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Abstract

In our daily lives, we are continually involved in decision-making situations, many of which take
place in the context of social interaction. Despite the ubiquity of such situations, there remains a gap in
our understanding of how decision-making unfolds in social contexts, and how communicative signals,
such as social cues and feedback, impact the choices we make. Interestingly, there is a new social
context to which humans are recently increasingly more frequently exposed—social interaction with
not only other humans but also artificial agents, such as robots or avatars. Given these new technological
developments, it is of great interest to address the question of whether—and in what way—social
signals exhibited by non-human agents influence decision-making. The present study aimed to examine
whether robot non-verbal communicative behavior has an effect on human decision-making. To this
end, we implemented a two-alternative-choice task where participants were to guess which of two
presented cups was covering a ball. This game was an adaptation of a “Shell Game.” A robot avatar
acted as a game partner producing social cues and feedback. We manipulated robot’s cues (pointing
toward one of the cups) before the participant’s decision and the robot’s feedback (“thumb up” or no
feedback) after the decision. We found that participants were slower (compared to other conditions)
when cues were mostly invalid and the robot reacted positively to wins. We argue that this was due
to the incongruence of the signals (cue vs. feedback), and thus violation of expectations. In sum, our
findings show that incongruence in pre- and post-decision social signals from a robot significantly
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influences task performance, highlighting the importance of understanding expectations toward social
robots for effective human-robot interactions.

Keywords: Social decision-making; Human-robot interaction; Non-verbal communication; Social
cues; Response time

1. Introduction

Humans make most of their decisions in social contexts, where those decisions can be
influenced by others, and affect others’ choices and actions (Sanfey, 2007). In this context,
the presence and interpretation of non-verbal signals are critical components of decision-
making in social contexts (Burgoon, Guerrero, & Floyd, 2016; Diederich, Brendel, Morana,
& Kolbe, 2022; Feine, Gnewuch, Morana, & Maedche, 2019; Knapp & Harrison, 1972).
Interestingly, a substantial body of literature has highlighted the significance of non-verbal
cues not only in human—human interaction but also in interactions between humans and robots
(Abubshait & Wiese, 2017; Admoni & Scassellati, 2017; Burgoon et al., 2010; Knapp, Hall,
& Horgan, 2013; Leathers, 1976; Eaves & Leathers, 2017; Palinko, Rea, Sandini, & Sciutti,
2016). In the contemporary era, we interact socially not only with other humans but also with
artificial agents such as robots. Therefore, the question of how these agents, through their
non-verbal signals, influences human decision-making remains a critical area that calls for
investigation.

People naturally tend to ascribe anthropomorphic attributes to robots, especially those with
human-like shapes, and expect them to behave in a socially intelligent way (Hortsmann &
Kramer, 2020; Perez-Osorio, Marchesi, Ghiglino, Ince, & Wykowska, 2019; Spatola, March-
esi, & Wykowska, 2022). Therefore, a significant effort in social robotics has been dedicated
to the design of social non-verbal behaviors that can facilitate human-robot interaction (HRI).
For instance, the robot gaze has been shown to play an important role in handover (Abubshait
et al., 2023; Moon et al., 2014) and joint attention tasks (Abubshait, Momen, & Wiese, 2020;
Boucher et al., 2012; Wiese, Wykowska, Zwickel, & Miiller, 2012). Studies have found that
eye contact increases user engagement (Ito, Hayakawa, & Terada, 2004; Kompatsiari, Bossi,
& Wykowska, 2021; Kompatsiari, Ciardo, Tikhanoff, Metta, & Wykowska, 2019; Kompat-
siari, Ciardo, & Wykowska, 2022; Szafir & Mutlu, 2012) and the attribution of intentionality
to the robot (Ciardo, De Tommaso, & Wykowska, 2022; Ito et al., 2004; Lombardi et al.,
2023). Moreover, robots’ behavior regarding proxemics (i.e., the study of space and distance
in social situations) has an effect on how humans perceive their social presence (Fiore et al.,
2013). These studies illustrate how non-verbal communication plays a role in HRI and sug-
gest that people may in some cases perceive robots’ communicative behaviors as social signals
(Wiese, Metta, & Wykowska, 2017; Wykowska, 2021).

In the context of decision-making, it is important to consider that social signals may be
received either before or after a decision is made (Parenti et al., 2021a). In the former case,
a non-verbal signal can serve as a cue or advice and inform predictions about possible deci-
sion outcomes to help select an action. In the latter case, a reaction or feedback from a social
partner contributes to updating one’s internal representations of the decision problem and the
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related variables. Several studies examined the effects of robot signals when displayed prior to
participants’ decisions. For instance, robot gaze/head orientation and gestures have been used
to provide cues aimed to inform or influence human choices in various HRI settings (Chi-
dambaram, Chiang, & Mutlu, 2012; Ghazali, Ham, Barakova, & Markopoulos, 2018; Perez-
Osorio, Abubshait, & Wykowska, 2021; Romat, Williams, Wang, Johnston, & Bard, 2016).
Moreover, eye contact with a robot prior to decision-making has been shown to delay deci-
sions, affect neural activity, and influence strategies in a competitive game (Belkaid, Kom-
patsiari, De Tommaso, Zablith, & Wykowska, 2021). In contrast, less is known about social
signals provided by robots after decisions. Robot verbal feedback has been shown to influ-
ence participants’ choices (Ham & Midden, 2014). Nevertheless, robot feedback could also
be provided through non-verbal behavior, like facial expressions, gaze behavior, and gestures
(Ciardo & Wykowska, 2022; Gonsior et al., 2011; Parenti, Lukomski, De Tommaso, Belkaid,
& Wykowska, 2023). Post-decision feedback is likely to influence upcoming decisions, and
thus interact with pre-decision signals. Therefore, as the number of social signals emitted by
the robot increases, the question of how humans interpret them and integrate them in their
decision process becomes more complex.

On the one hand, during interactions with robots, people could rely on social expectations
grounded in experience with human—human interaction (Edwards, Edwards, Westerman, &
Spence, 2019). Such social expectations, and the resulting interaction patterns, are thought
to play a major role in guiding interpersonal communication. Indeed, extensive research in
social psychology highlighted the importance of prior expectations based on experiences and
social norms in anticipating others’ behavior (Burgoon, 1993). Concurrently, it has been sug-
gested that people tend to interact with machines using the same interaction patterns they
developed to interact with other humans (Edwards et al., 2019) and similar cognitive mecha-
nisms that have developed for interacting with other humans (Parenti et al., 2023; Wykowska,
2020). On the other hand, people’s social expectations about robots’ behavior (Kahn et al.,
2011) might to some extent differ from expectations regarding human behavior. Such expec-
tations may be related to high-level cognitive, social, and emotional capabilities, but also to
lower-level properties. For instance, robots may be expected to exhibit mechanistic move-
ments rather than smooth motion trajectories and how people perceive the robot may depend
on whether these expectations are met (Ghiglino, Willemse, De Tommaso, & Wykowska,
2021; Parenti, Marchesi, Belkaid, & Wykowska, 2021b). As suggested by previous studies,
robots’ anticipated behavior can be influenced by a variety of factors such as their appearance,
social setting, prior experience, and familiarity (Kahn et al., 2011; Kwon, Jung, & Knepper,
2016).

In social psychology, the “Expectancy Violation” theory proposes to consider social inter-
action according to the extent to which interpersonal experiences deviate positively or neg-
atively from one’s expectations (Burgoon, 1993). We argue that this is also particularly rel-
evant in the context of HRIs. Indeed, studies suggest that humans have high expectations
about what robots are able to achieve and about their interaction skills (Horstmann & Kramer,
2019, 2020). Yet, because the current state of the art in robotics does not match these expecta-
tions, negative violation of expectation is more likely to occur (Horstmann & Kramer, 2019;
Kwon et al., 2016; Marchesi, Bossi, Ghiglino, De Tommaso, & Wykowska, 2021). This can
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negatively affect HRIs. For instance, negative violation of expectations has been linked to
detrimental communication outcomes and uncertainty in the interaction (Bartholow, Fabi-
ani, Gratton, & Bettencourt, 2001; Mendes, Blascovich, Hunter, Lickel, & Jost, 2007). This
can result in a variety of cognitive and behavioral responses, including increased arousal and
negative affect (Burgoon, 1993; Burgoon & Hale, 1988). These effects can be particularly
pronounced in situations where the violation is unexpected or particularly salient (Proulx,
Sleegers, & Tritt, 2017). Violation of expectations can have negative effects on performance.
This can be due to the cognitive load and attentional resources required to process the unex-
pected stimulus or the violation of the learned sequence (Browining & Harmer, 2012; Ferdi-
nand, Mecklinger, & Opitz, 2015).

This paper aimed to address the question of how expectations regarding social signals of
an artificial agent affect human decision-making processes. More specifically, we focused on
the (in)congruency between signals that can be interpreted as cues toward which decision to
take and those that are delivered as feedback regarding the decision taken. This question is
quite relevant for the field, as we are developing artificial agents and social robots that are
endowed with more and more complex repertoire of social behaviors. Thus, it is important
to understand the relationship between those various behaviors and their impact on human
cognition, decision-making specifically.

To address the aims of our study, we implemented a two-alternative-choice task
(cups-and-ball game) online with a between-subjects design where participants were asked to
make a decision regarding which, out of two presented simultaneously cups, contains a ball
hidden beneath it. Importantly, we manipulated the robot’s cue before the decision (directional
pointing toward one of the cups) and the robot’s feedback (‘“thumb up,” or no feedback) after
the decision. Our goal was (i) to examine the effects of these social signals on participants’
decision processes and the potential interaction between pre- and post-decision signals, and
(ii) to assess whether the observed effects would be similar to when the signals were deliv-
ered by a human. Cue validity was manipulated such that the robot indicated the correct cup
in 80% (high validity) or 20% (low validity) of the trials. Social feedback was manipulated
such that the robot displayed either a positive reaction (social feedback) or no reaction (no
social feedback) to successful guesses (Experiment 1). Because positive feedback could signal
cooperation, we hypothesized that participants would follow the robot cue more frequently
in the presence of positive feedback (H1). We also expected participants to be slower in the
condition with low validity and social feedback (H2). This is because we reasoned that par-
ticipants would expect pre- and post-decision social signals to be congruent and that reacting
positively to successful guesses after providing an invalid cue (incongruent scenario) would
violate such social expectations. To further test whether the observed effect was (i) indeed
related to social expectations (rather than other, non-social processes) and (ii) similar to what
we could observe with human social signals, two additional experiments were conducted. In
Experiment 2, the cue was given by a flashlight—to control for lower-level attentional mech-
anisms, while in Experiment 3, the robot was replaced by a human—to compare across agent
types. We hypothesized that the robot condition would be similar to the human condition and
different from the flashlight condition (H3), as the robot had a human-like appearance and
thus would be likely perceived as a social agent.
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2. Methods

Since three experiments were designed to test our hypotheses, in the following section, we
report methods and materials that are common to the three experiments and then describe the
aspects that are specific to each experiment. Experiments were implemented in PsychoPy3
(v2020.1.3; Peirce et al., 2019) and were made available to users via a link in Pavlovia.org
and then embedded in Prolific.com call to participation.

2.1. Participants

For all three experiments, we recruited 400 participants in total, online through Prolific
(www.prolific.com), of which 396 were included in the final analysis (age: 26.8 £ 8.4, m/f:
243/153, student status y/n: 208/188), 50 for each of the eight experimental conditions (four
conditions in Experiment 1, two conditions in Experiment 2, and two conditions in Experi-
ment 3). We ran an a priori power analysis using G¥*Power (Faul, Erdfelder, Lang, & Buchner,
2007) for mixed Analysis of Variance (ANOVA) using medium effect size (f= 0.25), an alpha
of 0.05, power set to 0.95. The power analysis suggested a total sample of 176 participants for
Experiment 1, meaning 44 participants for each of the four conditions. We rounded it to 50
participants per group in Experiment 1 to account for potential dropouts and maintained this
sample size for consistency in Experiments 2 and 3. Four participants were excluded from the
final analyses because they did not complete the entire task. Prolific provides participants with
an allocated time for completing an online experiment, which is typically set at three times
the estimated duration of the experiment. When participants do not complete the task within
the allotted time, Prolific automatically closes the session and registers participation based on
their guidelines. We identified that four participants began the task but did not actively com-
plete it, and the session closed after the time limit, in adherence to Prolific participation rules.
Inclusion criteria were right-handedness, age between 18 and 64, fluency in English, and nor-
mal or corrected-to-normal vision. Experiments were conducted online from January 2021
to May 2021, with participants drawn from the Prolific participant pool. To prevent multiple
participation across studies, we excluded participants with matching Prolific Identification
Codes (IDs) from previous studies in this line. The eight experimental conditions were run
sequentially, ensuring participant independence. To prevent multiple participation across the
different conditions (between-subjects) of this study, we excluded participants with matching
Prolific IDs from previous conditions of this experiment. Participants were paid £6.5 for their
participation in the experiment, and the task took 30 minutes on average to be completed.
The study was approved by the local Ethical Committee (Comitato Etico Regione Liguria)
and was conducted in accordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki, 1964) and Prolific policies (prolific.com).

2.2. Design and procedure

2.2.1. Task
The task (cups and ball game) was loosely inspired by the Shell Game (Britannica Ency-
clopedia, 2023). The “cups-and-balls” experiment, while sharing similarities with the task
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Neutral position Cue Neutral position — Decision time Outcome
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Fig. 1. Trial structure. The cue from the robot represents the pre-decision signal and the feedback (thumb up)
represents the post-decision signal once the actual ball position is revealed (outcome).

used in Parenti et al. (2023), represents a more engaging adaptation of a simple gambling task
previously employed in HRI studies (e.g., see Abubshait et al., 2021). We selected this task,
as it addresses decision-making processes in ambiguous situations, where one needs to “bet”
on an option. Since such an “ambiguous” context elicits a large degree of uncertainty dur-
ing decision-making, we deemed it a well-suited game for observing the influence of social
signals (and social partners) on the decision-making processes. This kind of paradigm repre-
sents a real-life situation when one needs to make decisions under uncertainty (e.g., choosing
between two menu items at a restaurant, or choosing one type of perfume over another as a
gift for a friend). In such situations, due to a high degree of ambiguity and uncertain outcome,
we might be prone to being influenced by others, through their explicit (verbal) recommen-
dations but also often by means of implicit social signals.

We presented the participants with a sequence of photos, in which two cups were located
on a table and an agent was positioned on the other side of the table game. Instructions stated
that the ball could change position on each trial and that the agent (a robot in Experiment 1,
a flash in Experiment 2, or a human in Experiment 3) would be guessing together with the
participant where the ball was. The robot we used in this study is iCub, a humanoid robot
designed to serve as a social robot (Metta, Sandini, Vernon, Natale, & Nori, 2008). We asked
participants to be as accurate as possible in finding the correct location of the ball, without
time constraints. The game started with the agent looking at the participant, the agent was
then always hinting with a social cue toward a cup and then returning to the starting position
(see Fig. 1). The cue consisted of the robot pointing toward one or the other cup by using
its arm and hand gestures (see the second panel in Fig. 1). The frame with the agent start-
ing with a neutral position lasted 500 ms, the cue lasted 1000 ms. After that, the agent went
back in the neutral position and the participant was able to choose the “left” or “right” cup.
No time constraint was set for the participant’s decision time. After the participant’s choice,
the ball position was revealed by lifting the chosen cup. The agent could give positive feed-
back (“thumb up”) to the participant’s hit or remain neutral. The agent’s feedback lasted
1500 ms (see Fig. 1). Participants were instructed that at the end of each trial, the ball
would be automatically reshuffled randomly under one of the two cups even if the shuf-
fle was not visually happening on screen. Each participant completed 100 trials and a final
debriefing.
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Experiment 1 (Robot) Experiment 2 (Flashlight) Experiment 3 (Human)

Fig. 2. Examples of the different experiments. Here, we present the cue stimuli for the three different experimental
conditions.

2.2.2. Experiment 1

Experiment 1 was composed of four conditions following a between-subject design. For
each condition, we manipulated the validity of iCub cues (80% vs. 20%) and the possibil-
ity to receive a positive feedback to “hits” from the robot (feedback present vs. feedback
absent). We recruited 50 participants for each of the four experimental conditions for a total of
200 participants recruited in Experiment 1.

2.2.3. Experiment 2

Experiment 2 was composed of two conditions (feedback present vs. feedback absent) in
a between-subjects design. We focused only on the 20% validity condition. The experiment
involved a flashlight, instead of the robot, as the initial cue for each trial. As in Experiment 1,
in one of the two conditions the robot was giving participants a positive feedback after they
hit the right cup. We recruited 50 participants for each of the two experimental conditions for
a total of 100 participants recruited in Experiment 2.

2.2.4. Experiment 3

Experiment 3 was composed of two conditions (feedback present vs. feedback absent) in
which the virtual partner was a human. As in Experiment 2, we focused only on the 20%
validity condition. In Experiment 3, the human, rather than a robot or a flashlight, gave cues
to the participants and in one condition showed a positive feedback after participants’ hits.
We recruited 50 participants for each of the two experimental conditions for a total of 100
participants recruited in Experiment 3.

2.3. Stimuli

Stimuli consisted of an agent’s picture (e.g., robot or human in Experiments 1 and 3) or a
flashlight (Experiment 2) always in the same setting: behind a table with two red cups on top
of it (see Fig. 2). In Experiment 1, the robot was turning its head, gazing, and pointing toward
a specific cup to produce the cue. In Experiment 2, a light appearing just above one cup or the
other produced the cue. In Experiment 3, the human agent was mimicking the robot cue from
Experiment 1. The social feedback displayed after the decision was implemented by making
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the robot (Experiments 1 and 2) or the human (Experiment 3) produce a thumbs up (with
always the same arm) and a positive facial expression (smiling).

Pictures and data used in the three studies can be found in the public repository under the
anonymized link: https://osf.i0/97ex8/?view_only = 1a53da66cc5b423b85fc2dbf73d17394.

2.4. Data analysis

Data analysis was performed using RStudio (RStudio Team, 2020) and was conducted on
demographic information and behavioral data from the task. Response times (RTs) slower
than 2.5 standard deviations from the sample mean were considered outliers and excluded
for each experimental condition. RTs faster than 100 ms were considered outliers and were
excluded (Ratcliff, 1993). We did not apply any transformation on the RTs, given that the
majority of the observations were distributed between 0 and 1 s (Ratcliff, 1993). Participants’
accuracy rates were calculated based on the percentage of hits in the task (hits on 100 trials).
The rate of following the robot’s cue (hereafter: following rate) was calculated based on the
percentage of trials in which participants were following the cues and responding congruently
with the cue. Comparisons across conditions and across studies were made using ANOVAs.
We planned a priori separate comparisons to investigate differences across the three experi-
ments and feedback conditions (results Section 3.5), in order to address our second and third
hypotheses (H2 and H3). Throughout the paper, multiple comparisons were corrected and
p-values were reported according to Tukey’s correction. Eta-squared equations were used to
calculate effect sizes for ANOVAs.

3. Results and discussion

In this section, we present the results and discussion for each of the three studies separately.
The comparison of the three studies will then be reported in a separate section.

3.1. Experiment I

3.1.1. Accuracy and following rate

Participants’ average performance rates were calculated on the entire game session and
submitted separately to a two-way ANOVA with hint validity (between-subjects) and the pres-
ence of social feedback (between-subjects) as factors. We found a main effect of validity such
that participants from the 20% validity condition were significantly less accurate (F(1,195) =
94.603, p < .001, n> = 0.323) than the participants in the 80% validity condition as shown
in Fig. 3a. Participants in the 20% validity group also followed the robot hints less (#(1,195)
= 458.533, p < .001, n*> = 0.699) than participants in the 80% validity group as shown in
Fig. 3b. However, our results did not confirm our first hypothesis H1, in that no main effect
of social feedback emerged (Following rate: F(1,195) = 2.018, p = .157; Accuracy: F(1,195)
= 0.073, p = .787) or interaction with validity (Following rate: F(1,195) = 0.146, p = .702;
Accuracy: F(1,195) = 2.995, p = .085).
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Fig. 3. Participants’ performance rates. SF = social feedback; No SF = no social feedback; “20” denotes 20%
validity, while “80” denotes 80% validity. (a) Accuracy rate: percentage of hits among 100 trials,

(b) following rate: percentage of responses following robot cue among 100 trials. * indicates a group-wise differ-
ence in which p-value is below .05.

3.1.2. RTs

RTs were averaged for each participant and then submitted to a between-subjects two-way
ANOVA. The analysis revealed a main effect of validity (F(1,195) = 5.944, p = .016, 772 =
0.029), with 20% validity condition yielding slower RTs than 80% validity condition, a trend
associated with the presence of social feedback (F(1,195) = 1.273, p = .059, > = 0.018)
and no interaction (F(1,195) = 1.273, p = .261, n* = 0.006; see Fig. 4a). Moreover, because
social feedback happens after the decision of the current trial, it could potentially influence
the following trials. Thus, we sought to examine participants’ RTs throughout the experiment
using the following non-linear model with parameters A, B, and C to fit the decrease of RT
over trials:

y = A.exp(Bx) +C.

Curve fitting qualitatively suggested a possible effect of time where the difference between
conditions increases over trials to become more marked toward the end of the experiment.
Therefore, we split the data into five time bins. We then submitted RTs to a mixed three-way
ANOVA where validity and presence of social feedback were between-subject factors with
two levels each and time bins as a within-subject factor with five levels. Results showed a main
effect of bin (F(4,975) = 12.637, p < .001, n*> = 0.047), main effect of validity (F(1,975) =
19.107, p < .001, n*> = 0.018), main effect of the presence of social feedback (F(1,975) =
12.966, p < .001, n*> = 0.012), and a significant interaction between validity and presence
of social feedback (F(1,975) = 4.478, p = .035, n2 = 0.004). Post hoc analysis showed that
participants were significantly slower in the 20-SF condition, compared to the other three
conditions (all pyiey < .001; see Fig. 4b).
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Fig. 4. (a) Averaged response times (RTs) among the four experimental conditions. SF = social feedback; No SF
= no social feedback; “20” denotes 20% validity, while “80” denotes 80% validity; (b) curve fitting on each of
the four conditions over time; (c) effect of previous outcome on RTs among the four experimental conditions; (d)
effect of following robot cues on RTs. * indicates a group-wise difference in which p-value is below .05.

Our second hypothesis H2 was that the incongruence between invalid cues and posi-
tive feedback upon successful guesses might violate participants’ social expectations, which
could explain why we observed slower responses in the 20% validity with social feedback
(20-SF) condition. However, other explanations could also be considered. For instance, one
of the possible explanations for later responses in the 20-SF condition is that, because iCub
only reacted to hits (successful trials), the absence of feedback after misses (unsuccessful
trials) delayed responses in subsequent trials. Those trials being more frequent when cues
were 20% valid would result in overall slower RTs in the 20-SF condition. To evaluate this
hypothesis, we tested the effect of previous outcomes on RTs in subsequent trials in each
condition through a three-way ANOVA, splitting the data based on whether the previous trial
was successful and thus followed by positive feedback from the robot. As reported in Fig. 4c,
no main effect of the previous outcome was found (F(1,390) = 0.764, p = .383, n> = 0.002)
neither other interaction (all p > .135), thus not supporting this interpretation.

Yet another alternative explanation could be that the observed delay was due to cognitive
control, required to inhibit the cued response and choose the opposite side. If this had been
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the case, participants would have been slower when they did not follow the hint, that is,
in the trial where they inhibited the cued response. To assess this interpretation, we submitted
the data to a three-way ANOVA with a hint following as a third factor. The analysis showed a
main effect of hint following (F(1,382) = 6.717, p = .01, n> = 0.017) and an interaction effect
of hint following and cue validity (F(1,382) = 10.182, p = .002, n> = 0.025), cf. Fig. 3d. No
other interaction effects were found to be significant (all p > .09).

Post hoc analysis showed that when validity was at 80%, participants were indeed faster
when following, compared to trials where they were not following the cues (+ = —4.034,
Pukey < -001) as shown in Fig. 3d, turquoise, diamond versus square. Moreover, when cue
validity was at 20%, participants were slower in following than at 80% validity (r = 2.934,
Pukey = -019), indicating that the 20% conditions did require stronger cognitive control than
the 80% condition. However, within the 20% validity conditions, no difference in RTs was
found between following and unfollowing (all p > .127). In other words, the slower responses
observed in the 20-SF condition cannot be entirely explained by cognitive control aiming to
inhibit the cued response.

3.2. Experiment 2

Having established that the effect of RT observed in Experiment 1 could not be entirely
be explained by the expectation of the presence (or absence) of feedback or by cognitive
control, we designed follow-up experiments aiming to further examine whether this effect
could indeed be attributed to the violation of social expectations as we hypothesized in H2.
In Experiment 2, we were interested in testing whether the difference we observed in RTs
was due to purely attentional mechanisms triggered by the cue rather than it being a social
effect. To address this question, we replaced the social cue of the robot with an attention-
capturing non-social signal of a flashlight (see Fig. 2). Here, we only included the two 20%
validity conditions, as this condition showed the strongest effect in combination with the
social feedback when the time course of the experiment was taken into account (Fig. 3b).
Although the flashlight replaced the social cues, social feedback was still given by the robot.
This was done in order to prevent the modification of two factors simultaneously.

3.2.1. Accuracy and following rate

Participants’ average performance rates were calculated on the entire game session and
submitted separately to an independent 7-test with the presence of social feedback as a factor.
No effect was found between the two flashlight conditions on accuracy (#(98) = —0.613,p =
.541) or following rates (#(98) = 0.518, p = .606). Accuracy mean and standard deviation was
56.1 + 14.9 for the non-social feedback and 57.8 & 13.5 for the social feedback condition.
Following rate mean and standard deviation were 36.8 + 23.1 for the non-social feedback
condition and 34.5 &£ 20.3 for the social feedback condition.

3.2.2. RT
RTs were averaged for each participant and then submitted to an independent sample
t-test with social feedback/no feedback as a factor. No effect was found (#(98) = —0.740,

85UB017 SUOWILIOD 8A1ea10 3qeot|dde aus Aq peusenob afe seole YO ‘8sn J0 Sa|ni o} Akeiqi 8uljuO A8]1M UO (SUOIPUOD-pUe-SWsl 00" A3 1M AteIq 1 U1 IUO//SANY) SUORIPUOD PUe SW | 83 88S *[7202/70/TT] U0 Areiqiauljuo A8|1nm ‘20Ul aueiyooD Aq €6£€T SBOO/TTTT OT/I0P/W00 A8 |1 Akeiq 1 pul|uo//Sdiy Wwoi papeojumoq ‘ZT ‘€202 ‘6029TSST



12 of 22 L. Parenti, M. Belkaid, A. Wykowska / Cognitive Science 47 (2023)

p = .461) where the mean RT was 0.7 & 0.4 for the no social feedback condition and 0.7 +
0.2 for the social feedback condition. Similarly to Experiment 1, we then submitted RTs to
a mixed two-way ANOVA where the presence of social feedback is a between-subject factor
with two levels and time bins as a within-subject factor with five levels. Results showed a
main effect of time (F(4,488) = 4.664, p < .001, n*> = 0.037). However, no main effect of
the presence of social feedback (p = .176) or significant interaction with time (p = .746) was
found, indicating that the influence of the social feedback found in Experiment 1 disappears
when the pre-decision cue is not social.

3.3. Experiment I versus 2

3.3.1. Accuracy and following rate

Participants’ accuracy rates for the 20 validity conditions were calculated on the entire
game session and submitted separately to a mixed two-way ANOVA with the type of cue
(Experiment 1 vs. Experiment 2) and the presence of social feedback as factors. We did not
find any effect of the type of cue or feedback on accuracy or following rates (all p-values >
.085).

3.3.2. RT

RTs were averaged for each participant and then submitted to a mixed two-way ANOVA
to examine differences across conditions. The analysis showed no effect of social feedback.
However, it revealed a main effect of the type of cue (F(1,196) = 5.501, p = .02, n*> = 0.027)
and significant interaction between the type of cue and presence of social feedback (F(1,196)
=3.916, p = .049, n?> = 0.019). The comparison between the robot condition (Experiment 1)
and flashlight condition (Experiment 2) is illustrated in Fig. 4. Next, we performed post hoc
tests showing a difference when the social feedback was presented between robot and flash
conditions (t = —3.058, pukey = .013). No other post hoc #-test was found to be significant
(all p-values > .09). This result confirms that the effect is not purely related to attention
and supports the hypothesis that violation of social expectations about congruent cues and
feedback affects decision-making processes.

3.4. Experiment 3

If the effect observed in Experiment 1 is indeed related to the social aspect of the cue—
feedback relationship, we reasoned that we should observe a similar effect if social signals
were provided by a human. Therefore, in Experiment 3, we replaced the robot stimuli with
human stimuli (see Fig. 2). As in Experiment 2, we only included the 20% validity condition.
Our goal was: (1) to examine whether the effect on RTs found in Experiment 1 replicates
when the two social signals (i.e., pre-decision cue and post-decision feedback) are provided
by a social agent; and (2) to assess whether the robot’s signals were indeed acting as social
signals and had similar effects to human signals (H3).
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3.4.1. Accuracy and following rate

Participants’ averaged performance rates were calculated on the entire game session and
submitted separately to an independent samples #-test with the presence of social feedback
as a factor. No effect was found between the two conditions on accuracy (#97) = —0.623, p
= .535) or following rates (#(97) = 0.307, p = .759). Accuracy mean and standard deviation
were 56.9 & 11.723 for the non-social feedback and 58.286 £ 10.344 for the social feedback
condition. Following rate mean and standard deviation were 35.82 = 17.354 for the non-social
feedback condition and 34.776 4 16.423 for the social feedback condition.

3.4.2. RT

RTs were averaged for each participant and then submitted to an independent samples z-test
with social feedback (present/absent) as a factor. No effect was found (#(97) = —0.689, p =
.492). We then submitted RTs to a mixed two-way ANOVA where the presence of social feed-
back was a between-subject factor with two levels and time bins were a within-subject factor
with five levels (five bins). As in Experiment 2, there was a main effect of time (F(4,483) =
5.634, p < .001, n*> = 0.044) but no main effect of the presence of social feedback (p = .140)
nor significant interaction between time and social feedback (p = .992). Thus, the incongru-
ence effect as a function of time found in Experiment 1 was not replicated when a human
exhibited social signals.

3.5. Comparison across 20% validity conditions across all three experiments

3.5.1. Accuracy and following rate

Participants’ averaged performance rates were submitted to a mixed two-way ANOVA with
type of cue (human, robot, and flashlight) and the presence of social feedback as factors. No
effect of the two factors was found on accuracy (all p-values > .368) or on following rate (all
p-values > .463). Descriptive statistics of the behavioral measures for the three experiments
are summarized in Table 1.

3.5.2. RT

Mean participants’ RTs were submitted to a mixed two-way ANOVA with the presence
of social feedback and type of cue as between-subject factors. This analysis revealed a main
effect of type of cue (F(2,293) = 4.212, p = .016, n*> = 0.027) with flashlight yielding the
fastest RTs, followed by robot condition and then the human condition (see Table 1, RTs
row). However, no effect of the presence of social feedback (p = .213) nor interaction (p
= .178) was found as shown in Fig. 5. Planned post hoc comparisons showed that, while
the difference between the flashlight and the human conditions was significant ( = —2.760,
Pukey = -017), there was no difference between the robot and human conditions (1 = 0.611,
Pukey = -814). Additionally, although it did not reach significance, there was a trend toward a
difference between robot and flashlight conditions (r = —2.155, pyey = .081). Consistently
with our hypothesis H2 that the effect on RTs is due to the incongruence between the two
social signals (cue and feedback), it appears that the difference between flashlight and robot
is mainly driven by conditions where the social feedback was provided (Fig. 5). Considering
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Fig. 5. Twenty percent validity conditions from the tree studies divided by the type of cue (top labels) and presence
of social feedback (bottom labels). * indicates a group-wise difference in which p-value is below .05.

only those conditions with social feedback, we found a significant difference between robot
and flashlight (t = —2.917, pukey = .011) while this difference is not significant between
robot and human (# = —0.193, pukey = .980). On the other hand, in conditions with no social
feedback, no difference was found between robot and flashlight (r = —0.201, pyrey = .978)
nor between robot and human (t = 1.029, pyey = .560).

4. General discussion

This series of studies had two objectives: (i) to examine the effects of a combination of
pre- and post-decision social signals on participants’ decision processes, and (ii) to assess
whether robot signals affected performance similarly to human signals. We performed three
studies using a two-alternative choice task where we manipulated the congruency of the pre-
decision cue and the presence of post-decision social feedback. The studies differed in the
type of agent involved: pre-decision cues were given by a robot (Experiment 1), a flashlight
(Experiment 2), or a human (Experiment 3); and post-decision social feedback was given by
a robot (Experiments 1 and 2) or a human (Experiment 3).

Based on previous research employing verbal social praise as feedback, we hypothesized
that positive reactions from the robot to participants’ wins would increase their trust in the
robot and that it might in turn increase their tendency to follow its cues. Our results did not
confirm this hypothesis, not only in the robot condition but also in the human condition. One
explanation could be that social praise can only be mediated by verbal feedback. Alternatively,
it could be that the task—that is, following valid cues and unfollowing invalid cues—was too
simplistic for the participants’ choices to be altered by the other agent’s feedback. In addi-
tion, for the human condition, we presented participants only with 20% validity conditions.
Thus, the cues were highly unreliable (from participants’ perspective). Therefore, in case of
such high unreliability of the cues, participants simply might have chosen the strategy to not
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follow the cues, and the feedback could not have influenced that strategy. In the robot condi-
tion, following rate was strictly related to validity (there was in fact a main effect of validity).
However, this was not modulated by social feedback. Thus, it seems that for the rate of follow-
ing, strategic control was the main mechanism influencing participants’ behavior (following
rate), and the social feedback was not potent enough to modulate the control mechanism.
This is in line with the results of Kompatsiari et al. (2022) where the authors showed that in
a gaze cueing paradigm, strategic control is a more potent factor than social signals, regard-
ing orienting of attention. Finally, it might also be that the agents being represented as 2D
photographs were not naturalistic enough to evoke reactions to the feedback they provided,
especially since the study was conducted online. Further investigation is needed to disentan-
gle these questions and to better understand how robot social feedback may influence human
trust and decision-making processes.

In line with our second hypothesis, our main results are related to participants’ RTs, which
showed a slower decrease over the course of the experiment in the condition with low cue
validity and social feedback—that is, when the robot was mostly giving invalid cues but pro-
viding positive feedback after successful guesses (Experiment 1, Fig. 3b). RTs can be partic-
ularly informative in the study of decision-making (Gold & Shalden, 2007; Ratcliff, 2013).
Typically, choices made instinctively are much faster than those involving a high degree of
deliberation (Rubinstein, 2007). In this study, we expected slower responses in the condition
with low cue validity and social feedback as a result of the violation of the expectation of
congruence between cue and feedback. Although this effect was not observed when consid-
ering RTs averaged over trials, we found that it emerged over the course of the experiment.
This might be related to participants’ realization only over time of the validity of the cue.
The validity of the cue is not obvious at the beginning of the experiment and requires the
accumulation of a sufficient amount of “samples” to understand that the agent is providing
mostly invalid cues. In consequence, the discrepancy between the cue validity and the social
feedback also becomes evident only as the experiment progresses.

To further test whether this effect was due to the relationship between the cue and the
feedback as social signals, we replaced the robot cue with a non-social cue (flashlight) in
Experiment 2. As a result, the effect of increased RTs for incongruent cues, emerging over
the course of Experiment 1 was not observed anymore. This confirmed that the effect could
not be attributed to non-social processes, such as attention orienting to the saliency of the
cue. Overall, the analyses conducted in Experiments 1 and 2 indicate that the effect is less
likely to be explained by either attentional mechanisms, feedback expectation, or cognitive
control. Instead, our findings suggest that the effect related to (in)congruency of social cues
and social feedback was driven by the expectations of consistency between the social cue and
the feedback communicated by the robot. The violation of such expectation may have led
to the engagement of cognitive processes related to reasoning about the robot’s actions and
intentions, or to a higher effort needed to suppress the cued response it has become evident
that it is in contradiction with the feedback, most of the time (see similar results by Belkaid
etal., 2021).

However, the effect did not replicate when the cue and feedback were provided by a human
in Experiment 3. In addition, our third hypothesis that robot signals would elicit similar
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responses to human signals was only moderately supported by comparing the three exper-
iments. This suggests that people have different social expectations about humans and robots.
For instance, one can speculate that, as machines, robots are expected to behave in a more
consistent, predictable way, compared to humans. In this case, the violation of the expecta-
tion of congruent cues and feedback by a human agent is thus less surprising and salient than
by a robot agent.

Overall, this study highlights the importance of studying HRIs from the perspective of
experimental psychology. Indeed, previous research suggests that people can perceive robots
as social agents (Hortensius & Cross, 2018; Marchesi et al., 2019; Sheridan, 2020). Among
other non-verbal signals, extensive research has underscored the role of eye contact and gaze
behavior in HRI (Kompatsiari et al., 2019, 2021, 2022) and the consequences of those sig-
nals on participants’ performance (i.e., prolonged RTs) and overall quality of the interaction
(reduced sensitivity to outcomes; Belkaid et al., 2021). Concurrently, there is an increasing
number of foreseen applications for interactive robots, from collaborative manufacturing to
daily assistance or therapy. For instance, robots equipped with non-verbal signals have been
employed for both adult (Fasola & Mataric, 2013) and children (Ghiglino et al., 2023; Scas-
sellati et al., 2018) trainings in a clinical context. Understanding how users perceive signals
exhibited by these machines is therefore critical for designing effective technologies that meet
the users’ needs and application requirements (Belkaid et al., 2021).

The present study illustrates how expectations about robots and humans during social inter-
actions may differ. This needs to be taken into account to interpret results from robot-based
paradigms. On the other hand, it also emphasizes the opportunity presented by robots as
behaviorally complex social agents that are yet not necessarily subject to the same social
norms as those at play in human-human interactions. Indeed, there may be a mismatch
between what we expect from a machine versus a social agent. We could be more forgiv-
ing of a human who breaks a social rule but less forgiving of a robot that is expected to
be programmed correctly. For instance, Dietvorst and colleagues described how ‘“‘algorithm
aversion” leads humans to be less forgiving of Al forecasting algorithms when making errors,
compared to human forecasters (Dietvorst, Simmons, & Massey, 2014). On the contrary, we
could tolerate more errors from a machine that did not learn our social norms. Interestingly,
robots can be designed to behave according to certain norms or to break them. Interestingly,
Leib and colleagues tested how Al-generated advice could corrupt people’s behavior dur-
ing a task as much as a human advice could do (Leib, Kobis, Rilke, Hagens, & Irlenbusch,
2021). Moreover, social norms and expectations are constantly updated throughout interac-
tions. By exploiting differences in people’s expectations about humans and robots, and by
manipulating how participants perceive the robot and how the robot behaves, researchers can
cast novel insights into how social expectations and norms are formed and updated in human
interactions.

4.1. Limitations and future research

One limitation of our study is the absence of tangible incentives for participants. While
we aimed to examine the impact of non-verbal cues in a controlled environment, the absence

85UB017 SUOWILIOD 8A1ea10 3qeot|dde aus Aq peusenob afe seole YO ‘8sn J0 Sa|ni o} Akeiqi 8uljuO A8]1M UO (SUOIPUOD-pUe-SWsl 00" A3 1M AteIq 1 U1 IUO//SANY) SUORIPUOD PUe SW | 83 88S *[7202/70/TT] U0 Areiqiauljuo A8|1nm ‘20Ul aueiyooD Aq €6£€T SBOO/TTTT OT/I0P/W00 A8 |1 Akeiq 1 pul|uo//Sdiy Wwoi papeojumoq ‘ZT ‘€202 ‘6029TSST



18 of 22 L. Parenti, M. Belkaid, A. Wykowska/ Cognitive Science 47 (2023)

of real-world consequences or monetary gains may have attenuated the effects on decision-
making. Future work could investigate how actual gains (monetary or otherwise) affect moti-
vation, performance, and cue following, providing a more ecologically valid perspective on
decision-making in HRI. Another limitation to consider is that our study utilized a specific
robot representation, one that might be perceived as cute and approachable. HRIs can involve
a wide range of robot designs, from utilitarian to anthropomorphic. The extent to which
non-verbal cues impact decision-making might vary with different robot designs. Future
research could explore how diverse robot representations influence the interpretation and
effects of non-verbal cues in interaction.

5. Conclusion

The current study focused on investigating how robot signals affect human decision-making
processes and how this compares to decision-making in other social and non-social scenar-
ios. We showed that violation of expectations regarding congruency of pre- and post-decision
social signals expressed by the robot affects performance in decision-making. Interestingly,
the human agents providing the social signals were not scrutinized with the same degree
of expectations. These findings highlight the importance of studying people’s expectations
toward social robots and the potential effects of the violation of those expectations in behav-
ioral and psychological terms. As a relatively new technology, expectations about social
robots may vary. This can be due to a lack of understanding of their behavioral and cog-
nitive capabilities, but also to a mismatch between what we expect from a machine versus a
social agent. Examining the factors underlying such expectations and the effects of deviat-
ing from them is essential to develop effective and intuitive ways for humans and robots to
interact and work together.
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