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Abstract

Capacity expansion models provide the basis on which to decide where,
when, how much and what technology type to deploy. In systems with large
shares of variable renewable energy, the low temporal detail of these models
has been shown to introduce biases, prompting much recent work to reduce
them. This paper shows that this issue is fairly secondary compared to the
impact of maximum investment rates. Through this parameter, typically
not discussed in capacity expansion studies, many notions can collectively
be expressed, such as the rate at which capacity is financed, institutions ap-
prove development, manufacturers roll-out equipment, civil engineers build
infrastructure, network operators connect plants etc. This paper shows that
considering even ambitious development rates significantly increases total
system costs, and drastically changes the structure of an optimal generation
mix. The presented sensitivity analysis is based on a multi-region represen-
tation of the European power system, modelled using the open-source tool
OSeMOSYS, to which a novel power transmission module has been added.
Results stress the extent to which hopes of meeting climate targets hinge
on society’s collective ability to deploy new low-carbon infrastructure fast
enough. Energy policy can enhance this ability by providing long-term visi-
bility and stability, reducing investment risk.

Keywords: Capacity expansion planning, maximum investment rate,
optimal investment pathways, brownfield study, climate targets.
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1. Introduction

The current technology-focussed approach to reducing greenhouse gas
emissions requires a complete restructuring of the energy system. These
systems are composed of capital intensive assets with lifetimes in the order
of decades; poor planning can hence lead to costly lock-in effects, not just
from an economic standpoint, but social and environmental also, as these
assets have far-reaching impacts. To manage such risks, policy makers are
typically guided by model-based analyses, most notably from Capacity Ex-
pansion Models (CExM)1, whose task it is to determine where, when, how
much and what technology type should be built or retired to meet all three
components of the energy trilemma (energy security, energy equity, environ-
mental sustainability).

Using these models requires expertise. Their number of parameters and
variables typically reach several dozens, many of which can single-handedly
significantly affect key model outputs. Moreover, due to the size of the prob-
lem to be solved, these models must make simplifying assumptions, typically
restricting sectoral, spatial and temporal resolutions. To ensure simplifica-
tions are compatible with a specific research question, heavy use of sensi-
tivity analysis is required, along with transparency in the way parameters
are set. The following sub-sections discuss how previous work has evaluated
the impact of two different model features: temporal detail, and maximum
investment rates.

1.1. Reviewing the impact of temporal detail
Many CExMs have been proposed by academics, institutions and compa-

nies alike, as reviewed by several papers such as Ringkjob et al. [4], Connolly
et al. [5] and Oree et al. [6]. The most widely used of these models2 have
fairly similar structures, particularly where their limited temporal resolution
is concerned, has lead to the same biases being observed in their outcomes
when large shares of Variable Renewable Energy (VRE) are considered. As
summarised in Figure 1, these biases are the consequence of poor repre-
sentation of flexibility i.e. a system’s ability to cope with variability and

1This corresponds to the terminology used by the International Energy Agency [1],
other authors may use the terms Energy System Optimisation Model [2] or long-term
energy system models [3] to refer to similar concepts.

2E.g. TIMES [7], MESSAGE [8], PRIMES [9], OSeMOSYS [10].
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uncertainty, both in terms of its requirement and its provision.

Figure 1: Simplifications made in Capacity Expansion Models cause flexibility to be under-
valued. This leads to errors in optimal installed capacities, total system cost and emissions.

Flexibility requirement is generally understood to be dictated by both
predictable and unpredictable variations in net load. This variability has
been shown to increase with VRE shares [11, 12], particularly on the daily,
weekly and annual timescales, with increasing share of solar, wind and hydro
generation respectively. This multi-timescale increase in flexibility require-
ment is particularly hard to express in CExMs, due to their use of time-
series reduction techniques, necessary to ensure computational tractability
[13, 14, 15, 16, 17]. This time-series reduction can be achieved using timeslices
or representative days/weeks, with many possible implementation methods
(e.g. simple averaging, down-sampling, clustering, duration curve-based...).
Much research has been carried out to improve the details of these techniques
[17, 18, 19, 20, 21, 15]. Comparisons suggest that simple averaging performs
the worst, but that no sophisticated approach consistently out-performs the
others. They do however lead to substantial differences in investment strate-
gies [22, 23], and the appropriate choice in time-series reduction technique
has also been found to be system-specific [24]. Whatever the technique used,
issues are likely to occur in terms of the expression of chronology, of inter-
variable correlations, as well as geographical aspects of flexibility in multi-
regional studies (particularly if regions have different shares of wind or solar).

Flexibility provision consists in having dispatchable technologies adjust
their behaviour to match variations in net load. Increasing VRE shares
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transform the structure of the generation mix and hence the way flexibil-
ity is provided [25]. Generation, storage, network interconnection or flexible
load all have many technical and economic parameters that limit their ability
to provide flexibility (e.g. minimum power output, up/down ramping capa-
bility, start-up and shut-down times, minimum up and down times, energy
capacity, recovery periods). These parameters, typically considered in unit-
commitment and economic dispatch problems3, cannot be expressed faith-
fully in CExMs due to the lack of chronology between stylised model time
steps and/or low temporal resolution, hence leading to an over-estimation of
technologies’ ability to provide flexibility [13, 28, 29, 30].

As a result of these simplifications, CExMs fail to express the full com-
plexity of the flexibility challenge, leading to biases on model outputs that
happen to be key for policy makers. These biases have been the focus of a
large body of research, and are now well understood. Total system costs tend
to be underestimated [3, 13, 31, 32, 33, 34], with system-specific CO2 emis-
sion evaluation errors. The optimal capacity of technologies that worsen the
flexibility challenge or that are of limited help (VRE, baseload generation)
tends to be overestimated, while the optimal capacity of technologies that
mitigate the flexibility challenge are underestimated (mid-merit generation,
storage, interconnection, flexible demand) [17, 33, 35, 36]. In studies that
simulate the detailed operation of systems proposed by CExMs, this leads to
unacceptably high levels of loss-of-load [32, 34, 36, 37], raising doubts as to
the relevance of such development plans for policy recommendation purposes.

Many of the aforementioned studies have tried to refine these observa-
tions, improving the collective understanding of when such simplifications
are the most problematic. While the discussed impacts unsurprisingly worsen
with VRE penetration [13, 38, 22, 24], they also depend on system charac-
teristics [24, 30, 32, 39]: if ample flexibility is already available (e.g. hydro),
poor representation is less of an issue. Testing constraints individually rather
than collectively, Palmintier et al. [29] showed that operating reserves and
maintenance are the most important and hour-to-hour ramping the least.
Interestingly, Poncelet et al. [13] have also shown that the impact of poor
temporal resolution is more significant than that of poor operational detail
(i.e. consideration of technical constraints).

Much work has also been carried out to adapt modelling approaches to

3Which are formulated in models such as Antares [26] or PLEXOS [27].

4



solve the issues mentioned here, as is discussed in the following review papers
[40, 41, 42]. However, this is beyond the scope of this paper and will hence
not be discussed here.

1.2. Reviewing the impact of maximum investment rates
While they can be a point of interest in best practices papers [2] and

papers with a strong review element [43, 44], maximum investment rates have
comparatively received far less attention from model or case study focussed
papers4. Investment constraints such as technology growth rates or market
shares are typically used as calibration techniques to ensure models propose
credible investment pathways. The way their associated parameter values
are set is rarely discussed or even mentioned, making it difficult to judge the
relevance of the case study setup and hence the validity of model outputs.

There are a few notable exceptions, first and foremost Heuberger et al.
[45]. Introducing an endogenous learning-by-doing feature in the ESO model,
they found that maximum investment rates had a greater impact on total
system costs than learning-by-doing, shedding light on the interaction be-
tween the two. Other recent studies using the ESO model family also make
sure to discuss maximum investment rates settings [47, 48]. In the latter,
investment constraints are a centre piece in the case study narrative.

Outside the ESO model community, a few scarce papers briefly mention
this concept in the case study setup [49], or propose a few sensitivity analyses
to increase the robustness of obtained results [36, 46]. Note that outside
academia, in industrial settings, annual limits to the investment in different
technologies can be a core parameter in power system planning studies [50].

1.3. Key contributions and paper structure
As discussed extensively in the literature review, there has been plenty

of recent work on the impact of poor representation of flexibility on CExM
outcomes, much less so on the impact of maximum investment rates. To
the best of our knowledge, despite a few sensitivity analyses proposed by
Mallapragada et al. [36], the impact on CExM outcomes of these two core
model features has never been systematically compared. This comparison is
the main contribution of this paper, examining how past observations made

4Note that this concept may be referred by a variety of other terms, such as “build
rates” [45], “implementation speed constraints” [43], or “generation growth caps” [46]
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on the impact of temporal resolution hold up when investment rate limits are
taken into account. The results of this comparison will help model users take
the appropriate care during case study setups, but also provide guidance to
the target audiences of planning studies, helping them judge the relevance of
the key assumptions that are made, whether explicit or implicit.

The methodology used for this study is described in Section 2, covering
the modelling framework (including a novel power transmission module), the
case study set-up and the sensitivity analysis protocol used to evaluate the
relative impact of maximum investment rate versus flexibility requirement
representation. Section 3 provides the results of this analysis, focussing on
several model outcomes: total system costs, annual energy mix and flexibility
solution capacity. Section 4 briefly discusses the various implications of these
results.

2. Methodology

The proposed methodology is based on the open-source modelling frame-
work OSeMOSYS (see Subsection 2.1), to which a novel interconnection mod-
ule was added to improve the representation of power flows and allow invest-
ment in new capacity (see Appendix A). This framework is used to model
the development of the European power system between 2015 and 2050,
represented using 17 different regions (see Subsection 2.2). Model runs are
performed based on 9 different timeslice structures, ranging from 24 to 336
timeslices, designed to have different qualities of inter-daily and intra-daily
variability representation. Simulations are run for 4 different brownfield sce-
narios, with different levels of investment rate and CO2 budget constraints
(see Subsection 2.3).

2.1. OSeMOSYS overview
OSeMOSYS is an open-source modelling framework designed for long-

term energy system planning. It can be used to gain insights into the future
developments of a specific system by proposing optimal investment pathways
based on a total system cost minimisation, using a central planner perspec-
tive. A system is represented using a succession of technologies and fuels, the
former being able to both use and produce the latter. The OSeMOSYS prob-
lem was first described in a journal paper in 2011 by Howells et al. [51] and
has undergone significant development since then (see [52] for an overview of
the progress made up to 2018, or [53] for the up-to-date online user manual).
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There have been many applications of OSeMOSYS to build models of
specific energy systems, such as OSeMBE’s model of Europe [49], TEMBA’s
model of Africa [54], SAMBA’s model of South America [55], or GENeSYS-
MOD’s world model [56]. In the first three applications, the authors used
OSeMOSYS’ basic representation of power flows between regions. Investment
in trade capacity is not endogenous; instead, different capacities are tested for
sensitivity analysis purposes, through the use of additional constraints. This
representation of the cross-border interconnection was considered too rough
to model the European system, as it is a major flexibility provider on this
system [25] and its capacity has increased in recent years and is expected to
increase further in the future [57, 58]. In GENeSYS-MOD, a consistent power
transmission module was added, allowing endogenous grid expansion. There
are a few limitations with the proposed module, most notably (i) the absence
of interconnector operational life or salvage value, distorting the competition
between flexibility solutions, and (ii) the use of a maximum interconnector
capacity growth rate expressed as a percentage, disallowing investment on a
border with no existing capacity. To solve these limitations and unify the
module nomenclature with that of OSeMOSYS, an adaptation is proposed,
described in detail in Appendix A.

Note that the OSeMOSYS code is available in several programming lan-
guages, and that it can be used to build either linear or mixed-integer lin-
ear problems depending on whether “lumpy” investment is to be considered,
which can then be solved using many different solvers. In this study, the
Pyomo [59] version of the code was used. Investment was considered to be
linear as the modelled regions were assumed to be sufficiently big, and the
formulated problem was solved using XPRESS [60].

2.2. Case study description
OSeMOSYS was used to optimise investment pathways for the European

power system from 2015 to 2050, in 5-year investment time steps. The geo-
graphical scope and granularity are shown in Figure 2. Within each region,
a number of technologies and fuels are considered; their nature and relations
can be seen in Figure 3. Initial system capacities are provided. Note that
these are not only present for the beginning of the investment period, but also
for a certain number of years, according to their operational life. The model
scope is limited to the power system, the links with other energy vectors are
expressed through power plants alone. It is anticipated that not considering
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Figure 2: Geographical scope and granularity of the modelled European power system.
Grey countries are modelled as their own region, while other countries are aggregated
according to the colour code (e.g. Spain and Portugal are grouped in an “Iberian peninsula”
region).

H2 and CH4 technologies (electrolysis, methanation, fuel cells and hydro-
gen fuelled gas turbines) could potentially downplay this paper’s conclusions
regarding the relative impacts of maximum investment rates vs flexibility re-
quirement representation: considering them would likely increase electricity
consumption and hence exacerbate the impact of maximum investment rates.

OSeMOSYS parameter values (e.g. annual demand, investment costs,
renewable potentials, emission limits, CO2 costs...) were provided by the
H2020 European project OSMOSE. The full dataset is publicly available
online, including the load and VRE time-series used to generate timeslice
values [61].

2.3. Sensitivity analysis protocol
To evaluate the relative impacts of flexibility requirement representation

and maximum investment rates on model outcomes, many different model
runs were performed using different sets of input data. How these data sets
were built will now be discussed.
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Figure 3: Description of the technologies and fuels considered in the European system
model. PP stands for power plant.

2.3.1. Flexibility requirement representation
Ideally, in power system planning, one would like to express the vari-

ability of load and VRE generation through hourly time-series over several
years. However, the typical size of the problem to be solved by CExMs does
not allow this, particularly when a large number of nodes and/or technolo-
gies are considered. To reduce problem size, load and VRE time variability
is expressed in condensed form. Different CExMs may perform time-series
reduction in different ways; OSeMOSYS uses timeslices. Each investment
year is composed of a set of seasons, which are each composed of a set of
day-types, themselves composed of a set of dailytimebrackets. The user can
specify their number, size and order, but they must be defined uniformly
over investment years and regions.

To ensure net load variability is appropriately expressed despite the use
of timeslices, special care must be taken. As shown in Figure 4, solar gener-
ation curves frequency spectra have three vastly dominating frequency com-
ponents: annual, daily and half daily. As a result, expressing solar variability
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using timeslices can be reasonably well achieved through seasons and daily-
time-brackets. Wind generation curves, on the other hand, have much more
irregular frequency spectra. They tend to have a significant annual compo-
nent, a daily component in certain geographical locations, and many sporadic
low frequency components which are different year on year. As a result, ex-
pressing wind variability using timeslices is less straightforward than it is for
solar, and requires the consideration of a great many days.

Figure 4: Normalised power spectral densities of onshore wind (left) and solar (right)
hourly time-series for the British Isles, based on one of the 35 years of data.

To evaluate the impact of the quality of flexibility requirement represen-
tation, model runs were performed using different timeslice implementations.
As described in Table 1, they have different numbers of days per season and
hourly resolutions, allowing the consideration of different degrees of inter-
daily and intra-daily variability expression respectively. All timeslices within
a season were fitted in a single day-type.

Table 1: Different implementations of timeslice structures.
Number of timeslices Number of seasons Number of days per season Hourly granularity

24 4 1 4
48 4 2 4
72 4 3 4
96 4 3 3
128 4 4 3
168 4 7 4
224 4 7 3
288 4 9 3
336 4 14 4
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Days were individually sampled at random. This, of course, is not recom-
mended practice for a traditional capacity expansion study. Here, however,
the logic of the sensitivity analysis is to obtain an upper bound of the impact
of temporal detail on model outcomes, relative to the impact of maximum
investment rates. Had days been chosen using a “smarter” algorithm, the
relative impact of temporal detail would hence be expected to be lower.
To evaluate the impact of this random sampling of days, for each timeslice
structure shown in table 1, a set of 6 runs was performed, each with different
random days.

To fully appreciate the impact of temporal detail on CExM outcomes, one
would ideally want to consider structures with yet more timeslices, perhaps as
many as 8760 to provide a benchmark. However, despite solving the formu-
lated problem on a high-performance server, a 17-node system representation
leads to a problem size which does not allow this: in the 336-timeslice struc-
ture, it reached around 60 million constraints and variables, needing several
days and 300 gigabytes of random-access-memory to run (note that only the
“long” version of the OSeMOSYS code is available under Pyomo, this was
hence the version that was used [53]). However, the focus of this study is the
relative impacts of maximum investment rates and temporal detail. As such,
the study should concentrate on problem sizes that are likely to be managed
by model users (note that for a system with fewer regions, more timeslices
could be managed). Moreover, as will be discussed in section 3, this analysis
suggests that capacity expansion model outcomes are more sensitive to the
choice of representative days that to the number of timeslices.

2.3.2. Investment scenarios
Each of these timeslice structures were applied to 4 different scenarios,

with different investment constraint set-ups. As expressed in Table 2, sce-
narios vary in terms of maximum investment rates and CO2 budgets.

CO2 budgets are defined per region and per investment time step, and
follow a decreasing curve to reach the 2050 value given in Table 2 for the
whole of Europe. In the first three scenarios, the associated constraint usually
becomes binding quite early in the investment period. Note that only the
CO2 emitted during a technology’s operation is considered, the CO2 emitted
during construction is not.
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Table 2: Description of the 4 investment scenarios.
Scenario name European 2050 CO2 budget Maximum investment rate

Base case 106 MT / year 32.4 GW / year / technology
High investment rate 106 MT / year 64.8 GW / year / technology

Unlimited investment rate 106 MT / year Unlimited
High CO2 budget 1060 MT / year Unlimited

Defining investment rate limits is not a straightforward question [44].
Historic data is typically used for conventional generation, but for emerging
technologies, comparing recent development in neighbouring countries is one
of the few options available [45, 48]. In this study, scenarios with contrasted
values were defined.

The maximum investment rate in the base case scenario was determined
by observing maximum development rates over 5-year periods during two
historical settings with intense generation commissioning: the French nuclear
fleet in the 1970s and 1980s and renewables in Germany in the 2010s. A
value of 25 GW per 5-year investment step per technology was thus set for
Germany, applied uniformly over all technologies. This value of 25 GW was
then ratio-ed down for each region, according to its annual electricity demand.
Over the full European system, this sums up to 162 GW per investment step,
or 32.4 GW per year, for each technology.

This value should not be treated as an accurate figure, but rather as
an ambitious assumption considering past ability of the power industry to
roll-out new infrastructure at speed. The sensitivity analysis protocol thus
provides a lower bound to the impact of maximum investment rates on model
outcomes. There is recent evidence to suggest that with strong political
backing, the investment rate of specific technologies can be improved. Note
that improving these rates would likely be easier for modular technologies
such as solar, and harder for more complex and centralised technologies such
as nuclear. The French nuclear roll-out in the 1970s and 1980s has indeed
been pointed out to be quite an extraordinary feat [62].

3. Results

The relative impacts of maximum investment rates and temporal detail
on OSeMOSYS outcomes are compared for several output variables: total
system costs, generation and flexibility solution installed capacity, along with
annual generation mix.
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3.1. Impact on total system costs
Figure 5 clearly shows that, unsurprisingly, constraining the investment

problem leads to optimal investment pathways with higher total system costs.
This increase is substantial: for the same CO2 budget, around 18% between
the unlimited investment rate and base case scenarios, a gap that tends to
widen as more timeslices are considered. As maximum investment rate de-
creases, cheaper generation technologies reach their investment rate limit,
and more expensive solutions must be built instead.

The effect of increasing the number of timeslices on total system costs
is comparatively not as clear and much more limited. Regression attempts
provide both positive and negative slopes depending on the scenario, very
poor R² values and statistically insignificant p-values.

The impact of the random sampling of days decreases slightly as the
number of timeslices increases, but still remains significant. This implies
that even for a high number of timeslices, the way representative periods are
chosen remains important.

3.2. Impact on installed generation, interconnection and storage capacity
Just like total system costs, 2050 European installed capacities are much

more impacted by maximum investment rates than by temporal detail.
In the two scenarios where the investment rate is not limited, the 2050

European power system has around 2100 GW of solar power (the differences
between these two scenarios are quite limited: a larger CO2 budget allows
some wind and nuclear capacity to be replaced by gas plants). However,
reaching such levels of solar capacity requires construction rates far beyond
what can be expected if energy policy does not change, the base case invest-
ment rate already being ambitious. As a result, solar capacity is replaced
initially mostly by onshore wind power (high investment rate scenario), then
by nuclear and offshore wind power (base case scenario).

Note that this switching between generation technologies translates to
different levels of total capacity due to differences in capacity factors. Also,
this switching would likely have been different had a different carbon budget
been imposed.

The partial switch from solar to wind and nuclear leads to a lower need
for flexibility. As a result, installed capacities for gas units, batteries and
interconnectors drop from 255 GW to 130 GW, 500 GW to 135 GW, and
450 GW to 220 GW respectively between the unlimited investment rate and
base case scenarios (averaged over all timeslice structures).
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Figure 5: Total system costs for different timeslice structures and investment scenarios.
Each point corresponds to an OSeMOSYS optimisation, and the equations provide the
parameters of linear regressions of the impact of timeslice number on total system cost.
As described in Section 2.3.1, timeslice structures were tested with 6 different sets of
random days.

In comparison, as illustrated by the fairly low R² values reported in Ta-
ble 3, the effect of the number of timeslices on installed capacity is quite
limited, rather unclear, with slight variations between each scenario. In the
unlimited investment rate scenario for example, improving the representa-
tion of flexibility requirement leads to a drop in the value of wind genera-
tion, which is very partially replaced by solar capacity. Interconnectors being
more suited to flexibility provision in wind-dominated systems and batteries
to solar-dominated ones, the capacity of the former is reduced while that of
the latter is increased. In the base case scenario, investment rates disallow
such an option, and the effect of improving temporal detail is yet more lim-
ited and chaotic, preventing any serious interpretation. The reasons for this
rather limited effect of the number of timeslices will be made clearer in the
coming section.
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Figure 6: Impact of timeslice number on the 2050 European installed capacities, for each
of the four investment scenarios. For each timeslice structure, plotted values correspond
to the average of the results of the 6 runs with different random days. Note that the scales
on the y-axes of the 4 sub-plots are different.

Table 3: Linear regression coefficients for 2050 European installed capacities in terms of
timeslice number, for the base case and unlimited investment rate scenarios.

Technology
Base Case Unlimited investment rate

Linear regression R² p-value Linear regression R² p-valuemodel model
Nuclear 260 + 0.043 x 0.32 8.7e-04 96 - 0.035 x 0.11 2.2e-09
Onshore wind 380 + 0.28 x 0.42 <2.2e-16 310 - 0.02 x 0.0049 0.21
Offshore wind 39 - 0.046 x 0.1 6.5e-09 7.5 - 0.031 x 0.35 <2.2e-16
Solar 790 + 0.032 x 0.52 <2.2e-16 2100 + 0.19 x 0.23 <2.2e-16
CCGT 130 - 0.018 x 0.2 <2.2e-16 200 - 0.072 x 0.41 <2.2e-16
OCGT 4.9 + 0.021 x 0.29 <2.2e-16 52 - 0.041 x 0.082 1.5e-07
Battery 130 + 0.092 x 0.13 7e-11 490 + 0.17 x 0.63 <2.2e-16
Interconnector 220 - 0.056 x 0.58 <2.2e-16 460 - 0.054 x 0.35 <2.2e-16

15



3.3. Impact on annual generation mix
The observations made previously on the relative impacts of maximum

investment rates and temporal detail also apply to annual generation mixes,
with starker overall impact due to capacity factor differences in technologies
involved in the discussed switches (see Figure 7).

Figure 7: Impact of timeslice number on the 2050 European annual generation, for each
of the four investment scenarios. For each timeslice structure, plotted values correspond
to the average of the results of the 6 runs with different random days. Annual generation
may differ very slightly depending on the optimal solution’s investment and use of storage
infrastructure.

In the two scenarios unaffected by investment rate considerations, the
2050 European generation mix is composed, averaging over all timeslice runs,
of 58% solar, 13% wind and 8% nuclear power, gas generation playing a dif-
ferent but limited role depending on the CO2 budget. In the high investment
rate scenario, this balance already moves to 38%, 23% and 19% respectively.
In the base case scenario which, compared to historical data, has the most
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realistic yet ambitious construction rates, the 2050 European generation mix
is composed of around 21% solar, 22% wind and 41% nuclear power.

Averages over timeslice structures hide some variability over the different
timeslice runs, however. While the combination of Figures 8 and 9 once again
confirm the dominating effect of the investment scenario, they also show that
within a scenario, the differences in the European 2050 generation mix are
almost entirely dictated by the random sampling of days, not the number of
timeslices. Indeed, increasing the number of timeslices has little effect both
on the mean and the distribution width of the generation technology annual
output.

This is likely the key reason this analysis fails to clearly reproduce all of
the effects recorded in the literature and discussed in Section ?? (increased
temporal detail leads to a reduction in non-flexible capacity, an increase in
flexible capacity, and an increase in total system costs). The experimental
approach, designed to provide an upper bound to the impact of temporal de-
tail relative to maximum investment rates, introduces random noise through
its sampling of days, making these effects inaudible. In contrast, these ef-
fects can be picked up by existing studies which build model time steps using
smarter methods, hence removing the random effect of day sampling.

There is another interesting point to make regarding the differences in be-
haviours between wind and solar power. Within a scenario, solar generation
is relatively stable, confirming what was mentioned in Section 2.3.1: solar
variability is reasonably well expressed by a limited number of timeslices (at
least at this geographical granularity). In contrast, optimal wind power gen-
eration varies a lot between simulations, along with nuclear which ends up
compensating these variations. The effect of the random sampling of days
remains significant even when 7 days per season are used, highlighting the
value of using “smarter” algorithms to select representative days to improve
wind variability representation.
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Figure 8: Impact of investment scenario and random sampling of days on 2050 European
annual generation. Each point corresponds to a single simulation, for a particular random
sampling of days. Within a colour group, the results for simulation with different numbers
of timeslices are hence represented.

Figure 9: Impact of timeslice structure and random sampling of days on 2050 European
annual generation. Each point corresponds to a single simulation, for a particular random
sampling of days. Within a colour group, the results for simulation in different investment
scenarios are hence represented. 18



4. Conclusions

Applying the capacity expansion model OSeMOSYS (with an added novel
power transmission module) to a European power system case-study, this pa-
per described a thorough sensitivity analysis exploring the relative impacts of
maximum investment rates and temporal detail on key model outputs: total
system costs, the capacity of generation, interconnection and storage, along
with annual generation mix. The proposed sensitivity analysis protocol pro-
vides (i) an upper bound to the impact of temporal detail, as temporal detail
was varied both in terms of number of time steps and through a random
sampling of days, and (ii) a lower bound to the impact of maximum in-
vestment rates, set at ambitious levels compared to historical data. Despite
these, the impact of maximum investment rates was shown to be greater
than temporal detail on all of the examined model outputs. Note that there
may be some system-specificity in these conclusions: while they apply for
large, continental-scale studies, they may be less relevant for a model of an
industrial complex or of a small island system.

Beyond modelling contributions through the power transmission module,
there are several important implications to the results of this work. First
of all, in terms of the design of capacity expansion models, more time steps
is not necessarily better. If full time-series cannot be used due to computa-
tional issues, choosing representative periods carefully is essential to ensure
appropriate expression of wind power variability.

Next in terms of the use of capacity expansion models, one should be
mindful of technology construction rates. Their effect on key model outputs
is far too significant to neglect a thorough and transparent discussion on
how related parameters are set, and on the extent to which they impact the
study’s key messages. Of course, these precautions apply to both the person
performing the study and the one reading the resulting report or paper.

Finally in terms of policy recommendations, the results of this work stress
how much hopes of meeting climate targets hinge on the ability of the power
sector to roll-out new low-carbon infrastructure fast enough. Provided the
current mindset vis-à-vis energy demand perpetuates, the main issue facing
power system planners should perhaps less be what low-carbon technology
or combination of technologies to build, and more the acceleration of the
construction of all currently available low-carbon technologies.

There are many interrelated potential bottlenecks that may impact this
ability to accelerate: public and private actors financial capacity, institu-
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tional development approval times, manufacturing plants’ output capacity,
civil engineering companies’ available manpower, transmission and distribu-
tion network connection times etc. Some of these could become all the more
problematic were the post-Covid logistical issues around raw-material and
parts to persist in years to come. Fortunately, most of these limiting factors
could also be alleviated by sound energy policy, and some recent develop-
ments are promising. Providing actors with long-term visibility and stability
is paramount to allow them to invest in new manufacturing capacity, as well
as recruit and train a larger workforce. This also reduces investment risk and
hence cost of capital and total system costs.

An important final point to make on the relative impacts of maximum
investment rates and temporal detail: this analysis concerns capacity expan-
sion models only. There are many issues related to temporal detail that such
models are structurally unable to grasp, which may yet have a significant
impact on power system planning. More detailed studies using other model
families are necessary to make sure solutions proposed by capacity expansion
models are able to ensure adequacy, stability and inertia, or that they are
compatible with internal network constraints.
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Appendix A. Power transmission module

The OSeMOSYS-compatible power transmission module proposed here
builds upon the module initially proposed by Löffler et al. for GENeSYS-
MOD (see their GitLab for the full problem formulation [63]). Note that
both the original and the improved versions of the module are based on an
enforcement of Kirchoff’s current law, but not Kirchoff’s voltage law.

There are several problems with the original module. (i) An interconnec-
tor has neither operational life nor salvage value. This distorts competition
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between flexibility solutions by discouraging investment in transmission ca-
pacity when compared to generation or storage. (ii) The use of a percentage
to limit the growth rate of interconnector capacity means it is not possible
to build new capacity on a border that does not already have some (as well
as requiring the addition of specific equations to deal with the limits of the
investment period). (iii) The modelling doesn’t allow asymmetric intercon-
nector capacity, a common feature in power system data sets, which reflect
internal network constraints (e.g. ENTSO-E datasets [58]). Besides these
functional issues, there are also a few problems with style: the nomenclature
of parameters and variables doesn’t match that of the rest of OSeMOSYS,
making the use of the transmission module very prone to error.

This new power transmission module solves these issues and was directly
integrated to the OSeMOSYS problem described in the official user manual
[53]. It was designed and tested with the modelling of the power system in
mind, but by setting the appropriate parameter values, its structure can be
used to represent the transport of other network-based energy vectors. The
parameters, variables and constraints that were added to the OSeMOSYS
formulation are listed below, along with the existing OSeMOSYS constraints
that were modified.

Nomenclature

f Fuel
l Timeslice list
r, rr Region
s Storage device
t Technology
y Year composing the investment pathway

Appendix A.1. Additional parameters

Table A.4: Parameters added to the OSeMOSYS formulation
Name Defined on Description
TradeRoute r, rr, f, y Binary indicator linking regions to one another.
TradeLossBetweenRegions r, rr, f, y Fraction of the energy lost when traded between a

pair of regions.
ResidualTradeCapacity r, rr, f, y Remaining trade capacity available from before the

modelling period.
CapitalCostTrade r, rr, f Capital investment cost of increasing a link’s capac-

ity, per unit of capacity.
TotalAnnualMaxTradeInvestment r, rr, f, y Maximum annual capacity investment in a link.
OperationalLifeTrade r, rr, f, y Useful life of an interconnector.
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Appendix A.2. Additional variables

Table A.5: Variables added to the OSeMOSYS formulation
Name Defined on Unit Description
Import r, rr, f, y, l Energy Quantity of fuel imported by region

r from region rr in timeslice l (≥0).
Export r, rr, f, y, l Energy Quantity of fuel exported by region

r to region rr in timeslice l (≥0).
NewTradeCapacity r, rr, f, y Power Newly installed trade capacity be-

tween regions r and rr in year y (≥0).
TotalTradeCapacityAnnual r, rr, f, y Power Total trade capacity installed in year

y (≥0).
AccumulatedNewTradeCapacity r, rr, f, y Power Cumulative newly installed trade ca-

pacity from the beginning of the time
domain to year y.

CapitalInvestmentTrade r, rr, f, y Monetary Undiscounted investment in new
trade capacity between regions r and
rr (≥0).

DiscountedCapitalInvestmentTrade r, rr, f, y Monetary Investment in new trade capac-
ity discounted through DiscountRate
(≥0).

SalvageValueTrade r, rr, f, y Monetary Salvage value of an interconnector in
year y, as a function of parameters
OperationalLifeTrade and Deprecia-
tionMethod (≥0).

DiscountedSalvageValueTrade r, rr, f, y Monetary Salvage value of an interconnector
discounted through the parameter
DiscountRate (≥0).

TotalDiscountedTradeCost r, rr, f, y Monetary Difference between the discounted
capital investment in new intercon-
nection capacity and the salvage
value in year y (≥0).

NetTrade r, f, y, l Energy For region r and timeslice l, the sum
of imports and exports to and from
neighbouring regions.

NetTradeAnnual r, f, y Energy For region r, annual sum of imports
and exports to and from neighbour-
ing regions.

Appendix A.3. Modifications made to OSeMOSYS constraints
Note that the equation names are those used in the official OSeMOSYS

formulation [53]. Parameters are written in bold, variables in italics.

s.t. ∀r,rr,f,y,l Exportr,rr,f,y,l = Importrr,r,f,y,l (EBa10)

s.t. ∀r,f,y,l Productionr,f,y,l ≥ Demandr,f,y,l + User,f,y,l + NetTrader,f,y,l

(EBa11)
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s.t. ∀r,f,y NetTradeAnnualr,f,y =
∑
l

NetTrader,f,y,l (EBb3)

s.t. ∀r,f,y ProductionAnnualr,f,y ≥ UseAnnualr,f,y +

AccumulatedAnnualDemandr,f ,y +

NetTradeAnnualr,f,y

(EBb4)

s.t. ∀r,y TotalDiscountedCostr,y =
∑
t

TotalDiscountedCostByTechnologyr,t,y+∑
s

TotalDiscountedStorageCostr,s,y+∑
f

∑
rr

TotalDiscountedTradeCostr,rr,f,y

(TDC2)

Appendix A.4. Additional constraints
Equation EBa12 is added to the block of Energy Balance equations, while

the others form a new block of Transmission Constraints. Note that this new
block of constraints apply only to the fuel named “Power”. Parameters are
written in bold, variables in italics.

s.t. ∀r,f,y,l NetTrader,f,y,l =
∑
rr

(Exportr,rr,f,y,l ∗ (1 +TradeLossBetweenRegionsr,rr,f ,y)−

Importr,rr,f,y,l)

(EBa12)

s.t. ∀r,rr,f=Power,y,l TotalTradeCapacityAnnualr,rr,f,y ∗ (1 +TradeLossBetweenRegionsr,rr,f ,y) ≥
Exportr,rr,f,y,l

CapacityToActivityUnitr,t ∗ Y earSplity,l

(TC1a)

s.t. ∀r,rr,f=Power,y,l TotalTradeCapacityAnnualr,rr,f,y ∗ (1 +TradeLossBetweenRegionsr,rr,f ,y) ≥
Importrr,r,f,y,l

CapacityToActivityUnitr,t ∗ Y earSplity,l

(TC1b)

s.t. ∀r,rr,f=Power,y TotalTradeCapacityAnnualr,rr,f,y = AccumulatedNewTradeCapacityr,rr,f,y+

ResidualTradeCapacityr,rr,f ,y

(TC2)
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s.t. ∀r,rr,f=Power,y AccumulatedNewTradeCapacityr,rr,f,y =
∑

yy: y−yy≥0

NewTradeCapacityr,rr,f,yy

(TC3)

s.t. ∀r,rr,f=Power,y NewTradeCapacityr,rr,f,y ≤ TotalAnnualMaxTradeInvestmentr,rr,f ,y∗
TradeRouter,rr,f ,y

(TC4)

s.t. ∀r,rr,f=Power,y NewTradeCapacityr,rr,f,y = NewTradeCapacityrr,r,f,y (TC5)

Note that while asymmetric interconnector capacities are allowed, Equa-
tion TC5 enforces that new interconnector capacity is always symmetrical.

s.t. ∀r,rr,f=Power,y CapitalInvestmentTrader,rr,f,y = NewTradeCapacityr,rr,f,y∗
CapitalCostTrader,rr,f

(TC6)

s.t. ∀r,rr,f=Power,y DiscountedCapitalInvestmentTrader,rr,f,y =
CapitalInvestmentTrader,rr,f,y

(1 +DiscountRater)y−StartYear

(TC7)

Assuming the use of the straight-line depreciation method:

s.t. ∀r,rr,f,y if (y +OperationalLifeTrader,rr,f − 1) > EndY ear :

SalvageV alueTrader,rr,f,y = CapitalInvestmentTrader,rr,f,y ∗ (1−
EndY ear − y + 1

OperationalLifeTrader,rr,f
)

else :

SalvageV alueTrader,rr,f,y = 0

(TC8)

s.t. ∀r,rr,f,y DiscountedSalvageV alueTrader,rr,f,y =
SalvageV alueTrader,rr,f,y

(1 +DiscountRater)1+EndY ear−StartY ear

(TC9)

s.t. ∀r,rr,f,y TotalDiscountedTradeCostr,rr,f,y = DiscountedCapitalInvestmentTrader,rr,f,y−
DiscountedSalvageV alueTrader,rr,f,y

(TC10)
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