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Abstract—The IEEE 802.1 TSN working group published a set
of standards which adds new functionalities to switched Ethernet
networks. These new functionalities notably aim at making the
design of deterministic Ethernet networks possible, enabling their
use for real-time applications.

This determinism comes however at the cost of a greatly
increased complexity in configuration effort, especially for large-
scale networks. In addition, this new complexity also affects the
network simulation tools that are commonly used when designing
such networks. As most of the existing ones only partially
support new TSN functionalities, one has often to combine several
simulators for achieving a reliable TSN network design.

In this paper, we propose a model-based approach which
aims at assisting the design of TSN networks. Modeling allows
the creation of a formal representation of the network which
can then be used to automatically generate configurations.
This approach has been successfully implemented as a TSN
configuration software called MoBACT, that enables the use of
multiple simulation/emulation tools during the design phase by
generating configurations for different targets for easing cross-
check of simulation results. Since each generated configuration
is derived from the same representation of the network, our ap-
proach guarantees the consistency of the different configurations
generated for each tool.

Index Terms—TSN, Configuration generation, Simulation,
Model-Based software, MARTE specification.

I. INTRODUCTION

Time Sensitive Networking (TSN) is a set of standards
published by the IEEE 802 TSN working group. This set of
standards fits into the IEEE 802.1 family of standards, mainly
IEEE 802.1Q [1], adding numerous new functionalities, such
as time synchronization, traffic shaping and resource reser-
vation. These new functionalities, when used together, allow
the design of deterministic Ethernet networks, which can offer
real-time guarantees, like bounded latencies for example.

TSN allows the transmission of mixed-criticality traffic.
Critical and non-critical data streams can share the network
while maintaining the guarantee that non-critical traffic will
not hinder critical traffic to make it miss its deadline.
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The newly introduced functionalities, however, come at a
cost: an increased complexity in design of communication
networks in terms of their configuration, simulation and veri-
fication/validation.

The first reason for this increased complexity is the high
amount of new functionalities and the diversity of different
aspects of a network they affect (routing, scheduling, redun-
dancy, security, etc).

A good illustration of this complexity can be shown by
the traffic shaping mechanisms introduced in IEEE 802.1Qav
and IEEE 802.1Qbv. These standards respectively define the
Credit-Based Shaper (CBS) and the Time Aware Shaper
(TAS). Both are scheduling mechanisms and they each require
their own configuration on each egress port used by the data
streams they manage. This already requires a considerable
configuration effort because obtaining a valid schedule, in the
case of the TAS, is a NP-complete problem [2].

An even higher level of complexity can be reached when
using both of these traffic shaping mechanisms together,
because the TAS has an impact on the CBS, making the task
of configuring these functionalities even harder [3].

The second reason is the impact that TSN has on the
tools used during the design phase of a TSN network. To
the best of our knowledge, open-source tools support varying
limited subsets of TSN functionalities. Some commercial tools
seem to cover TSN much better, but their helpers or viewers
differ in use and capabilities. This diversity can make the
use of several tools a necessity. Additional reasons for using
multiple tools are that access to a given tool may be limited;
and the complexity of TSN making simulation fidelity a real
challenge, being able to compare measurements on two or
more simulators is at least reassuring through cross-check.

However, each of these tools has a different way of defining
and configuring the network, which adds to the complexity of
the configuration itself and is error prone when done manually.

The automatic configuration generation approach we present



in this paper is based on models and mainly contributes to
solving the two above-mentioned issues: 1) how to formally
model TSN networks and automatically generate configura-
tions to avoid error-prone manual design, 2) how the user can
benefit from multiple simulation tools without going through
the high learning curve of each.

Automatically generating the configuration eliminates the
risk of human error when using a design tool, and makes it so
knowing exactly how to configure it is no longer required, only
knowing how to extract and interpret the results is. Not having
to manually configure each tool represents a considerable time
gain and has the added benefit of ensuring consistency across
the different generated configuration.

In order to illustrate our approach, we implemented a
configuration tool, named MoBACT (Model-Based Automatic
Configuration for TSN). In its current state, MOBACT has the
ability to generate configuration files for 3 different design
tools: Mininet! [4], NeSTiNg? [5] and RTaW-Pegase®. Each
of these tool has its own specificities and use cases.

In the remainder of this paper, we present in Section II
some important TSN functionalities, in Section III the related
works on which our contribution is based, and in Section IV
the simulation/emulation tools we selected to illustrate our
approach. In Section V, we describe our solution, how we
implemented it in MoBACT, and some metrics which give an
example of the time gain brought by our approach. Finally
we give in Section VI conclusions and point out some futures
works.

II. TSN

TSN standards define multiple traffic shaping mechanisms,
some of which are based on time division, whose goal is
to guarantee that data streams will respect their real-time
requirements. Time synchronization, used to synchronize the
clocks of the different network nodes, is thus required and is a
cornerstone of TSN mechanisms. The synchronization mech-
anism is provided by the IEEE 802.1AS standard [6], which
defines the Generalized Precision Time Protocol (gPTP).

To ensure that the network will be able to respect the real-
time requirements of data streams, resources can be reserved at
the egress ports along their paths. For example, the sum of the
bandwidths required by the different streams going through a
port must not exceed its capacity. The IEEE 802.1Qcc standard
defines the Stream Reservation Protocol (SRP) which is able
to make such reservation.

Having enough bandwidth does not guarantee the respect
of real-time requirements; using this bandwidth in a way that
makes it possible to bound the latency of critical streams,
and that spares non-critical streams from suffering of unfair
scheduling, is also essential: this is the role of traffic shaping
mechanisms.

The Credit-Based Shaper (CBS) is one of these traffic shap-
ing mechanisms. Its goal is to prevent large and bursty streams

Thttp://mininet.org
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Fig. 1. Representation of the different scheduling mechanisms used on a TSN
egress port

from momentarily saturating parts of the network, which could
lead to increased delays or even packet loss if buffers are not
large enough. The CBS also prevents high priority traffic from
blocking lower priority traffic for indefinite amounts of time.

In order to achieve this, traffic classes are defined (Sched-
uled traffic, Audio, Video, Best effort, etc.) and, for some
of these classes, a rate at which they gain credit can be
assigned by the user, called the idleSlope. Frames belonging
to a specific traffic class can only be transmitted if the amount
of credit associated to this traffic class is non-negative. When
frames are transmitted, the amount of credit associated to their
traffic class decreases at a rate equal to the bandwidth of the
port minus idleSlope. When frames are blocked by a negative
credit or the transmission of frames belonging to another traffic
class, the amount of credit associated to their traffic class
increases at a rate equal to idleSlope.

When the traffic associated with a traffic class is large
enough, the use of the CBS necessarily creates intervals of
time during which frames cannot be transmitted and have to
wait for the credit to reach a non-negative value again. This
behaviour is undesirable for scheduling the most critical data
streams because they require the lowest latency and jitter.

To match these requirements, the IEEE 802.1Qbv standard
defines the Time Aware Shaper (TAS). This shaping mecha-
nism defines a cycle, which is represented by a fixed amount
of time, and splits this cycle into different time slots. During
each time slot, only the specified traffic classes are allowed
to transmit. This can be used to isolate the transmission of
the most critical data streams by creating time slots that are
exclusively allocated to a traffic class, guaranteeing that critical
frames always have a unique time window during which they
can be transmitted.

This time division is illustrated in Fig. 1, in the form of
a Gate Control List (GCL). The GCL defines the time slots



and which traffic classes are allowed to transmit during each
of them. Multiple traffic classes can share the same time slot,
in this case the final selection for which frame to transmit is
managed based on the priority of the frames. This priority is
defined by a Priority Code Point (PCP), ranging from 0, the
lowest priority, to 7, the highest priority. The PCP is included
in the VLAN tag of the Ethernet header.

Fig. 1 presents these mechanisms, used by the egress ports
of bridges in a TSN network. Each egress port has its own
scheduling policy so they all have to be configured individually
in order to respect real-time requirements. This leads to a
large amount of configuration parameters and creates high
complexity in the configuration of TSN networks.

III. RELATED WORKS

In this section, we present research on the use of tools in
TSN networks design. There exist multiple tools to assist the
design of TSN networks by simulating them before beginning
to use actual equipment.

NeSTiNg [5] is a TSN simulation framework which
supports multiple TSN standards: 802.1Qav, 802.1Qbv and
802.1Qbu. CoRE4INET is another simulation framework
which was originally developed for simulating other real-
time Ethernet technologies such as TTEthernet [7]. It can
now simulate TSN networks and supports the following TSN
standards: 802.1Qav, 802.1Qbv, 802.1Qci. TSimNet [8] also
is a simulation framework for TSN networks and supports the
802.1Qbu, 802.1Qci and 802.1CB standards, which are non
time-based TSN functionalities such as TAS.

These three simulation frameworks all rely on OMNeT++ 4,
completed by the INET 3 framework, which makes their
association a widely used platform for the simulation of TSN
networks.

Finally, other tools exist that do not rely on this platform,
such as RTaW-Pegase, a commercial simulation and analysis
tool for TSN networks. RTaW-Pegase supports more standards
then the previous simulation frameworks and can perform
worst-case analysis on end-to-end latency.

Network simulators are not the only kind of tools used
to assist in the design of TSN networks. The works in [9]
and [10] make use of UPPAAL [11], a model checker using
timed automata.

In [10], UPPAAL is used for modeling and analyzing
different scheduling mechanisms available in TSN standards,
such as the Credit-Based Shaper. In [9], UPPAAL is used to
define a formal model for other scheduling mechanisms such
as the Time Aware Shaper. The impact of frame preemption
alongside these scheduling mechanisms is also analyzed.

There are other works that do not intend to help the
user verify the behaviour of an already defined network, as
network simulators do, but that directly assist the configuration
process. These tools include schedule synthesizers such as
TSNSched [12]. Making use of a SMT solver, TSNSched

“https://omnetpp.org/
Shttps://inet.omnetpp.org/

is able to perform the synthesis of configuration for the
Time Aware Shaper. The synthesized configurations will, if
possible, respect the latency and jitter requirements specified
by the user. In [2], other methods of computing Time Aware
Shaper configurations are presented. Another approach is used
in [13] which provides a genetic algorithm instead of SMT
solvers. In this work, the genetic approach is used to solve
both the scheduling and the routing problems. The computed
configuration can then be used for the Time Aware Shaper.

In [14] finally, an automatic configuration generation tool is
presented. This tool allows the user to automatically configure
a simulated network for NeSTiNg. The tool is integrated into
OMNeT++ as a plugin and can therefore only be used to
generate files for the NeSTiNg simulation framework. In our
approach, we also define an XML syntax which is used as the
input format for MoBACT.

In summary, the state of the art solutions provide separately
formal behavior verification [9], [10] and performance evalu-
ation [5], [8], the approach that we developed combines the
formal modeling and the performance simulation. Moreover,
our approach also supports multiple simulators, allowing thus
larger TSN functionality coverage leading to higher design
reliability.

IV. SELECTED DESIGN TOOLS

Our approach aims at assisting the design of TSN networks
by making the use of design tools easier. There are multiple
design tools available to design networks and some are specific
to the design of TSN networks. Each of these tools have their
own specificities and they do not necessarily support the same
TSN functionalities.

To illustrate our approach, we selected 3 different tools:
Mininet, NeSTiNg and RTaW-Pegase. These tools are very
different in multiple ways: the TSN functionalities they sup-
port, their analysis capabilities and their ease of access (i.e.
some are freely available and some are commercial products).

The first tool we selected is Mininet, a network emulator
which allows the creation of a network made of virtual bridges,
links and end-points. This kind of virtual network is useful
for prototyping and testing networks on a single computer
before deploying it, and to deploy the actual applications in
the virtual end-points. Network topology can be generated
either by our MoBACT tool, or by a Python API to spec-
ify it or even change it dynamically. Its emulated switches
also support OpenFlow, which makes Mininet popular for
Software-Defined Networking (SDN). The ability to run true
applications makes it attractive for early integration tests and
for measuring the real network payloads that they produce.
Although the virtual bridges available in Mininet do not
support TSN functionalities, it is still useful to generate a
Mininet configuration file from a TSN network model, in
order to test the application, especially if it includes dynamic
network changes. We also foresee TSN switches to support
SDN [15], and Mininet may then turn into a common platform
for TSN engineering.



TABLE I
DIFFERENCES IN THE SELECTED TOOLS

TSN Analysis Ease of
functionalities | capabilities access
Mininet [} [o] ++
NeSTiNg + + ++
RTaW-Pegase ++ ++ - -

Lastly, Mininet is an open-source, freely available tool. It
does not provide any analysis capabilities.

We also selected NeSTiNg, a simulation model for TSN
networks which relies on OMNeT++ and its INET framework.

OMNeT++ is a discrete event based simulation platform,
mainly used for network simulation. INET is a network simu-
lation framework for OMNeT++, it contains the basic elements
necessary to simulate wired, wireless and mobile networks.
The NeSTiNg simulation model adds TSN functionalities to
the bridges and end-points made available in INET and a way
to configure them, making the simulation of TSN possible in
OMNeT++.

NeSTiNg supports multiple important TSN functionali-
ties: Time Aware Shaper (IEEE Std 802.1Qbv), Credit-Based
Shaper (IEEE Std 802.1Qav) and frame preemption (IEEE
Std 802.1Qbu and IEEE Std 802.3br). NeSTiNg is a freely
available tool but, unlike Mininet, it also offers some analysis
capabilities. Once the simulation is concluded and data has
been collected, the tool allows the user to display graphs of
different parameters, such as end-to-end delays of different
data streams. There is also a way for the user to extract
simulation data and produce their own analysis.

Finally, we selected RTaW-Pegase as our third supported
tool. RTaW-Pegase is a network simulator which supports most
TSN functionalities and offers a lot of analysis capabilities to
the user.

After running a simulation in RTaW-Pegase, end-to-end
delays can be displayed as well as Gantt charts presenting
the flow of frames in the network and the time of their arrival
in the different elements of the networks. These charts can
also display the worst case (in terms of end-to-end delay) that
was encountered during the simulation.

The tool also provides worst-case end-to-end delay compu-
tation. This analysis is separated from the simulation and is
performed through network calculus techniques. The analysis
provides the user with an upper-bound on the end-to-end
delays of each data stream. This is an important feature
because this upper-bound might not be encountered during
simulations and it can be extremely important in critical
systems.

RTaW-Pegase, however, is a commercial product and re-
quires a license to be used, which makes it harder to access
than the previous tools.

Table I gathers the differences of the 3 tools we selected.

Step 1: Requirements
Step 2: Modeling
XML
Step 3: Completion
Step 4: Generation
. Mininet
Documentation Topology
Y Y

NeSTiNg
Configuration

Pegase
Configuration

Fig. 2. Approach

V. SOLUTION
A. Approach

In order to assist the process of designing TSN networks and
dealing with the complexity of configuring them, we propose
a model-based approach containing multiple steps, presented
in Fig. 2.

The first step of our approach is expressing the various
requirements that the network must be able to satisfy. At this
step, requirements do not have to follow a specific format and
can affect different aspects of the network.

The most important requirements to express are the ones
about the different data streams which will be transmitted on
the network. The requirements must provide information that
will be used to characterize the data streams. For example,
in the case of a periodic data stream, the information must
contain the source (talker) and the destinations (listeners)
nodes, the size of the payload and the transmission period.
Another requirement that can be specified is the deadline the
data stream must never miss. Network topology can also be
part of the requirements. Indeed, the network can be under
space and weights constraints in embedded systems, such as
in a car or a drone, which has a direct impact on network
topology. The network equipment to use can also have an
impact on network topology if the amount of bridges or the
amount of ports per bridge is limited.

The second step of our approach is modeling. The goal
of this step is to create a representation of each element of
the network in accordance with the requirements expressed at
the previous step and that contains the information required
for automatic configuration generation. Once complete, this
model will guarantee consistency across the different gener-
ated configurations.

The third step is completion. The goal of this step is to
complete the model with information that are hard for humans



to compute. This step produces the TAS configuration based
on the information contained in the model. GCL are thus
generated for every port to guarantee the respect of deadline
requirements for each critical data streams.

Finally, once the model is complete, configuration can be
automatically generated for the specified targets. To assist
the design phase of a TSN network, this approach allows
the user to easily iterate through steps 2 to 4 by evaluating
the behaviour of the network then modifying the model,
generating the new configuration and running the simulations
again without having to re-write any of the configuration.

B. Implementation

1) Modeling: Our modeling approach is inspired by the
UML profile for MARTE specification [16] and more specif-
ically by its Generic Resource Modeling (GRM) chapter. We
based our modeling approach on two concepts defined in this
chapter: ComputingResource and CommunicationMedia.

We use the concept of ComputingResource to represent a
node in the network. This concept is used to model TSN
bridges and end-points. We use the concept of Communica-
tionMedia to represent elements of the network that connect or
are connected to network nodes. This concept is used to model
Ethernet links and data streams. We do not use the entirety of
the MARTE specification but we selected the parts suited to
our needs.

The MARTE specification is well known in the real-time
embedded systems domain which makes it a good starting
point for modeling deterministic Ethernet networks.

Our modeling approach uses the notion of resource for
terminology: ComputationResource (compRsc) and Commu-
nicationResource (commRsc).

Following the object oriented principle, we differentiate
between definition and instantiation of network elements:
definitions are named compRscDef and commRscDef, instan-
tiations are named compRsc and commRsc. For example, the
definition of a data stream is a CommRscDef that contains all
the different parameters required for its characterization. The
instantiation of a data stream is a commRsc that makes use
of the definition as a reference and specifies the values of the
different parameters. There can be multiple different instances
of each definition.

Separating definition and instantiation allows our solution
to better integrate with Sigil-UCM [17], a code generator
developed in our laboratory, which has no use for the actual
values but only for the definition of parameters.

In the remainder of this paper, we will use the same
example. The network topology presented in fig. 3 is that of a
real-time embedded system. Table II contains the list of data
streams transmitted over this network.

This real-time embedded system is supposed to be used on
a drone. The main path used by data streams goes through
MainSwitchl and MainSwitch2. BackupSwitch is used as a
redundant path for critical systems in the drone and it is only
used when the main path is no longer functional.

- =»: Path of engine_control
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A
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Fig. 3. Network topology of the real-time embedded system, the path of the
engine_control data stream is shown with dotted arrows

TABLE 11
LIST OF STREAMS

Name X RX Path Critical
. mainSwitch2_ethl .
engine_control MS1 EPS1 mainSwitch]_eth3 yes
mainSwitch2_eth1
telemetry MS1 SCS mainSwitchl_eth3 no
mainSwitch1_ethO
remote_command SCS MS1 mainSwitch2_eth0 yes
videol CAM | MSI1 mainSwitch2_eth3 no
. mainSwitch2_eth3
video2 CAM | SCS | | inSwitchl_eth3 | ™°
. mainSwitch2_ethl
video3 MSI SCS mainSwitch1_eth3 no

We use an XML syntax, because of its flexibility, to create
models which will then be used as input for MoBACT.

Listing 1 presents the definition of the engine_control data
stream in our modeling approach.

Listing 2 presents the instantiation of the engine_control
data stream making use of the definition presented in listing 1.

This data stream belongs to the traffic class of the higher
priority and it must satisfy its deadline requirement of 2ms. It
is a periodic data stream with a 100 ps transmission period and
its payload contains 128 bytes. The talker and-point is MSI,
its only listener is SCS and its path goes through mainSwitch2
then mainSwitchl.



One of our contributions is to propose the necessary defini-
tions to represent the network elements. The user can then use
these definitions to create a model of a network by instantiating
all the elements.

<commRscDef name="Periodic_Stream">
<configParam max="1" min="0" name="deadline"
type="time_t"/>
<configParam max="1" min="1" name="payload"
type="payload_t"/>

<configParam max="1" min="1" name="pcp"
type="pcp_t"/>
<configParam max="1" min="1" name="vlan_id"

type="vlan_id_t"/>
<configParam max="1" min="1" name="period"
type="time_t"/>
<rscParam max="1" min="1" name="talker">
<allowedRscDef ref="Ethernet_Interface"/>
</rscParam>
<structParam max="-1" min="1"
name="listeners">
<rscParam max="1" min="1"
name="listener_port">
<allowedRscDef
ref="Ethernet_Interface"/>
</rscParam>
<structParam max="-1" min="1"
name="paths">
<rscParam max="-1" min="1"
name="path_member">
<allowedRscDef
ref="Ethernet_Interface"/>
</rscParam>
</structParam>
</structParam>
</commRscDef>

Listing 1. Definition the engine_control data stream

<commRsc def="Periodic_Stream"
name="engine_control">

<config def="deadline" value="{2, ms}"/>
<config def="payload" value="{128, B}"/>
<config def="pcp" value="7"/>

<config def="period" value="{100, us}i"/>

<config def="vlan_id" value="1"/>
<rscConfig def="talker"
value="MS1_eth0"/>
<structConfig def="listeners">
<rscConfig def="listener_port"
value="SCS_eth0"/>
<structConfig def="paths">
<rscConfig def="path_member"
value="mainSwitch2_eth0"/>
<rscConfig def="path_member"
value="mainSwitchl_eth2"/>
</structConfig>
</structConfig>
</commRsc>

Listing 2. Instantiation of the engine_control data stream

2) Model completion: The model completion step is used
to insert additional information into the network model that
are either tedious to input for the user or hard for humans to
compute.

This step can, for example, automatically generate MAC ad-
dresses for end-points and use default values for the bandwidth
of network nodes. This greatly eases the design task.

The principal use of the completion step is the generation of
parts of the configuration that are hard for humans to compute,
such as the configuration of GCL for the Time Aware Shaper.

To automatically compute GCL configuration, we integrated
an external tool, TSNSched, into our configuration generation
tool. TSNSched is a tool that can generate GCL configuration
from information contained in our network representation. It
uses a set of constraints and a SMT solver, z3 [18], to compute
a schedule, if it is possible, that respects the requirements of
critical data streams in terms of both end-to-end delay and
jitter.

TSNSched computes the start time and the duration of time
slots used by critical streams while ensuring that enough time
is left available before these time slots for a guard band to
fit. Once the computation of TSNSched is done, the generated
configuration is extracted and inserted into the network model.

Our work is then to generate the start time and duration of
the remaining time slots: guard bands and time slots allocated
to non critical traffic. Guard bands are time slots placed
right before slots allocated to critical traffic. Their role is to
guarantee that no other traffic can disturb the transmission
of critical traffic. This is achieved by preventing any new
transmission of frames for the duration of the transmission
of the largest frame in the network. By using guard bands,
even if a large frame begins its transmission right before the
end of its time slot, it will not have any impact on critical
traffic because the transmission will finish before the end of
the guard band rather than during the time slot allocated to
the critical traffic.

TSNSched also has the advantage of trying to optimise
critical traffic transmission. It tries to align time slots allocated
to critical traffic so that the expected arrival time of a critical
frame in a switch occurs right before the beginning of its
allocated transmission time slot.

3) Configuration generation: Our configuration generation
tool takes the model created during the modeling step as input
in an XML format. The user specifies the model to use, the
targets to generate configuration for and whether or not the
model should go through the completion step.

After extracting data from the model, MoBACT can gen-
erate files containing documentation about the network and
configuration files. Targets for which configuration can be
generated are Mininet, NeSTiNg, and RTaW-Pegase.

Documentation is generated as a set of HTML files. There
is a file for each network element which contains all the
information about this element and links to other elements it
is connected to. This kind of documentation is useful to easily
share information in a format which is easier to read than a
model file and only requires a web browser. Fig. 4 gives one
example of the node MS1.

For Mininet, the network topology can be specified through
a Python API. From the information contained in the model,
MoBACT can generate a file which uses this API. The file



End-Point: EPS1

EPS1

BackupSwitch

EPS1 has the following ports:

® ethO:
o Connected to: MainSwitchl (propagation delay = 0.1us)
o Bandwidth = 100.0 Mbps
© MAC address: 00:00:00:00:00:05
o [P address: 192.168.5.2/24

o Connected to: BackupSwitch (propagation delay = 0.1us)
© Bandwidth = 100.0 Mbps

o MAC address: 00:00:00:00:00:06

o IP address: 10.0.1.3/29

EPS1 is the source of the following streams:

EPS1 is the destination of the following streams:

e engine_control

Fig. 4. Example of HTML documentation

contains the instantiation of the entire network topology: end-
points, switches and links.

For NeSTiNg, multiple files are necessary to describe the
network topology, the network configuration and the simu-
lation parameters. Network topology is described in a NED
file. Network configuration is split across multiple XML files
for routing, scheduling and the instantiation of data streams.
Simulation parameters are specified in a INI file.

Listing 3 presents the initialization of the engine_control
data stream in the INI file and listing 4 presents its instantiation
in an XML file. These two listings use the data stream defined
and instantiated in listings 1 and 2.

MS1.numApps = 1
MS1l.app[0].typename =
MSl.app[0].trafficGenerator.localPort =
MS1.app[0].scheduleManager.
— initialAdminSchedule = xmldoc ("xml/flows
— .xml", "/schedules/datagramSchedule[@id
(SN :!OI]")

"UdpScheduledTrafficApp"
1000

SCS.numApps = 1
SCS.app([0].typename = "UdpSink"
SCS.app[0].localPort = 1000

Listing 3. Initialization of the engine_control data stream in NeSTiNg

<datagramSchedule id="0" cycleTime="100us">
<event payloadSize="128B"
destAddress="SCS"
destPort="1000" pcp="7" vid="1"/>
</datagramSchedule>

Listing 4. Instantiation of the engine_control data stream in NeSTiNg

Engine Control: end-to-end delay E

0.000 0.0005 0.0010 0.0015 0.0020
0.00010 r0.00010
0.00008 -0.00008
10.00006+ - 0.00006
0.00004 0.00004
0.00002 1 0.00002
0.0000 H H . H 2.0000

0.000 0.0005 0.0010 0.0015 0.0020

Fig. 5. End-to-end delay of the engine_control stream when using the Time
Aware Shaper in NeSTiNg

Engine Control: end-to-end delay B
0.000 0.0005 0.0010 0.0015 0.0020 0.0025
1 " " 1 1
0.00015- (- 0.00015
0.00010 [ 0.00010
0.00005 (- 0.00005
10.000 L L L L L 0.0000
0.000 0.0005 0.0010 0.0015 0.0020 0.0025

Fig. 6. End-to-end delay of the engine_control stream without using the Time
Aware Shaper in NeSTiNg
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Fig. 7. Gantt charts for the engine_control data stream in RTaW-Pegase

After running the simulation, end-to-end delay graphs can
be visualized in OMNeT++. Fig. 5 and 6 present the end-to-
end delay of the engine_control data stream respectively with
and without the use of the TAS. As expected, the use of the
TAS reduces the latency and the jitter.

For RTaW-Pegase, everything required to run the simulation
is contained in a single XML file. After running the simulation,
Gantt charts can be visualized to analyze the worst case
(in terms of latency) that was encountered, as shown in
fig. 7. As expected, the worst case happens when frames
belonging to both the data streams that share the same path
as engine_control are transmitted before the engine_control
frame in mainSwitch2.



VI. METRICS

The time our approach can save to the user can be evaluated
in 3 different ways: the time it takes to develop a generator
back-end for a new target tool, the time it takes to create a
model and the execution time of MoBACT.

The development time to implement a generator back-end
for a new target tool depends on the complexity of the format
used by the tool. This can typically take between a few days
and a few weeks. As the work is done once and for all, this
saves a lot of efforts over time, because users of MoBACT are
then not obliged to master the syntax of the new target tool.

The time it takes to create a new model of a TSN network
depends on the size of the network. This typically takes
between a few minutes and a few hours. Because we use this
representation as a central model, this time only has to be
spent once instead of once for every tool the user wants to
use. It also saves time when modifying the representation of
the network for the same reason. In addition, editing only
the MoBACT model and then generating inputs for each tool
ensures consistency between data.

The execution time of our configuration generation tool
greatly depends on the amount of data streams and nodes in
the network. In the example we used throughout this paper,
the execution time of MoBACT for completing the model and
generating configuration files is approximately 1 second. The
machine we used runs openSUSE Leap 15.2 on a Core i7
6820HQ and has 8GB of RAM. For a larger network, this
can take much longer due to the scheduling problem which
is a NP-complete problem. The authors of [12] have run
experiments on their tool for networks of different sizes.

VII. CONCLUSION

In this paper, we presented a model-based approach to the
automatic generation of configurations for simulating TSN
networks by using multiple simulation tools. Our modeling
approach is inspired from the concepts of MARTE and allows
the user to create a formal representation of the network. We
developed MoBACT tool that can generate the configuration
of the Time Aware Shaper and configuration files for multiple
tools. These tools are Mininet (for only open virtual switched
networks, not yet with TSN support), NeSTiNg and RTaW-
Pegase.

This approach offers various advantages to the user. It
saves time by using a single, central representation of the
network and generating files for multiple simulation tools from
it. Generating files for multiple simulators makes MoBACT
unique in its category. Using this approach, the TSN designer
no longer has to spend as much time learning how to use each
of these different tools. It also prevents human error which the
process of writing configuration is very prone to.

As future work, we aim at continuing to work on improving
this approach. As shown in this paper, multiple generation
targets can be supported by MoBACT, so adding new ones
is a possibility. We also want to enrich our approach by
linking it with another model-based approach for including

the application description: model-based software engineer-
ing (MBSE). Having a model of the applications that will
use the network would allow us to automatically create the
representation of data streams together with the constraints
in our models. This would enrich our approach and save
additional time when modeling both real-time applications and
their underlying networks.

We also plan on adding the generation of configuration in
the YANG format [19], used to configure switches, which
would make MoBACT able to generate configuration files for
actual TSN equipment.

Because MoBACT helps save time in the design process
while enforcing the consistency between inputs of TSN-
related tools, it can be used to make the analysis of different
combinations of TSN functionalities simpler.
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