
HAL Id: hal-04383267
https://hal.science/hal-04383267

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Data Streams in Real-Time Networks from
Component-Based Software Engineering

Maxime Samson, Thomas Vergnaud, Éric Dujardin, Laurent Ciarletta,
Ye-Qiong Song

To cite this version:
Maxime Samson, Thomas Vergnaud, Éric Dujardin, Laurent Ciarletta, Ye-Qiong Song. Computing
Data Streams in Real-Time Networks from Component-Based Software Engineering. 2023 IEEE 28th
International Conference on Emerging Technologies and Factory Automation (ETFA 2023), Sep 2023,
Sinaia, Romania. �10.1109/ETFA54631.2023.10275469�. �hal-04383267�

https://hal.science/hal-04383267
https://hal.archives-ouvertes.fr


Computing Data Streams in Real-Time Networks
from Component-Based Software Engineering

Maxime Samson∗†, Thomas Vergnaud∗, Éric Dujardin∗, Laurent Ciarletta† and Ye-Qiong Song†
∗ Thales Research & Technology – Palaiseau, France

{maxime.samson – thomas.vergnaud – eric.dujardin}@thalesgroup.com
† LORIA – Université de Lorraine – Nancy, France

{maxime.samson – laurent.ciarletta – ye-qiong.song}@loria.fr

Abstract—Real-time networks are used by distributed embed-
ded systems of increasing complexity. This leads to a need for
precise design and configuration techniques for these networks.

This paper presents an approach for the iterative configuration
of a real-time network and the associated distributed real-time
control application that is to be deployed on it.

The approach consists in combining network modeling and
Component-Based Software Engineering techniques to automat-
ically calculate the model of the data streams that will be
exchanged over the network.

The paper explains how to calculate the parameters used in
data stream models from the specification of the application
architecture and behavior. A single specification is used to
generate both the data stream models and the infrastructure
code of the application, thus providing guarantee of consistency
between the behavior of the actual system and the network
configuration. The use of this approach is demonstrated on an
example which uses a TSN network.

Index Terms—Network Modeling, Model-Based Software En-
gineering, TSN.

I. INTRODUCTION

Modern distributed embedded systems have growing net-
work communication needs. Many of these systems are used
in critical environments such as avionics, industrial automation
or in-vehicle networks. In such systems, real-time networks
are commonplace and their size and complexity are ever
increasing.

In order to manage this increasing system complexity,
consistent and efficient design approaches are required. Both
consistency and efficiency can be obtained through the use
of model-based engineering methods. Such methods use rep-
resentations of the system components, called models, to
formally define the system and enable the automatic generation
of a great part of what is needed to deploy the system:
application code, network configuration, and simulation and
analysis models for network simulators.

Automatic generation ensures consistency and efficiency
by easing the use of an iterative design process. Whenever
changes are made to the system, they only have to be done
in the model and they will take effect in the entirety of what
is generated. This saves time compared to having to make
all changes manually and greatly reduces the risks of human
error.

While it can be relatively easy to create models for most
parts of the network, modeling the data streams can prove

to be very challenging. The model of the data streams is the
most essential part because it contains crucial information that
is necessary for configuration synthesis, such as payload size,
transmission periods and offsets. Without a formal specifica-
tion of the application software behavior, this information can
be hard to obtain with enough accuracy for the simulation to
be realistic in a useful way.

A typical example is the scheduling of data streams using
the time-aware shaper of TSN. Usual approaches assume a
perfect knowledge of the data stream, and validate a network
configuration (e.g. stream scheduling) using network simu-
lators. However, data are produced by their corresponding
application tasks that are executed on their host environment
(hardware and software system). Any unexpected offset on a
task execution would lead to extra delay or to deadline miss.
In practice, it is hard to model data streams without a formal
specification of the application software behavior as a whole.

One way of solving this problem and ensuring that data
streams are accurately specified is to automate this process
by leveraging Model-Based Software Engineering (MBSE)
methods. An accurate modeling of the software architecture
and execution semantics of the applications that use the
network enables the automatic generation of the data stream
characteristics.

Our work is based on the Unified Component Model for
Distributed Real-Time and Embedded Systems (UCM) stan-
dard [1] to model software architectures. Our contributions
are twofold: 1) We show that the combination of UCM
and the sequence diagrams of UML is sufficient to describe
the application behavior that allows in turn to extract the
execution and communication semantics; 2) This enables the
automatic computation of a model of the data streams the
system produces at execution time. In addition, we show that
the automatically produced data streams are directly used in
our configuration generation tool, MoBACT [2], for validating
TSN scheduling.

Combining software modeling and network modeling en-
ables our approach to produce accurate simulation models.
This reduces the design cost and increases the confidence in
its correctness in many different ways: it reduces human error;
learning how to create models for different simulation tools is
no longer required; the technical code of the applications is
generated to ensure consistency between the specification and



the actual execution of the system. Also, managing evolution
in the system – either in the applications or the network –
is easy and fast because we can consistently regenerate both
the simulation models and the technical code that controls the
execution of the application algorithms. Instead of assuming a
perfect knowledge of the data streams generated by the differ-
ent nodes of a distributed system, we obtain this knowledge
directly from the application architecture.

In this paper, we apply our approach on an example TSN
network using Time Aware Shaping [3] to meet the deadlines
requirements for the time critical data streams. Using our
previous works [2], we can use the automatically computed
data stream models to generate simulation models for different
tools (e.g. NeSTiNg [4], RTaW-Pegase1).

The remainder of the paper is organized as follows. The
example system we consider for the paper is described in sec-
tion II. Related works are presented in section III. Section IV
lists the parameters required to characterize data stream mod-
els. Section V explains how we model software architectures.
The automatic calculation of the data stream models from the
software architectures is explained in section VI. Section VII
demonstrates the benefits of our approach on an evolution of
the system architecture. Section VIII concludes the paper and
points out some future works.

II. DESCRIPTION OF THE CASE STUDY

Described here is the example that we will use in the
remainder of this paper, developed as part of the CPS4EU [5]
project and based on a TSN network. Yet, our approach of
automatic data stream model generation is agnostic of the
network technology used in the system.

This example is a case of “Vehicle-to-Infrastructure” com-
munication involving a wireless connection between a roadside
unit and a vehicle. The roadside unit is able to send speed
limit instructions to passing by vehicles; we assume this
communication to be reliable because we are interested in the
in-vehicle TSN network. Upon the reception of a speed limit
instruction, vehicles must adjust their speed, whether it means
slowing down or accelerating.

Fig. 1 shows the topology of the in-vehicle network as well
as the roadside unit and the wireless communication. The driv-
ing control end-point (DC) computes the acceleration needed
to attain the required speed and sends (1) the corresponding
instructions to the motor system (MS), which then responds
(2) with the current rotation speed of the car wheels. This is
the time-critical loop of the system.

Messages from the roadside unit (RSU) are received by a
wireless gateway (GW) which, in order to make the example
more realistic, is a dedicated end-point as it needs to be close
to the antenna in the car. The gateway then transmits (3) the
new speed limitations to the DC. The dashboard end-point
(DB) receives (4) the current speed of the car to display from
the DC. The DB may send (5) speed limitation orders to the
DC – this would correspond to driver’s commands. Additional

1https://www.realtimeatwork.com/rtaw-pegase/

MS

GW

DB

DC

MM

RSU

2

1

3

6

SW2

SW1

4

5

Fig. 1. Topology of a vehicle-to-infrastructure network

data transits (6) from a multimedia end-point (MM) to the DB
to illustrate mixed-criticality; it may correspond to the display
of GPS navigation instructions.

The interactions between DC and MS consist of data
exchanges every 30 ms through streams 1 and 2. These streams
are the most critical in the network. DC calculates speed
orders every 30 ms; we set both stream deadline requirement
to 10 ms. We assume that speed limitation instructions from
the roadside unit, represented by stream 3, can be sent every
200 ms at most. Current speed information, represented by
data stream 4, is sent from DC to DB every 200 ms. Stream 5
corresponds to the speed limitation orders sent from DB to DC
with a period of 200 ms. Stream 6 has no specific deadline; it
consists of large amount of data that shall not interfere with
the control command streams.

The network must guarantee that the deadline requirements
of streams 1 and 2 are always met. In order to reach this
goal, these data streams will be scheduled by the Time Aware
Shaper [3]. This scheduling mechanism is based on time
division and guarantees that the transmission of critical data
streams will not be hindered by other transmissions.

This scheduling mechanism requires an important configu-
ration effort. Indeed, solving this scheduling problem is an NP-
complete problem [6]. In order to solve it, a characterization
of the system data streams is required. This data stream model
needs to accurately represent the actual network communica-
tions, otherwise the synthesized configuration will not be able
to respect the deadline requirements.

The software elements that are deployed on the end-points
communicate using unicast UDP messages; data is serialized
using CBOR [7]. This is a typical choice for embedded
systems.

III. RELATED WORKS

Having to make use of approaches based on modeling when
designing distributed critical systems, more specifically when
designing the communication infrastructure of these systems,



has been identified in multiple works. This need stems from
the increase in communication network complexity. Model-
based approaches offer ways of managing this complexity by
ensuring consistency across the requirements definition phase,
the design phase and the deployment of the system.

In [8], a model-based approach to the design of space
communication networks is presented. It proposes an inte-
grated process used to model and simulate networks used in
space communication applications and puts it into practice
on a realistic use case. The paper highlights the necessity of
using MBSE when designing such networks and insists on the
precision the models must have for the obtained results to be
relevant.

In [9], current challenges and potential solutions are ex-
plored, in the context of avionics systems. The paper draws
conclusions similar to [8] and it also explicitly mentions TSN
networks as a promising solution. It does not propose any
approach but highlights the need for a model-based approach
which ensures consistency.

Works that rely on model-based approaches for the design
of embedded systems have been conducted, using various
modeling languages such as MARTE [10], AADL [11] and
AUTOSAR [12].

In [13], MARTE-compatible models are used to run simu-
lations and schedulability analysis of software on embedded
real-time systems. This model-based approach automatically
generates system performance models, from the models of its
individual components. This work, although it implements an
approach which relies on the same principles as ours, is not
targeted at designing real-time networks.

AADL is used in [14] to refine models of embedded real-
time systems in the domain of avionics. This approach gen-
erates the configuration of AFDX networks using worst-case
traversal time analysis, based on network calculus. Contrary
to our approach, this work does not ensure consistency by also
generating the code of the applications.

There are works which use the AUTOSAR standard to
assist the design of embedded systems using a model-based
approach. In [15], a framework for the design of a steer-by-
wire system is presented. This framework uses the model-
based approach defined in the AUTOSAR standard but it does
not include a formal specification of application behavior. This
means that it cannot provide the guarantee that data streams
will behave as expected.

In summary, existing works have identified model-based ap-
proaches as essential to the design of embedded and distributed
real-time systems, as their benefits are important for the trust
we can have in the results of analysis and in the produced
network configuration. To the best of our knowledge, however,
none of these works would generate, from a single model, both
the code of the application and the network configuration as
a way of guaranteeing consistency. Some are also tied with a
specific application domain and related technology. As stated
in the introduction, we chose to use UCM for specifying
both application behavior and generating application code, and
because it is not specific to any domain or network technology.

IV. DATA STREAM SPECIFICATION

Data streams are sequential transmissions of data across a
network. In this section, we identify the required parameters
to specify data streams in the context of real-time networks.
Accurately modeling the data streams is especially important
when dealing with real-time networks because their parameters
are the ones used to produce the network configuration.

We consider two categories of data streams parameters:
parameters that are directly linked to the application execution,
and parameters that are system requirements. Parameters of
the first category can be calculated, while those of the second
category are under the responsibility of the system architect.

A. Application-Related Parameters

The following data stream parameters depend on the appli-
cation; these are the ones we intend to automatically calculate:

• Payload size: The size of the data sent on every trans-
mission of a data stream;

• Traffic Class: The category of traffic the data stream
belongs to, e.g. control, video, audio;

• Talker: An end-point port, source of the data stream;
• Listeners: End-point ports, recipients of the data stream;
• Period: The transmission period of the data stream;
• Offset: The transmission offset of the data stream, which

is relative to the start of the system.
The payload size may not be a straightforward parameter to

obtain, especially if the payload puts together different pieces
of data of different data types. Moreover, any change in the
application architecture could lead to changes in the value of
this parameter and would require the calculation to be redone.

The traffic class is assigned to data streams by the network
architect. It can be used by switches to select which frame to
transmit when multiple frames are awaiting their transmission
and is used by scheduling mechanisms to grant data streams
access to network resources in a tighter or fairer way. The
talker is the source of the communication and the listeners
are the communication destinations. Such information must
be specified in the software architecture, as it impacts the way
network sockets are configured.

The period and the offset parameters dictate the timing
aspect of data streams. The transmission period parameter
depends on the execution periods of the software components
that produce the network communications. The transmission
offset is both difficult and important to compute accurately.
This parameter depends on the computation time the soft-
ware components take before transmitting data. Configuring
a network using wrongly computed offsets leads to increased
latency because scheduling mechanisms, and especially those
based on time division, expect frames to be made available by
software components at specific times.

B. System-Related Configuration

The following parameters define the system requirements
that apply to the data streams:

• Paths: The paths the data stream will follow when being
transmitted over the network;



UCM-based software
architecture

low-level
implementation

model

low-level
execution

model

technical code network streams
characteristics

Fig. 2. Generation chain

• Deadline: The maximum end-to-end latency the data
stream must never exceed;

• Maximum jitter: The maximum amount of jitter the data
stream must never exceed;

• Time critical: An indication on whether or not the dead-
line requirement of the data stream is especially critical.

The transmission paths of the data streams cannot be
automatically computed using the model of the applications
because it is related to the network architecture – not the
software architecture. The deadline and maximum jitter are the
requirements the network configuration must be able to uphold
at all times. If a data stream is especially critical, it can be
indicated and a configuration synthesis process for scheduling
mechanisms can take it into account. Therefore, the values
of these parameters are under the responsibility of the system
architect because they do not depend on the application model
but on the requirements of the system as a whole.

V. MODELING OF THE SOFTWARE ARCHITECTURES

We aim at extracting the data streams parameters from a
model of the software application. We also, at the same time,
aim at ensuring these stream parameters are consistent with
the way the actual software behaves. It is therefore mandatory
to maintain the consistency between the application code and
the network stream specifications.

Our approach relies on the automatic generation of the
application technical code (which controls execution periods,
data transmissions over the network, etc.) and of the generation
of the data streams parameters. Both generations use a unique
model of the application as a starting point, which ensures the
consistency between them. This is illustrated on fig. 2.

A. Software Component Specification with UCM

We use the Unified Component Model for Distributed Real-
Time and Embedded Systems (UCM) as a basis for modeling
software architectures. UCM [1] is an OMG standard that
defines concepts such as components and ports to describe the
functional (i.e. business) parts of a software architecture. The
non-functional (i.e. technical) elements are also modeled: con-
nectors describe interaction semantics between components;
technical policies describe the interaction semantics between
a component and its execution environment; in particular, task
executions are typically managed by technical policies.

UCM components encapsulate algorithms. They define the
APIs provided to and required from the encapsulated source

control

>rotation thrust>
>speed_order

trigger
periodic, 30 ms

offset 0 ms

Fig. 3. Declaration of UCM component control

control container

component
body

thrusttrigger

rotation speed_order

Fig. 4. UCM Container model

code to interact with the outside of the component. This
includes the data structures received and sent by the com-
ponents.

The algorithmic code encapsulated in a UCM component
should not perform task management or network communica-
tions. These matters are to be specified by technical policies
and connectors in order to achieve a strict separation between
functional aspects (i.e. the algorithms inside the components)
and the extra-functional aspects (i.e. the execution and commu-
nication infrastructure materialized by technical policies and
connectors). Fig. 3 illustrates the declaration of the driving
control UCM component, with two input ports (rotation and
speed order), one output port (thrust) and one execution
technical policy (trigger). The technical policy specifies that
the component shall execute periodically every 30 ms, with
an offset of 0 ms from the start of the application.

According to the UCM standard, the declaration of a
component leads to the code structure illustrated on fig. 4. The
component body is a class that contains the algorithmic code.
The code for each connector and technical policy is produced
by the code generator into separate C++ classes, thus isolating
the algorithms from the technical code. A container class is
also generated to manage the life cycle of the component body
and the technical classes and connect them.

Because algorithmic code is encapsulated within the com-
ponent body, it can be deployed in various configurations
by changing the technical code classes that are connected
to it by the container. Connectors and technical policies
carry configuration parameters (e.g. task execution periods
and offsets, socket configuration). As the technical code is
generated from the component specifications, we ensure com-
ponents executions and communication are consistent with the
application specification. In the example, the component body
of component control shall be executed every 30 ms.

B. Specification of Component Behaviors

UCM does not address the description of component be-
haviors: UCM components implementations do not carry any



trigger

Control, when port trigger is invoked

thrust

push(thrust_value)

comp state

read speed_order
read rotation

run()

5 ms calculate thrust_value

Control, when port rotation is invoked

rotation
push()

store rotation

Control, when port speed_order is invoked

speed_order
push()

store speed_order

Fig. 5. Behavior specification of component control

behavior information. One specifies when a component is
executed (triggered by a task configured within a technical
policy, or upon the reception of a piece of data from a
connector), but we cannot specify what happens then. In
particular, we cannot specify when a component outputs data.

In [16], we explained how to complement the description
of a UCM component implementation by adding behavior
specification. We also explained how to check whether the
algorithmic code fits the behavior specification. Such informa-
tion can be represented by a subset of UML sequence diagrams
to help software developers.

We specify the behavior of component control as illustrated
in fig. 5. The first sequence diagram specifies the behavior
associated with method run() to be called by the trigger
technical policy. Method run() first retrieves the values
of speed order and rotation stored in the component, then
calculates the thrust value, then sends it by calling method
push() of port thrust. The second and third sequence dia-
grams specify the behaviors associated with method push()
of ports rotation and speed order. The data is simply stored in
the component state. The calculation time is 5 ms while the
other steps (e.g. data read and write) are negligible.

We need to model the behaviors for the main processing
chains of all the components. That is, the behaviors for the
reception of rotation and speed order in component control
may have been left unspecified; the implicit assumed behaviors
would be that the invocation of the reception ports does not
trigger any calculation or communication.

The behavior of component control is very simple on
purpose, to be easy to understand. Our approach supports the
modeling of more complex behaviors, with loops, sequences
and alternatives. The behavior semantics of technical policies
and connectors are handled by the generator and are combi-
nations of execution steps, as we explain in the following.

control
<

>>

speed_order

motor
>

thrust

rotation

<

trigger 30 ms

DC MS

Fig. 6. Component deployment

C. Component Deployment on the Network Topology

In order to create the application architecture, the UCM
components are connected through connectors and are de-
ployed on network nodes, as illustrated on fig. 6. The technical
code for the connectors is then produced by the generator
from the connector semantics and the architecture deployment
model (e.g. the data types to transmit through the connector,
the component allocations on the network nodes, IP addresses
of the network nodes, etc.).

Fig. 6 illustrates the connection of components control and
motor. The two components are deployed on different network
nodes, DC and MS, presented in fig. 1.

From this deployment specification, the code generator
produces connector technical code that serializes the data
into CBOR messages and sends them using unicast UDP
sockets to the destination components. The generator also
creates a semantic model of the execution flows that enable the
calculation of the network communications (see section V-B).

From the component specification (fig. 3) and its behavior
(fig. 5), the generator produces execution flows in the form
of sequences of execution steps (fig. 7), which we detail
now. Each execution step has the following semantics: it
receives incoming execution flows, then performs its execution
in a bounded time comprised between a best case execution
time (BCET) and a worst case execution time (WCET), then
produces outgoing execution flows. If an execution step is
associated with a group of execution steps, this group is
executed before producing the outgoing flows. It is possible
to specify that its execution is triggered upon the reception of
all the incoming execution flows, or only one of them; it may
produce all its outgoing execution flows at once, or only one
of them. Such specification enables the description of various
execution semantics.

Technical policy trigger is translated by a group that con-
tains a single execution step (trigger). This step receives an
execution flow produced by a pattern named periodic exec
handled by the generator. Step trigger is associated with the
component group. Therefore its semantics is the following:
upon the reception of the execution flow from the periodic
exec pattern, step trigger executes, then step run executes,
then read (the only successor of run), then calc, then push,
then send and so on. Step comm is specific: it immediately
ends the execution of step send and executes the two receive
steps. Then push ends, then trigger ends. We thus reproduce



the semantics of successive method calls that end up to sending
data through a network.

Because component control sends thrust data only to com-
ponent motor, the generator configures the thrust connector to
produce a UDP network datagram from node DC to node MS,
carrying the CBOR serialization of the data. The reception
technical code for component motor that executes on MS
deserializes the data from the CBOR buffer, then calls the
algorithmic code of motor. This means that, for this specific
deployment, group thrust represented in fig. 7 has only one
step comm in group thrust. The computation time within
component motor is 3 ms.

The same generator produces both the technical code and
the execution steps. This ensures the execution semantics (i.e.
the execution steps) is consistent with the actual technical
code.

VI. COMPUTATION OF DATA STREAM MODELS

In this section, we explain how we generate the application-
related data stream parameters of section IV-A, using the
model of the software architecture modeling of section V.
Stream parameters that are related to system design cannot
be calculated from the software application architecture.

In order to illustrate the automatic computation of data
stream parameters, we focus on data streams 1 and 2.

A. Payload Size, Traffic Class, Talker, Listeners

All the data types handled by UCM have a known size
(e.g. 16-bit integer, string with a maximum length, etc). In
our example, UCM connectors serialize data with CBOR and
send them over UDP sockets, adding 2 bytes to identify the
connections. Thus the maximum size of the data exchanged
between components can be calculated and extracted from
the declarations of the data exchanges in the software archi-
tecture model. Performing both the connector technical code
generation and the data stream computations, as illustrated on
Fig. 2, ensures consistency between the code and the stream
calculations. Data stream 1 has a payload of 7 bytes and data
stream 2 has a payload of 12 bytes2.

The traffic class parameter is, in general practice, mapped
to a specific priority value. As our example system uses a TSN
network, the parameter is mapped to a set of 8 different values
ranging from 0, the lowest priority, to 7, the highest priority.
The notion of priority is included in the design of our UCM
connectors, from which we can extract this parameter value
of the data streams. Data streams 1 and 2 both belong to the
control traffic class which is mapped to the highest available
priority. This parameter is called pcp (Priority Code Point) in
listing 1 because of the TSN terminology.

UCM models contain deployment plans to specify which
components are deployed on which network end-point. Com-
ponents are connected to each other by connectors; the exact
network topology is not known at the level of the software

2With TSN, both are rounded up to reach the minimum Ethernet frame size
of 64 bytes. For the sake of genericity and clarity we kept these values.

architecture. Yet, as connectors model end-to-end communi-
cations between components that are deployed on end-points,
the talker and the listeners are retrieved from the network
interfaces of the end-points on which the components are
deployed. The data streams are exchanged back and forth
between DC and MS on their eth0 port.

B. Stream Period

The nature of the streams (periodic, sporadic) depends on
the entity that initially induces them.

Fig. 7 represents the sequence of execution steps generated
from the specification of the behavior of the software compo-
nents deployed on end-points DC and MS. Some of the method
calls these execution steps represent are the source of network
communications. Models of data streams are generated when
such execution steps are encountered in the execution flow.

Periodic data streams models are generated when method
calls are controlled by a periodic execution policy. The period
of the data stream is the same as the execution policy.

The same logic is applied to sporadic streams by treating
the minimum interval between two consecutive executions
as the period. We can extract the transmission period of
the data streams from the execution flows generated from
the behavior specification of the application. Our example
data streams are both periodic data streams with a period
of 30 ms. According to Fig. 7, stream 1 is produced by
the trigger technical policy of component control. Stream 2
is produced by component motor upon the reception of a
message produced by component control.

C. Stream Offset

The last parameter that can be automatically generated is the
offset of each data stream. This parameter has a strong impact
on the configuration of the network. When using scheduling
mechanisms based on time division, precisely knowing the
time of transmission of data streams is critical to configu-
ration synthesis. Using wrong offsets would lead to missed
transmission windows and thus increased end-to-end latency,
possibly over the deadline. For this reason, we retain the worst
case of transmission time, so that the data is always available
when the network is expecting it.

In our example, the offset of the second transmission
(stream 2) has to take into account the parameters of the first
transmission (stream 1) because, according to the software
model (section V-B), the emission of stream 2 depends on the
reception of stream 1. Since we have to consider the worst
case, we have to use the deadline of the first transmission as
the base value of the offset because it is the worst possible
time at which the second transmission can be triggered. We
also have to consider the offset of the first transmission to
this value to adjust for the delay between the launch of the
system and the time at which the first transmission starts. The
sum of these two values gives us the offset associated with the
data stream whose transmission is triggered by the reception
of another data stream.



control2 group

motor group

rotation group

thrust groupcontrol1 grouptrigger group

period 30 ms
offset 0 ms

trigger

run read calc push send comm receive thrust

calc

pushsendcommreceiverotation

Fig. 7. Generated execution steps corresponding to the behavior of end-points DC and MS illustrated on fig. 6

Because of the 5 ms execution time of a step in the behavior
specification of the source of data stream 1, its offset is 5 ms.

The offset of stream 2 is the addition of offset of stream 1
and the computation time in component motor. The computa-
tion time of motor is 3 ms (as mentioned in section V-C). The
sum of the offset of data stream 1 and the computation time
of motor produces the offset of data stream 2: 8 ms.

Listing 1 presents the different parameters that are automat-
ically computed and their values.

[stream1]
name = "control_thrust_to_motor_thrust"
type = "Periodic_Stream"
period.value = 30000
period.unit = "us"
offset.value = 5000
offset.unit = "us"
payload.value = 7
payload.unit = "B"
talker = ["::topology::DC.ep_eth0"]
listener = ["::topology::MS.ep_eth0"]
pcp = ["7"]

[stream2]
name = "motor_rotation_to_control_rotation"
type = "Periodic_Stream"
period.value = 30000
period.unit = "us"
offset.value = 8000
offset.unit = "us"
payload.value = 12
payload.unit = "B"
talker = ["::topology::MS.ep_eth0"]
listener = ["::topology::DC.ep_eth0"]
pcp = ["7"]

Listing 1. Generated parameters for stream 1

Listing 2 illustrates the configuration of the Time Aware
Shaper of switch SW1 for the Ethernet port that is connected
to GW3. The first element defines the index of the time slot,
then the bit vector indicates which traffic classes are allowed to
transmit during the time slot and finally its duration is given
in nanoseconds. Stream 1 and stream 2 are the only time-
critical streams in the architecture and they do not reach GW.
Therefore the configuration of the Time Aware Shaper for this
Ethernet port is straightforward. It corresponds to allowing all
traffic classes to always go through.

t0 11111111b 1000000000

Listing 2. Scheduling configuration on the port going from SW1 to GW

3This configuration targets the tsntool configuration program from NXP.

control
<

>>

speed_order

motor
>

thrust

rotation

<

trigger 30 ms

DC

MS
observer

>

> GW

Fig. 8. Components deployment of end-to-end communication and observa-
tion

VII. MANAGING SYSTEM EVOLUTIONS

Designing the whole system represents an important effort
that could be made easier by breaking it into multiple iter-
ations. This type of design process pairs well with a model-
based approach such as the one proposed in this paper because
using models and generation help maintaining consistency
when updating the system. To demonstrate this, we will add a
new software component to the system for monitoring purpose
and show the impact on the stream calculations. The evolution
of the architecture is illustrated on Fig. 8.

The role of the observation component is to ensure that
the orders received by the vehicle are correctly followed. The
presence of the new component may lead to additional network
streams.

We choose to deploy component observer on end-point GW.
Because the connectors only handle unicast messages, this
creates two additional communications, as illustrated on Fig. 9.

[stream1b]
#[...]
listener = ["::topology::GW.ep_eth0"]

[stream2b]
#[...]
listener = ["::topology::GW.ep_eth0"]

Listing 3. Parameters of the newly created stream sent from DC to GW

The generator therefore produces two new data streams
which have the same characteristics as stream 1 and 2 except
for the listener, as seen in listing 3.

Instead of having to manually change the code of the
applications, calculate the new data stream parameters, create
a new network configuration and change simulation models
and configuration files, our approach only requires the new
component to be added to the application architecture (Fig. 8)



control2 group

motor group

rotation group

thrust group

control1 grouptrigger group

period 30 ms
offset 0 ms

trigger

run read calc push send comm receive thrust

calc

pushsendcommreceiverotation

observer1 group

thrustcomm

receive

observer2 group

comm receive rotation

Fig. 9. Execution steps of end-to-end communication and observation that corresponds to Fig. 8

and guarantees the consistency of every generated piece of the
system by design.

The new data stream path goes from DC to GW. No other
data stream used this path before so there was no particular
scheduling configuration going from SW1 to GW, as seen
in listing 2. This updated architecture of the system now
needs this configuration, which is generated by MoBACT,
the configuration generation tool we presented in [2], using
the z3 SMT solver. Listing 4 illustrates the new switch port
configuration, which replaces listing 2.

t0 01111111b 510000
t1 00000000b 7000
t2 10000000b 500000
t3 01111111b 28983000

Listing 4. Scheduling configuration on the port going from SW1 to GW when
the new component is deployed

VIII. CONCLUSION

In this paper, we presented an engineering process to assist
the design of real-time networks. Our approach enables the
automatic calculation of network data streams for control
applications. Since network configuration is based on the
characterization of data streams, it is essential to ensure that
the model accurately matches reality. To reach this goal, our
approach uses a single model of the application from which
both the application technical code and the model of the data
streams are generated.

Our process relies on a component model, namely UCM, to
specify the application structure. We complement UCM with
the modeling of the business code behavior, which is nested
within software components, using a subset of UML sequence
diagrams. The engineering approach assembles components,
combined with technical patterns to create a complete software
architecture. A generator produces both the technical code
and a model of the execution semantics of the application.
The model of the data streams can then be extracted from the
semantic model and passed, along with a model of the network
topology and requirements, to MoBACT [2].

This model-based approach, on top of guaranteeing con-
sistency between software and model, enables the use of an
iterative design process in an efficient way. As illustrated by
the system we used as an example, adding new components
to the system has to be done in a single place; the generators

produce the entirety of what is needed to evaluate and de-
ploy the system, i.e. application code, simulation models and
network equipment configuration files.

This approach assumes the perfect scheduling of tasks, i.e.
applications always have access to computation resources.
Future works could be aimed at lifting this assumption by
incorporating task scheduling into the approach. Future works
will also focus on reducing the pessimism of offset compu-
tation. Instead of only considering the WCET of execution
steps, the use of a probabilistic approach could be studied.

ACKNOWLEDGMENT

This work was partially supported as part of the CPS4EU
project [5] under grant number N°826276.

REFERENCES

[1] Unified Component Model for Distributed, Real-Time and Embedded
Systems (UCM), http://www.omg.org/spec/UCM, OMG Std., 2021.

[2] M. Samson, T. Vergnaud, E. Dujardin, L. Ciarletta, and Y.-Q. Song, “A
model-based approach to automatic generation of tsn network simula-
tions,” in WFCS, 2022.

[3] IEEE 802.1Q 2018 – Bridges and Bridged Networks, IEEE Std., 2018.
[4] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Durr, S. Kehrer, and

K. Rothermel, “NeSTiNg: Simulating IEEE time-sensitive networking
(TSN) in OMNeT++,” in Int. Conf. on Networked Systems, 2019.

[5] About CPS4EU. [Online]. Available: https://cps4eu.eu/about/
[6] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling

Real-Time Communication in IEEE 802.1Qbv Time Sensitive Net-
works,” in RTNS, 2016.

[7] CBOR, https://www.rfc-editor.org/rfc/rfc8949.html, IETF Std., 2013.
[8] B. Barritt, W. Eddy, S. Matthews, and K. Bhasin, Integrated Approach

to Architecting, Modeling, and Simulation of Complex Space Communi-
cation Networks. SpaceOps Conference, 2010.

[9] B. Annighoefer, M. Halle, A. Schweiger, M. Reich, C. Watkins, S. H.
VanderLeest, S. Harwarth, and P. Deiber, “Challenges and ways forward
for avionics platforms and their development in 2019,” in DASC, 2019.

[10] UML Profile for MARTE: Modeling and Analysis of Real-Time Embed-
ded Systems, http://www.omg.org/spec/MARTE, OMG Std., 2019.

[11] AADL, SAE International Std., 2022. [Online]. Available:
https://www.sae.org/standards/content/as5506d/

[12] AUTOSAR, Std. [Online]. Available: https://www.autosar.org/
[13] K. Triantafyllidis, E. Bondarev, and P. With, de, “Performance analysis

method for rt systems : promartes for autonomous robot,” in 2013 Forum
on Specification & Design Languages (FDL), 2013, pp. 1–8.

[14] G. Brau, J. Hugues, and N. Navet, “Refinement of AADL models using
early-stage analysis methods : an avionics example,” in Proc. of the 4th
Analytic Virtual Integration of Cyber-Physical Systems Workshop, 2013.

[15] K. Chaaban, N. Rizoug, B. Barbedette, and S. Saudrais, “Model-based
development of an embedded steering-by-wire system,” in 8th Int. Symp.
on Mechatronics and its Applications, 2012, pp. 1–6.

[16] M. Samson and T. Vergnaud, “Automatic Generation of Test Oracles
from Component Based Software Architectures,” in IFIP ICTSS, 2019.


