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teractions in mdx physiopathology with gut microbiota as the potential central metabolic organ.
(Am J Pathol 2023, B: 1—16; https://doi.org/10.1016/j.ajpath.2023.10.010)

Duchenne muscular dystrophy (DMD) is a progressive
wasting disease of skeletal and cardiac muscles, and one of
the most common recessive inherited genetic diseases
(yearly incidence, 1:3500-1:5000 boys). In DMD, mutations
in the DMD gene affect the proper production of the
membrane-associated dystrophin protein, leading to weak-
ening of the muscle cell membrane to mechanical stress
during the contraction/relaxation cycles that promotes
microlesions. These lesions can initially be associated with
muscle pseudo-hypertrophy, especially in postural muscles
(eg, triceps surae muscles), highlighting the muscle fiber
regenerative capacities. The endless cycles of muscle

necrosis and repair lead to fibrosis and progressive muscle
weakness. Proximal skeletal muscles are the most affected:
first, the locomotor muscles, then the trunk muscle, and
finally the respiratory muscles and the heart, leading to
quadriplegia and cardio-respiratory difficulties. Moreover,
many secondary pathophysiological processes exacerbate
muscle pathology in DMD: immunologic and inflammatory
processes,]’2 altered calcium homeostasis,‘g’4 oxidative
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Dystrophin deficiency alters the sarcolemma structure, leading to muscle dystrophy, muscle disuse, and Q5
ultimately death. Beyond limb muscle deficits, patients with Duchenne muscular dystrophy have
numerous transit disorders. Many studies have highlighted the strong relationship between gut
microbiota and skeletal muscle. The aims of this study were: i) to characterize the gut microbiota
composition over time up to 1 year in dystrophin-deficient mdx mice, and ii) to analyze the intestine
structure and function and expression of genes linked to bacterial-derived metabolites in ileum, blood,
and tibial anterior and soleus muscles to study interorgan interactions. Mdx mice displayed a significant Q6
reduction in the overall number of different operational taxonomic units and their abundance (o-di-
versity). Mdx genotype predicted 20% of B-diversity divergence, with a large taxonomic modification of
the four phyla (Actinobacteria, Proteobacteria, Tenericutes, and Deferribacteres) and the included
genera. Interestingly, intestinal motility and gene expressions of tight junction and Ffar2 receptor were
down-regulated in the ileum of the mdx genotype. Concomitantly, inflammation related to gut Q7
microbiota was revealed by an up-regulation of circulating inflammatory markers (tumor necrosis factor,
IL-6, and monocyte chemoattractant protein-1) and muscle inflammation Tlr4/Myd88 pathway (Toll-like Q8
receptor 4, which recognizes pathogen-associated molecular patterns, known as the bacterial metab-
olites receptor). Finally, in mdx mice, adiponectin was reduced in blood and its receptor modulated in
muscles. This study highlights a specific gut microbiota composition and highlights interorgan in-
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stress,” and apoptosis and defective autophagy,’ as well as
declines in mitochondrial number and function.’**

Actual therapies can be divided in two categories: pri-
mary therapy (to restore or partially restore functional dys-
trophin protein) and other therapeutic approaches (to
improve muscle function and quality in patients with
DMD). The current primary therapies are exon skipping,
stop codon readthrough, gene addition, genome editing, and
myoblast transplantation.” In addition, many therapeutic
avenues are being evaluated to improve muscle condition by
targeting fibrosis, growth and regeneration processes, cal-
cium homeostasis, or mitochondria biogenesis.” In these
therapeutic approaches, such as identification of small
molecules'’ or exercise,'' an new strategy is emerging:
nutraceuticals.'” Thanks to the current standards of care,
many patients with DMD can now expect to live into their
fourth decade of life. However, in the absence of a curative
treatment, prevention of secondary processes that exacerbate
DMD pathophysiology and offer improvement in the pa-
tients’ quality of life are a priority. In this context, it is
important to better understand the processes associated with
DMD development and the links between the affected or-
gans, including the possible crosstalk between gut micro-
biota and skeletal muscle.

The term “gut microbiota” describes the 10'* bacteria
housed in the digestive tract and classified in different
species, families, and phyla. This bacterial community plays
an important role in the host metabolism and health. Due to
the functional crosstalk with other organs (eg, brain, heart,
liver, adipose tissue), perturbations of the gut microbiota
composition and function (ie, dysbiosis) have been associ-
ated with many diseases, such as brain disorders (eg,
depression, autism, Alzheimer disease) and metabolic dis-
orders (eg, obesity, type 2 diabetes, insulin resistance).
Moreover, several studies have shown the implication of the
intestinal microbiota in antitumor treatment
effectiveness'> !> and in cachexia (ie, the cancer-associated
loss of skeletal muscle and adipose tissue). Indeed, Bindels
et al'® found that the gut microbiota was depleted in a
leukemic and cachexic mouse model. Interestingly, when
the gut microbiota was normalized by oral supplementation
of probiotics, the concentration in muscle of inflammation
markers [IL-6, IL-4, monocyte chemoattractant protein-1
(MCP-1), and granulocyte colony-stimulating factor],
autophagy markers (LC3 and cathepsin L), and proteolysis
markers (atroginl and MAFbx) decreased. The probiotic
treatment also prevented skeletal muscle inflammation and
atrophy. Since this first study suggesting a gut
microbiota—skeletal muscle axis, accumulating evidence
has highlighted the potential influence of gut microbiota on
the skeletal muscle phenotype. Muscle mass is reduced in
germ-free mice that lack microbiota compared with control
mice.'”'® Our laboratory showed that gut bacteria are
necessary to optimize skeletal muscle function. Indeed,
depletion of gut bacteria by treatment with broad-spectrum
antibiotics led to a decrease in skeletal muscle endurance

and to an alteration in glucose homeostasis, as indicated by
the decreased expression of short-chain fatty acid chain
(SCFA) and glucose transporters in the ileum, and reduced
glycogen content in muscle. This phenotype was normalized
after natural reseeding.'” Similarly, Yan et al”’ observed
that after transfer of gut microbiota from obese or lean pigs
to germ-free mice, mice replicated the donor’s skeletal
muscle fiber profile.

Different pathways might be involved in the gut
microbiota—skeletal muscle axis. Several circulating medi-
ators, such as pro-inflammatory cytokines, SCFA, and
branched-chain amino acids, in relation with the gut
microbiota composition, have recognized effects on skeletal
muscle. For example, microbiota-derived SCFAs (eg, ace-
tate, butyrate, propionate) are produced during a gut mi-
crobial fermentation process and could drive skeletal muscle

toward an oxidative metabolism. Similarly, in mice fed a Q9

high-fat diet, butyrate supplementation is associated with
improved insulin sensitivity, increased peroxisome pro-
liferator—activated receptor-y coactivator-1oc and AMP-
activated protein kinase activity (regulation of energy
metabolism), and a higher proportion of type 1 fibers in
skeletal muscle.”! Moreover, the muscle-specific SCFA re-
ceptors FFAR3 and FFAR2 promote insulin sensitivity and
modulate glucose uptake. These findings suggest that gut
microbiota composition/function in DMD might be altered,
with possible effects on the host’s health and myopathy.
However, very few exploratory data are available on intes-
tinal smooth muscle in DMD, although dystrophin is
expressed in smooth muscle,””® and intestinal function is
altered in patients with DMD. Moreover, gastrointestinal
alterations, including aerophagia, gastroesophageal reflux,
and constipation (affecting nearly 70% of patients for this
last item), have been documented in these patients.24

Gut bacterial community alteration in DMD could be
potentiated by the fact that this chronic disease is associated
with conditions that promote intestinal dysbiosis in other
pathologic contexts. For instance, a sedentary lifestyle has
deleterious effects on microbial composition,” and treat-
ments prescribed to patients with DMD, particularly anti-
biotics to treat respiratory infections,”® deplete the intestinal
microbiota.'” Therefore, to exclude these extrinsic factors,
gut microbiota composition could be studied in mdx mice,
an animal model of DMD. Some studies reported that,
similar to patients with DMD, mdx mice exhibit increased
intestinal peristalsis27 and reduced fecal excretion,”® 3¢
particularly due to an alteration of the migrant motor com-
plex responsible for mobility in the interdigestive period.”’

The aims of the current study were: i) to characterize the
gut microbiota composition in mdx mice and its changes
during disease development by comparing the «- and B-
diversity of taxonomic profiles and gut microbiota abun-
dance (16S rRNA gene metagenomic analysis) in mdx mice
and control littermates at 8 weeks, 12 weeks, 6 months, and
1 year of age, ii) to measure plasma biomarkers that could
mediate the skeletal muscle—gut microbiota crosstalk, and
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iii) to investigate the intestine structure and contractile
properties, as well as the expression in the ileum and
muscle, of genes linked to bacterial-derived metabolites to
identify microbiota—muscle interactions in the mdx
phenotype.

Materials and Methods

Animal Care

Male mdx mice (C57BL10SnSc-DMD™¥/J) and wild-type
mice [B10: wild-type C57BL10SnSc raised in the labo-
ratory’s animal facility (F2 generation)] were used at
different ages (8 weeks, 12 weeks, 6 months, and 1 year)
(n = 10 per group per age). Mice were housed in ventilated
cages (20°C to 22°C, 12:12 hour light—dark cycle) with
food and water ad libitum. The diet (3395 kcal’kg) was
standardized and identical for all groups (SAFE A03; SAFE,
Augy, France). It included 69.2% cereals, 20.2% vegetal
protein, 6.0% animal protein, and 4.6% of a mineral and
vitamin cocktail. The following is a general description of
the macronutrient composition: 61.3% protein carbohy-
drates, 25.2% protein, and 13.5% lipids. The study experi-
mental protocols complied with the European directives on
animal experimentation (86/609/EEC) and were approved
by the French National Ethics Committee (APAFIS#19430-
2019022513523628v2).

Stool Collection

Feces were collected directly from the anus of the mice at 8
weeks, 12 weeks, 6 months, and 1 year of age. Samples
were then immediately frozen in liquid nitrogen before
storage at —80°C.

Euthanasia and Sample Collection

Mice were fasted for 12 hours and then euthanized by
intraperitoneal injection of ketamine (100 mg/kg) and
xylazine (20 mg/kg). Blood was collected via inferior vena
cava sampling and centrifuged at 2500 x g for 15 minutes;
the plasma supernatant was snap-frozen and stored at
—80°C. Intestinal tissue samples (duodenum, jejunum,
ileum, and colon), cecum content, and soleus and tibial
anterior (TA) samples were collected, weighed, and imme-
diately frozen in liquid nitrogen and stored at —80°C.
Second TA samples were collected and placed directly in
isopentane cooled in liquid nitrogen and stored at —80°C.
Both extensor digitorum longus (EDL) muscles were care-
fully removed and tendons tied with braided surgical silk for
future ex vivo contractility.

TA Staining by Immunohistochemistry

Serial transverse sections (10 pum thick) from liquid
nitrogen—cooled isopentane TA muscle samples embedded

The American Journal of Pathology m ajp.amjpathol.org

in optimal cutting temperature medium were obtained using
a cryostat at —25°C and mounted on glass microscope
slides. Sections were then washed in phosphate-buffered
saline, blocked, and permeabilized with 0.1% Triton X-
100 and 10% horse serum. Staining was performed with
anti-laminin (L9393; 1/200; MilliporeSigma, Burlington,
MA), anti-dystrophin (ab15277; 1/200; Abcam, Cambridge,
United Kingdom), and Hoechst. This was followed by
secondary antibody incubation with 546 donkey anti-rabbit
(Fluoroprobes, Interchim; 1/500) for anti-laminin and Alexa
488 goat anti-rabbit (1/1000; Thermo Fisher Scientific,
Waltham, MA) for anti-dystrophin. Whole histologic sec-
tions were imaged with an automated imaging device (MRI-
INM; Axioscan; Zeiss, Oberkochen, Germany) and
analyzed with ImageJ software version 1.53p (NIH,
Bethesda, MD; http://imagej.nih.gov/ij).

Ex Vivo Assessment of Contractility in EDL

Muscle contractile properties were assessed in ex vivo
conditions as previously described.’ This technique allows
evaluation of the intrinsic muscle contractile properties.
After 15 minutes’ equilibration in the Krebs solution bath
continually bubbled with 95% oxygen to 5% carbon dioxide
(pH 7.4) and thermostatically maintained at 37°C, EDL
samples were connected to a force transducer/length
servomotor system (model 305B; Cambridge Instruments,
Aurora Scientific Inc., Aurora, ON, Canada) and were
stimulated along their entire length with platinum wire
electrodes. The optimum muscle length (ie, the muscle
length producing maximal twitch tension) was determined.
All subsequent measurements were made at the optimum
muscle length. The isometric tetanic tension was determined
(701B Stimulator, Aurora Scientific Inc.) using stimulation
trains of 500 milliseconds, with pulse duration of 0.5
millisecond at different frequencies, from 1 to 150 Hz.
Stimulus trains were separated by a 1-minute interval. The
maximum isometric tetanic tension was determined from the
plateau of the frequency-tension curve. Three minutes after
the tension-frequency determination, the resistance to fa-
tigue was evaluated by using a low-frequency fatigue pro-
tocol of 50 Hz trains of 700 milliseconds delivered every 2
seconds for 5 minutes. The muscle fatigue index was
defined as the time taken to produce a 50% reduction from
the initial maximum power output. After all measurements,
EDL samples were removed from the bath, trimmed of the
connective tissue, blotted dry, and weighed. For each ani-
mal, the second EDL was placed in oxygenized Krebs so-
lution throughout the procedure and was used in case of
emergency.

Detection and Quantification of Plasma Proteins

One-quarter of the diluted plasma samples were analyzed by
using the Meso Scale Discovery U-PLEX Metabolic Group
1 (ms) 11-Plex assays. The antibody set contains
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biotinylated capture antibodies and corresponding detection
antibodies for 11 proteins: IL-1b, IL-4, 1I-6, tumor necrosis
factor, MCP-1, ghrelin (active and total), glucagon-like
peptide-1 (active and total), leptin, and peptide YY (total).
Assays were performed following manufacturer’s in-
structions using Meso Scale Discovery 96-well, 10-spot
plates and recommended diluents, with all plasma samples
being vortexed thoroughly before use. For experimental
measurements with below detection limits, concentrations
were considered as “0.” Levels of circulating adiponectin
were measured by using ELISA. Adiponectin doses were
determined by using commercial ELISA kits (#DY1065;
R&D Systems, Minneapolis, MN) according to the manu-
facturer’s instructions.

Ex Vivo Jejunum Basal Contractile Function

Jejunum basal contractile properties were assessed ex vivo at
1 year of age. Specifically, 1 cm of the first part of the
jejunum was connected to a force transducer/length servo-
motor system (model 305B; Cambridge Instruments, Aurora
Scientific Inc.). The optimum smooth muscle length (ie, the
muscle length producing maximal twitch tension) was
determined. All subsequent measurements were made at
optimum smooth muscle length. After 15 minutes’ equili-
bration in Krebs solution continually bubbled with 95%
oxygen to 5% carbon dioxide (pH 7.4) and thermostatically
maintained at 37°C, the basal peristalsis was recorded at 200
Hz for 15 minutes. This method is adapted from Alves
et al.”> To determine the period of peristalsis, the signal
obtained with DMC version 3.500 software (Aurora Sci-
entific Inc.) was extracted and imported to MATLAB
1.8.0_202 (MathWorks, Portola Valley, CA), in which a fast
Fourier transform was used to convert the signal to a fre-
quency domain. The peak frequency was then obtained as
the frequency corresponding to the peak of the power
spectrum. The period P was then estimated as the inverse of
the peak frequency.

Histologic Analyses of the Small Intestine

The small intestine was removed, divided into two parts
with the mucosal layer outward using a long wooden stick
and immersed in a solution of 4% paraformaldehyde in
phosphate buffer (0.1 mol/L, pH 7.4) for 4 hours at room
temperature.”* They were then rinsed in phosphate buffer
and immersed in 20% sucrose in phosphate buffer (0.1 M,
pH 7.4) for 24 hours at 4°C. Two parts of the intestine were
opened longitudinally and coiled with the mucosal layer
outward using a wooden stick, embedded in optimal cutting
temperature medium, and frozen in isopentane cooled in
liquid nitrogen. Swiss Rolls of intestine were cut in longi-
tudinal sections into serial 10 pm thick slices and stained
with hematoxylin and eosin and Alcian blue (stain goblets
cells) for histologic analysis. Goblet cell density was
determined by counting blue-stained cells per millimeter of

intestine. Whole histologic sections were imaged with a
digital slide scanner (MRI-INM platform; Nano-Zoomer
2.0-HT; Hamamatsu, Montpellier, France). The analysis
was performed on NDP.view 2 software (Hamamatsu). Five
fields of the same surface (7 mm2) were captured, and all
cells marked were counted and analyzed with ImageJ soft-
ware version 1.53p

For structural analysis, Swiss Rolls of intestine were cut
in longitudinal sections into serial 10 um thick slices and
stained with anti-laminin (L9393; 1/200; MilliporeSigma),
anti-dystrophin (ab15277; 1/200; Abcam), and Hoechst.
This was followed by secondary antibody incubation with
546 donkey anti-rabbit (Fluoroprobes; Interchim; 1/500) for
anti-laminin and Alexa 488 goat anti-rabbit (1/1000;
Thermo Fisher Scientific) for anti-dystrophin. The images
were acquired with an automated imaging device (Axioscan;
Zeiss, Oberkochen, Germany) provided by the facility im-
aging MRI-INM (Institute of Neuroscience, Montpellier,
France).

mRNA Expression Analysis by Quantitative RT-PCR

Total RNA was isolated from ileum, TA, and soleus sam-
ples using TRIzol (15596-018, Invitrogen, Carlsbad, CA).
RNA concentration was determined by spectrophotometric
analysis (BioDrop DUO; BioDrop, Cambridge, UK), and
purity was checked by calculating the OD;g00m/OD2gonm
absorption ratio (>1.8). RNA quality was verified by using
1% agarose gel electrophoresis. Reverse transcription was
performed with 2 pg of total RNA and the high-capacity
cDNA Reverse Transcription Kit (catalog no. 4368813;
Applied Biosystems) according to the manufacturer’s in-
structions. One-tenth of the obtained cDNA was used in
each PCR assay. real-time quantitative PCR analysis was
performed using a Step One Plus detection system (AB
Applied Biosystems) with 10 pL of Mastermix (PowerUp
SYBR Green Master Mix, Scientific A25742; Thermo
Fisher Scientific), 10 nmol/L of forward and reverse
primers, 5 puL of diluted cDNA template, and water to a final
volume of 15 pL. Forward and reverse primers are listed in
Table 1.

All PCR assays were performed in duplicate using the
following cycling parameters: 50°C for 2 minutes, then
95°C for 2 minutes followed by 40 cycles of 95°C for
3 seconds and 60°C for 30 seconds. Relative mRNA levels
were normalized to the levels of the housekeeping genes
Arp, Tubulin-o. for ileum samples, and Arp and Rps9 for TA
and soleus samples. Results are expressed using the
comparative cycle threshold method to generate AACt
values with template dilutions ranging from 10' to 10°
copies. The PCR overall efficiency (E) was calculated from
the standard curve slopes according to the equation
E = [10C"M°P9] — 1 and this value was >95% for all
assays. The relative abundance of each sample was
normalized according to the equation: Relative
Quantity = 27447,
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Table 1  Primers Used for gPCR in Ileum, Soleus, and TA
Gene
Function Sample name Forward primer Reverse primer
Housekeeping Ileum, Soleus, Arp 5'-TCCCACCTTGTCTCCAGTCT-3’ 5'-ACTGGTCTAGGACCCGAGAAG-3’
genes TA
Ileum Tubulin-a  5'-GTGGCCACGAGCATAGTTATT-3’ 5'-CTGGAACCCACGGTCATC-3'
Soleus, TA Rps9 5'-ATCCGCCAACGTCACATTA-3’ 5'-TCTTCAGTCGCCTGGAC-3'
Tight junction Ileum Zo-1 5'-AAATCATCCGACTCCTCGTC-3’ 5'-CAGTTGGCTCCAACAAGGTAA-3'
proteins Ileum Z20-2 5'-CAGGCATGGAGGAGGTGA-3' 5'-CACGGCAATTCCAAATCC-3'
and gut Ileum Cldn5 5'-ACGGGAGGAGCGCTTTAC-3’ 5'-GTTGGCGAACCAGCAGAG-3’
permeability Ileum Ocln 5'-TCCTCCTGGCTCAGTTGAA-3' 5'-CCAGGCTCCCAAGATAAGC-3'
Ileum Jam1 5'-AGAACAAAGAAAGGGACTGCAC-3’ 5'-ACCAGGAACGACGAGGTCT-3'
SCFA receptors Ileum Ffar1 5'-AGGCGCTCTCCTCACACTC-3' 5'-CTAGCCACATTGGAGGCATTA-3'
Ileum, Soleus  Ffar3 5'-CATCCTCCTGCCTGTACGAC-3’ 5'-ATACACAGGGGCACCATGA-3’
Ileum, Soleus  Ffar2 5 -TGCTCTGAAGAAGCCAATCA-3' 5'-TTCTCCTCTGGTCCAGTGCT-3'
LCFA receptor Ileum Ffar4 5 -TTGGTGTTGAGCGTCGTG-3' 5'-CCAGCAGTGAGACGACAAAG-3’
BCAA receptor Soleus Bcat? 5'-TGGAGACACTTTGAACACATGAGC-3' 5'-TCTTTTGGACCCACATAGAAGC-3’
Lipid metabolism Ileum, Soleus Angptl4  5'-GGGACCTTAACTGTGCCAAG-3' 5'-GAATGGCTACAGGTACCAAACC-3'
Glucose transporter Soleus Slcza4 5'-GACGGACACTCCATCTGTTG-3’ 5'-GCCACGATGGAGACATAGC-3’
Inflammation Ileum, Soleus  Myd88 5'-GCCTTGTTAGACCGTGAGGAT -3’ 5'-CTAAGTATTTCTGGCAGTCCTCCT-3'
Ileum, Soleus  Tir4 5'-GGACTCTGATCATGGCACTG-3' 5'-CTGATCCATGCATTGGTAGGT-3’
Ileum, Soleus  Nfkb1 5'-TGAGGACGGGGTATGCAC-3’ 5'-TCACATGAAGTATTCCCAGGTTT-3’
Soleus Trf 5'-CAGCTCAAGACCCCTACAGC-3’ 5'-CTCCCACACAGCCTCGTC-3’
Adiponectin Soleus, TA Adipor1 5'-GTTTGCCACTCCCAAGCA-3’ 5'-ACACCACTCAAGCCAAGTCC-3'
receptors Soleus, TA Adipor2 ~ 5'-TCTCAGTGGGACATGTTTGC-3’ 5'-AGGCCTAAGCCCACGAAC-3'

Adipor1, adiponectin receptor 1; Adipor2, adiponectin receptor 2; Angptl4, fasting-induced adipose factor; Arp, acidic ribosomal phosphoprotein; BCAA,
branched-chain amino acids; Bcat2, branched-chain-amino-acid aminotransferase; Cldn5, claudin-5; Ffarl, Free-fatty acid receptor 1; Ffar2, Free-fatty acid
receptor 2; Ffar3, Free-fatty acid receptor 3; Ffar4, Free-fatty acid receptor 4; Jam1, junctional adhesion molecule A; LCFA, long-chain fatty acids; Myds8s,
myeloid differentiation primary response 88; Nfkb1, nuclear factor kappa B; Ocln, occludin; qPCR, real-time quantitative PCR; Rps9, 40S ribosomal protein S9;
SCFA, short-chain fatty acids; Slc2a4, glucose transporter 4; TA, tibial anterior; Tir4, Toll-like receptor 4; Trif, TIR-domain-containing adapter molecule 1; Zo-1,

zonula occludens 1; Zo-2, zonula occludens 2.

DNA Extraction from Feces

Total cell DNA was extracted from 0.1 g of animal fecal
material using the G’NOME Kit (BIO 10; MP Bio-
medicals, La Jolla, CA) with modifications.” Fecal sam-
ples were homogenized in the supplied cell suspension
solution. Cell lysis/denaturing solution was added, and
samples were incubated at 55°C for 2 hours. To improve
cell lysis, 0.1-mm diameter silica beads (750 pL) were
added, and samples were mixed at the maximum speed in a
Fast-Prep bench homogenizer (MP Biomedicals) for 4
minutes. Polyvinylpolypyrrolidone (15 mg) was added to
ensure removal of polyphenol contamination that could
inhibit the real-time quantitative PCR assays. Samples
were vortexed and centrifuged at 20,000 x g for 3 minutes,
and supernatants were recovered. The remaining pellets
were washed with 400 pL. of TENP [50 mmol/L Tris (pH
8), 20 mmol/L EDTA (pH 8), 100 mmol/L. NaCl, 1%
Polyvinylpolypyrrolidone] and centrifuged at 20,000 x g
for 3 minutes. The washing step was repeated once, and the
resulting supernatants pooled. Nucleic acids were precipi-
tated by addition of one volume of isopropanol, incubation
at —20°C for 20 minutes, and centrifugation at 20,000 x g
for 10 minutes. Pellets were resuspended in 400 pL of
distilled water plus 100 pL of salt-out mixture and
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incubated at 4°C for 10 minutes. Samples were spun at
maximum speed for 10 minutes, and DNA-containing su-
pernatants were transferred to clean 1.5-mL micro-
centrifuge tubes. DNA was precipitated with two volumes
of 100% ethanol at room temperature for 5 minutes, fol-
lowed by centrifugation at 16,000 x g for 5 minutes. DNA
was resuspended in 150 pL. of TE buffer and stored at
—20°C.

Evaluation of Microbiota Composition by Sequencing

The V3-V4 region of the 16STRNA genes was amplified
using the bacterial primers 343F (5-CTTTCCCTAC
ACGACGCTCTTCCGATCTACGGRAGGCAGCAG-3')
and 784R (5-GGAGTTCAGACGTGTGCTCTTCCGAT
CTTACCAGGGTATCTAATCCT-3’) modified to add
adaptors during the second PCR amplification. PCR assays
were performed by using the MolTaq 16S DNA poly-
merase and the corresponding master mix (Molzym GmbH
& Co. KG, Bremen, Germany). The PCR mix contained 10
ng of DNA, 1 puL of dNTPs (10 mmol/L), 1.25 pL each of
forward and reverse primer (20 uM), and 0.5 pL of Taq
polymerase in a total volume of 50 pL. The cycling pro-
gram was as follows: 94°C for 3 minutes, followed by 40
cycles at 94°C for 15 seconds, 60°C for 30 seconds, 72°C
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for 60 seconds, and a final extension at 72°C for 5 minutes.
Sequencing was performed by using MiSeq technology
(Illumina) at the Genopole Toulouse Midi-Pyrenees
genomic facility (Toulouse, France).

Metagenomic Analysis

Sequencing data were demultiplexed at the Genopole
Toulouse Midi-Pyrenees platform. Version 3.2.3 was used
to produce abundance tables of operational taxonomic
units (OTUs) and their taxonomic affiliation”® following
author guidelines.’’ The most abundant sequences of each
OTU were then matched with blastn to the Silva version
132 database.”® Abundance tables and taxonomy files
were imported into RStudio (version 1.2.1335), and
phyloseq 1.28.0,”" ggplot2 3.4.0,"" and custom scripts
were used for data analysis. Samples were rarefied to even
sampling depths before computing within-sample
compositional diversities (Observed richness, Chaol,
Shannon, and InvSimpson) and between-samples
compositional diversity (UniFrac). Principal coordinates
analysis was also performed on dissimilarity matrices to
obtain a two-dimensional representation of the samples.
Alpha diversity data were analyzed by using repeated
measures analysis of variance. Permutational multivariate
analysis of variance tests were performed on UniFrac
matrices using 9999 random permutations and a signifi-
cance level of 0.01. The relative abundances of phyla
were compared by using repeated measures analysis of
variance and GraphPad Prism version 10.0.0 for Windows
(GraphPad Software, La Jolla, CA). As published by
Segata et al,*! the linear discriminant effect size (LEfSe)
method was performed by combining the Kruskal-Wallis
test or Wilcoxon rank-sum test with the linear discrimi-
nant analysis scores to estimate the effect size of differ-
entially abundant features with biologic consistency and
statistical significance (the a value was set at 0.05, and the
linear discriminant analysis score threshold for discrimi-
native features was >2.O)41 (The Huttenhower Lab, http://
huttenhower.sph.harvard.edu/galaxy, last  accessed
December 5, 2022).

The data sets analyzed in this article are publicly available
[https://data.inrae.fr/data  set.xhtml?persistentld = doi.:10.
57745/Z5SX5M4; last accessed October 5, 2023 (login
required)].

Statistical Analysis

All data are presented as means + SEM. Statistical signif-
icance was checked by using two-way analysis of variance
to compare the mdx and B10 groups at different time points;
when not applicable, a t-test was used. For all statistical
analyses, the significance level was set at 0.05. Data were
analyzed by using GraphPad Prism version 10.0.0 for
Windows.

Results

Reduced Gut Microbiota a- and B-Diversities in mdx
Genotype

Comparison of the Observed, Chaol, and InvSimpson
indices obtained at different ages showed that a-diversity
varied between genotypes. Specifically, the Observed
(P < 0.01) and Chaol (P < 0.05) indices were significantly
reduced, whereas the InvSimpson index was increased, in
mdx mice compared with wild-type B10 littermates

(Figure 1A). The Shannon index was comparable between 1

genotypes (Figure 1A). The graphical representation of -
diversity using principal coordinates analysis plots for the
UniFrac distances showed a strong and significant effect of
the genotype (P < 0.001) (Figure 1B). Separate analysis at
each time point confirms that the separation of the genotype
is significant at all time points (P < 0.001). The ordination
plot shows that the first axis of the principal coordinates
analysis corresponds to the genotype and accounts for
almost 20% of the diversity (P < 0.0001) (Figure 1B).

Specific Taxonomic Modification of Main Phyla and
Included Genera in mdx Genotype

Comparison of the abundance of the six main phyla during
the first year of life revealed significant differences in gut
microbiota composition in mdx and B10 mice. The abun-
dance of Actinobacteria, Proteobacteria, and Tenericutes
was significantly increased in mdx mice compared with B10

mice (Figure 2). Moreover, the Deferribacteres phylum was 2

only present in mdx mice (all ages tested) (Figure 2).

Analysis of the differential abundances using LEfSe
highlighted 30 up-regulated OTUs (including eight unknown
genera and species) in the gut microbiota of mdx mice
compared with B10 mice. Conversely, nine OTUs (including
eight unknown genera and species) were characteristic of
B10 mice based on their linear discriminant analysis score
compared with mdx mice (Figure 3A). Bacteroidaceae,
Bacteroides, Alistipes, Rikenellaceae, Rhodospirillales,
Rhodospirillaceae, Deferribacterales, Deferribacteraceae,
and Deferribacteres were overexpressed by at least 3.6-fold
in mdx mice. Conversely, the Lachnospiraceac NK4A136
group and Bacteroidales S24_7 group were decreased by
almost 4.8-fold in B10 mice.

The cladogram representation of the LEfSe results ac-
cording to the taxonomic rank (Figure 3B) allowed easy
identification of the taxonomic branches (from phyla to
OTUs) that were modified in mdx mice, as well as the extent
of the modification. The abundance of the phylum Defer-
ribacteres was increased in mdx mice, as was the class
Deferribacteres, the order Deferribacterales, the family
Deferribacteraceae, and the genus Mucispirillum. Similarly,
two other main continuous taxonomic changes were iden-
tified in mdx mice: the phylum Proteobacteria, then the class
(Alphaproteobacteria), order (Rhodospirillales), family
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Figure 1  Dystrophin deficiency is associated with gut microbiota a- and B-diversity altered. A: a-Diversity indices in mdx (C57BL10SnSc-DMD™¥*/J) mice @28
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versus B10 mice.

(Rhodospirillaceae), and genus (unknown species); and the
phylum Actinobacteria, then the class (Coriobacteriia),
order (Coriobacteriales), family (Coriobacteriaceae), and
genus (Enterorhabdus) (Figure 3B). For other phyla, some
taxonomic ranks were altered; for instance, the prevalence
of Bacteriodes and Bacteriodaceae belonging to the Bac-
teriodetes phylum was increased. Moreover, the Lachno-
spiraceae NK4A136 group from the Firmicutes phylum was

The American Journal of Pathology m ajp.amjpathol.org

reduced in B10 mice. No impact of dystrophin deficiency in
the phylum Tenericutes was observed, however.

Low-Grade Circulating Inflammation and Reduced
Adipokines Levels in mdx Genotype

Plasma biomarker analysis highlighted a low-grade
inflammation in mdx mice characterized by higher levels
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of IL-6 (Figure 4A), tumor necrosis factor (Figure 4B), and
MCP-1 (Figure 4C) compared with B10 mice. IL-1B
involved in the inflammatory process was not modulated
(Supplemental Table S1), and IL-4 was undetectable in
both groups.

In addition, our data revealed a strong down-regulation of
circulating adipokines such as adiponectin (Figure 4D) and
leptin (Figure 4E) in mdx mice compared with their B10
littermates. Interestingly, as shown in Table 2, adiponectin
and leptin explain 10% and 11.9%, respectively, of the gut
microbiota signature of dystrophin-deficient mice.

The entero-endocrine hormone ghrelin differs between
groups, with a normalization with age of circulating level in
mdx mice compared with B10 mice (Supplemental Table
S1). Nevertheless, glucagon-like peptide-1 and peptide

YY measurements did not reveal differences between
groups (Supplemental Table S1).

Slowed Down Gut Peristalsis in mdx Genotype, Not
Likely Linked with the Dystrophin Protein Deficiency

In mdx mice, the limited amount of dystrophin protein
synthesis is characterized by altered structure and function

of skeletal muscle (Supplemental Figure S1A). Indeed, even o2

with hypertrophy during the first 6 months of life
(Supplemental Figure S1, B—D), hindlimb muscles revealed
a force weakness from 8-week—old worthening with aging
(Supplemental Figure S1E).

Because gut microbiota is involved in intestinal smooth
muscle motility, intestine morphology and function were
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Operational taxonomic unit abundances in mdx (C57BL10SnSc-DMD™®/J) mice and B10 (wild-type C57BL10SnSc) mice. A: Linear discriminant

analysis (LDA) effect size for the two genotype (all ages). The figure shows the microbial taxa, the abundance of which was significantly different between mdx
(green) and B10 (red) mice. B: Cladogram representation of the microbiota composition in mdx and B10 mice. The cladogram plot shows the differences in the
relative abundances of taxa at six levels between mdx and B10 mice. All plots were generated by using the online Galaxy Huttenhower Lab server. Each cycle
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investigated. Dystrophin staining by immunofluorescence
revealed an absence of dystrophin in the intestine indepen-
dently of the phenotype (Figure 5A). In addition, small in-
testine goblet cell density was assessed, as mucus
production by the goblet cells is important for intestinal
integrity. No difference was found in labeling and, conse-
quently, in small intestine goblet cell density between the
two phenotypes of mice (B10 mice, 52.1 + 8.3 cells/mm?;
mdx mice, 54.1 & 4.3 cells/mm?) (Figure 5, B and C). The
intestinal smooth muscle properties were assessed with the
ex vivo contractility test, and the mean period of sponta-
neous basal contraction of jejunum was calculated. The
period of peristalsis was significantly longer in 1-year—old
mdx mice than in B10 littermates, suggesting a slowing of
peristalsis (P < 0.01) (Figure 5D).

Reduction of Ileum Gene Expressions Linked with
Intestinal Functionality/Permeability in mdx Genotype

Analysis of the expression in ileum samples of various
genes linked to intestinal functionality/permeability showed
that Zo-1 and Zo-2 were significantly down-regulated in
mdx mice compared with B10 mice (P < 0.05) (Figure 6, A
and B). Similarly, the gene encoding the SCFA receptor
Ffar2 was down-regulated in mdx mice (P < 0.05)
(Figure 6C). Conversely, Angptl4 was up-regulated in mdx
mice (P < 0.005) (Figure 6D). Expression of genes
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encoding inflammatory markers, amino acid receptors, and
lipid transporters were comparable between genotypes (data
not shown).

Dysregulation of Muscle-Specific Receptors of Gut
Bacterial Metabolites and Activation of the Muscle
Tlr4/MyD88 Pathway in mdx Genotype

In TA samples, gene expression of Bcat2 (the skeletal
muscle—specific isoform of transaminase 2) was strongly
up-regulated in mdx mice compared with B10 mice at both
ages (Figure 7A). In contrast, in oxidative soleus muscle,
Bcat2 expression was down-regulated at both ages in mdx
mice (12 weeks, 0.42 + 0.2-fold change versus B10 mice; 1
year, 0.56 £ 0.07-fold change versus B10 mice; P < 0.01).

The adiponectin receptor 1 expression was also up-
regulated at both ages in mdx TA muscle (Figure 7B),
whereas the nonmuscle-specific adiponectin receptor 2 was
not significantly different (Figure 7C). Interestingly, in so-
leus muscle, adiporl (12 weeks, 0.73 £+ 0.16-fold change
versus B10 mice; 1 year, 0.79 £+ 0.08-fold change versus
B10 mice; P < 0.01) and adipor2 (12 weeks, 0.64 + 0.19-
fold change versus B10 mice; 1 year, 0.76 £ 0.06-fold
change versus B10 mice; P < 0.001) were significantly
down-regulated in mdx mice compared with B10 mice from
12 weeks old to 1 year old.
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Figure 4  mdx-Specific plasma profile associated with gut microbiota signature. A—E: Levels of IL-6 (A), tumor necrosis factor (TNF) (B), monocyte

chemoattractant protein-1 (MCP-1) (C), adiponectin (D), and leptin (E) in mdx (C57BL10SnSc-DMD™®/J) mice compared with B10 (wild-type C57BL10SnSc)
mice at 12 weeks and 1 year of age. n = 10 per group per age. *P < 0.05, ***P < 0.001, ****P < 0.0001 versus B10 mice.

The mRNA level of Tlr4/Myd88 inflammation pathway
showed a high activation in mdx mice muscles compared
with those of B10 mice (Figure 8). The expression of the
gene encoding the Toll-like receptor 4, which recognizes
pathogen-associated molecular patterns and specifically
bacterial lipopolysaccharides, was up-regulated in TA at

Table 2 Plasma Biomarkers and Their Effect on Gut Microbiota
Signature

Sum of
Marker squares  R? Statistic P
TNF (pg/mL) 0.2268 0.1328 2.144  0.006200
Leptin (pg/mL) 0.2041 0.1195 1.901 0.01830
Adiponectin (ng/mL)  0.1825 0.1069 1.675 0.04720
MCP-1 (pg/mL) 0.1823 0.1068 1.673  0.03700
Ghrelin active (pg/mL) 0.1253 0.1659 1.193 0.2032
IL-4 (pg/mL) 0.07851 0.1219 0.6944 0.7855
PYY (pg/mL) 0.1624 0.09510 1.471  0.08810
GLP-1 active (pM) 0.1494 0.08752 1.343  0.1066
IL-1B (pg/mL) 0.1155 0.08642 1.041 0.3317
GLP-1 Total (pM) 0.1428 0.08362 1.278 0.1726
IL-6 (pg/mL) 0.1345 0.07876 1.197 0.2147

GLP-1, glucagon-like peptide-1; MCP-1, monocyte chemoattractant
protein-1; PYY, peptide YY; TNF, tumor necrosis factor.
Bold: P < 0.05.
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both ages (Figure 8A) and soleus at 1 year old (B10 mice,
0.68 £ 0.09; mdx mice, 1.08 £ 0.08; interaction, P < 0.001)
in mdx mice compared with B10 mice. In mdx mice, Myd88
also was significantly up-regulated in TA (Figure 8B) and
soleus (12 weeks, 1.60 = 0.9-fold change versus B10 mice;
1 year, 1.05 + 0.2-fold change versus B10 mice; P = 0.02)
muscles. Angptl4, known to be up-regulated during
inflammation, was highly up-regulated only in TA muscle
(Figure 8C). The expression of other genes linked to gut
microbiota metabolites (Table 1) was not different between
genotypes (data not shown).

Discussion

This is the first study designed to explore gut microbiota in
mdx mice to investigate the gut microbiota—skeletal
muscle crosstalk. Monitoring mdx mice and B10 wild-
type littermates at 8 weeks, 12 weeks, 6 months, and 1
year of age highlighted a unique intestinal bacterial
composition in mdx mice associated with an impairment of
specific plasma and muscle inflammatory biomarker levels.
We also confirmed a slowing of gut peristalsis indepen-
dently of dystrophin deficiency in smooth muscle com-
bined with the intestinal structure impairment in mdx mice.
Taken together, these alterations might contribute to
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anti-dystrophin, and Hoechst at 1 year old for both genotypes. B: General morphology of villi intestine in Swiss Roll. Sections were stained with hematoxylin
and eosin (B) and Alcian blue (C) in 1-year—old B10 (wild-type C57BL10SnSc) mice. D: Jejunum peristalsis at 1 year of age in mdx (C57BL10SnSc-DMD™/3)
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worsen the physiopathology of the skeletal muscle in mdx
mice.

The impact of dystrophin deficiency on gut microbiota
host. The lower Observed and Chaol indices in mdx
mice revealed reduced richness, and the increased
InvSimpson index highlighted fewer dominant species
and greater evenness. Thus, in mdx mice, the overall
number of different OTUs and their abundance were

The American Journal of Pathology m ajp.amjpathol.org

significantly reduced. The nonsignificant difference of
the Shannon index suggests that this overall lower di-
versity does not concern rare OTUs. Principal co-
ordinates analysis plots for B-diversity clearly clustered
the two genotypes, independently of age. Indeed, mdx
genotype predicted 20% of B-diversity divergence, vali-
dating the theory that dystrophin deficiency affects bac-
terial composition from birth.
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Besides the gut microbiota diversity, the metagenomic
analysis revealed strong taxonomic modifications. The
abundances of four main phyla (Actinobacteria, Proteo-
bacteria, Tenericutes, and Deferribacteres) were increased in
mdx mice. For three of them, this concerned the phyla and
also the included genera (LEfSe analysis): the Mucispirillum

genus and Deferribacteraceae family in the Deferribacteres
phylum; the Enterorhabdus genus and Coriobacteriaceae
family in the Actinobacteria phylum; and the Rhdospir-
illaceae family in the Proteobacteria phylum were the most
concerned. Interestingly, the Deferribacteres phylum and
related taxa were only detected in stools from mdx mice and
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Figure 7

The gene expressions of receptors linked to gut microbiota metabolites are modulated in tibial anterior muscle of mdx (C57BL10SnSc-DMD™/3J)

mice. A: Bcat2 (branch-chained amino acids transporter 2). B: Adipor1 (adiponectin receptor 1). C: Adipor2 (adiponectin receptor 2). n = 8 per group per age.

**P < 0.01, ****P < 0.0001 versus B10 (wild-type C57BL10SnSc) mice.
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not in wild-type littermates, thus constituting a specific
phylum and taxa related to dystrophin deficiency. This
phylum includes six genera that are all Gram-negative
bacteria.*”

To the best of our knowledge, these are original results,
and no similar data have been published previously on this
DMD model. Nevertheless, some hypotheses on the po-
tential links between these microbiota abundance modifi-
cations and the dystrophic phenotype could be proposed
based on findings of other pathologic models. For instance,
in a mouse model of colorectal cancer, an increase in
Mucispirillum schaedleri drives lipopolysaccharide pro-
duction that is associated with an inflammatory response.*
In a model of ulcerative colitis (inflammatory bowel disease
family), the active period of the disease is characterized by a
larger abundance of Rhodospirillales.”* Clostridial are in
close relationship with intestinal cells, to possibly modu-
lating gut cells’ immune processes.”” Some Enterorhabdus-
related species are known to degrade mucus and could
expose the intestinal barrier to assault.”® The combination of
metagenomic and metatranscriptomic analyses might reveal
the functional activity and implication in the dystrophic
phenotype development of the specific commensal microbes
identified in the current study.

The current study also found that in mdx mice, gut
microbiota composition changes were associated with
slowed intestinal motility, emphasized by the increased
jejunum basal contraction wave period. This result is in
accordance with a recent study by Singh et al'’ showing
fewer full peristaltic waves in mdx mice associated with
reduced contraction-stimulated force and mRNA expression
of contractile proteins. Furthermore, dystrophin protein was
not revealed by intestine staining, either in the control B10
group or in the mdx mice. Thus, the difference of intestinal
microbiota between mdx and B10 is unlikely due to the
absence of the dystrophin protein. In addition, the down-
regulation of genes encoding the tight junction proteins
(Zo-1 and Zo-2), crucial for the epithelial barrier integrity

The American Journal of Pathology m ajp.amjpathol.org

maintenance*>*° observed in mdx ileum samples, indicates

a potential impact on the epithelial barrier permeability.
Furthermore, results on the gut microbiota suggest that in-
testine bacteria could play a role in the intestinal dysfunction

observed in mdx mice. The unique gut microbiota signature @2

in mdx mice with the over-representation of Gram-negative
bacteria could promote inflammation in the lumen and
disrupt the intestinal contractile properties, comforting the
hypothesis of the low-grade circulating inflammation
(discussed later). Moreover, Ffar2 (SCFA receptor) down-
regulation in mdx ileum highlights lower SCFA produc-
tion that could alter the smooth muscle metabolism and
contractile function.”’’ ? Interestingly, Bcar2 profiles sug-
gest a modulation of bioavailability of branched-chain
amino acids. Because branched-chain amino acid produc-
tion is partially regulated by the gut microbiota, the alter-
ation of the gut microbiota in mdx mice could contribute to
impairment in this production. Nevertheless, Bcat2 up-
regulation in TA and the opposite down-regulation in so-
leus indicate a more complicated and intricate response
between muscle phenotypes, warranting  further
investigations.

The reduced Zo-1 and Zo-2 expression suggest an
increased gut permeability that might lead to a leak of bac-
terial components in the circulatory system, thus contributing
to low-grade inflammation, as confirmed by higher plasmatic
levels of IL-6, tumor necrosis factor, and MCP-1 observed in
mdx mice and/or bacterial infections in distant organs.’”
Furthermore, the LEfSe analysis showed an increase in
lipopolysaccharide-producing Gram-negative  bacteria
(Deferribacteres phylum, Bacteroides genus) in mdx mice
gut. Concomitantly, the gene expression of TIr4 (receptor of
lipopolysaccharide), myd88, and Angptl4 important proteins
of the inflammation pathway were up-regulated in skeletal
muscles of mdx mice, especially in the tibial anterior. Thus,
alteration of gut microbiota associated with disruption of the
intestinal barrier could worsen inflammation in dystrophin-
deficient skeletal muscle. Finally, circulating adipokine
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dysregulation such as adiponectin, ghrelin, and leptin may
indicate an adipose tissue disruption in mdx mice. Interest-
ingly, the expression of adiporl, the suspected main driver of
adiponectin cascade in skeletal muscle,”" was altered in TA
and soleus muscles from mdx mice (TA, up-regulation; so-
leus, down-regulation). The various patterns highlighted in
mixed TA and oxidative soleus muscles might be explained
by a different metabolism associated with the typology.
Indeed, adiponectin electrophoresis in skeletal muscle has
been shown to modulate myosin heavy chain genes toward
oxidative phenotype.”® Thus, adiponectin stimulation might
be linked to muscle typology. Interestingly, plasma
biomarker analysis also revealed a massive release of leptin
in the blood flow at 1 year of age in B10 mice compared with
mdx mice. Although this satiety hormone has not been
studied intensively in the dystrophin-deficiency field, a lower
level of leptin could be explained by the mdx fat metabolism
impairment.”” These findings raise questions on a third
contributor as adipose tissue in the interorgan crosstalk.

To summarize, this original article observed for 1 year the
gut microbiota signature in relation with the intestinal
structure and function as well as blood biomarkers and
skeletal muscle function in a context of dystrophin defi-
ciency. These results showed a strong gut microbiota clus-
tering between genotype, independently of age, with a
modulation of four main phyla and genera related to
inflammation with overall less diversity in mdx mice.
Twenty percent of the B-diversity divergence was explained
by the genotype, confirming the relationship between dys-
trophin deficiency and gut bacterial composition from birth.
An over-representation of lipopolysaccharide-producing
Gram-negative bacteria is shown in mdx mice, with
reduced intestinal motility as well as gene expressions of
ileum tight junction proteins, which suggest an increased
intestinal porosity contributing to the low-grade inflamma-
tion. This is supported by the systemic inflammation, the up-
regulation of bacterial pro-inflammatory receptor TIr4/
MydS88 in mdx muscles, and the adipose tissue secretion
profile. Finally, the decrease of Ffar2 in the ileum might
reveal a dysregulation of the gut microbiota SCFA pro-
duction and bioavailability for skeletal muscles. This study
highlights gut microbiota as a potential central metabolic
organ in mdx physiopathology.”® Additional studies would
be required to better understand gut microbiota involvement
in dystrophy development/progression through the
intestine—skeletal muscle crosstalk. This finding also en-
courages studies to develop novel approaches to address the
gastrointestinal and muscle dysfunction in patients with
DMD to improve the global therapeutic management of
muscular dystrophies.
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