies the different behaviour of

any deterministic algorithm against the two adversaries Pi and P0, in terms of the number of times that the

exploring actions are played.

Claim 5. The following inequality holds true for any i ∈ [K]:

Ei
[
MT (i)

]
− E0

[
MT (i)

]
≤ 2εT ·

√
E0[NT (i)].

Proof. For any t ∈ [T ], the action (Pt, Qt) selected by A at round t (and therefore to wich region (Pt, Qt)
belongs to) is a deterministic function of Z1, . . . , Zt−1. In formula, we then have the following

Ei
[
MT (i)

]
− E0

[
MT (i)

]
=

T∑

t=2

(
Pi
[
(Pt, Qt) ∈ Oi

]
− P0

[
(Pt, Qt) ∈ Oi

])

≤
T∑

t=2

∥∥Pi
(Z1,...,Zt−1)

− P0
(Z1,...,Zt−1)

∥∥
TV

, (8)
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where ‖·‖TV denotes the total variation norm, and Pi
(Z1,...,Zt)

denotes the push-forward measure over {0, 1}2t
induced by the feedback variables when the valuations are drawn according to Pi. We move now our atten-

tion towards bounding the total variation norm. To that end we use the Pinsker’s inequality and apply the

chain rule for the KL divergence DKL. For each i ∈ [K] and t ∈ [T ] we have the following:

∥∥P0
(Z1,...,Zt)

− Pi
(Z1,...,Zt)

∥∥
TV
≤
√

1

2
DKL

(
P0
(Z1,...,Zt)

, Pi
(Z1,...,Zt)

)

=

√√√√1

2

(
DKL

(
P0
Z1
, Pi

Z1

)
+

t∑

s=2

E0
[
DKL

(
P0
Zs|Z1,...,Zs−1

, Pi
Zs|Z1,...,Zs−1

)]
)

(9)

We bound the two types of KL terms separately; starting from the one relative to the first time step.

The pair of prices (P1, Q1) is deterministic and, by Claim 2, the KL divergence between the feedback

observed against P0 and Pi is non-zero if and only if (P1, Q1) belongs to the support of the perturbation

defining Pi, that we called Ri. We have the following:

DKL

(
P0
Z1
,Pi

Z1

)
=

∑

z∈{0,1}2

log

(
P0 [Z1 = z]

Pi [Z1 = z]

)
P0 [Z1 = z] I{(P1, Q1) ∈ Ri} (10)

Focus on the terms of the form Pi [Z1 = z]. To get a better understanding of them, we introduce four

rectangles that represent the regions of the [0, 1]2 square which correspond to the four possible feedback

z ∈ {0, 1}2 received by the learner:

Q1,1 = [0, P1]× [Q1, 1], Q0,1 = (P1, 1]× [Q1, 1], Q1,0 = [0, P1]× [0, Q1), Q0,0 = (P1, 1]× [0, Q1).

By definition of Pi and of the rectangles Qz , we have that Pi [Z1 = z] = P0 [Z1 = z] + ∆z, where ∆z =
36

1+8a

(
|(R1

i ∪R4
i ) ∩Qz| − |(R2

i ∪R3
i ) ∩Qz|

)
and we denoted with | · | the area. Now, the function x →

x log x/x+a is monotonically decreasing in its domain; moreover, the probabilities P0 [Z1 = z] are at least
1/6 for any z ∈ {0, 1}2, when (P1, Q1) is in Ri. Applying these considerations to Equation (10) we have

that

DKL

(
P0
Z1
,Pi

Z1

)
≤ 1

6

∑

z∈{0,1}2

log

(
1/6

1/6 +∆z

)
I{(P1, Q1) ∈ Ri} (11)

A first, crucial, consideration on the ∆z is that ∆0,0 and ∆1,1 are non-negative, while the remaining terms

are non-positive. This is due to the definition of these terms as difference between two areas; for z = (0, 0)
and (1, 1) it holds that |(R1

i ∪ R4
i ) ∩ Qz| ≥ |(R2

i ∪ R3
i ) ∩ Qz|; for the other two z the converse inequality

holds. This means that

∆0,0 ·∆1,1 ≥ 0, ∆1,0 ·∆0,1 ≥ 0. (12)

Consider now the two sums of terms with the same sign. The absolute value of ∆0,0 + ∆1,1 is mazimized

when (P1, Q1) is equal to (v, 3/4) (i.e., at the center of the Ri rectangle); the same holds for ∆1,0 +∆0,1, so

max{|∆0,0 +∆1,1|, |∆1,0 +∆0,1|} = 6
1+8aε ≤ 2

3ε. (13)

Finally, by definition of the Qz and that of the perturbation rectangles, it holds that the ∆z terms sum up to

0 :
∆0,0 +∆1,1 +∆1,0 +∆0,1 = 0 (14)

17



Estimation procedure of GFT using two prices and one-bit feedback

Input: price p
Environment: fixed pair of seller and buyer valuations (s, b)
Toss a biased coin with probability p of Heads

if Heads then draw U uniformly at random in [0, p] and set p̂← U , q̂ ← p
else draw V uniformly at random in [p, 1] and set p̂← p, q̂ ← V
Post price p̂ to the seller and q̂ to the buyer and observe the one-bit feedback I{s ≤ p̂ ≤ q̂ ≤ b}
Return ĜFT(p)← I{s ≤ p̂ ≤ q̂ ≤ b} ⊲ Unbiased estimator of GFT(p)

We get back to Equation (11) and apply the simple inequalities we just proved, together with the fact that

the function x→ log 1/(1+6x) is monotonically non-increasing:

DKL

(
P0
Z1
,Pi

Z1

)

≤ 1

6

(
log

1

1 + 6(∆0,0 +∆1,1)
+ log

1

1 + 6(∆1,0 +∆0,1)

)
I{(P1, Q1) ∈ Ri} (by Equation (12))

=
1

6

(
log

1

1− 36|∆0,0 +∆1,1| · |∆1,0 +∆0,1|

)
I{(P1, Q1) ∈ Ri} (by Equation (14))

≤ 1

6

(
log

1

1− 16ε2

)
I{(P1, Q1) ∈ Ri} (by Equation (13))

≤ 3ε2I{(P1, Q1) ∈ Ri}, (15)

where the last inequality can be verified analytically and holds for any ε ∈ (0, 1/10). Note that ε = 1/⌈T 1/4⌉ ≤
1/10 as in Theorem 3 we are assuming T ≥ 6562.

The other terms in Equation (9) can be handled similarly: A is a deterministic algorithm, thus for any

time s and fixed feedback history Z1, . . . Zs−1, it holds that (Ps, Qs) is a fixed element of [0, 1]2:

DKL(P
0
Zs|Z1,...,Zs−1

, Pi
Zs|Z1,...,Zs−1

)

=
∑

z∈{0,1}2

log P0[Zs=z|Z1,...,Zs−1]
Pi[Zs=z|Z1,...,Zs−1]

P0 [Z1 = z | Z1, . . . , Zs−1] I{(Ps, Qs) ∈ Ri | Z1, . . . , Zs−1}

=
∑

z∈{0,1}2

log P0[Zs=z|(Ps,Qs)∈Ri]
Pi[Zs=z|(Ps,Qs)∈Ri]

P0 [Zs = z | (Ps, Qs) ∈ Ri] I{(Ps, Qs) ∈ Ri | Z1, . . . , Zs−1}.

The same calculations we carried over for s = 1 can be repeated for the generic s, yielding the same bound

of 3ε2:

DKL

(
P0
Zs|Z1:s1

, Pi
Zs|Z1,...,Zs−1

)
≤ 3ε2I{(Ps, Qs) ∈ Ri | Z1, . . . , Zs−1} (16)

Plugging Equation (15) and Equation (16) into Equation (9), we get the desired bound on the total variation

distance: ∥∥P0
(Z1,...,Zt)

− Pk
(Z1,...,Zt)

∥∥
TV
≤ 2ε

√
E0 [Nt−1(i)] ≤ 2ε

√
E0 [NT (i)]. (17)

Plugging Equation (17) into Equation (8) yields the Claim.
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Learning algorithm with 1-bit feedback and two prices: Blind-Exp3

input: Learning rate η > 0, exploration rate γ ∈ (0, 1), grid of prices G, with |G| = K
initialization: Set w1(i) to 1 for all i ∈ [K] and W1 = K
for time t = 1, 2, . . . do

Let πt(i) =
wt(i)
Wt

for all i ∈ [K]
Toss a biased coin with probability γ of Heads

if Tails then ⊲ Exploitation step

Post price pt drawn according to distribution πt and set r̂t(i) = 0 for all i ∈ [K]
else ⊲ Exploration step

Draw a price gIt uniformly at random in G

Use the estimation procedure on price gIt and receive ĜFTt(gIt)

Set r̂t(It) =
K
γ · ĜFTt(gIt) and r̂t(j) = 0 for all j 6= It.

Let wt+1(i) = wt(i) · exp
(
ηr̂t(i)

)
for all i ∈ [K] ⊲ Exponential weight update

Let Wt+1 =
∑

pi∈G
wt+1(i)

4 A T
3/4 Upper Bound: One Bit and Two Prices

In this section, we introduce our algorithm, Blind-Exp3, for the one-bit feedback setting against a σ-smooth

adaptive adversary that achieves a bound on the regret of order T 3/4, up to logarithmic terms. A key tech-

nique that we use is a Monte Carlo estimation procedure ĜFT (see pseudocode for details) that allows us to

estimate the expected gain from trade E
[
GFT(p, St, Bt)

]
of a price p, by posting two different prices (p̂, q̂)

and receiving one bit of feedback.

Lemma 2 (Lemma 1 of Azar et al. [2022]). Fix any agents’ valuations (s, b) ∈ [0, 1]2. For any price

p ∈ [0, 1], it holds that ĜFT(p) is an unbiased estimator of GFT(p), i.e., E
[
ĜFT(p)

]
= GFT(p), where

the expectation is with respect to the randomness of the estimation procedure.

Once we have this procedure, we can present our algorithm. At high level, the algorithm mimics the

behavior of Exp3 on a fixed discretization of K prices, but the estimation procedure is used to perform

the uniform exploration step. Our algorithm is “blind” because—unlike what happens in the bandit case—

posting a price does not reveal the corresponding gain from trade. With a careful analysis, we show that the

uniform exploration term is indeed enough to achieve the tight regret bound of order Õ(T 3/4). (We recall

that the σ-smoothness of the valuation distributions is crucial to ensure that the performance of the best fixed

price in hindsight on a grid is “close enough” to the performance of the best fixed price overall.)

Theorem 4. Consider the problem of repeated bilateral trade against a σ-smooth adaptive adversary in the

one-bit feedback model, for any σ ∈ (0, 1]. If we run Blind-Exp3 with exploration rate γ ∈ (0, 1), learning

rate η > 0, and the uniform K-grid G such that
2ηK
γ ≤ 1, then, for each time horizon T ∈ N, we have that

RT (Blind-Exp3) ≤ lnK

η
+

(
γ + η

K

γ
+

1

σK

)
T.

In particular, if T ≥ 16, tuning the number of grid points K =
⌊
T 1/4

⌋
, the exploration rate γ = (lnT )1/3

T 1/4 ,

and the learning rate η = 1
2
(lnT )

2/3

T 3/4
, then RT (Blind-Exp3) ≤ 2

(
1
σ + (lnT )1/3

)
· T 3/4 .
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Proof. The analysis of Blind-Exp3 needs to carefully take into account many sources of randomness: the

internal randomness of the algorithm, of the estimation procedures and of the σ-smooth distributions of the

adversary. Note, moreover, that the adversary is non-oblivious, so the choice of the distribution (St, Bt)
depends on all the realizations of the past randomization. Fix any exploration rate γ ∈ (0, 1), learning rate

η > 0 and number of grid points K ∈ N such that 2ηK/γ ≤ 1. Fix also any time horizon T ∈ N. In the

following, we use the random variables (Pt, Qt) to denote the randomized prices posted by the algorithm at

time t.

Fix any history of the algorithm (i.e. realization of all the randomness involved). We have the following:

ln

(
WT+1

W1

)
= ln

(
T∏

t=1

Wt+1

Wt

)
=

T∑

t=1

ln

(
Wt+1

Wt

)
=

T∑

t=1

ln



∑

i∈[K]

πt(i) exp (ηr̂t(i))




≤
T∑

t=1

ln


1 + η

∑

i∈[K]

πt(i)r̂t(i) + η2
∑

i∈[K]

πt(i)
(
r̂t(i)

)2



≤ η
T∑

t=1

∑

i∈[K]

πt(i)r̂t(i) + η2
T∑

t=1

∑

i∈[K]

πt(i)
(
r̂t(i)

)2
(using r̂t(i) ≤ K

γ )

≤ η
T∑

t=1

∑

i∈[K]

πt(i)r̂t(i)

[
1 + η

K

γ

]
. (18)

Crucially, we can use the standard exponential and logarithmic inequalities exp(x) ≤ 1 + x + x2 (valid

whenever x ≤ 1), and ln(1 + x) ≤ x (valid whenever x > −1) only because the particular choice of the

parameters (2ηK/γ ≤ 1) implies that ηr̂t(i) ≤ 1 and

η
∑

i∈[K]

πt(i)r̂t(i) + η2
∑

i∈[K]

πt(i)
(
r̂t(i)

)2 ≤ 2η
∑

i∈[K]

πt(i)r̂t(i) ≤
K

γ
.

Inequality 18 is the pivot of our analysis, as we construct upper and lower bounds to its two extremes.

We start from its first term, take the expectation with respect to the whole randomness of the process and

consider any price gi in the grid G:

E

[
ln

(
WT+1

W1

)]
= E [ln (WT+1)]− lnK ≥ E [ln (wT+1(i))]− lnK

= η
T∑

t=1

E [r̂t(i)] − lnK = η
T∑

t=1

E [GFTt(gi)]− lnK. (19)

The only delicate passage of the previous formula is the last equality, where we used that E [r̂t(i)] =
E [GFTt(gi)]. To see why the latter holds, consider the filtration {Ft}t relative to the story of the process:

Ft is the σ-algebra generated by all the random variables involved in the process up to time t (excluded).

Moreover, let E it be the event that at round t the coin toss results in Heads and the price selected u.a.r. for
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exploration is gi. We have the following:

E [r̂t(i) | Ft] = E
[
I
{
E it
}
r̂t(i) | Ft

]
r̂t(i) = I

{
E it
}
r̂t(i)

= E
[
I
{
E it
}
E
[
r̂t(i) | Ft, E it

]
| Ft

]
Law of total exp.

=
K

γ
E

[
I
{
E it
}
E

[
ĜFTt(gi) | Ft, E it

]
| Ft

]
Def. of r̂t(i)

=
K

γ
P[E it | Ft]E [GFTt(gi) | Ft] Lemma 2 and (St, Bt) indep. of E it

= E [GFTt(gi) | Ft]

For the final step, note that, conditioned on Ft, the event E it has probability γ/K: the random coin gives

Tails with probability γ and price gi is chosen (independently) u.a.r. as the one to be actually explored with

probability 1/K. Taking the expectation with respect to Ft gives that E [r̂t(i)] = E [GFTt(gi)].
Let’s go back to Equation (18) and focus on the last term. Conditioning with respect to Ft:

E [πt(i)r̂t(i) | Ft] = πt(i)E [r̂t(i) | Ft] = πt(i)E [GFTt(gi) | Ft] .

Taking the expectation with respect to Ft and summing over all the gi ∈ G, we have the following:

E [GFTt(Pt, Qt)] ≥ (1− γ)
∑

i∈[K]

E [πt(i)GFTt(gi)] = (1− γ)
∑

i∈[K]

E [πt(i)r̂t(i)] , (20)

where the first inequality follows from the fact that with probability 1 − γ the learner at time t chooses

exploitation and thus posts a price in the grid G according to distribution πt. We can plug Equation (19) and

Equation (20) into Equation (18) to obtain the following:

η

T∑

t=1

E [GFTt(gi)]− lnK ≤ η

1− γ

(
1 + η

K

γ

) T∑

t=1

E [GFTt(Pt, Qt)]

Multiplying everything by (1−γ)/η, rearranging, and using that the gain from trade is always upper bounded

by 1, we get:
T∑

t=1

E [GFTt(gi)]−
T∑

t=1

E [GFTt(Pt, Qt)] ≤
lnK

η
+

(
γ + η

K

γ

)
T

The argument so far holds for any adaptive adversary S and any choice of price on the grid gi. This, together

with the discretization result Claim 1 gives the desired bound:

RT (Blind-Exp3) ≤ lnK

η
+

(
γ + η

K

γ
+

1

σK

)
T

5 Conclusions and Open Problems

In this paper, we initiated the study of σ-smooth adversaries in online learning for pricing problems. Focus-

ing on the repeated bilateral trade problem, we proved that a single bit of feedback is sufficient to achieve

sublinear regret, pushing the boundary of learnability beyond the i.i.d. setting. We hope that the smoothed
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adversarial approach will find more applications to learning pricing strategies that cannot otherwise be effi-

ciently learned in the adversarial model under partial feedback.

The surprising minimax regret regime of T 3/4 surpasses the
√
T vs. T 2/3 dichotomy observed in other

partial feedback models (e.g., partial monitoring and feedback graph), and motivates the intriguing question

of whether techniques based on the generalized information ratio [Lattimore and Szepesvári, 2019] could be

used to define a unified algorithmic tool in our framework and, more generally, to analyze online problems

in digital markets.
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A An Improved Analysis of Continuous Hedge

In what follows, we denote with B[0,1], respectively B[0,+∞], the Borel σ-algebra of [0, 1], respectively

[0,+∞], while B stands for the Borel σ-algebra of R. For any any measurable function g : [0, 1] → R, we

denote with ‖g‖1 the integral with respect the Lebesgue measure of |g| on [0, 1].

The following result implies directly theoretical guarantees for Hedge. We state the theorem in an

abstract way to highlight that its claims are really about the properties of some stochastic processes rather

than specific online learning protocols.

Theorem 5. Let (Y, EY) be a measurable space. Let ρ : [0, 1] × Y → [0, 1] be a (EY ⊗ B[0,1])/B[0,1]-
measurable function. Let (Xt, Yt)t∈N be a [0, 1] × Y-valued stochastic process. For any t ∈ N, let Ht =
σ(X1, Y1, . . . ,Xt−1, Yt−1) be the σ-algebra generated by the history up to the end of time t − 1 (with the

understanding that H1 = σ
(
{∅}

)
). Let M ≥ 2 and η ∈ (0, 1). Assume that:

• For any t ∈ N, the conditional law PXt|Ht
of Xt given Ht admits as a density (w.r.t. the Lebesgue

measure on [0, 1]) the (random) function ft(·) =
∑t−1

s=1 exp
(
ηρ(·,Ys)

)
∫
[0,1]

∑t−1
s=1 exp

(
ηρ(x,Ys)

)
dx

(for t = 1, f1 = I[0,1]) .

• For any t ∈ N, the two random variables Xt and Yt are conditionally independent given Ht.

• For any t ∈ N, the function [0, 1]→ [0, 1], x 7→ E
[
ρ(x, Yt)

]
is M -Lipschitz.

Then, for any T ∈ N,

max
x∈[0,1]

E

[
T∑

t=1

ρ(x, Yt)

]
− E

[
T∑

t=1

ρ(Xt, Yt)

]
≤ 1

η
ln

(
ηTM

1− e−ηT

)
+ (e− 2)ηT .

In particular, if η =
√

ln(2T )
(e−2)T we have

max
x∈[0,1]

E

[
T∑

t=1

ρ(x, Yt)

]
− E

[
T∑

t=1

ρ(Xt, Yt)

]
≤
√

(e− 2)T ln(2T ) ·
(
5

2
+

ln(M)

ln(2T )

)
.

Proof. Define W1(x) = 1 for all x ∈ [0, 1] and, for each t ∈ N, define by induction Wt+1(·) = Wt(·) exp(ηρ(·, Yt)).
Then, denoting for any measurable function g : [0, 1] → R, the integral with respect the Lebesgue measure
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of |g| on [0, 1] by ‖g‖1, we have

ln
(
‖WT+1‖1

)
= ln

(
T∏

t=1

‖Wt+1‖1
‖Wt‖1

)
=

T∑

t=1

ln

(∫

[0,1]
exp
(
ηρ(x, Yt)

)
ft(x) dx

)

≤
T∑

t=1

ln

(∫

[0,1]

(
1 + ηρ(x, Yt) + (e− 2)η2

(
ρ(x, Yt)

)2)
ft(x) dx

)

=

T∑

t=1

ln

(
1 +

∫

[0,1]

(
ηρ(x, Yt) + (e− 2)η2

(
ρ(x, Yt)

)2)
ft(x) dx

)

≤ η
T∑

t=1

∫

[0,1]
ρ(x, Yt)ft(x) dx+ (e− 2)η2

T∑

t=1

∫

[0,1]

(
ρ(x, Yt)

)2
ft(x) dx

≤ η

T∑

t=1

∫

[0,1]
ρ(x, Yt)ft(x) dx+ (e− 2)η2T

= η

T∑

t=1

E
[
ρ(Xt, Yt) | σ(Yt,Ht)

]
+ (e− 2)η2T ,

where the last equality follows from the generalized freezing lemma (Lemma 5) noticing that, for each

t ∈ [T ], Φt defined for each Borel subset A ⊂ [0, 1] via Φt[A] =
∫
A ft(x) dx is a regular conditional

probability for PXt|Ht
and

∫
[0,1] ρ(x, Yt)ft(x) dx =

∫
[0,1] ρ(x, Yt) dΦt(x). Hence, using the tower rule,

E
[
ln
(
‖WT+1‖1

)]
≤ ηE

[
T∑

t=1

ρ(Xt, Yt)

]
+ (e− 2)η2T .

On the other hand, let x⋆ ∈ [0, 1] be a point belonging to argmaxx∈[0,1]
∑T

t=1 E
[
ρ(x, Yt)

]
, which does exist

due to the fact that this last sum, as a function of x, is MT -Lipschitz (hence continuous on the compact set

[0, 1]). Then, for any x ∈ [0, 1],

T∑

t=1

E
[
ρ(x⋆, Yt)

]
−

T∑

t=1

E
[
ρ(x, Yt)

]
≤ T min

(
1,M |x− x⋆|

)
. (21)
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Let X be a uniform random variable on [0, 1] independent of Y1, . . . , YT . It follows that

E

[
ln
(
‖WT+1‖1

)]
= E

[
ln

(∫

[0,1]
exp

(
η

T∑

t=1

ρ(x, Yt)

)
dx

)]

= E

[
lnE

[
exp

(
η

T∑

t=1

ρ(X,Yt)

)
| X
]]

≥ lnE

[
exp

(
E

[
η

T∑

t=1

ρ(X,Yt) | (Y1, . . . , YT )

])]

= ln

(∫

[0,1]
exp

(
E

[
η

T∑

t=1

ρ(x, Yt)

])
dx

)

= η
T∑

t=1

E
[
ρ(x⋆, Yt)

]
+ ln

(∫

[0,1]
exp

(
η

(
T∑

t=1

E
[
ρ(x, Yt)

]
−

T∑

t=1

E
[
ρ(x⋆, Yt)

]
))

dx

)

≥ η

T∑

t=1

E
[
ρ(x⋆, Yt)

]
+ ln

(∫

[0,1]
exp (−ηT min(1,M |x − x⋆|)) dx

)
= (⋆) ,

where

• the second and the third equalities follow from the Freezing Lemma (see Lemma 4 in the appendix).

• the first inequality follows from the log-exp analogous of Minkowski’s integral inequality, in the form

of Corollary 2, with (V, EV) =
(
[0, 1],B[0,1]

)
, (W, EW ) = (YT ,⊗TEY), V = X, W = (Y1, . . . , YT ),

and g : [0, 1] ×YT → [0,+∞],
(
x, (y1, . . . , yT )

)
7→ η

∑T
t=1 ρ(x, yt).

• the last inequality follows from Eq. (21).

Now, if x⋆ ≤ 1
2 , then, for any x ∈

[
x⋆, x⋆ + 1

M

]
we have that

min(1,M |x − x⋆|) = M |x− x⋆|

and then, recalling that M ≥ 2,

(⋆) ≥ η

T∑

t=1

E
[
ρ(x⋆, Yt)

]
+ ln

(∫

[x⋆,x⋆+ 1
M ]

exp (−ηT min(1,M |x − x⋆|)) dx
)

= η

T∑

t=1

E
[
ρ(x⋆, Yt)

]
+ ln

(
1− exp (−ηT )

ηTM

)

The case x⋆ > 1
2 can be worked out analogously obtaining the same result. In any case, putting everything

together, we get

ηE

[
T∑

t=1

ρ(Xt, Yt)

]
+ (e− 2)η2T ≥ ηE

[
T∑

t=1

ρ(x⋆, Yt)

]
+ ln

(
1− exp (−ηT )

ηTM

)
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Online Protocol: X -Armed Experts

Instance parameters: Known action space X , unknown environment’s action space Y , unknown reward

function ρ : X × Y → [0, 1]

for time t = 1, 2, . . . do

The environment secretly selects an action Yt ∈ Y (possibly at random)

The learner secretly selects an action Xt ∈ X (possibly at random)

The learner gains reward ρ(Xt, Yt)
Xt is revealed to the environment and Gt(·) = ρ(·, Yt) is revealed to the learner

Learning algorithm with full feedback: Hedge for [0, 1]-Armed Experts

Input: η ∈ (0, 1)
Initialization: Initialize W1(x) = 1, for all x ∈ [0, 1]

for time t = 1, 2, . . . do

Play Xt ∼ µt, where µt is a distribution with density defined, for all x ∈ [0, 1], by ft(x) =
Wt(x)
‖Wt‖1

Update Wt+1(x) = Wt(x) · exp(ηGt(x)), for each x ∈ [0, 1]

which, dividing by η and rearranging, becomes

E

[
T∑

t=1

ρ(x⋆, Yt)

]
− E

[
T∑

t=1

ρ(Xt, Yt)

]
≤ 1

η
ln

(
ηTM

1− e−ηT

)
+ η(e− 2)T

So, if η =
√

ln(2T )
(e−2)T , we have

E

[
T∑

t=1

ρ(x⋆, Yt)

]
− E

[
T∑

t=1

ρ(Xt, Yt)

]
≤
√

(e− 2)T ln(2T ) ·
(
5

2
+

ln(M)

ln(2T )

)
.

In the same spirit of the previous theorem, we now obtain an immediate corollary that provides theoret-

ical guarantees for Hedge run for [0, 1]-armed experts (see the general online protocol of X -armed experts

and the corresponding definition of Hedge when X = [0, 1]) with Lipschitz expected rewards.

Corollary 1. If there exists M ≥ 2 such that, for all t ∈ N, x 7→ E[Gt(x)] is an M -Lipschitz function, then,

for any time horizon T ∈ N, the regret of Hedge for [0, 1]-Armed Experts run with parameter η ∈ (0, 1) is¶

max
x∈[0,1]

E

[
T∑

t=1

ρ(x, Yt)

]
− E

[
T∑

t=1

ρ(Xt, Yt)

]
≤ 1

η
ln

(
ηTM

1− e−ηT

)
+ (e− 2)ηT .

In particular, if η =
√

ln(2T )
(e−2)T we have

max
x∈[0,1]

E

[
T∑

t=1

ρ(x, Yt)

]
− E

[
T∑

t=1

ρ(Xt, Yt)

]
≤
√

(e− 2)T ln(2T ) ·
(
5

2
+

ln(M)

ln(2T )

)
.

¶Formally, we are assuming that (Y, EY) is a measurable space; for all t ∈ N, Yt is chosen in a measurable way as a function

of the information available to the environment at the beginning of time t, including its possible randomization; and ρ is a (B[0,1] ⊗
EY)/B[0,1]-measurable function.
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We remark that Hedge achieves an extremely mild dependence on M —disappearing completely if T is

larger than M— without requiring the knowledge of M to tune the parameter η.

Finally, we highlight a key feature of our Theorem 5 and Corollary 1: they only assume that expected

rewards are Lipschitz. This is in contrast with the classic assumption that the rewards themselves are Lips-

chitz. This seemingly small difference entails significant technical issues in the analysis that we bypassed

by proving two general lemmas (a log-exp analogous of Minkowski’s integral inequality, Lemma 3, and

a generalized freezing lemma Lemma 5) that we believe are of independent interest. Besides the novelty

of the techniques, having results in settings where rewards are only required to be Lipschitz in expectation

unlocks the possibility of using Hedge in problems like bilateral trade, where the reward functions are not

even continuous.

B A Log-Exp Minkovski’s Integral Inequality

In this section, we prove a log-exp analogous to Minkowski’s integral inequality. In its original form,

Minkowski’s inequality states that

∫

V

(∫

W

(
g(v,w)

)p
dµW(w)

)1/p

dµV(v) ≥
(∫

W

(∫

V
g(v,w) dµV (v)

)p

dµW(w)

)1/p

,

where p ≥ 1, (V, EV , µV) and (W, EW , µW) are two σ-finite measure spaces|| and g : V ×W → [0,+∞] is

a measurable function.

We now prove a log-exp analogous of Minkowski’s Integral Inequality. To the best of our knowledge, the

following result has not been previously presented in the literature, and we believe it may be of independent

interest.

We recall that B[0,+∞] denotes the Borel σ-algebra of [0,+∞].

Lemma 3 (Log-Exp Minkowski’s Integral Inequality). Let (V, EV , µV) and (W, EW , µW) be two σ-finite

measure spaces such that µV [V] 6= 0 6= µW [W]. Let g : V × W → [0,+∞] be a (EV ⊗ EY)/B[0,+∞]

measurable function. Then (with the understanding that 0 · ∞ = 0):

∫

V
ln

(∫

W
exp
(
g(v,w)

)
dµW(w)

)
dµV(v) ≥ µV [V] ln

(∫

W
exp

(∫

V
g(v,w) dµV (v)

)
dµW(w)

)

Proof. Assume first that both µV and µW are finite measures. Let L∞(W) be the set of bounded EW/B-

measurable functions. Define

Φ: L∞(W)→ R f 7→ ln

∫

W
exp
(
f(w)

)
dµW(w)

||We recall that a measure space (A, EA, µA) is σ-finite if there exist a countable family A1, A2, · · · ∈ EA such that µA(Ak) <
+∞ for all k ∈ N and

⋃
k∈N

Ak = A.
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Notice that Φ is convex. In fact, for any f1, f2 ∈ L∞(W) and any λ ∈ (0, 1), we have

Φ
(
(1− λ)f1 + λf2

)
= ln

∫

W
exp
(
(1− λ)f1(w) + λf2(w)

)
dµW(w)

= ln

∫

W

(
exp
(
f1(w)

))1−λ(
exp
(
f2(w)

))λ
dµW(w)

≤ ln

((∫

W
exp
(
f1(w)

)
dµW(w)

)1−λ(∫

W
exp (f2(w)) dµW(w)

)λ
)

= (1− λ) ln

(∫

W
exp
(
f1(w)

)
dµW(w)

)
+ λ ln

(∫

W
exp (f2(w)) dµW(w)

)

= (1− λ)Φ(f1) + λΦ(f2) ,

where the inequality follows from Hölder inequality with p = 1
1−λ and q = 1

λ , the monotonicity of the

integral, and the fact that ln is monotonically increasing. Now, notice that Φ is differentiable from the

Banach space (L∞(W), ‖·‖∞) to R (where ‖f‖∞ = supw∈W |f(w)|), and for each f ∈ L∞(W) the

differential of Φ at any f ∈ L∞(W) satisfies

dΦ(f)(h) =

∫
W exp

(
f(w)

)
h(w) dµW (w)∫

W exp
(
f(w)

)
dµW(w)

, for each h ∈ L∞(W) .

The convexity and the differentiability of Φ together implies that for any f1, f2 ∈ L∞(W) it holds that

Φ(f1) ≥ Φ(f2) + dΦ(f2)(f1 − f2) .

Now, if g ∈ L∞(V ×W) (i.e., if g is bounded and (EV ⊗ EW)/B[0,+∞] measurable), define

G : V → L∞(W) , v 7→ g(v, ·) ,

and define also

f2(·) =
∫

V
g(v′, ·) dµV(v

′) ∈ L∞(W) .

It follows that, for any v ∈ V ,

ln

∫

W
exp
(
g(v,w)

)
dµW(w) = ln

∫

W
exp
(
G(v)(w)

)
dµW(w) = Φ

(
G(v)

)

≥ Φ(f2) + dΦ(f2)
(
G(v) − f2

)

= ln

(∫

W
exp

(∫

V
g(v′, w) dµV(v

′)

)
dµW(w)

)

+

∫
W

(
exp
(∫

V g(v′, w) dµV(v
′)
) (

g(v,w) −
∫
V g(v′, w) dµV(v

′)
))

dµW(w)
∫
W exp

(∫
V g(v′, w) dµV(v′)

)
dµW(w)

.

Given that this last inequality holds for any v ∈ V , we can integrate both sides with respect to dµV(v) and
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get
∫

V
ln

(∫

W
exp
(
g(v,w)

)
dµW(w)

)
dµV(v)

≥ µV [V] ln
(∫

W
exp

(∫

V
g(v′, w) dµV(v

′)

)
dµW(w)

)

+

∫

V

∫
W

(
exp
(∫

V g(v′, w) dµV(v
′)
) (

g(v,w) −
∫
V g(v′, w) dµV(v

′)
))

dµW(w)
∫
W exp

(∫
V g(v′, w) dµV(v′)

)
dµW(w)

dµV(v)

= µV [V] ln
(∫

W
exp

(∫

V
g(v′, w) dµV(v

′)

)
dµW(w)

)

where the last equality follows from Fubini’s theorem. Notice that we have proved the theorem under the

assumption that g ∈ L∞(V ×W) and that µV and µW are finite measures.

Now, if g /∈ L∞(V ×W) but µV and µW are finite, given that g ≥ 0, we can find a sequence (gn)n∈N ⊂
L∞(V×W) such that gn ↑ g pointwise, and obtain the conclusion from the monotone convergence theorem.

If µV [V] = +∞ but µW is finite, given that µV is σ-finite, we can find a sequence A1 ⊂ A2 ⊂ . . . such

that
⋃

n∈NAn = V and, for each n ∈ N it holds that An ∈ EV and µV [An] < +∞ and apply the theorem to

the restriction of µV to An and let n→∞ to obtain the conclusion via the monotone convergence theorem.

Finally, if µW [W] = +∞, given that µW is σ-finite, we can find a sequence B1 ⊂ B2 ⊂ . . . such that⋃
n∈NBn = W and, for each n ∈ N it holds that Bn ∈ EW and µW [Bn] < +∞ and apply the theorem to

the restriction of µW to Bn and let n→∞ to obtain the conclusion via the monotone convergence theorem

again.

As an immediate corollary of the previous lemma, we get the following.

Corollary 2 (Log-Exp Minkowski’s Integral Inequality for probability measures). Let (V, EV) and (W, EW)
be two measurable spaces and let g : V × W → [0,+∞] be a EV ⊗ EW/B[0,+∞]-measurable function.

Assume that V and W are an V-valued and a W-valued random variables, respectively, independent of

each other. Then

E

[
lnE

[
exp
(
g(V,W )

)
| V
]]
≥ lnE

[
exp
(
E
[
g(V,W ) | W

])]

C A Generalized Freezing Lemma

The classic “freezing lemma” (see, e.g., Cesari and Colomboni 2021, Lemma 8) states that the conditional

expectation of a measurable function of two independent random variables given one of them can be com-

puted as an expectation only with respect to the other random variable followed by a composition with the

random variable in the conditioning.

Lemma 4 (The freezing lemma). Let (Ω,F ,P) be a probability space. Let (V,FV) and (W,FW ) be two

measurable spaces. Let f : V ×W → [0,+∞], V : Ω→ V , W : Ω→W be three measurable functions. If

V and W are P-independent, then

E
[
f(V,W ) | V

]
=
[
E
[
f(v,W )

]]
v=V

(22)

P-almost surely, where the right hand side is the composition
[
E
[
f(v,W )

]]

v=V
=
(
v 7→ E

[
f(v,W )

])
◦ V .
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The freezing lemma is extremely useful in derivations as it allows one to isolate the random parts that

are being averaged while keeping the others fixed. Unfortunately, the freezing lemma does not cover the

case where the expectations are replaced with conditional expectation on some σ-algebra, which is often

the case in online learning, where expectations and probabilities are typically intended as conditional on

the history up to the present time. This problem cannot be solved by simply replacing expectations with

conditional expectations everywhere because of the fact that versions of conditional expectations remain as

such if changed on a probability-zero event, making the naive extension to the right-hand side of Eq. (22)

not even well-defined. To aid us in giving a sound statement of such a generalization of the freezing lemma,

we begin by recalling the definition of regular conditional probability.

Definition 2 (Regular conditional probability). Let (Ω,F ,P) be a probability space. Let (X , EX ) be a

measurable space. Let X : Ω → X be a F/EX -measurable. Let H be a sub-σ-algebra of F . We say that

Φ: EX → [0, 1]Ω is a regular conditional probability for PX|H if:

• For each A ∈ EX , the function ω 7→ Φ[A](ω) isH/B[0,1]-measurable.

• For each ω ∈ Ω, the function A 7→ Φ[A](ω) is a probability measure.

• For each A ∈ EX and each H ∈ H, it holds that P
[
H ∩ {X ∈ A}

]
= E

[
IHΦ[A]

]
.

Notice that the first and the third bullet imply that Φ[A] = E[IX∈A | H] for each A ∈ EX .

We can now state and prove a generalized version of the freezing lemma, which we believe may be of

independent interest.

We recall that B[0,+∞] denotes the Borel σ-algebra of [0,+∞].

Lemma 5 (Generalized Freezing Lemma). Let (X , EX ) and (Y, EY) be two measurable spaces. Let g : X ×
Y → [0,∞] be a (EX⊗EY)/B[0,+∞]- measurable function. Let (Ω, E ,P) be a probability space andF ,G,H
be three sub-σ-algebras of E . Let X : Ω → X be a F/EX -measurable random variable. Let Y : Ω → Y
be a G/EY -measurable random variable. Assume that F and G are P-conditionally independent given H.

Assume that Φ is a regular conditional probability for PX|H. Then

∫

X
g(x, Y ) dΦ(x) = E

[
g(X,Y ) | σ(G,H)

]
.

Proof. First, notice that the random variable
∫
X g
(
x, Y

)
dΦ(x) is σ(G,H)-measurable. In fact, if A ∈ EX

and B ∈ EY we have ∫

X
IA(x)IB(Y ) dΦ(x) = Φ[A]IB(Y ),

which implies that
∫
X IA(x)IB(Y ) dΦ(x), as a product of a H-measurable function and a G-measurable

function is σ(G,H)-measurable. Now, consider the family

C =
{
C ∈ EX ⊗ EY |

∫

X
IC(x, Y ) dΦ(x) is σ(G,H)-measurable

}
.

Notice that X × Y ∈ C, that C is closed under complementation and that if (Cn)n∈N ⊂ C is such

that C1 ⊂ C2 ⊂ . . . then
⋃

n∈NCn ∈ C. Hence, C is a λ-system which contains the π-system D =
{C ∈ EX ⊗ EY | ∃A ∈ EX ,∃B ∈ EY , C = A×B}. Hence, by the π-λ theorem [Billingsley, 1995, Theo-

rem 3.2] it holds that σ(D) ⊂ C, and since σ(D) = EX ⊗ EY it holds that C = EX ⊗ EY . It follows that for
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each C ∈ EX ⊗ EY the random variable
∫
X IC(x, Y ) dΦ(x) is σ(G,H)-measurable. By pointwise mono-

tone increasing approximation via EX ⊗EY -measurable simple functions** , we get that the random variable∫
X g
(
x, Y

)
dΦ(x) is σ(G,H)-measurable.

Now, pick A ∈ EX , B ∈ EY , G ∈ G and H ∈ H. Notice that

E

[∫

X
IA(x)IB(Y ) dΦ(x)IG∩H

]
= E

[
IG∩(Y ∈B)Φ[A]IH

]

= E
[
E
[
IG∩(Y ∈B) | H

]
Φ[A]IH

]

= E
[
E
[
IG∩(Y ∈B) | H

]
E[IX∈A | H]IH

]

(F and G are conditionally independent given H) = E
[
E
[
IG∩(Y ∈B)IX∈A | H

]
IH
]

= E
[
IG∩(Y ∈B)IX∈AIH

]

= E [IA(X)IB(Y )IG∩H ] .

Applying twice a π-λ argument as done above, we can prove that for each C ∈ EX ⊗ EY and each K ∈
σ(G,H), it holds that

E

[∫

X
IC(x, Y ) dΦ(x)IK

]
= E [IC(X,Y )IK ] .

Applying again a pointwise monotone approximation argument using EX ⊗EY-measurable simple functions,

we can prove that for each K ∈ σ(G,H) it holds that

E

[∫

X
g(x, Y ) dΦ(x)IK

]
= E [g(X,Y )IK ] .

Given that we have already proved that the random variable
∫
X g(x, Y ) dΦ(x) is σ(G,H)-measurable, the

conclusion follows.

**We recall that simple functions are linear combinations of indicator functions.
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