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Flocking of the Matrix-Based Cucker-Smale model via a generalised Dobrushin's Ergodicity Coefficient

In this article, we address the asymptotic behaviour of the matrix-based Cucker-Smale model. In this model, the alignment force between two individuals i and j is represented by Aij(t)B. Here, Aij(t) is a function that decreases as the distance between i and j increases, and B is a matrix with positive eigenvalues. Specifically, when B is the identity matrix, we recover the well-known Cucker-Smale model on a weighted digraph, which is commonly used dynamics model to analyse agents alignment. When B is not diagonalisable, this model presents unique complexities due to the absence of a maximum principle, making its analysis more challenging than traditional Cucker-Smale type models. To establish necessary conditions for alignment, often referred to as flocking in this context, we introduce an novel generalisation of the Dobrushin's ergodicity coefficient. This coefficient measures the contraction rate with respect to a generalisation of the Hopf's oscillation seminorm and is well-suited for block matrices. Our study yields flocking results under two key assumptions about the matrix A: the scrambling assumption, which implies a certain level of connectivity between agents, and the hierarchical leadership assumption, indicating a structured leader-follower relationship. By applying these findings to Aij(t) ∝ 1 + ∥xi -xj∥ 2 2 -β/2 , we establish a novel criterion for the parameter β, guaranteeing unconditional flocking.

Introduction

Recent researches have intensively focused on the theoretical exploration of collective behaviours in various biological systems [START_REF] Parrish | Complexity, pattern, and evolutionary trade-offs in animal aggregation[END_REF][START_REF] Couzin | Self-organization and collective behavior in vertebrates[END_REF][START_REF] Verdière | Mathematical modeling of human behaviors during catastrophic events[END_REF]. A classical way to model such a system is to consider three fundamental interactions: long-range attraction, short-range repulsion and alignment -collectively known as the First Principles of Swarming. Such model has been adapted to a variety of contexts, as evidenced by its application to the movement dynamics of birds [START_REF] Couzin | Self-organization and collective behavior in vertebrates[END_REF], fish [START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: application to the capelin[END_REF], and insect [START_REF] Bernoff | A primer of swarm equilibria[END_REF] populations. Furthermore, its utility extends to the field of engineering, as illustrated by [START_REF] Perea | Extension of the cucker-smale control law to space flight formations[END_REF], where this model is employed to devise a spacecraft control law for autonomous formation acquisition and formation keeping.

One of the first models to deal with alignment was introduced by Vicsek et al. [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] in 1995, with subsequent theoretical studies provided in [START_REF] Cao | Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events[END_REF][START_REF] Cao | Reaching a consensus in a dynamically changing environment: A graphical approach[END_REF]. In 2007, Cucker and Smale proposed in [START_REF] Cucker | Emergent behavior in flocks[END_REF] a variant of this model, which has since been the basis for numerous adaptations. In 2011, a notable variation by Motsch and Tadmor was presented in [START_REF] Motsch | A new model for self-organized dynamics and its flocking behavior[END_REF], proposing to weight the influence of one agent on another by the total influence received. These models have been extensively examined due to their simple formulation of consensus in velocity among agents.

For Cucker-Smale type models, one of the main issues is to find sufficient conditions over parameters and initial conditions for consensus to be reached. More precisely, we say that there is flocking if for all pair of agents i, j ∈ [[1, N ]], t → ∥x i (t) -x j (t)∥ is bounded and t → ∥v i (t) -v j (t)∥ vanishes where x i (t) and v i (t) are respectively the position and the velocity of agent i ∈ [ [1, N ]] := {1, 2, . . . , N } at time t ∈ R + := [0, +∞). If this holds for any initial condition, the flocking is said to be unconditional.

Model and main results

We investigate the flocking of an alignment individual-based model, called in this article the matrix-based Cucker-Smale (MBCS) model, wherein a population of N ∈ N * := {1, 2, 3, . . .} agents moves within R d , where d ∈ N * . We denote by x p i (t) ∈ R and v p i (t) ∈ R the p th coordinate of x i (t) and v i (t). Let Q ∈ R N d×N d + be the interaction matrix. This matrix depends on the solution and is structured as a block matrix. We denote by Q pq ij the (p, q) ∈ [ [1, d]] 2 entry of block (i, j) ∈ [[1, N ]] 2 . We assume that the dynamics is governed by the subsequent system of ordinary differential equations:

         dx p i dt (t) = v p i (t), dv p i dt (t) = N j=1 d q=1 Q pq ij x(t), v(t) v q j (t) -v q i (t) . (1) 
We also assume that

Q pq ij x(t), v(t) = A ij B pq ψ ∥x j (t) -x i (t)∥ 2 , (2) 
where for all n ∈ N * ∪ {∞}, ∥•∥ n is the l n -norm on R d , B ∈ R d×d , A ∈ R N ×N + and ψ : R + → R * + := (0, +∞) is the communication function which is assumed to be decreasing and smaller than 1. A commonly used example of such a communication function is ψ(r) = (1 + r 2 ) -β/2 . By setting B = I d being the identity matrix of size d or taking d = 1, we recover the Cucker-Smale model on a weighted digraph studied for instance in [START_REF] Shen | Cucker-Smale flocking under hierarchical leadership[END_REF][START_REF] Cucker | On the critical exponent for flocks under hierarchical leadership[END_REF][START_REF] Dalmao | Cucker-Smale flocking under hierarchical leadership and random interactions[END_REF][START_REF] Dong | Flocking of the Cucker-Smale model on general digraphs[END_REF][START_REF] Dong | Emergent behaviors of continuous and discrete thermomechanical Cucker-Smale models on general digraphs[END_REF][START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]. By further imposing A ij = 1/N if i ̸ = j, we recover the original Cucker-Smale model as introduced in [START_REF] Cucker | Emergent behavior in flocks[END_REF] and subsequently examined in [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF][START_REF] Ha | A simple proof of the Cucker-Smale flocking dynamics and mean-field limit[END_REF][START_REF] Carrillo | A review on attractive-repulsive hydrodynamics for consensus in collective behavior[END_REF]. Model [START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: application to the capelin[END_REF] allows for the consideration of a wide range of communication protocols (as in [START_REF] Dong | Emergent behaviors of continuous and discrete thermomechanical Cucker-Smale models on general digraphs[END_REF][START_REF] Xi | Consensus problems for high-order linear time-invariant swarm systems[END_REF][START_REF] Li | Dynamic consensus of linear multi-agent systems[END_REF]) where factors other than the spatial state affect linearly their alignment. In this generalised framework, an agent updates its velocity along a specified coordinate by considering the differential in velocity relative to other agents across all coordinates. This generalised model was introduced in [START_REF] Shu | Anticipation breeds alignment[END_REF], where it is demonstrated to emerge naturally within the context of attraction-repulsion dynamics with anticipation. Similar consensus models are also studied in the field of coupled dynamical systems such as in [START_REF] Wu | Synchronization in networks of nonlinear dynamical systems coupled via a directed graph[END_REF].

Our work is focused on the derivation of flocking results in the case where B is not diagonalisable. We assume that B has positive eigenvalues. In particular, this implies that B admits a Jordan decomposition on R. We denote by d the largest size of a Jordan block within the Jordan normal form of B. We also assume that matrix A satisfies one of the two following assumption: Assumption 1 (Scrambling). For all i ̸ = j, A ij > 0 or A ji > 0 or there exists k ̸ = i, j such that A ik ∧ A jk > 0.

Assumption 2 (Hierarchical leadership). For all i ̸ = j, A ij > 0 implies j < i and j̸ =i A ij > 0.

We note that both assumption implies that the graph induced by A, that is the graph G = (V, E) where V = [ [1, N ]] and E = {(i, j) | A ij ̸ = 0}, has at most one recurrent class, which is a necessary condition for the flocking phenomenon (see [START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]Section 3.4]). We refer to Figure 1 and Figure 2 for example of graphs satisfying these assumptions.

One of the primary outcomes of this article is the theorem presented below, which establishes a flocking condition for the matrix-based Cucker-Smale model for a general function ψ. This theorem will be further expounded upon later, addressing Assumption 1 and Assumption 2 separately.

Theorem 1.1. Assume that B has positive eigenvalues and A satisfies Assumption 1 or 2. The flocking phenomenon occurs if

V ∞ (0) < K sup r≥X∞(0) (r -X ∞ (0)) ωψ(αr) -γ (ωψ(αr)) d -γ d (ωψ(αr)) d ,
where

X ∞ (0) := sup i̸ =j ∥x i (0) -x j (0)∥ ∞ and V ∞ (0) := sup i̸ =j ∥v i (0) -v j (0)∥ ∞ .
Constants α, γ and ω are positive and explicitly depend on model parameters. Constant K = 1 if A satisfies Assumption 1 and

K = 1/d if A satisfies Assumption 2. Corollary 1.2. If ψ(r) = 1 + r 2 -β/2
, the flocking phenomenon occurs if

• β < 1/d, the flocking phenomenon is therefore unconditional.

• β = 1/d and V ∞ (0) < Kω d / αγ d-1 .
• β > 1/d and V ∞ (0) < C where C is a constant depending on the parameters and the initial conditions.

For the standard Cucker-Smale model, it is known that the unconditional flocking happens if ψ met with the following heavy tail condition:

+∞ ψ(r) dr = +∞.

In particular, the flocking is unconditional when ψ(r) = (1 + r 2 ) -β/2 and β ≤ 1. Since the introduction of this model in [START_REF] Cucker | Emergent behavior in flocks[END_REF], it is also known that this value of β is critical in the sens that if β > 1, there are initial conditions under which flocking fails to occur. For the Cucker-Smale model on a weighted digraph and for a general matrix A in the one-dimensional case, it is also proved in [START_REF] Ha | On the critical exponent of the one-dimensional cucker-smale model on a general graph[END_REF] that 1 remains the critical value of β for the unconditional flocking to occur. However, to our knowledge, for higher dimension, the largest value of β for which we can prove that the unconditional flocking occurs is 1/D, where D ∈ N * is the coalescence diameter of matrix A, see for instance [START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]Corollary 3.11].

Moreover, it is known that under reasonable assumptions on A, the heavy tail condition on ψ also leads to the unconditional flocking [6, Theorems 3.2, 3.5]. Notably, in [6, Theorem 3.5], it is shown that a flocking condition for the Cucker-Smale model on a weighted digraph under the scrambling assumption is

V 2 (0) < χ +∞ X2(0) ψ(r) dr.
where for all t ≥ 0, X 2 (t) := sup i̸ =j ∥x i (t) -x j (t)∥ 2 , V 2 (t) := sup i̸ =j ∥v i (t) -v j (t)∥ 2 and χ is a positive constant depending on A. The proof of [START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]Theorem 3.5] is based on the fact that (X 2 (t), V 2 (t)) t≥0 follows a system of system of dissipative differential equations [START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]Equation (36)]. This implies in particular that the derivative of V 2 (t) is negative (see Figure 3). For more general matrix A, the derivative of V 2 (t) can be null at t = 0 (Figure 4) but V 2 (t) is always decreasing [6, Corollary 2.8]. However, it is not the case for solutions of Equation ( 1) for a general matrix B as illustrated by Figures 5 and6 in Section 4 below. This observation highlights the lack of a maximum principle, in the sense that V 2 reaches a maximum on (0, +∞) without being constant [START_REF] Protter | Maximum principles in differential equations[END_REF], making the study of this model notably more intricate.

The flocking of Equation ( 1) have already been addressed in [START_REF] Shu | Anticipation breeds alignment[END_REF]. In this paper, the authors assume that for all i ̸ = j, Q ij (t) is symmetric and that its eigenvalues λ p ij (t) all satisfy

ψ - 1 + ∥x i (t) -x j (t)∥ 2 2 β/2 ≤ λ p ij (t) ≤ ψ + , (3) 
where ψ -and ψ + are two positive constants. They use a hypocoercivity argument to find sufficient conditions for flocking to occur and they prove in particular that the flocking is unconditional when 

ψ(r) = (1 + r 2 ) -β/

The generalised Dobrushin ergodicity coefficient

According to [START_REF] Rhodius | On the maximum of ergodicity coefficients, the dobrushin ergodicity coefficient, and products of stochastic matrices[END_REF], an ergodicity coefficient is defined in the context of finite-dimensional space as follows: Let X be a linear subspace of R n , ∥•∥ be a norm on R n and ∥•∥ * be its related dual norm. Given M ∈ R n×n , the ergodicity coefficient related to X and ∥•∥ of M is defined by

τ X (M ) := sup π∈X ⊥ , π̸ =0 ∥πM ∥ * ∥π∥ * , (4) 
where X ⊥ := {π ∈ R n | ∀x ∈ X , ⟨π, x⟩ = 0} and ⟨•, •⟩ is the standard scalar product on R n . The Dobrushin's ergodicity coefficient corresponds to the case where ∥•∥ * is the standard l 1 -norm on R n and X = Span(1 n ) where 1 n = (1, 1, . . . , 1) ∈ R n and is usually denote by τ (M ). If M is a stochastic matrix then the Dobrushin's ergodicity coefficient admits the following expression:

τ (M ) = 1 2 max i̸ =j N k=1 |M ik -M jk | = 1 -δ(M ) where δ(M ) := min i̸ =j N k=1 (M ik ∧ M jk ) . (5) 
We easily verify that if τ (M ) < 1, or equivalently δ(M ) > 0, then M is ergodic in the sense that it has at most one recurrent class and is aperiodic. We also note that this coefficient have strong connections with the probability theory. First, if

(δ i ) i∈[[1,N ]]
is the canonical base of R N , τ (M ) can be rewritten in terms of total variation distance as follows

τ (M ) = max i̸ =j d TV (δ i M, δ j M ).
In addition, it is at the heart of the Doeblin theory since the Doeblin's condition is the existence of α > 0 such that

N k=1 (M ik ∧ M jk ) ≥ α.
Before introducing our extension of the Dobrushin's ergodicity coefficient, let us connect it to flocking. As underlined in [START_REF] Gaubert | Dobrushin's ergodicity coefficient for Markov operators on cones[END_REF], ergodicity coefficients are especially significant in analysing flocking due to their dual characterisation:

τ X (M ) = sup x / ∈X ∥M x∥ X ∥x∥ X ,
where ∥x∥ X := inf h∈X ∥x -h∥. From this characterisation, it follows that τ X (M ) corresponds to the operator norm related to ∥.∥ X . As a result, τ X (M ) will be denoted by ∥M ∥ op X in this article and τ (M ) by ∥M ∥ op 1 N . Linearising Equation (1), one can construct a semi-group P : (s, t) → P(s, t) ∈ R N d×N d , which satisfies v(t) = P(s, t)v(s). Given that the flocking phenomenon corresponds to the convergence of (v(t)) t≥0 to the linear space

H := (z 1 , . . . , z d , z 1 , . . . , z d , . . . , z 1 , . . . , z d ) T z ∈ R d
at a sufficiently fast rate, it follows that ∥P(s, t)∥ op H quantifies the distance to the configuration where all agents are aligned in the worst case.

The following theorem gives an explicit expression of ∥•∥ op H in the case where ∥•∥ is the l ∞ -norm on R N d . We say that P ∈ R N d×N d is a signed block stochastic matrix if 

N j=1 P ij = I d , where P ij denote block (i, j) of P and Q is a signed block intensity matrix if N j=1 Q ij = O d ,
∥P ∥ op H = 1 -∆(P ) and ∥Q∥ op H = -∆(Q), (6) 
where for all

M ∈ R N d×N d , ∆(M ) := min p∈[[1,d]] min i̸ =j d q=1 N k=1 M pq ik ∧ M pq jk . (7) 
Subsequent to the introduction of the Dobrushin ergodicity coefficient as presented in [START_REF] Dobrushin | Central limit theorem for nonstationary markov chains[END_REF], a wide range of variants have been developed. Studies in [START_REF] Rhodius | On the maximum of ergodicity coefficients, the dobrushin ergodicity coefficient, and products of stochastic matrices[END_REF][START_REF] Ipsen | Ergodicity coefficients defined by vector norms[END_REF] compare generalisations for different norms on R n , highlighting the pivotal role of the Dobrushin ergodicity coefficient. Extensions to the nonassociative and noncommutative context are examined in [START_REF] Mukhamedov | On dobrushin ergodicity coefficient and weak ergodicity of markov chains on jordan algebras[END_REF] and [START_REF] Mukhamedov | The dobrushin ergodicity coefficient and the ergodicity of noncommutative markov chains[END_REF], respectively. Moreover, an expansion in infinitedimensional spaces is discussed in [START_REF] Gaubert | Dobrushin's ergodicity coefficient for Markov operators on cones[END_REF].

Generalisations of ergodicity coefficient for linear spaces of dimension larger than 1 have already been studied. For instance, an ergodicity coefficient suitable for imprimitive matrices is developed in [START_REF] Hartfiel | Coefficients of ergodicity for imprimitive matrices[END_REF] and used to study the convergence of inhomogeneous cyclic Markov chains in [START_REF] Hartfiel | Convergence of inhomogenous products of matrices and coefficients of ergodicity[END_REF]. Latter, Mukhamedov et al.

propose in [START_REF] Mukhamedov | Generalized dobrushin ergodicity coefficient and uniform ergodicities of markov operators[END_REF] a general expression of τ for any linear space X and for the generalisation of l 1 -norm in an abstract state space. From this generalisation, they study the convergence of inhomogeneous Markov chains on a general state space in [START_REF] Mukhamedov | Generalized dobrushin ergodicity coefficient and ergodicities of non-homogeneous markov chains[END_REF]. In the context of finite dimensional space, they state that given a stochastic projection matrix Π ∈ R n×n on X and M ∈ R n×n satisfying ΠM = M Π we have

∥M ∥ op H = 1 2 sup {∥µM -νM ∥ | µ, ν ∈ S n , µ -ν ∈ N Π } ,
where

S n := {π ∈ R n | π i ≥ 0, i π i = 1} and N Π := {π ∈ R n | πΠ = 0}.
For a block matrix P ∈ R N d×N d , if there exists a stochastic projection matrix Π satisfying ΠP = P Π = Π, we recover the expression of ∥P ∥ op H

given in Theorem 1.3. However, such a projection does not exist in general for signed block stochastic matrices since we do not have the positivity condition. Consequently, even though Theorem 1.3 extends [26, Proposition 3.9] to non-positive operators in the case where X = H, our proof is closer to the approach of [START_REF] Gaubert | Dobrushin's ergodicity coefficient for Markov operators on cones[END_REF].

Outline

In Section 2, we provide a proof of Theorem 1. In Section 3, we prove Theorem 1.1 treating separately the case where A is scrambling (Assumption 1), the case where A satisfies the hierarchical leadership assumption (Assumption 2) and the application to

ψ(r) = (1 + r 2 ) -β/2
for both assumptions. We start by simplify Equation 1 using the Jordan decomposition of matrix B and we provide a characterisation of the form of the related semi-group P(s, t). Then, we provide an estimate of ∥P(s, t)∥ op H from which we derive the expected flocking conditions.

Finally, in Section 4, we discuss and illustrate our results. We first give an example of graphs satisfying Assumption 1 or Assumption 2. We simulate Equation ( 1) for four values of the pair (A, B) and compare the observed behaviour. In particular, we illustrate graphically the loss of the maximum principle by showing that in the case where B is the identity matrix, there is a strict decay of ∥P(0, t)∥ op H and when B is not diagonalisable or has complex eigenvalues, it may increases.

Extension of the Dobrushin ergodicity coefficient

This section is dedicated to the proof of Theorem 1.3. In Section 2.1, we first describe the quotient norm ∥•∥ H and we link it to the flocking phenomenon. Then, we characterise the related dual norm ∥•∥ * H . Following this, we describe the unit ball associated with the dual norm B * H . Finally, in Section 2.2, we provide an explicit expression of the operator norm

∥•∥ op H related to ∥•∥ H .

Preliminary results

We denote by x p i the ((i -1)d + p) th coordinate of a vector x ∈ R N d . For the sake of presentation, we denote

x i := (x p i ) p∈[[1,d]] ∈ R d and x p := (x p i ) i∈[[1,N ]] ∈ R N . For z ∈ R d and x ∈ R N d , z • x ∈ R N d is defined by (z • x) p i := z p x p i . Let H := {z • 1 N d | z ∈ R d } where 1 N d := (1, . . . , 1) T ∈ R N d , that is H = (z 1 , . . . , z d , z 1 , . . . , z d , . . . , z 1 , . . . , z d ) T z ∈ R d .
Let ∥x∥ H be defined by

∥x∥ H := 2 inf h∈H ∥x -h∥ ∞ = 2 inf z∈R d ∥x -z • 1 N d ∥ ∞ .
We first note that ∥.∥ H is a semi-norm since we can have ∥x∥ H = 0 if and only if x ∈ H. When d = 1, we have H = Span(1 N ) and thus ∥x∥ H will be denoted by ∥x∥ 1 N . We note that ∥x∥ 1 N corresponds to the Hilbert's seminorm defined in [START_REF] Gaubert | Dobrushin's ergodicity coefficient for Markov operators on cones[END_REF]. The following Lemma gives a characterisation of ∥x∥ H .

Lemma 2.1. For all x ∈ R N d , we have

∥x∥ H = 2∥x -z(x) • 1 N d ∥ ∞ = max i̸ =j ∥x i -x j ∥ ∞ ,
where

z p (x) = max j x p j + min j x p j 2 .
Proof. From the definition of ∥•∥ H , we have

∥x∥ H = 2 inf y∈R d max p∈[[1,d]] max i∈[[1,N ]] |x p i -y p | = max p∈[[1,d]] 2 inf λ∈R max i∈[[1,N ]] |x p i -λ|.
Then, as in [14, Lemma 4.1], we have

2 inf λ∈R max i∈[[1,N ]] |x p i -λ| = 2 max i∈[[1,d]]
x p i -

max j x p j + min j x p j 2 = max i̸ =j x p i -x p j ,
which leads to the expected result.

For all π ∈ R N d , let ∥π∥ * H be the dual norm related to ∥•∥ H defined by 

∥π∥ * H := inf λ ∈ R ∀x ∈ R N d , ⟨π, x⟩ ≤ λ∥x∥ H , (8) 
H ⊥ := {π ∈ R N d | ∀h ∈ H, ⟨π, h⟩ = 0}, which is equivalent to ∀p ∈ [[1, d]] , N i=1 π p i = 0.
The following lemma gives another characterisation of ∥•∥ * H . Lemma 2.2. For all π ∈ H ⊥ , we have

∥π∥ * H = 1 2 ∥π∥ 1 := 1 2 N i=1 d p=1 |π p i |.
Proof. Let us remind that we have

∥π∥ 1 = inf λ ∈ R ∀x ∈ R N d , ⟨π, x⟩ ≤ λ∥x∥ ∞ . Let π ∈ H ⊥ . Since ∥x∥ H ≤ 2∥x∥ ∞ , we directly have ∥π∥ * H ≥ 1 2 ∥π∥ * ∞ . From Lemma 2.1, if λ satisfies for all x ∈ R N d , ⟨π, x⟩ ≤ λ∥x∥ ∞ then ⟨π, x⟩ = ⟨π, x -z(x) • 1 N d ⟩ ≤ λ∥x -z(x) • 1 N d ∥ ∞ = λ 2 ∥x∥ H ,
which leads to the expected result. 

π = ρ • (µ -ν). (9) 
Proof. From Lemma 2.2, if π can be written as ( 9) then π ∈ B * H since we have

∀p ∈ [[1, d]] , N i=1 π p i = 0 and N i=1 d p=1 |π p i | ≤ 2. Let π ∈ B * H and let a p = N i=1 (π p i ) + . Since π ∈ H ⊥ , we have N i=1 (π p i ) + = N i=1 (π p i ) -= a p .
Furthermore, since ∥π∥ * H ≤ 1, we have

0 < d p=1 a p ≤ 1.
Then, if we define ρ p := a p + 1 d 1 -d p=1 a p and

µ p i := (π p i ) + + 1 N d 1 - d p=1 a p a p + 1 d 1 - d p=1 a p , ν p i := (π p i ) -+ 1 N d 1 - d p=1 a p a p + 1 d 1 - d p=1 a p ,
we easily verify that π p i = ρ p (µ p i -ν p i ), ρ ∈ S d and µ, ν ∈ S d N .

Remark 2.5. We note that if d = 1, S d N corresponds to the set of probability vector on R N and S d = {1}. Thus, in this case, for all π ∈ B * H , π = µ -ν where µ, ν are two probability vectors, which is the classical Hahn-Banach decomposition. It follows that ∥π∥ * H = 1 2 ∥µ -ν∥ 1 which highlights that ∥•∥ * H can be seen as a generalisation of the total variation norm.

Proof of Theorem 1.3

We remind that for

P ∈ R N d×N d , P pq ij denotes entry (p, q) ∈ [[1, d]] 2 of block (i, j) ∈ [[1, N ]] 2 , P ij = (P pq ij ) p,q∈[[1,d]] ∈ R d×d and P pq = (P pq ij ) i,j∈[[1,N ]] ∈ R N ×N . We also remind that P ∈ R N d×N d is a signed block stochastic matrix if it satisfies ∀i ∈ [[1, N ]] , N j=1 P ij = I d , ( 10 
)
and

Q is a signed block intensity matrix if ∀i ∈ [[1, N ]] , N j=1 Q ij = O d . (11) 
The subordinate norm related to ∥•∥ H is defined for all P ∈ R N d×N d by

∥P ∥

op

H := inf λ ∈ R ∀x ∈ R N d , ∥P x∥ H ≤ λ∥x∥ H .
From this definition, it's easy to see that ∥P ∥ 

α∈P d sup µ,ν∈P d N sup ∥x∥ ∞ ≤1 ⟨α • (µ -ν), P x⟩ = sup α∈P d sup µ,ν∈P d N sup 0≤x p i ≤1 ⟨µ -ν, α • P x⟩ . Denoting 1 N d = (1, 1, . . . , 1) T ∈ R N d , if P is a signed block stochastic matrix, we have ∥P ∥ op H = 1 -inf 0≤x p i ≤1 inf α∈P d inf µ,ν∈P d N ⟨µ, α • P x⟩ + ⟨ν, α • P (1 N d -x)⟩ ,
and if P is a signed block intensity matrix

∥P ∥ op H = -inf 0≤x p i ≤1 inf α∈P d inf µ,ν∈P d N ⟨µ, α • P x⟩ + ⟨ν, α • P (1 N d -x)⟩ ,
from which the expected results can be derived.

Remark 2.6. In the proof of Theorem 1.3, we get the following equivalent expression of ∥.∥

op H ∥P ∥ op H = 1 -inf 0≤x p i ≤1 inf α∈P d inf µ,ν∈P d N ⟨µ, α • P x⟩ + ⟨ν, α • P (1 N d -x)⟩ . (12) 
In [START_REF] Gaubert | Dobrushin's ergodicity coefficient for Markov operators on cones[END_REF], they obtain a similar expression for ∥•∥ op

1 N in an abstract framework: ∥M ∥ op 1 N = 1 -inf 0≤xi≤1 inf µ,ν∈P N ⟨µ, M x⟩ + ⟨ν, M (1 N -x)⟩ , (13) 
where M ∈ R N ×N is a stochastic matrix. We note that taking d = 1 in (12), we recover [START_REF] Dong | Flocking of the Cucker-Smale model on general digraphs[END_REF].

For the sake of completeness, we state the following result which can directly be deduced from Theorem 1.3 by taking d = 1. In particular, it recovers the expression of the ergodicity coefficient for stochastic matrices and establishes a similar expression for intensity matrices. 

P ik ∧ P jk . ( 14 
)
3 Flocking of the MBCS model

This section is dedicated to the proof of Theorem 1.1. In Section 3.1, we precise the framework by defining the flocking phenomenon and recalling the assumptions we are making about the model parameters. In Section 3.2, we simplify Equation (1) using the Jordan decomposition of matrix B from which we provide an efficient bound for the Dobrushin's ergodicity coefficient of the related semi-group. We state the flocking results in Section 3.3 and we prove them in Section 3.4.

Definition of the flocking phenomenon

In this article, we define the flocking phenomenon as follows:

Definition 3.1. Let x(t), v(t) ∈ R N d be a solution of Equation ( 1). For all t ≥ 0, let X ∞ (t) and V ∞ (t) be respectively the positions and velocities diameters at time t, defined as

X ∞ (t) := sup i̸ =j ∥x i (t) -x j (t)∥ ∞ and V ∞ (t) := sup i̸ =j ∥v i (t) -v j (t)∥ ∞ .
We say that there is flocking when

sup t≥0 X ∞ (t) < +∞, and lim t→+∞ V ∞ (t) = 0.
If it is satisfied for any initial condition, the flocking is said to be unconditional.

Remark 3.1. From Lemma 2.1, we have X ∞ (t) = ∥x(t)∥ H and V ∞ (t) = ∥v(t)∥ H . Thus, the flocking phenomenon is equivalent to v(t) converges to H and the distance between x(t) and H is bounded.

We remind that we study the flocking of Equation ( 1) under the assumption that Q ∈ R N d×N d is given by

Q pq ij x(t), v(t) = A ij B pq ψ ∥x j (t) -x i (t)∥ 2 .
We assume that ψ : R + → R + satisfies

∀r 1 ≤ r 2 , ψ(r 1 ) ≥ ψ(r 2 ) and ∀r ∈ R + , 0 < ψ(r) ≤ ψ(0) ≤ 1, (15) 
whose a typical example is

ψ(r) = 1 (1 + r 2 ) β 2 , β ≥ 0. (16) 
We also assume that

A ∈ R N ×N satisfies ∀i ̸ = j, A ij ≥ 0 and ∀i ∈ [[1, N ]] , N j=1 A ij = 0, (17) 
and Assumption 1 or 2.

Finally, we assume that B admits positive eigenvalues.

The Jordan normal form of the MBCS model

Since B has positive eigenvalues, there exists an invertible matrix M ∈ R d×d and a matrix J ∈ R d×d such that B = M JM -1 , where J, called the Jordan normal form of B, is a block diagonal matrix where each diagonal block is a Jordan matrix whose diagonal coefficients are the eigenvalues of B [32, Section 9.3.4]. In other words,

J =      J 1 (λ 1 ) 0 J 2 (λ 2 ) 0 . . . J m (λ m )      where J n (λ n ) =       λ n 1 0 . . . . . . 0 . . . 1 λ n       ∈ R dn×dn (18) 
and (λ n ) n∈[ [1,m]] are the eigenvalues of B. Let d and λ be defined by

λ := min n∈[[1,m]] λ n and d := max n∈[[1,m]] d n . (19) 
We note that since

m n=1 d n = d and for all n ∈ [[1, n]], λ n > 0, we have d ∈ [[1, d]] and λ > 0. It follows that if x * (t), v * (t) ∈ R N d is a solution of Equation (1) then y(t) := M -1 x * i (t) i∈[[1,N ]] and w(t) := M -1 v * i (t) i∈[[1,N ]] satisfy          dy p i dt (t) = w p i (t), dw p i dt (t) = N j=1 d q=1 A ij (t)J pq w q j (t) -w q i (t) , (20) 
where A ij (t) := A ij ψ x * i (t) -x * j (t) 2 . Let P : (s, t) → P(s, t) ∈ R N d×N d be the solution of

∂ t P(s, t) = Q(t)P(s, t), P(s, s) = I N d , (21) 
where I N d is the identity matrix of size N d and

Q pq ij (t) := A ij (t)J pq . Since ∀i ∈ [[1, N ]] ,
N j=1 A ij = 0, we have for all s ≤ u ≤ t, w(t) = P(s, t)w(s) and P(s, t) = P(u, t)P(s, u).

Remark 3.2. Existence and uniqueness of the solutions of Equation (1) on R + can easily be derived from the Cauchy-Lipschitz's theorem, Equation [START_REF] Li | Dynamic consensus of linear multi-agent systems[END_REF] and the fact that 0 < ψ ≤ 1.

The following Lemma highlights the special form of P.

Lemma 3.3. For all s ≤ t, P(s, t) is a signed block stochastic matrix and satisfies

P ij (s, t) =      (P 1 (s, t)) ij 0 (P 2 (s, t)) ij 0 . . . (P m (s, t)) ij      ∈ R d×d . ( 23 
)
where for all n ∈ [[1, m]], P n ∈ R N dn×N dn satisfies for all p, q ∈ [[1, d n ]],

P pq n (s, t) = 0 if q < p, L (q-p) n if q ≥ p, (24) 
where

L (0) n : (s, t) → L (0) n (s, t) ∈ R N ×N satisfies for all s ≤ t, ∂ t L (0) n (s, t) = λ n A(t)L (0) n (s, t), L (0) n (s, s) = I N ,
and for all p < d n -1,

L (p+1) n (s, t) := t s L (0) n (u, t)A(u)L (p) n (s, u) du.
Proof. The fact that P(s, t) is a signed block stochastic matrix directly comes form the fact that Q(t) is a signed block intensity matrix and ∂ s P(s, t) = -P(s, t)Q(s).

From Equation ( 21), we have that for all p, q ∈

[[1, d]],      ∂ t P pq (s, t) = Q pp (t)P pq (s, t) + r̸ =p
Q pr (t)P rq (s, t),

P pq (s, s) = δ pq I N ,
where δ pq = 1 if p = q and 0 otherwise. Thus, from the Duhamel formula and the definition of Q, we have

P pq (s, t) =            L p (s, t) + r̸ =p J pr t s L p (u, t)A(u)P rp (s, u) du if q = p, r̸ =p J pr t s L p (u, t)A(u)P rq (s, u) du if q ̸ = p,
where L p (s, t) ∈ R N ×N satisfies for all s ≤ t,

∂ t L p (s, t) = J pp A(t)L p (s, t), L p (s, s) = I N . (25) 
Let D 0 = 0 and

D n+1 = D n + d n+1 . For all n ∈ [[1, m]] and p ∈ [[D n-1 + 1, D n ]],
we have J pq = λ n δ pq if p = D n and J pq = λ n δ pq + δ (p+1)q otherwise. Consequently, if p = D n , we have

P pq (s, t) = L (0) n δ pq If p ∈ [[D n-1 + 1, D n -1]],
we have

P pq (s, t) =          L (0) n (s, t) + t s L (0) n (u, t)A(u)P (p+1)p (s, u) du if q = p, t s L (0) n (u, t)A(u)P (p+1)q (s, u) du if q ̸ = p. Fixing q ∈ [[D n-1 + 1, D n ]
] and starting from p = D m , we prove by induction that P pq (s, t) = 0 for all p > q. It follows that for

all p ∈ [[D n-1 + 1, D n ]], P pp (s, t) = L (0) n (s, t), P pq (s, t) = L (q-p) n (s, t) if p ∈ [[D n-1 + 1, q -1]] and P pq (s, t) = 0 if p ∈ [[1, D n-1 ]].
Remark 3.4. Since P pq = 0 if q < p, we have from [START_REF] Li | Dynamic consensus of linear multi-agent systems[END_REF] for all s ≤ u ≤ t, P pp (s, t) = P pp (u, t)P pp (s, u) and thus L (0) n is a semi-group. Furthermore, since Equation (25) corresponds to [START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]Equation (11)] with α = λ n , it follows that L (0) n admits the following probabilistic interpretation [6, Theorem 2.6]: Let t > 0 and (Y

(n,t) s ) s∈[0,t] be a [[1, N ]]-valued time-inhomogeneous Markov chain of generator (λ n A(t -s)) s∈[0,t] then L (0) n (s, t) ij = P(Y (n,t) t-s = j | Y (n,t) 0 = i).
Consequently, L

n (s, t) is a stochastic matrix. We note that if B is diagonalisable or equivalently d = 1, we have m = d and P pq ij (s, t) = (L (0) p ) ij δ pq . In particular, since in this case P pq ij (s, t) n (s, t) is also a signed block intensity matrix and thus P(s, t) is not positive. This emphasises the lack of maximum principle since ∆(P(s, t)) can be negative or equivalently, ∥P(s, t)∥ op H can be larger than 1 (see Figures 5 and6). Using the special for of P(s, t), the following Corollary provide an estimate of ∥P(s, t)∥ Corollary 3.6. Let P(s, t) ∈ R N d×N d be the solution [START_REF] Ipsen | Ergodicity coefficients defined by vector norms[END_REF]. Then we have

op H = max n∈[[1,m]] L (0) n (s, t) op 1 N , [ 6 
∥P(s, t)∥ op H ≤ max n∈[[1,m]] dn-1 p=0 L (p) n (s, t) op 1 N , (26) 
Proof. From Theorem 1. 

min i̸ =j N k=1 dn-p q=0 L (q) n (s, t) ik ∧ L (q) n (s, t) jk .
Since A satisfies [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF] and

L (0)
n is stochastic (Remark 3.4), we have for all q ≥ 1 and for all

i ∈ [[1, N ]] N k=1 L (q) n (s, t) ik = 0,
and thus

N k=1 L (q) n (s, t) ik ∧ L (q)
n (s, t) jk ≤ 0. Consequently, we have

∆(P(s, t)) = min n∈[[1,m]] min i̸ =j N k=1 dn-1 q=0 L (q) n (s, t) ik ∧ L (q) n (s, t) jk ,
which leads to the expected result using Corollary 2.7.

Finally, for the sake of completeness, we give the following flocking result which is proved in [6, Proposition 4.3]. It is noteworthy that the key argument is that since w(t) = P(s, t)w(s), we have ∥w(t)∥ H ≤ ∥P(s, t)∥ op H ∥w(s)∥ H . Lemma 3.7. Let (y(t), w(t)) t≥0 be a solution of [START_REF] Hartfiel | Convergence of inhomogenous products of matrices and coefficients of ergodicity[END_REF].

Let Y ∞ (t) := max i̸ =j ∥y i (t) -y j (t)∥ ∞ and W ∞ (t) := max i̸ =j ∥w i (t) -w j (t)∥ ∞ . If there exists C : R 2 + → R + such that          ∀t ≥ 0, r → C(t, r) is increasing, ∀r ≥ X ∞ (0), C(t, r) -→ t→+∞ 0, ∀t ≥ 0, ∥P(s, t)∥ op H ≤ C(t, sup s≤t Y ∞ (s)),
and

r 0 ≥ Y ∞ (0) satisfying r 0 -Y ∞ (0) > W ∞ (0) +∞ 0 C(s, r 0 ) ds, then we have for all t ≥ 0, Y ∞ (t) ≤ r 0 and W ∞ (t) ≤ W ∞ (0)C(t, r 0 ).
Remark 3.8. It is noteworthy that Lemma 3.7 leads to the flocking of Equation [START_REF] Hartfiel | Convergence of inhomogenous products of matrices and coefficients of ergodicity[END_REF] which is equivalent to the flocking of Equation (1) since we have, from Lemma 2.1,

1 ∥M -1 ∥ op ∞ Y ∞ (t) ≤ X ∞ (t) ≤ ∥M ∥ op ∞ Y ∞ (t) and 1 ∥M -1 ∥ op ∞ W ∞ (t) ≤ V ∞ (t) ≤ ∥M ∥ op ∞ W ∞ (t).
where ∥M ∥ op

∞ := max p∈[[1,d]] d q=1 |M pq |.

Proof of flocking results

The proofs of Theorem 3.9 and Theorem 3.11 follow the same three steps. We first provide an estimate of L (p) n op H for all p ∈ [[0, d n -1]] (Lemma 3.13 and Lemma 3.15). Then, we use this estimate to derive flocking conditions (proof of Theorem 3.9 and Theorem 1.3). Finally, we apply these conditions to the case where ψ given by ( 16) (proof of Corollary 3.10 and Corollary 3.12). We will only prove Corollary 3.10 since the proof of Corollary 3.12 is identical. 

n ∈ [[1, m]], p ∈ [[0, d n -1]] and s ≤ t, L (p) n (s, t) op 1 N ≤ (γ(t -s)) p p! e -ϕn(t)(t-s) , (29) 
where

γ := max i̸ =j A ij + A ij + k̸ =i,j A ik ∨ A jk , ϕ n (t) := λ n χ(A)ψ √ d∥M ∥ op ∞ Y ∞ (t) with χ(A) := min i̸ =j   A ij + A ji + k̸ =i,j A ik ∧ A jk   , ∥M ∥ op ∞ := max p∈[[1,d]] d q=1 |M pq | and Y ∞ (t) := sup u≤t Y (u).
Proof. First, we note that since L

n is a semi-group and since ∥•∥ 1 N is a subordinate norm, we have for all s ≤ t and for all h ≥ 0,

L (0) n (s, t + h) op 1 N ≤ 1 -δ L (0) n (t, t + h) L (0) n (s, t) op 1 N 
.

From Corollary 2.7 and Lemma 3.3 and since ψ is decreasing and A ij ≥ 0, we have

∂ t L (0) n (s, t) op 1 N ≤ -λ n χ(A)ψ sup i̸ =j ∥x i (t) -x j (t)∥ 2 L (0) n (s, t) op 1 N . Noting that for all z ∈ R d ∥M z∥ 2 ≤ √ d∥M z∥ ∞ ≤ √ d∥M ∥ op ∞ ∥z∥ ∞ , (30) 
we have, for all s ≤ t ≤ T ,

∂ t L (0) n (s, t) op 1 N ≤ -ϕ n (T ) L (0) n (s, t) op 1 N .
From the Grönwall's lemma, it follows that for all s ≤ t

L (0) n (s, t) op 1 N ≤ e -ϕn(t)(t-s) .
Now, let us assume that Equation ( 29) holds for some p ∈ [[0, d n -2]], then

L (p+1) n (s, t) op 1 N ≤ t s L (0) n (u, t) op 1 N ∥A(u)∥ op 1 N L (p) n (s, u) op 1 N du.
Since N j=1 A ij (t) = 0, we have from Corollary 2.7,

∥A(t)∥ op H = -δ(A(t)) = max i̸ =j A ij (t) + A ij (t) + k̸ =i,j A ik (t) ∨ A jk (t).
Since A ij ≥ 0 and ψ(r) ≤ 1, we have ∥A(u)∥ op

1 N ≤ ∥A∥ op 1 N = γ. It follows that L (p+1) n (s, t) op 1 N ≤ γ p+1 p! e -ϕn(t)(t-s) t s (u -s) p du,
which, by induction, leads to the expected result.

Proof of Theorem 3.9. Combining Corollary 3.6 and Lemma 3.13, we get the following estimate:

∥P(s, t)∥ op H ≤   d-1 p=0 (γ(t -s)) p p!   e -ω S ψ( √ d∥M ∥ op ∞ Y ∞ (t))(t-s) , (31) 
where ω S := λ min i̸ =j A ij + A ji + k̸ =i,j A ik ∧ A jk . From [START_REF] Rhodius | On the maximum of ergodicity coefficients, the dobrushin ergodicity coefficient, and products of stochastic matrices[END_REF], defining

C(t, r) :=   d-1 p=0 (γt) p p!   e -ω S ψ( √ d∥M ∥ op ∞ r)t , we have        ∀t ≥ 0, r → C(t, r) is increasing, ∀r ≥ X(0), C(t, r) -→ t→+∞ 0, ∀t ≥ 0, 1 -∆(P(0, t)) ≤ C(t, Y ∞ (t)). (32) 
Consequently, from Lemma 3.7, finding r 0 ≥ Y ∞ (0) such that

r 0 -Y ∞ (0) > W ∞ (0) +∞ 0 C(s, r 0 ) ds, (33) 
is a flocking condition. Furthermore, since we have for all a > 0 and for all integer k ≥ 0,

+∞ 0 (at) k k! e -at dt = 1 a , (34) 
we have

+∞ 0 C(s, r 0 ) ds = 1 ω S ψ √ d∥M ∥ op ∞ r 0 d ω S ψ √ d∥M ∥ op ∞ r 0 d -γ d ω S ψ √ d∥M ∥ op ∞ r 0 -γ .
Using Remark 3.8, we see that Equation [START_REF] Shen | Cucker-Smale flocking under hierarchical leadership[END_REF] can be rewritten as

V ∞ (0) < sup r≥X∞(0) (r -X ∞ (0)) ω S ψ(αr) -γ (ω S ψ(αr)) d -γ d (ω S ψ(αr)) d , (35) 
where

α := √ d∥M ∥ op ∞ M -1 op ∞ = √ d max p∈[[1,d]] d q=1 |M pq | max p∈[[1,d]] d q=1 M -1 pq .
Proof of Corollary 3.10. If ψ is given by ( 16), Equation ( 35) can be rewritten as

V ∞ (0) < sup r≥X∞(0) F (r),
where Finally, if β > 1/d then lim r→+∞ F (r) = 0. Since we also have F (r) ≥ 0 and F (X ∞ (0)) = 0, this allows to conclude that F reaches a maximum over (X ∞ (0), +∞). By computing the derivative of F , this maximum is equal to F (r * ) where r * is the solution of

F (r) := ω d S (r -X ∞ (0)) γ 1 + (αr) 2 β 2 -ω S (1 + (αr) 2 )
1 + (αr * ) 2 βd 2 = ω d+1 S p 1 (r * ) + ω d S γ 1 + (αr * ) 2 β 2 +1 ω S γ d p d+1 (r * ) -γ d+1 (1 + (αr * ) 2 ) β 2 p d (r * )
, where for all n ∈ N * , p n (r * ) := α 2 (βn -1)r * 2 + X ∞ (0)α 2 βnr * -1.

Remark 3.14. We note that, due to the lack of maximum principle, there is no strict decay of ∥P(0, t)∥ op H at the origin (see Figure 5). This explain why we cannot have a system of dissipative differential inequalities such as [START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]Equation (36)]. It should also be noted that in the diagonalisable case (where d = 1), one can repeating the proof of [6, Theorem 3.5] and prove that

V ∞ (0) < ω S +∞ X∞(0) ψ(αr) dr. ( 36 
)
is a flocking condition. In particular, this proves that the flocking is unconditional when d = 1 and β = 1.

Since ψ is positive and decreasing, n (s, t)

sup r≥X (0) 
op 1 N ≤ (γh) p   (p+1)(h-1) k=0 ϕ n (t) k (t -s) k+p (k + p)!   e -ϕn(t)(t-s) , (37) 
where n is solution of Equation [START_REF] Mukhamedov | On dobrushin ergodicity coefficient and weak ergodicity of markov chains on jordan algebras[END_REF], one can follow the proof of [START_REF] Cotil | Flocking of the Cucker-Smale and Motsch-Tadmor models on general weighted digraphs via a probabilistic method[END_REF]Theorem 3.8] with A satisfying Assumption 2 and use Equation [START_REF] Protter | Maximum principles in differential equations[END_REF] to get the following estimate:

ϕ n (t) := λ n A * ψ √ d∥M ∥ op ∞ Y ∞ (t) , A * = inf i>1 j̸ =i A ij ,
L (0) n (s, t) op 1 N = 1 -δ L (0) n ≤ P (Γ > ϕ n (t)(t -s)) =   h-1 k=0 ϕ n (t) k (t -s) k k!   e -ϕn(t)(t-s)
where Γ follows the gamma distribution of parameter (H, 1).

Then, let us assume that Equation (37) holds for p ∈ [[0, d n -2]]. It follows that,

L (p+1) n (s, t) op 1 N ≤ t s L (0) n (u, t) op 1 N ∥A(u)∥ op 1 N L (p) n (s, u) op 1 N du ≤ γ p+1 h p t s   h-1 k=0 ϕ n (t) k (t -u) k k!     (p+1)(h-1) k=0 ϕ n (t) k (u -s) k+p (k + p)!   du e -ϕn(t)(t-s) ≤ γ p+1 h p h-1 k=0 (p+1)(h-1) l=0 ϕ n (t) k+l k!(l + p)! t s (t -u) k (u -s) l+p du e -ϕn(t)(t-s) .
Since for all k, l ∈ N,

t s (t -u) k (u -s) l du = k! l! (k + l + 1)! (t -s) k+l+1 ,
we have

L (p+1) n (s, t) op 1 N ≤ γ p+1 h p h-1 k=0 (p+1)(h-1) l=0 ϕ n (t) k+l (t -s) k+l+p+1 (k + l + p + 1)! e -ϕn(t)(t-s) = γ p+1 h p h-1 k=0 (p+1)(h-1)+k l=k ϕ n (t) l (t -s) l+p+1 (l + p + 1)! e -ϕn(t)(t-s) ≤ γ p+1 h p (p+2)(h-1) l=0 h-1 k=0 ϕ n (t) l (t -s) l+p+1 (l + p + 1)! e -ϕn(t)(t-s) = γh p+1 (p+2)(h-1) l=0 ϕ n (t) l (t -s) l+p+1 (l + p + 1)! e -ϕn(t)(t-s) .
Proof of Theorem 3.11. Combining Corollary 3.6 and Lemma 3.15, we have:

∥P(s, t)∥ op H ≤ max n∈[[1,n]] dn-1 p=0 (p+1)(h-1) k=0 γh ϕ n (t) p (ϕ n (t)(t -s)) k+p (k + p)! e -ϕn(t)(t-s) = max n∈[[1,n]] dn-1 p=0 (p+1)(h-1)+p k=p γh ϕ n (t) p (ϕ n (t)(t -s)) k k! e -ϕn(t)(t-s) ≤ max n∈[[1,n]] dn-1 p=0 γh ϕ n (t) p dnh-1 k=0 (ϕ n (t)(t -s)) k k! e -ϕn(t)(t-s) ≤ d-1 p=0 γh ϕ(t) p d h-1 k=0 (ϕ(t)(t -s)) k k! e -ϕ(t)(t-s)
where ϕ

(t) = λA * ψ √ d∥M ∥ op ∞ Y ∞ (t)
. Thus, as in the proof of Theorem 3.9, if we define

C(t, r) := d-1 p=0   γh λA * ψ √ d∥M ∥ op ∞ r   p d h-1 k=0 λA * ψ √ d∥M ∥ op ∞ r t k k! e -λA * ψ( √ d∥M ∥ op ∞ r)t , then we have, from Lemma 3.7, that finding r ≥ Y ∞ (0) such that r -Y ∞ (0) > W ∞ (0) +∞ 0 C(s, r) ds,
is a flocking condition.

From Equation (34), we have

+∞ 0 C(s, r) ds = d-1 p=0   γh λA * ψ √ d∥M ∥ op ∞ r   p d h λA * ψ √ d∥M ∥ op ∞ r = d ω H ψ √ d∥M ∥ op ∞ r d ω H ψ √ d∥M ∥ op ∞ r d -γ d ω H ψ √ d∥M ∥ op ∞ r -γ ,
where ω H := λA * H , which leads to the expected result.

Figures and simulations

This section is dedicated to the illustration and the discussion of our results. In Section 4.1, we provide a graphical representation of the assumptions made about the matrix A. In Section 4.2, we simulate the model in order to illustrate the flocking phenomenon. We first consider the case where B is the identity matrix, and show graphically that in this case ∥P(0, t)∥ op H is strictly decreasing, highlighting the presence of a maximum principle. We then show that, on the contrary, when B is not diagonalisable or has complex eigenvalues, there is no maximum principle verified.

Examples of graph structures

In this section, we give an example of graphs respectively satisfying Assumption 1 (Figure 1) and Assumption 2 (Figure 2). Note that each assumption implies in particular that there is a single recurrent class, plotted in red in both figures, that is a necessary assumption to observe the flocking phenomenon. Furthermore, in the case of the hierarchical leadership assumption, we represent the height of the graph, denoted h, involved in the flocking condition relating to this assumption (see Theorem 3.11). The longest path between some vertex and vertex 1 is drawn in blue. Here, we have h = h 10 = 6.

Illustration of the flocking phenomenon

In this section we illustrate the flocking phenomenon using simulations for four different values of the pair (A, B). In the four cases, the simulations are made with d = 2, N = 10 and ψ = 1. We also require that

j̸ =i A ij = 1.
The initial positions are drawn uniformly at random in [-5, 5] × [-5, 5] while the initial velocities are drawn according to a centred normal distribution with covariance matrix Σ = 5I 2 . We present these examples in such a way that the convergence towards equilibrium of the solution for each becomes progressively worse in order to illustrate the loss of maximum principle.

Example 4.1 (Scrambling A and digonalisable B). Considering A ij = 1/(N -1) if i ̸ = j and B = I 2 . This example represented the case where A satisfies Assumption 1 and B is diagonalisable and has positive eigenvalues. In this situation, proving convergence is straightforward because the derivative of ∥P(0, t)∥ op H at the origin is negative. This characteristic allows for bounding the derivative of ∥P(0, t)∥ op H at any given time using the semi-group property. Using the Grönwall lemma, this proves exponential rate convergence, as shown in the proof of Lemma 3.13. This is illustrate in Figure 3 where we see on the left-hand side that ∥P(0, t)∥ op H decreases at an exponential rate. Example 4.2 (Hierarchical leadership A and digonalisable B). Considering A given by Figure 2 with A ij = 1/ deg(i) where deg(i) is the number of edges starting from vertex i and B = I 2 . This example represented the case where A satisfies Assumption 2 and B is diagonalisable and has positive eigenvalues. As for Example 4.1, we observe that ∥P(0, t)∥ op H is strictly decreasing which indicates the presence of a maximum principle. We can actually show that in this case, the matrix P(0, t) is positive which implies that ∥P(0, t)∥ op H ≤ 1. However, we also observe in the left-hand side of Figure 4 that the derivative of ∥P(0, t)∥ op H is null at the origin, which makes the study of this case more intricate. is not decreasing and reaches a maximum over (0, +∞) which is larger than 1, as shown in Figure 5. This highlights the lack of maximum principle, due to the fact that P(0, t) is not positive for all t ≥ 0 (see Remark 3.5). . This is an example of the case where B admits complex eigenvalues.

We observe in Figure 6 that the evolution of ∥P(0, t)∥ op H shows an original periodic behaviour for an alignment model. This situation is not covered in this article. However, regarding the stability theory of linear ordinary differential equations, one can conjecture that the more general assumption we can make about B is that all its eigenvalues have positive real parts (see [18, Chapter III, Theorem 4.2]). We presume that this conjecture can be proved by generalising Theorem 1.3 to the case where P is complex valued and by deriving flocking conditions for the following generalisation of the Cucker-Smale model:

         dx i dt (t) = v i (t), dv i dt (t) = λ N j=1 A ij ψ(∥x i (t) -x j (t)∥ 2 ) v j (t) -v i (t) , (38) 
where A ij ≥ 0 and λ ∈ C satisfying Re(λ) > 0, which corresponds to Equation ( 1 

  where O d is the null matrix of size d. In both case, we have P H ⊂ H and QH ⊂ H. Theorem 1.3. Let P, Q ∈ R N d×N d be respectively a signed block stochastic matrix and a signed block intensity matrix. Then we have

3 .

 3 The proof is based on the characterisation of ∥•∥ H , ∥•∥ * H and B * H the unit ball related to ∥•∥ * H . We first establish the dual characterisation of ∥•∥ op X for the special case X = H and we highlight how our method can be used to prove it in the general case. Then, we use the characterisation of B * H to prove the expected form of ∥•∥ op H .

Remark 2 . 3 .

 23 More generally, if ∥•∥ is any norm on R N d and ∥x∥ H = 2 inf h∈H ∥x -h∥, then the related dual norm ∥•∥ * H satisfies for all π ∈ H ⊥ , ∥π∥ * H = 1 2 ∥π∥ * where ∥•∥ * is the dual norm related to ∥•∥. Let B * H := {π ∈ H ⊥ | ∥π∥ * H ≤ 1} be the unit ball related to ∥•∥ * H , S d := ρ ∈ R d + d p=1 ρ p = 1 be the simplex of R d and S d N := µ ∈ R N d + ∀p ∈ [[1, d]] , N i=1 µ p i = 1 be the generalised simplex of R N d . The following lemma gives a characterisation of B * H and can be seen as a generalisation of the Hahn-Banach decomposition. Lemma 2.4. Vector π ∈ B * H if and only if there exists ρ ∈ S d and µ, ν ∈ S d N such that

Corollary 2 . 7 .op 1 N

 271 If P ∈ R N ×N satisfies N j=1 P ij = c where c ∈ R, then we have ∥P ∥ = c -δ(P ) where δ(P ) := min i̸ =j n k=1

Remark 3 . 5 .

 35 , Theorems 3.5, 3.8, 3.10] hold for α = λ. Since A(t) is a signed block intensity matrix, for all p ≥ 1 L (p)

  Dobrushin ergodicity coefficient of L (p) n (s, t).

3. 4 . 1

 41 The scrambling case Lemma 3.13. Let L (p) n be defined as in Proposition 3.3. If A satisfies Assumption 1, then we have for all

.

  If β < 1/d, we have lim r→+∞ F (r) = +∞ which allows to conclude that sup r≥X∞(0) F (r) = +∞ and thus that the flocking is unconditional.If β = 1/d, we have lim r→+∞ F (r) = ω d S αγ d-1. Since we also have for all r ≥ X ∞ (0),F (r) ≤ ω d S αγ d-1, this allows to conclude that sup r≥X∞(0) F (r) = ω d S αγ d-1 .

  (r -X(0))ψ(r) ≤ +∞ X(0) ψ(r) dr. and thus, Condition (36) is sharper than Condition (27) but it only holds for d = 1.3.4.2 The hierarchical leadership case Lemma 3.15. Let L (p) n be defined as in Proposition 3.3. Then, if A satisfies Assumption 2, we have for all n ∈ [[1, m]], p ∈ [[0, d n -1]] and s ≤ t, L (p)

  h is the height of the graph induced by A and γ, ∥M ∥ op ∞ and Y ∞ (t) are defined in Corollary 3.13. Proof. Since L (0)

Figure 1 :Figure 2 :

 12 Figure 1: Example of a graph induced by a matrix A satisfying the scrambling assumption.

Example 4 . 3 (.

 43 Scrambling A and non-digonalisable B). Considering the same matrix A as for Example 4This is an example of the case where B is not diagonalisable and have positive eigenvalues. It differs from Example 4.1 and Example 4.2 in that ∥P(0, t)∥ op H

Example 4 . 4 (

 44 Scrambling A and B with complex eigenvalues). Considering the same matrix A as for Example 4.1 and B = 1 -5 5 1

  ) with B = a -b b a where a > 0 and b ∈ R.

Figure 3 :

 3 Figure 3: Simulation of Equation 1 with A and B given in Example 4.1. On the left, the curve of ∥P(0, t)∥ op H is plotted in blue. On the right, initial states are plotted in green, trajectories in blue and final states in red.

Figure 4 :

 4 Figure 4: Simulation of Equation 1 with A and B given in Example 4.2. On the left, the curve of ∥P(0, t)∥ op H is plotted in blue. On the right, initial states are plotted in green, trajectories in blue and final states in red.

Figure 5 :

 5 Figure 5: Simulation of Equation 1 with A and B given in Example 4.3. On the left, the curve of ∥P(0, t)∥ op H is plotted in blue. On the right, initial states are plotted in green, trajectories in blue and final states in red.

Figure 6 :

 6 Figure 6: Simulation of Equation 1 with A and B given in Example 4.4. On the left, the curve of ∥P(0, t)∥ op H is plotted in blue. On the right, initial states are plotted in green, trajectories in blue and final states in red..

  2 and β < 2/3. We note that Theorem 1.1 can easily be generalised to the case where, for all i ∈ [[1, N ]] and for all t ≥ 0, matrices {Q ij (t)} j∈[[1,N ]] admit a Jordan representation in the same base and have eigenvalues which satisfy Equation (3). Consequently, in addition to covering the case where Q ij (t) can be null, the present article deals with the case where it can be non-diagonalisable, assuming that {Q ij (t)} j∈[[1,N ]] are simultaneously Jordanisable.

	The proof of Theorem 1.1 is based on a contraction result similar to [6, Corollary 2.8]. However, this latter
	result only holds for stochastic matrices and is therefore reserved for the case where B is at least diagonal-
	isable. Many generalisations of this inequality have been proposed in the literature [19, 14, 26] but none
	fits our case, mainly because of the lack of a maximum principle. The second main result of this article
	is the construction of a new generalisation of Doebrushin's ergodicity coefficient adapted to real matrices
	that can admit negative coefficients and whose eigenspace associated with the eigenvalue 1 is of dimension
	greater than 1.

  which is the case when P is a signed block stochastic matrix or a signed block intensity matrix. When d = 1, ∥P ∥ Proof of Theorem 1.3. From the Hahn-Banach theorem, we have ∥x∥ H = sup{⟨π, x⟩ | π ∈ B * H }.

	the standard Dobrushin's ergodicity coefficient.		op 1 N corresponds to
							Thus, we
	have	∥P ∥ op H = sup ∥x∥ H ≤1	∥P x∥ H = sup ∥x∥ H ≤1	sup π∈B * H	⟨π, P x⟩ = sup H π∈B *	∥πP ∥ * H .
	Then, from Lemmas 2.2 and 2.4, we have	
	sup π∈B * H	∥πP ∥ * H =	1 2	sup		

op H is finite if and only if P H ⊂ H,
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Flocking results

In this section, we state Theorem 1.1 in more detail, treating separately the scrambling case in Section 3.3.1 and the hierarchical leadership case in Section 3.3.2. An application to the case where ψ is given by ( 16) is provided for both cases as a corollary.

The scrambling case

The following theorem provide a flocking condition in the case where A is scrambling. Theorem 3.9. Let (x(t), v(t)) t≥0 be solution of Equation [START_REF] Barbaro | Discrete and continuous models of the dynamics of pelagic fish: application to the capelin[END_REF] where Q is given by (2) with A satisfying [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF] and Assumption 1, B having positive eigenvalues and ψ satisfying [START_REF] Ha | On the critical exponent of the one-dimensional cucker-smale model on a general graph[END_REF]. Then, (x(t), v(t)) t≥0 flocks if

where

Corollary 3.10. If ψ is given by ( 16) then there is flocking if

, the flocking phenomenon is therefore unconditional.

• β > 1/d and V ∞ (0) < C S where C S is a constant depending on the parameters and the initial conditions.

The hierarchical leadership case

The following theorem gives a flocking condition in the case where A satisfies the hierarchical leadership assumption. Let L i be the set of paths from i to 1 in the graph induced by A. Let |l| be the length of the path l which is the number of edges it contains. For all i > 1, let h i = sup{|l| | l ∈ L i } be the height of node i. Finally, let h = sup i>1 h i be the height of the graph induced by A. We refer to Figure 2 for an illustration of this quantity.

Theorem 3.11. Let (x(t), v(t)) t≥0 be solution of Equation (1) where Q is given by (2) with A satisfying (17) and Assumption 2, B having positive eigenvalues and ψ satisfying [START_REF] Ha | On the critical exponent of the one-dimensional cucker-smale model on a general graph[END_REF]. Then, (x(t), v(t)) t≥0 flocks if

where

Corollary 3.12. If ψ is given by (16) then there is flocking if

• β < 1/d, the flocking phenomenon is therefore unconditional.

• β = 1/d and V ∞ (0) < ω H d / αdγ d-1 .

• β > 1/d and V ∞ (0) < C H where C H is a constant depending on the parameters and the initial conditions.