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Synopsis of 

Diagohexagons and diagohexagonal sequences 

by David Pouvreau1 and Dominique Tournès2 

To be published in french language under the title « Diagohexagones et suites diagohexagonales » 

in Quadrature, n°133, 2024 

Let 𝒫 = 𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6 be a strictly convex hexagon. The intersections of its nine 

diagonals which are interior to 𝒫 form a « constellation » of fifteen or possibly only thirteen 

distinct points. The « major » diagonals » (𝐴1𝐴4), (𝐴2𝐴5) and (𝐴3𝐴6) of 𝒫 intersect in the vertices 

of a triangle (possibly reduced to one point) which is here called the diagonal triangle of 𝒫 :          

𝑇1 = (𝐴1𝐴4) ∩ (𝐴2𝐴5), 𝑇2 = (𝐴2𝐴5) ∩ (𝐴3𝐴6) and 𝑇3 = (𝐴3𝐴6) ∩ (𝐴1𝐴4). There are moreover two 

interesting subfamilies of diagonal intersections, both having the cardinal 6. 

The convex envelope of the constellation is the strictly convex hexagon 𝔇1 , the vertices of 

which (𝐷𝑘
(1))

1≤𝑘≤6
 are defined (modulo 6) by 𝐷𝑘

(1) = (𝐴𝑘𝐴𝑘+2) ∩ (𝐴𝑘+1𝐴𝑘+3). It will be said that 

𝔇1 is the primary diagohexagon of 𝒫 and that for every 𝑘 ∈ ⟦1; 6⟧, 𝐷𝑘
(1) is the vertex of 𝔇1 

corresponding to 𝐴𝑘. And we will call primary diagohexagonal sequence  of  𝒫 the sequence of 

strictly convex hexagons  (𝔇𝑛)𝑛∈ℕ obtained by the recurrent construction : 

       { 
𝔇0 = 𝒫         (∀ 𝑘 ∈ ⟦1; 6⟧,   𝐷𝑘

(0) = 𝐴𝑘)

For every 𝑛 ∈ ℕ,   𝔇𝑛+1 = (𝐷𝑘
(𝑛+1))

1≤𝑘≤6
   is the primary diagohexagon of 𝔇𝑛 = (𝐷𝑘

(𝑛))
1≤𝑘≤6

 
 

For every 𝑛 ∈ ℕ, the hexagon 𝔇𝑛 will then be called the 𝑛-th order primary diagohexagon of 𝒫. 

 
Figure 1 : Three first terms of a primay diagohexagonal sequence 

From the hexagon 𝒫 can also be obtained the strictly convex hexagon ℋ1 , the vertices of 

which are the points (𝐻𝑘
(1))

1≤𝑘≤6
 defined (modulo 6) by 𝐻𝑘

(1) = (𝐴𝑘𝐴𝑘+3) ∩ (𝐴𝑘+1𝐴𝑘+5). 
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It will here be said that ℋ1 is the secondary diagohexagon of 𝒫 and that for every 𝑘 ∈ ⟦1; 6⟧, 𝐻𝑘
(1) 

is the vertex of ℋ1 corresponding  to 𝐴𝑘. It is then possible to define recurrently the secondary 

diagohexagonal sequence of 𝒫, as the sequence of strictly convex hexagons (ℋ𝑛)𝑛∈ℕ obtained by : 

       {
ℋ0 = 𝒫         (∀ 𝑘 ∈ ⟦1; 6⟧,   𝐻𝑘

(0) = 𝐴𝑘)

 For every 𝑛 ∈ ℕ,   ℋ𝑛+1 = (𝐻𝑘
(𝑛+1))

1≤𝑘≤6
   is the secondary diagohexagon of ℋ𝑛 = (𝐻𝑘

(𝑛))
1≤𝑘≤6

 
 

For every 𝑛 ∈ ℕ, the hexagon ℋ𝑛 will be called the 𝑛-th order secondary diagohexagon of 𝒫. 

 

Figure 2 : Three first terms of a secondary diagohexagonal sequence 

The main results demonstrated in this paper by means of projective as well as algebraic and 

topological arguments, are the following ones :  

Theorem 1 

There exist a unique homography ℎ such that  ℎ(𝐴𝑘) = 𝐷𝑘
(2) for every 𝑘 ∈ ⟦1; 6⟧, hence 

such that ℎ(𝒫) = 𝔇2. More generally, ℎ(𝔇𝑛) = 𝔇𝑛+2 for every 𝑛 ∈ ℕ.  

ℎ will be called the diagohexagonal homography of 𝒫. 

Theorem 2 

The major diagonals of 𝒫 are concurrent if, and only if its first order primary diagohexagon 

is inscribable in a conic curve. 

Theorem 3 

The diagohexagonal homography ℎ of 𝒫 has a unique fixed point 𝛺 interior to 𝒫 and the 

primary diagohexagonal sequence (𝔇𝑛)𝑛∈ℕ of 𝒫 converges toward 𝛺. 

𝛺 will be called the diagonal center  of 𝒫. 

Theorem 4 

If 𝒫 is inscribable in a conic curve, then each of its successive secondary diagohexagons is 

inscribable in a conic curve.  

Theorem 5 

The secondary diagohexagonal sequence of 𝒫 converges toward the diagonal triangle of 𝒫. 


