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GOP-BASED LATENT REFINEMENT FOR LEARNED VIDEO CODING

Mohsen Abdoli, Gordon Clare and Félix Henry

IRT b-com, 1219 Avenue des Champs Blancs, 35510 Cesson-Sévigné, France.

ABSTRACT

This paper presents a method allowing learned video encoders

to apply arbitrary latent refinement strategies to serve as Rate-

Distortion Optimization (RDO) at the time of encoding. To do so, a

latent domain search is applied on an initial latent representation of

the video signal. This search is implemented as a set of iterations,

each of which performs a gradient descent with back-propagation

of error defined by a Lagrangian RD cost. This cost function is

intentionally chosen to be the same as the cost function that was

used during the end-to-end model training, except that instead

of updating model weights, each iteration fine-tunes the latent

representation itself. Moreover, a temporal look-ahead is integrated

in the cost function of I and P frames to take into account the

cascade effect of their latent fine-tuning on subsequent frames in the

Group of Pictures (GOP). The experiments show that the proposed

latent space RDO method can improve by 11.6% and 9.4% in terms

of BD-BR coding efficiency in Random-Access (RA) and All-Intra

(AI) configurations, when applied on top a high-performance open-

source end-to-end codec.

Index Terms—Learned Video Coding, Rate-Distortion Optimization,

Back-propagation with gradient decent.

I. INTRODUCTION

End-to-end Learned Video Codec (LVC) systems have recently

emerged to challenge conventional coding systems that have been

widely used for decades [1]–[4]. Even though different sectors of

the media broadcast chain still seem unprepared to consider their

deployment, these alternative coding systems are rapidly maturing

and attracting attention. Some of the notable challenges to address

so as to pave the way for deployment of LVC systems are: further

improving compression efficiency, hardware support (particularly

at the decoder-side), standardization of different aspects, and pe-

ripheral encoder functionalities which normally allow a codec to

be used in real-world scenarios [5].

One of the critical peripheral functionalities of a codec is the

the ability to apply arbitrary Rate-Distortion Optimization (RDO)

strategies at the time of encoding. In LVC, once a codec model is

trained, its utilisation is fixed unbending as two forward inference

passes by the encoder E and decoder D. This simplicity comes at

the cost of flexibility and limited choices, compared to conventional

video coders, such as High Efficiency Video Coding (HEVC) and

Versatile Video Coding (VVC), where RDO algorithms are in

essence extremely flexible and are used widely and arbitrarily.

A lack of effective RDO schemes is one of the aspects blocking

LVC systems from being realistically assessed in real-world scenar-

ios [6]. There have been studies addressing this shortcoming. A first

approach is to train the encoder model such that it performs RDO

in inference mode. For instance, RDOnet deploys masking layers to

zero-out certain coefficients. By training models with such layers,

unimportant regions of the image are identified during inference and

do not have their information transmitted [7]–[9]. The drawback

of this approach is the lack of inference-time signal adaptation.

One solution to enable such a feature is to mimic conventional

block-based RDO using mode-selection and choosing the mode

that minimizes the Rate-Distortion Cost (RD-cost). Examples of

how to define “coding modes” at the block-level are varying block

resolution [10], or training different probability distribution models

[11]. Online model fine-tuning and transmission of the refined

model as meta-data is yet another approach for adaptively encoding

a sequence [12, 13]. Despite their promising performance, model

fine-tuning methods suffer from heavy encoding-time computation.

Latent adaptation methods that are used in Learned Image Codec

(LIC) systems, on the other hand, fine-tune the signal itself, rather

than models. One realization of this concept is implemented by a

pre-encoding phase in which the input image is modified in the

pixel domain [14, 15]. Alternatively, one can modify the latent

representation of an image after encoding and before quantization

[16, 17]. In both cases, these methods apply back-propagation

with gradient descent on the RD-cost of the encoded image latent

representation and obtain an alternative representation with a better

coding efficiency.

Inspired by the LIC latent adaptation concept, this paper enables

RDO in the context of LVC. To do so, each compressed frame of

video is fine-tuned in the latent domain to adapt with content. In

order to take into account the Group of Pictures (GOP) structure

of a video, a short look-ahead is also deployed to incorporate

the impact of fine-tuning the latent representation of the current

frame on future frames. The rest of this paper is organized as

follows. First, a base coder is formulated in Section II on top

of which the proposed method is presented. Section III elaborates

the proposed method, introducing latent space fine-tuning RDO.

Experimental results are presented in Section IV and finally the

paper is concluded in Section V.

II. BASE CODER

Since the proposed latent domain RDO is essentially orthogonal

to the generic design of its underlying LVC, it is assumed here

that a pre-trained codec tuple is given in the form of an encoder

and a decoder models, respectively expressed as < E,D >, whose

parameters Θ =< Θe,Θd > are jointly optimized. Using this LVC,

encoding a frame x transforms it to a latent representation z in a

latent space, as:

z = E(x; Θe). (1)

Subsequently, decoding the latent representation z transforms it

back to a pixel-domain representation x̂:

x̂ = D(z; Θd). (2)
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Fig. 1: One iteration of the proposed frame-based RDO method. z(i) and z(i+1) are the input and output of this process, respectively,

while z(i+1) is also the input to the next iteration.

The above round-trip is typically monitored by the two metrics

of rate and distortion. Depending on available information, the rate

metric is either the exact number of bits, or an estimation of it.

Given an entropy coder EC, the exact rate of a latent representation

can be computed as r(z) = EC(z). However, the entropy coder

operates exclusively on discrete data, thus is non-differentiable.

Consequently, during the training process of an LVC, the above rate

is typically estimated by an approximated Probability Distribution

Function (PDF) of the continuous uniform distribution p, as:

r̃(z) = −log2pz(z). (3)

Moreover, the distortion metric d is computed as the squared

l2-norm of the compression loss error:

d(x, z) = ∥x− x̂∥22 = ∥x−D(z; Θd)∥
2
2. (4)

Given a Lagrangian multiplier λ, the training of the codec is

performed on a dataset of samples x = {xk|k = 0, 1, ..., |x| − 1},
by minimizing an estimation of its rate-distortion cost as the loss

function:

Lλ(x; Θ) =
1

|x|

∑

xk∈x

d(xk, zk) + λr̃(zk). (5)

The optimization of the model parameters Θ to minimize the loss

function of Eq. 5 is typically carried out by iteratively applying

gradient descent with back-propagation of its error, expressed

as ∇ΘL(Θ) in Eq. 6. Each iteration j of this algorithm back-

propagates the error with a given learning rate parameter, denoted

as η:

Θ(j+1) = Θ(j) − η∇ΘL(x; Θ
(j)). (6)

III. PROPOSED LATENT SPACE RDO

Frame-based RDO with latent fine-tuning

It is assumed that an operational codec tuple is provided as

< E,D >, whose optimal parameters Θ∗ are optimized by using

Eq. 6 on a dataset. The proposed method is applied in an iterative

manner on individual frames of a sequence. Each iteration i, starts

with an initial latent representation z(i) and ends with an output

latent representation z(i+1), which will serve as the initial latent

representation of the next iteration. In this section, this repetitive

process is described for the first iteration (i.e. i = 0), where

the initial latent representation is exceptionally generated by the

forward pass of the encoder:

z(0) = E(x; Θ∗

e) (7)

As the rest of the process is common for all remaining iterations,

the initial latent representation of the ongoing iteration is denoted

as z(i). By computing the approximate rate (i.e. Eq. 3) and the

distortion (i.e. Eq. 4) of a single latent sample z(i), one can obtain

its rate-distortion cost based on the given Lagrangian multiplier λ:

Lλ(z
(i); Θ∗) = d(x, z(i)) + λr̃(z(i)). (8)

The gradient of the loss function with respect to the latent repre-

sentation z is expressed as∇zLλ(Θ). In contrast to∇ΘLλ(Θ) that

is computed with respect to model parameters Θ during the training

phase, the gradient used in the RDO is computed with respect to

the latents of the input signal. As a result, back-propagation of this

error updates only the latents and keeps Θ unchanged. This process

is expressed as follows:

z(i+1) = z(i) − η∇zLλ(z
(i); Θ∗) (9)

By choosing the same value of λ as in the training phase, the

above computation turns into an RDO process that is aligned with

the end-to-end training of the codec models. Since this optimization

is aligned with that of the training phase, each iteration actually

fine-tunes the latent representation z(i+1).

Fig. 1 schematically summarizes the above process for one

iteration. It is noteworthy that, except in producing the initial latent

representation z(0), the encoder model E is actually not involved in

the proposed RDO process, while decoder model D is used once

per iteration. The complete process of the proposed latent space



RDO at the frame-based is implemented by iteratively running

the above steps. Algorithm 1 describes this process, in which a

learning rate decay is also applied for an improved convergence.

This technique takes two parameters of initial learning rate η(0)

and decay rate β and is applied as follows:

η(i) = η(0)/(1 + β.i) (10)

Algorithm 1 Iterative frame-level fine-tuning RDO

input: x, λ,Θ∗,E,D,C
parameters: η(0), N, β
output: z∗

z(0) ← E(x;Θ∗) (Eq. 7)

for i := 0 to N − 1 do

η(i) ← η(0)/(1 + β.i) (Eq. 10)

x̂(i) ← D(z(i); Θ∗) (Eq. 2)
r
(i) ← EC(z(i)) (Eq. 3)
d
(i) ← ||x− x̂(i)||2 (Eq. 4)
Lλ(z

(i); Θ∗)← d
(i) + λr(i) (Eq. 8)

z(i+1) ← z(i) − η(i)∇zL(z
(i); Θ∗) (Eq. 9)

end for

z∗ ← z(N−1)

GOP-based RDO with latent fine-tuning

Dependencies due to temporal frame referencing defined by the

Group of Pictures (GOP) introduce a cascading effect of frame

level decision changes. In particular, changing the current frame xc

can impact next frames in the GOP. To exploit this characteristic,

the proposed method takes into account the GOP structure in the

cost calculation of I- and P-frames. To avoid the complexity of

considering the entire GOP, one single next frame, denoted as xn,

is included in the RDO of xc.

The goal of each iteration of the GOP-based RDO is to obtain

an altered latent as z
(i+1)
c such that it will reduce the overall cost

of not only current frame xc, but also its next frame xn. In other

words, each iteration described in the previous section is followed

by a normal (i.e. without latent fine-tuning RDO) encoding pass

on xn in order to provide its latent representation Eq. 11. This

additional latent representation allows estimating the cascade effect

due to changes of zc in current iteration.

z(i)n = E(xn; Θ
∗|z(i)c ). (11)

A parameter α ∈ [0, 0.5] is defined to control the GOP impact by

weighting the involvement of xn in the RDO decision of xc. In par-

ticular, two extremes of this parameter indicate no involvement of

xn (α = 0) and equal involvement of xc and xn (α = 0.5). Given

α, we incorporate the GOP impact in the fine-tuning RDO process

by changing the rate and distortion computation, as expressed in

Eq. 12 and Eq. 13.

d
G(zc, zn) = (1− α)d(xc, zc) + αd(xn, zn) (12)

r
G(zc, zn) = αr(zc) + (1− α)r(zn) (13)

By also computing the distortion of the decoded signal of z(i)

as x̂(i), one can compute the approximate rate-distortion cost:

LG
λ (z

(i)
c , z(i)n ; Θ∗) = d

G(z(i)c , z(i)n ) + λrG(z(i)c , z(i)n )). (14)

Finally, the latent fine-tuning of the GOP-based RDO is per-

formed by back-propagating the gradient of the GOP loss with

respect to only zc, as expressed in ∇zcL
G
λ . It is important to note

that, as indicated by the left side of Eq. 15, the GOP-based RDO

updates only the current latent zc and not the future latent zn.

However, for this update, the cascade effect on the cost of the

future latent is taken into account by including zn in computation

of LG
λ .

z(i+1)
c = z(i)c − η∇zcL

G
λ (z

(i)
c , z(i)n ; Θ∗) (15)

IV. EXPERIMENTS

Settings

The latent space RDO method has been implemented on top of

an open-source1 end-to-end LVC framework developed by Orange,

called Artificial Intelligence for Video Coding (AIVC) [18]. It is

noteworthy that this framework has won the Challenge on Learned

Image Compression (CLIC) challenge in 2021. Therefore, in terms

of compression performance, we aim at improving a codec which

is already highly efficient. A set of six codec models are provided

with the AIVC software, which are all optimized with a Lagrangian

rate-distortion cost, as described in Section III.

The GOP impact parameter α, and the learning rate decay

parameters η(0) and β, are the main parameters to be tuned in

the experiments of this paper. All these parameters are chosen

empirically, where the value of α was set to 0.4 and the learning

rate decay parameters were set to η(0) = 5e−4 and β = 0.5.

The actual iterative fine-tuning algorithm was implemented in

a conditional manner, such that the iterations would stop if the

progress of the optimization is smaller than a given threshold. This

threshold was chosen manually so that the trade-off between the

encoding complexity and coding performance would be reasonable.

A GOP size of 16 was used in experiments, consisting of one

I frame, eight P frames and seven B frames. As the GOP-based

implementation imposes inevitable additional complexity due to

encoding of next frame, we limited it to only two iterations.

Precisely, each GOP-based experiment consists of two passes: a

conditional frame-based latent fine-tuning (as described above),

followed by two additional iterations of the GOP-based latent fine-

tuning.

Two main metrics of have been used for performance assessment,

namely, bitrate saving in terms of Bjøntegaard-Delta Bitrate (BD-

BR) and complexity in terms of encoding time. For both metrics,

the base AIVC coder without the proposed fine-tuning RDO is used

as the anchor. Thus, the anchor has a performance of 0% in terms

of BD-BR and 100% in terms of encoding time. Consequently,

negative values of BD-BR indicate percentage of bitrate saving at

the same level of PSNR quality and complexity values larger than

100% indicate the ratio of encoding time increase.

1https://github.com/Orange-OpenSource/AIVC
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Fig. 2: Evolution of rate and PSNR through 20 iterations of the

proposed RDO.

Performance

Table I compares the compression efficiency performance of the

proposed latent fine-tuning RDO method in terms of BD-BR. In

this table, two coding modes of All-Intra (AI) and Random-Access

(RA) are considered, where for the RA mode, results of the frame-

based and GOP-based are presented separately. As an early stop

method is implemented in the iterative algorithm, the number of

iterations for obtaining the results in Table I are different. This

number varies between 7 and 15 iterations, where higher resolution

sequences slightly tend to need more iterations before convergence.

Moreover, as higher bitrates usually result in more non-zero latents,

it was also observed that they require more iterations to converge.

Fig. 2 shows the evolution of performance through twenty iterations

of the proposed latent fine-tuning in All-Intra (AI) mode, with

checkpoints at N = 5, 10, 15.

When comparing the two frame-based columns, it can be seen

that the performance-complexity trade-off of the AI (with 10.6%

gain for 364% encoding complexity) mode is better than the RA

mode (with 9.4% gain for 470% encoding complexity). This is

justified by the underlying base encoder, in which latents of an

inter frame consists of both intra and inter prediction information

that are conditionally coded, while the latents of an intra frame only

include intra prediction information [18]. Therefore, fine-tuning of

intra latents is naturally a simpler task.

When comparing the two RA columns, it is observed that the

GOP-based method outperforms the frame-based RA method in

terms of BD-BR and at the cost of additional complexity. Precisely,

the GOP-based method brings about 2.2% additional BD-BR gain

at the cost of about 75% additional complexity. One might argue

that the frame-based method could have brought the same gain if

it was not conditionally stopped using the performance threshold.

However, it was observed that by allowing several more iterations of

the frame-based method and even by manually tuning the learning

rate, the achievable compression efficiency performance is still

Table I: Coding performance of the proposed method (RDO=1) in

AI and RA (frame-based and GOP-based), in terms of BD-BR and

encoding time, with respect to the base coder as anchor (RDO=0).

Class

Frame-based Frame-based GOP-based

AI RA RA (α=0.4)

BD-BR ET BD-BR ET BD-BR ET

A1 -10.8% 322% -9.8% 454% -11.4% 827%

A2 -10.6% 389% -9.6% 419% -11.6% 880%

B -10.7% 356% -9.7% 398% -12.0% 797%

C -11.0% 310% -9.0% 510% -11.4% 818%

D -10.2% 395% -9.2% 480% -11.5% 804%

E -10.2% 410% -9.2% 560% -11.5% 774%

All -10.6% 364% -9.4% 470% -11.6% 817%
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Fig. 3: RD curves of the proposed RDO method at different bitrate

ranges of five 1920×1080 resolution sequences. Dashed and solid

lines correspond to anchor and proposed methods, respectively.

below the GOP-based method. To demonstrate the performance

in different ranges of bitrate, Fig 3 shows Rate-PSNR curves. This

figure is produced by applying the proposed GOP-based latent fine-

tuning in Random-Access (RA) coding mode and on four 1080p

sequences. As can be seen, the performance improvement due the

proposed method is consistent at different bitrates.

V. CONCLUSION

In this paper, a latent domain RDO method is proposed that

can be applied on top of any arbitrary learned-based end-to-end

image and video coder. This method compensates the lack of

flexibility in end-to-end encoders, in which the compression process

is typically an inelastic mapping from the pixel-domain to the

latent domain, performed by the layers of the encoder model.

Moreover, the GOP-based version of the proposed method takes

into account the temporal dependency of frames when optimizing

the latent representation of a given frame. Experiments show that

the both frame-based and GOP-based version of the proposed

method can significantly improve the rate-distortion performance

of the underlying with different complexity-performance trade-offs.



VI. REFERENCES
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