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Abstract

Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), 

including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has 

provided an intimate view into the human brain. At the interface between fundamental research 

and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes 

with constraints, such as the individual’s tailored sparsity of electrode sampling. Over the years, 

researchers in neuroscience developed their practices to make the most of the iEEG approach. 

Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, 
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as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review 

common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data 

and answer frequently asked questions based on the most widespread practices, and (iii) based 

on current neurophysiological knowledge and methodologies, pave the way to good practice 

standards in iEEG research. The organization of this paper follows the steps of iEEG data 

processing. The first section contextualizes iEEG data collection. The second section focuses on 

localization of intracranial electrodes. The third section highlights the main pre-processing steps. 

The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical 

approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to 

ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, 

e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data 

Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG 

research.

Keywords

Intracranial recording in humans; Stereotactic electroencephalography; sEEG; Electrocorticogram; 
EcoG; Good research practice

1 - Data collection: the patient being a participant

1.0 Introduction

Treatment of neurological disease and some clinical circumstances may call for the transient 

implantation of electrodes in direct contact with the human brain (see Figure 1): the 

precise targeting of deep-brain stimulation (e.g., in movement disorders: (Benabid et al., 

1987; Kringelbach et al., 2007), depression (Mayberg et al., 2005), obsessive-compulsive 

disorder (Nuttin et al., 1999) or dystonia (Vidailhet et al., 2005; Vidailhet and Pollak, 

2005)), intraoperative mapping of cortical function during awake surgery (e.g., for tumor 

resection1 (DeAngelis, 2001; Sanai et al., 2008)), and the evaluation of potentially surgically 

remediable epilepsy using intracranial electroencephalography (iEEG) (Cardinale et al., 

2016; Jobst et al., 2020; Krucoff et al., 2017). Implanted electrodes can be composed of 

electrode arrays placed on the brain’s surface (electrocorticography, ECoG) or on probes 

that penetrate into deep brain structures for recording stereotactic EEG (sEEG) or for 

deep-brain stimulation (DBS electrodes). The present article focuses on iEEG research 

carried out within the context of invasive monitoring for the treatment of drug-resistant 

epilepsy (Engel et al., 2005; Jacobs and Kahana, 2010; Lachaux et al., 2012; Mukamel 

and Fried, 2012). Surgeons can also use iEEG during intraoperative procedures which has 

significant advantages, such as the possibility to reposition the electrode array or the use 

of cooling probes. However, iEEG research conducted during acute application falls outside 

of this review’s scope. The opportunity to work with epilepsy patients presents several 

characteristics that favor cognitive neuroscience research: (i) the electrodes typically cover 

multiple cortical regions and subcortical structures in several lobes, sometimes bilaterally; 

(ii) electrodes remain implanted for several days to weeks, allowing time for research; 

1. https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-2.Tumors 
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and (iii) candidates for epilepsy surgery often have near-normal or normal neurological 

and cognitive functioning, which can enable comparisons to the healthy human brain. This 

section introduces iEEG data collection for research purposes. We discuss the clinical 

context, describe how research projects can be introduced within that context and finally, we 

address technical considerations.

1.1 Clinical context

1.1.1 The presurgical evaluation—In patients suffering from severe focal epilepsy 

that is pharmacologically intractable or that is not adequately controlled by anticonvulsant 

medications, epilepsy surgery represents a curative therapy, potentially providing patients 

with profound improvements in their quality of life (Chauvel et al., 2019; Engel et al., 2005; 

Englot et al., 2013; Kovac et al., 2017). In most cases, epilepsy surgery aims to resect the 

brain tissue generating the seizures (the epileptogenic zone), with the goal of suppressing 

their occurrence completely without causing significant neurological or cognitive deficits. 

Because epilepsy surgery is irreversible, it requires careful individualized presurgical 

assessment after review of the patient’s medical history, medications, and neurological 

examination. Typically, the multidisciplinary assessment comprises long-term monitoring 

of video-scalp EEG recordings of the patient’s habitual seizures (i.e., seizure semiology), 

structural magnetic resonance imaging (MRI) scans of the brain, and neuropsychological 

assessment (Baxendale et al., 2019; Bernasconi et al., 2019; Rosenow et al., 2016). 

Additional examinations may include positron-emission tomography (PET), ictal single 

photon-emission computed tomography (SPECT), surface electroencephalography (EEG) 

and/or magnetoencephalographic (MEG) source imaging, or an intracarotid anesthetic 

procedure (Lascano et al., 2016). At the conclusion of this non-invasive assessment, enough 

converging evidence may have been gathered to offer the patient a surgical option. In other 

cases, however, additional information must be collected to localize more precisely the 

putative epileptogenic zone or to ensure that the resective surgery will not impair normal 

cerebral functions. In such cases, an invasive evaluation with iEEG electrodes may be 

indicated.

1.1.2 Surgical implantation—Electrode implantation consists of a surgical procedure 

performed by the neurosurgeon in the operating room under general anesthesia. The pre-

surgical evaluation helps surgeons determine the electrode placement, which typically 

targets the putative epileptogenic zone or zones. Invasive monitoring allows for the 

evaluation of multiple hypotheses regarding the cortical regions involved in seizure onset. 

Additionally, the cognitive functions of the implanted regions can be assessed by electrical 

stimulation mapping (see section 1.1.4.1). The implanted areas (i.e., spatial coverage) can be 

extensive, depending on estimated epileptic focus locations and seizure propagation. These 

electrodes may, or may not, record from epileptic tissue and are therefore especially relevant 

for fundamental research. Nonetheless, for ethical reasons, the electrode implantation 

must only be determined by clinical needs and not by research interests. Two types of 

implantation strategies are used, depending on the approach of the clinical team (see Figure 

1).
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Electrocorticography (ECoG) was first introduced by Penfield and colleagues in the mid 

1950s at the Montreal Neurological Institute (Penfield et al., 1954) and was historically 

commonly used outside of Europe. It consists of one dimensional (1D) (strips) or 2D 

electrode arrays (grids) embedded in flexible silicone sheets placed onto the cortical surface 

just below the dura mater (outer cranial membrane). Regularly spaced contacts provide 1D 

or 2D spatial coverage (see section 1.3.3), typically extending over centimeters to cover 

large cortical areas (i.e., gyri), but are less sensitive to neural activity generated within 

sulci and do not access deep cortical structures (e.g., hippocampus or insular cortex). 

Surgical implantation involves a craniotomy to position the larger cortical grid(s) and/or 

a combination of associated strips. In some centers, 1D strip electrodes are inserted through 

burr holes, obviating the need for a large craniotomy. The implants are often, but not always, 

sutured in place to ensure that the electrodes do not move throughout the duration of the 

clinical monitoring period (see section 2.1.4).

An alternative approach, the stereotactic EEG (sEEG), was developed a few years later 

in Paris by Bancaud and Talairach (Bancaud, J., 1965). The term ‘stereotactic’ refers 

to the way the electrodes are positioned: using a 3D stereotactic frame, which allows 

electrode placement in specific targeted deep brain structures. Targeted brain regions were 

formerly referenced relative to a set of idiosyncratic alphanumeric coordinates in a 3D 

standardized Talairach atlas (Talairach and Tournoux, 1988) that was based on a single 

post-mortem brain. Today, stereotactic placement of electrodes is guided by the individual 

patient’s structural imaging data - often a combination of MRI and X-ray computerized 

tomography (CT). sEEG uses needle-like semi-rigid shafts (often called “leads”), generally 

with regularly-spaced electrode contacts (Gonzalez-Martinez et al., 2013), but some 

manufacturers offer shafts with larger spacing in the middle of the shaft (e.g., where it 

traverses the white matter, see section 1.3.3). The shafts are inserted through small burr 

holes (typically a few millimeters in diameter) in the patient’s skull. The shafts can penetrate 

the brain with different approaches: laterally/orthogonally to reach the inter-hemispheric 

plane, obliquely for orbital or insular implantation, longitudinally/parietally to span the 

entire long axis of the hippocampus via a posterior implantation. The shafts are held in place 

with skull bolts (see Figure 1), ensuring that the electrodes remain at the same position for 

the duration of clinical monitoring. A typical sEEG implantation involves between eight and 

twenty shafts, with five to twenty electrode contacts along each shaft.

The main advantage of sEEG over ECoG is the access to activity in deep cortical structures 

and sulci, which, however, comes at the cost of the detailed 2D spatio-temporal mapping 

that ECoG provides (Minotti et al., 2018). That said, sEEG electrode contacts traverse 

both gray and white matter, which needs to be considered during signal analysis and data 

interpretation (see sections 2.1.4 and 3.1). Nowadays, many epilepsy surgery centers in 

Europe and North America are experienced with both ECoG and sEEG and select the most 

appropriate technique for each patient. Some centers use a combination of both ECoG and 

sEEG intracranial implantation in the same patient (Kim et al., 2011; Surbeck et al., 2011).

1.1.3 Clinical monitoring—Following electrode implantation, the patient remains 

under continuous medical observation in the epilepsy monitoring unit (EMU); typically 

for a period of several days to two weeks depending on the results of the evaluation and the 
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patient’s clinical state. In the EMU, iEEG signals are continuously recorded together with 

the audio and video of the patient. The main objective is to let the patient’s habitual seizures 

occur spontaneously under careful withdrawal of anticonvulsant medication, and to identify, 

in relation to seizure semiology (e.g., overt behavioral manifestation), the iEEG sites with 

the earliest abnormal electrophysiological activity (i.e., the “seizure onset zone” from which 

seizures originate and spread to other brain regions). Temporal synchronization between 

recorded audio, video and intracranial EEG is crucial for accurate seizure characterization.

1.1.4 Functional exploration / mapping

1.1.4.1 Electrical stimulation: During the patient’s stay in the EMU, clinicians generally 

deliver intracranial electrical stimulations (iES) through iEEG electrodes (extraoperative ES 

mapping). It consists in delivering low-amplitude current electrical stimulations between 

pairs of contacts and is also known as direct cortical stimulation, electrical stimulation 

mapping, cortical stimulation mapping, or as electrocortical stimulation (Borchers et al., 

2012; Cuello Oderiz et al., 2019; Kovac et al., 2016; Trébuchon and Chauvel, 2016). 

Information collected during iES is essential for surgical planning to potentially avoid 

resecting brain regions supporting critical functions, as the success of the epilepsy surgery 

depends not only on the resection of the epileptogenic zone but also on the absence of 

any consequent neurologic postoperative deficits (e.g., motor, sensory, linguistic or cognitive 

impairments (Corley et al., 2017; Kanner, 2016)). By means of iES, the functional brain 

regions or networks covered by the electrodes, are characterized based on a combination 

of observed behavior (e.g., motor movements when stimulating the motor cortex (Penfield 

and Boldrey, 1937), speech arrest when stimulating language areas (Ojemann and Whitaker, 

1978)) or based on descriptions of experiential manifestations by the patient themselves, 

such as hallucinations (Aminoff et al., 2016; Mégevand et al., 2014; Penfield and Perot, 

1963) or emotional reaction (Caruana et al., 2018, 2016; Fried et al., 1998). When the 

iES mapping reveals so-called eloquent tissue close to the epileptogenic focus, surgery can 

proceed with additional acute iES mapping in the operative room. In that case, during the 

surgical procedure, the depth of general anesthesia is decreased so that the patient can be 

mapped awake on the operating table (with local anesthesia of the surgical wound) to extend 

the resection margin to its maximum without creating post-surgical deficits.

iES can be used to identify sites where iES elicit after-discharges and/or symptoms similar 

to what the patient experiences at the beginning of their seizures. However, these evoked 

seizures may not match the patients’ naturally occuring seizures; and some neurologists 

prefer not to do stimulation until monitoring is complete and the patient is back on their 

anti-epileptic medications.

From a research perspective, iES can produce experiential phenomena that provide excellent 

functional localization information (Kern et al., 2019). These must be carefully documented 

(see section 1.3.8), because they can interfere with other test stimuli. For instance, the 

position of an illusory visual percept evoked by the iES can be pointed at, or mapped, using 

a white type of 'dartboard'. The patient can have this in front of them during the stimulation 

and can indicate the region in space where they experience illusory percepts; this can also 
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helps to determine if the illusory percept moves (e.g., by measuring the eccentricity relative 

to the fovea or its position on an imaginary clock).

Yet, iES has limitations in identifying functional networks: stimulation cannot be repeated 

ad infinitum due to time constraints, patient overload and progressive loss of response 

specificity (e.g., behavioral fatigue and risk of unspecific after-discharges, (van ’t Klooster 

et al., 2011)). Furthermore, the effect on most cognitive functions can only be observed if 

stimulation produces an obvious change in the patient’s behavior, or if that function is being 

performed by the patient at the time of the stimulation (e.g., speech production, access to 

episodic memory, mental imagery, mental calculation). Many stimulation sites often lead to 

undetected subtle or no effects that provide no relevant functional information (Mazzola et 

al., 2019; Murphey et al., 2009).

1.1.4.2 Task-related exploration: A complementary strategy to iES is to record evoked 

iEEG activity during a battery of short tasks engaging critical cognitive functions (i.e., 

“localizers” assessing sensory/motor processes, language, memory, attention, etc.). Changes 

in the activity of the neuronal populations supporting those functions is locally recorded 

by iEEG electrodes sited nearby, which provides additional information for producing 

functional maps of the patient’s brain. Some centers have implemented a systematic 

analysis pipeline to provide the clinical team with a detailed report of all significant 

iEEG task-induced responses within a few hours (Cheung and Chang, 2012; Lachaux 

et al., 2007b; Miller et al., 2007a; Schalk et al., 2008). Such localizer-based functional 

mapping procedures can be performed in a short period and be planned early during the 

hospital stay to inform clinicians and guide subsequent iES. Since electrode implantation is 

patient specific, and given that functional responses cannot be predicted based on structural 

anatomy alone, such reports are also valuable for research (Figure 2).

1.1.5 Challenges, recommendations and reporting advice

• Many factors may preclude a patient from being a suitable candidate for a 

given study. For example, the cognitive abilities of the patient may prevent them 

from completing demanding cognitive tasks, electrode placement may not be 

deemed relevant for the functions being studied, and/or persistent epileptogenic 

activity between seizures may hinder recording of artifact-free iEEG. Prospective 

recruitment of patients for research studies allows avoiding sampling biases, i.e., 

the selection of participants on a priori criteria which will limit the generalization 

of the results (see section 5.1). We recommend that researchers report inclusion 

and exclusion criteria in their publications.

1.2 Research and experimental aspects

A major technical challenge for iEEG research is to adapt research questions to the clinical 

environment, controlling sources of variability while maintaining high-quality iEEG signals. 

This section discusses considerations for running experiments in the EMU and addresses 

some ethical issues (see also (Chiong et al., 2018; Feinsinger et al., 2022)).
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1.2.1 Interactions between researchers, clinical staff and the patient—
Researchers should seek to minimize interference with normal clinical procedures. Should 

a seizure occur, it is essential that the experiment immediately cease and that research 

equipment does not hamper clinical intervention, both for the patient’s safety and to not 

obstruct the video recording of the behavioral characteristics of the seizure. Therefore, it 

is beneficial to use mobile, battery-powered setups that can be quickly moved without data 

loss. Should the participant become uncomfortable during the experimental recording, this 

should be respected: the experiment should be stopped. Then, only if the participant is 

willing, the experiment could be resumed or restarted at a later time. Intracranial implants 

can cause headaches and nausea, making it difficult or impossible for patients to concentrate 

and perform demanding tasks. Researchers must ensure that experiments do not cause 

stress, anxiety or discomfort, or take time away from visitors. The researcher may want 

to schedule the experimental recordings together with the participant. Giving autonomy to 

the patient benefits the relationship with the participant and his/her experience regarding 

research participation. Importantly, when scheduling experimental recordings, researchers 

should also liaise with clinical staff and make sure that they are not testing the patient at 

times when clinical staff need to interact with the patient, or when other clinical tests have 

been scheduled. When interacting with patients, three key perspectives must be taken into 

account:

• From an ethical perspective, it is essential to inform the patient that his/her 

medical care will not be influenced by, or depend on, his/her participation (or 

lack of participation) in experimental research. It is also important that the 

patient understands that there is no direct benefit to them and that the research 

might not necessarily be directly clinical in nature. When the clinical staff is part 

of the research team, this can pose a particular challenge. Even if the clinician 

explicitly explains what is clinical necessity and what is voluntary research, for 

the patient these lines can remain blurry. For this reason, it can be advisable to 

not have the patient’s own clinical staff (neurologist or neurosurgeon) ask for 

informed consent/perform experiments.

• From a human perspective, while the patient is aware that there is no direct 

benefit for him/her, curiosity often brings the patient to ask questions about 

the research. Here, our experience is that a sense of partnership can be 

established between researchers and the patient, who can enjoy the time spent 

in that ephemeral relationship at both a personal and intellectual level (e.g., 

knowledge sharing). A practical consequence is that the scheduled time-slot 

for the experimental interaction should also leave time for all important social 

interactions.

• Finally, from a medical perspective, it is important to keep in mind that during 

this period the patient attempts to follow and understand the evolution of his/her 

clinical assessment. It is not appropriate for researchers to provide the patient 

with information concerning their medical assessment.

It can be a good idea to use gamification and story-telling to make experimental paradigms 

more enjoyable. Researchers should keep in mind that experimental conditions are unlikely 
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to reach the quality of a proper laboratory setting due to many factors such as lighting 

conditions, electrical noise, distracting sounds, patient fatigue and fluctuating motivation. In 

that regard, it should never be forgotten that the iEEG research participant is a patient first.

1.2.2 Recording environment—Some centers have a dedicated experimental room 

to perform research in a controlled environment. While the additional time required 

for the patient transfer may reduce the total amount of time participating in the actual 

research paradigms, the advantage is the better standardization of experimental settings 

between patients. Such a controlled environment allows performing finer psychophysical 

manipulations,increasing the signal to noise ratio when it is possible to use a better 

electrical isolation (e.g., Faraday cage) or a high-quality research-oriented data acquisition 

system, reducing the risk of distractors during the experiment and permitting to record 

without other patient(s) in the same room. Yet, the transfer from the patienťs room to the 

dedicated experimental room can imply interrupting the clinical iEEG recording and the 

risk of missing seizures during the transfer which would have a negative clinical impact. 

We therefore recommend being extremely vigilant, that is, (i) to equip the experiment 

room with a microphone and a video camera to record potential seizure semiology, (ii) to 

start the recording as soon as possible and to continuously record from the participant in 

the experiment room in case a seizure occurs while the participant is not performing an 

experiment, (iii) to minimize the transfer time, (iv) a neurologist and/or a nurse should stay 

with the patient, (v) to ask the clinicians about the degree of patient medication (i.e., whether 

a reduction of anticonvulsant medication increases the probability of seizure), (vi) to use a 

wheel-chair or transport bed to reduce the risk of a fall should a seizure occur.

Other centers are equipped with a specific patient room that is optimized for both clinical 

observation and research with additional electromagnetic isolation. In this case, the EMU 

can be complemented with a research controlled setting, including, for example, conduits 

for cables allowing two-way communication between patients and research setting rooms. 

Hence, once arriving from the operating room the patient remains there for all investigations 

throughout the monitoring period (Billig et al., 2019; Lehongre et al., 2022).

1.2.3 Research projects in a clinical setting—An iEEG experiment might be 

interrupted at any time due to clinical events (e.g., a seizure); therefore, experiments 

organized in short blocks ensure that data analysis remains possible, even if some data 

are missing. That said, when designing the experiment, the minimum number of ‘trials’ 

in each condition to be analyzed should be considered. Whenever possible, experiments 

should be designed to linearly increase the amount of useful data as time passes. All blocks 

should include all conditions, so later blocks will simply add more trials per condition and 

increase statistical power. Interictal epileptiform discharges can contaminate iEEG signals 

and their prevalence and frequency can vary from day to day. A check of the iEEG signal 

on the clinical system before commencing the experimental set-up may aid in a decision to 

go ahead with or postpone a recording session. It is generally preferable to not spread the 

recording of a single paradigm over multiple days, as the quality of the signal (Sillay et al., 

2013), the medications taken by the patient, and their behavioral state may vary over time.
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Since a patient can only participate in a limited number of experiments, it is important 

that those experiments are chosen and prioritized wisely. This inevitably leads to some 

selection bias, for instance with more patients recorded in the left hemisphere being included 

in language studies. Some centers send the results of their localizers (see section 1.1.4.2) 

to all research teams with ongoing projects and then prioritize incoming research requests 

according to protocol duration, particular requests to access certain brain regions, as well 

as the team’s or project’s history (e.g., how many patients have been recorded so far, and 

results obtained).

As multiple research teams often compete for a few time slots with the patient, it is 

always a good idea to keep an open register of all experiments performed and timing of 

recording sessions, to create a feeling of equity and transparency. This can be facilitated 

by organizing a regular schedule of meetings between clinicians and researchers to discuss 

new protocols and present results obtained from ongoing protocols from previous patients. 

These meetings provide an excellent opportunity to create bridges between clinical and 

fundamental science, and to increase the global understanding of a given patient’s brain, by 

combining all observations made by independent research groups for that same patient, in 

relation to his/her clinical records. Importantly, should some technical problem develop with 

the iEEG recordings themselves due to changes in software/hardware, regular team meetings 

can provide an excellent troubleshooting forum and communication to all about how to deal 

with any encountered technical issues.

1.2.4 Research procedure—The initial time spent by researchers with the patient is 

devoted to a careful explanation of the experimental procedure and making sure the patient 

has given formal written informed consent. When possible, we recommend discussing 

participation in research protocols with the patient prior to the implantation, and if possible 

asking for consent at that time. Thus, the patient can anticipate this dimension of his/her stay 

at the clinic and is less burdened during this period. Yet, it must be clear for the patient that 

the length of his/her stay is solely determined on a clinical basis.

Subsequently, careful installation of the necessary equipment (e.g. computer screens, audio 

outputs, response devices, eye-tracking device) and their connection/synchronization to the 

iEEG data recording system is required. We strongly recommend carefully performing all 

the needed tests (e.g., synchronization between presentation device and acquisition system) 

during a “dry run” with no patient (i.e., prior to performing the acquisition with the patient, 

see section 1.3.1).

When the EMU is not directly equipped for research (see section 1.2.2), the experimental 

equipment might be housed on a trolley/cart that can be moved from one room to another. 

This can facilitate easy removal of equipment from the field of view of the video camera to 

record the behavioral characteristics of a seizure, as well as allowing clinical staff access to 

the patient at any time (see section 1.2.1).

In some centers, a dedicated member of the staff is in charge of performing the experiments, 

assisted by the researcher. If the person in charge is part of the clinic, he/she should make it 

clear to the patient that at that time he/she is ‘wearing a research hat’ (i.e., the patient should 
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feel free to say ‘no’ to a research request, see section 1.2.1). The obvious advantage of 

having the same person doing all the recording is that installation of experimental equipment 

is fast, efficient and reproducible, and that the interaction with the patient and the clinical 

team is optimal. The dedicated member of the staff is also in a good position to survey 

and provide information on the patient (e.g., handedness, age, moment of last seizure, 

medications, and technical information about the electrodes and recording setup, see section 

1.3.8).

Because the interaction with the patient is usually attention-demanding, we recommend that 

experimenters prepare and use a checklist to keep track of each step in the experimental 

procedure. Such documentation reduces the cognitive load on the researcher, leads to more 

rigorous organization, can provide relevant meta-data, and makes data collection consistent. 

Working in teams of two researchers is also useful - one person can monitor the iEEG 

display continually (in case of seizure activity), while the other monitors the task computer 

and the patient’s performance of the activation task.

1.2.5 Challenges, recommendations and reporting advice

• The clinical and research team should closely collaborate in organizing 

experimental recording sessions.

• Written informed consent must be obtained from the patient for all research 

procedures being undertaken as well as for the clinical data that is used for the 

research (e.g., neuroimaging data). Make sure that a duly authorized professional 

collects this consent prior to testing (this is generally stipulated in the consent 

form and approved by the appropriate Ethical Review Committee).

• Any person interacting with the patient during intracranial evaluation must 

behave and present a professional image at all times. This is important as it 

might influence the patient’s perception of his/her medical care.

• Script the explanations/information given to the patient, use appropriate 

terminology, e.g., avoid using personalized phrasings like “test your abilities” 

but rather use terms such as “investigate human brain functions”. Be explicit with 

the purpose of fundamental research (e.g., “this research is not designed to help 

you, but the knowledge obtained may help future patients”).

• Use template “recording sheets” to collect and document information relevant for 

subsequent analyzing and reporting (e.g., the time of the last seizure, the level of 

medication, handedness, reference/ground electrodes, comments on the recording 

quality and patient state). These records can be made on paper or digitally, but 

ultimately all data should be archived in digital format.

1.3 Signal monitoring, recording and supplementary data

1.3.1 Experimental acquisition setup—Most iEEG acquisition and visualization 

systems are optimized for clinical requirements and may not include some of the features 

desired for experimental research (e.g., the ability to input triggers, perform online 

averaging, or allow other online analysis for closed-loop experiments). Some acquisition 
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systems allow starting a new recording with parameters for an experimental session (e.g., 

increased sampling rate) without interfering with the ongoing clinical recording. In other 

cases, a research amplifier may record data in parallel to the clinical system. Both good 

quality recordings and the local regulatory constraints for patient safety are the responsibility 

of a trained clinical engineer. We recommend coordinating with the clinical staff prior to 

taking any action that may alter the parameters of the long-term continuous clinical iEEG/

video recordings. Additionally, when recording at the bedside with specialized research 

equipment that interacts with the clinical setup, it is important for patient safety that this 

equipment is approved for use in the clinical setting (which depends on local and national 

regulations), is battery operated, and does not lead to any discomfort to the patient (e.g. 

goggles or headphones exerting pressure on the bandaged head).

Practical considerations for stimulus presentation include what stimulus presentation 

software the researcher should use, how reliable the hardware and software of the recording 

environment are, and how well these serve the purposes of the research goal. Selection of 

stimulus presentation software may be constrained by the researcher’s ability to install new 

software on the available EMU equipment, or to synchronize their own equipment to the 

EMU set-up. The researchers should also be familiar with the hardware connection between 

the stimulus presentation computer and the recording device (e.g., whether a parallel port 

or other types of connections are supported). If the researcher can choose the stimulus 

presentation software, we recommend one that optimizes precise timing for the stimulus 

type being used in their study. A comparison between common stimulus delivery programs 

is available (Bridges et al., 2020).

Any electrophysiological recording that requires synchronization with a behavioral task 

needs a stimulus trigger channel that allows synchronization of event timing in the 

experimental software with electrophysiological events in the iEEG recordings. The trigger 

channel is the critical piece that renders our data useful - placing timestamps in the data 

file for specific task events. Given the idiosyncrasies of the iEEG recording environment, 

and the high value of such rare data, it is important that every trial be accurately accounted 

for. We recommend embedding redundant information in the data collection strategy, such 

as additional channels which directly record stimulus presentation, such as a photodiode 

attached to the computer screen, a microphone or direct audio recording from the amplifier 

(see section 1.3.4). These allow for a ‘ground-truth’ timing-reference in case the trigger 

channel does not record events, or does so with variable timing. Another source of redundant 

information could be the behavioral or task-related files generated by stimulus presentation 

scripts. While these may not as easily provide timing-related information, they can help the 

researcher to ensure a match between the number and types of events that occurred over the 

course of the experiment with the information embedded in the trigger channel. As such, a 

complete and verbose behavioral recording is desirable for any cognitive task.

Restrictions around the hardware and software permitted in the clinical environment (for 

reasons of clinical certification and patient safety) can introduce unforeseen sources of 

variability when running cognitive and behavioral experiments. In the ‘dry run’ that 

researchers should do before recording with an actual patient, they should aim to capture 

such variability in their experimental set-up, such as latency or jitter in stimulus presentation 
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(see section 1.4). However, discrepancies between the timing of the trigger channel and 

other channels may be tolerable so long as the latency is consistent (i.e., correctable constant 

lag). An additional benefit of this dry run is to more accurately estimate the duration 

required for equipment set-up, providing realistic expectations of the amount of data the 

researcher can acquire in a session with the patient, while minimizing the appearance 

of uncertainty or unpreparedness that might make the patient uncomfortable. Accurately 

estimating the time required for set-up also allows for better communication with clinical 

staff and fellow research teams. Dry runs should be repeated if any hardware or software on 

either the clinical or the research side has been changed or updated.

1.3.2 Recording reference and ground—As with scalp EEG, recording iEEG signals 

relies upon low-noise differential amplifiers typically housed in a “headbox” located close 

to the patient, in combination with another amplifier component (the ADC converter and/or 

the interface and synchronization system) located closer to the data acquisition computer. 

Each differential amplifier channel takes a pair of electrodes (the electrode of interest and 

the reference, which is usually shared among all channels), amplifies the potential difference 

and converts it to a digital representation that can be visualized and stored on a computer.

iEEG signals typically range from 0.05 to 2 millivolts, about 10 to 100 times larger than 

scalp EEG signals. Besides the electrodes of interest that are placed at, or close to, the tissue 

of interest, biopotential recording systems also require a reference electrode (REF) and 

usually include a ground electrode (GND) that serves to suppress noise. As an alternative to 

the ground electrode, biopotential systems can also include a common sense (CMS) and a 

so-called driven right leg (DRL) electrode.

Electrical potentials by definition quantify a voltage difference. Thus, the iEEG signal 

reflects the voltage differences between a pair of electrode contacts, typically the electrode 

of interest relative to a reference electrode. It is important to distinguish the ‘online’ 

reference that is used during data acquisition itself, from the reference selected in post-hoc 

digital re-referencing for offline data reviewing, processing and/or analysis (see section 3.3). 

It is important to document what, and where, the online reference was and to share this with 

others that might analyze the data (e.g., scalp reference electrode at Cz, or sEEG shaft B 

contact 6, see section 1.3.8).

Differential physiological amplifiers use the GND electrode to reduce the effect of the 

common mode voltages present on both the electrode of interest and the reference electrode. 

This reduces common-mode interference, for example due to the 50/60 Hz power line and 

due to other non-physiological sources of noise (Scheer et al., 2006) (see sections 3.2 and 

3.3).

At the electrode-tissue interface the displacement of electric charge in the electrode (a 

metal) consists of free electrons, whereas the displacement of electric charge in the tissue 

(an electrolyte) consists of ions. The electrochemical reaction at the electrode-electrolyte 

interface not only results in a specific electrode impedance, but also in an electrode 

potential. Different metals have different surface polarization potentials that can introduce 

offset potentials to the amplified and recorded potential difference between an electrode 
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and the reference (Lee Stephen, n.d.). The impedance at the electrode-tissue interface (and 

thereby the electrode potential) fluctuates over time (about few minutes in case of scalp 

EEG, to days in the case of iEEG (Sillay et al., 2013)).

Besides being the source of slowly changing offset potentials, the electrode-tissue interface 

can also introduce broadband noise and affect the signal depending on the electrode 

impedance (Huigen et al., 2002). This also pertains to the impedance of the REF and 

GND, which are sometimes placed on the scalp or located in the skin, bone, meninges 

or white matter. Additionally, some metals can introduce filtering effects into measured 

signals, therefore the material for these electrodes needs to be carefully considered (Hari 

and Puce, 2017). When the researcher can choose these electrodes, he/she may consider 

the various possibilities that we have described here. However, in practice, the choice of 

the REF and GND is usually made by clinicians when the patient arrives in the EMU and 

usually maintained during the entire monitoring time. The criteria for a good REF/GND 

include: the patient’s safety and comfort, the complexity of the set-up/placement, the ease of 

maintenance and the ability to maintain a low impedance for a long time.

The two following subsections describe various options for choosing the recording reference 

and ground, ordered from the least to the most invasive. There is not a single best solution, 

but there are multiple reasonable solutions that depend on the electrode implantation 

schemes that impose constraints on where the REF and GND can be placed - largely 

due to the presence of sterile dressings that can cover large sections of the head. Despite 

this variation, considering signal quality and the influence of the REF and GND can have 

on planned analysis should be considered (e.g., for common pick-up on the measure of 

coherence, see (Zaveri et al., 2000), and see sections 3.3, 4.2.3.7 and 4.2.3.8).

1.3.2.1 External REF/GND: When opting for an external REF or GND, an electrode on 

the skin (e.g., tip of the nose, mastoids, clavicle) or scalp surface can be used to achieve 

a low impedance, although they require regular maintenance. The electrode paste or gel 

and tape used for their placement may not always be compatible with the sterile dressings 

covering the craniotomy and/or burr holes post-implantation.

These issues can be avoided with a subdermal needle electrode, although this is already 

more invasive (Vulliemoz et al., 2010). Alternatively, as part of the surgical procedure, an 

electrode such as a skull screw, or a cranial electrode (i.e., sEEG electrode localized in the 

skull), or an inverted subdural strip electrode, facing upward to the inner side of the skull, 

may serve as an indwelling reference.

The main disadvantage of an external reference is that it is more prone to pick up external 

noise (i.e., ambient 50/60Hz), some artifactual muscle activity (including blinks and eye or 

head movements) and/or global brain activity being passively volume conducted through 

the tissues. That said, invasive and semi-invasive reference electrodes can still pick-up 

volume-conducted artifactual activity such as eye blinks and movements or cardiac activity 

(see section 3). Importantly, as noted earlier, different material for electrodes should be 

avoided, as they would result in different half-cell potentials and thereby introduce unstable 

DC offset potentials which deteriorate the signal quality.
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1.3.2.2 Internal REF/GND: An alternative solution for the REF and GND consists of 

using a pair of iEEG electrodes, e.g., adjacent electrodes in the white matter. This reduces 

the risk of using different electrode materials which inadvertently could introduce DC offset 

potentials. In this case the REF (like any other electrode) is sensitive to fluctuations of 

the bioelectrical activity generated in its vicinity, therefore it is advisable to choose an 

electrode site which picks up as little neural activity or bioelectrical artifacts as possible, as 

this would be introduced back into the full montage. An additional advantage with internal 

REF electrodes is that its impedance is likely to be comparable to the contacts of interest 

that form the other input to the differential physiological amplifier: impedance mismatches 

between pairs of contacts that provide the inputs to differential amplifiers can impair the 

ability of the amplifier to reject common mode signals.

1.3.3 Electrode characteristics—The materials used for ECoG and sEEG electrodes 

are in most cases platinum/iridium because of its biocompatibility and suitability for long-

term implantation in human tissue. However, sEEG and ECoG electrodes vary substantially 

in terms of their geometry and many manufacturers custom-design probes on request (see 

section 1.1.1). Here we describe the most used macro-scale electrodes for both techniques.

• ECoG subdural electrodes are flat discs. The diameter of the exposed surface 

varies from 1 to 4.5 mm and the surface from 5.3 to 28.2 mm2. The distance 

between individual electrodes within a grid or strip is typically 3 to 10 mm. 

Typically, grid arrays consist of 4x4, 4x5, 8x8 or 10x10 electrodes, and strips 

can include various electrode configurations e.g. 1x4, 1x6,1x8, 2x10 (Boatman 

et al. 2010). Strips can be linear arrays or form ‘L’ or ‘T’ shapes. Beneath 

an ECoG electrode with 2.3 mm diameter, given an estimate of about 100,000 

neurons under 1 mm2 cortex, the electrode contact covers about 5 x 105 neurons 

(Miller et al., 2009). Estimates from macaque V1 suggest that each electrode 

measures activity from an area of about 3 mm in diameter (Dubey and Ray, 

2019). Nonetheless, local field potentials also reflect volume-conducted activity 

from distant sources (Kajikawa and Schroeder, 2011).

• sEEG depth shafts are cylinder-shaped with 5 to 20 contacts. For each contact 

the exposed surface length is around 2 mm with diameters ranging from 0.8 to 

2 mm, leading to a surface area of 3.5 to 50 mm2. Various options exist for the 

spacing of the centers of adjacent electrodes, but distances typically range from 

2.5 to 10 mm. Each sEEG electrode explores a small volume of brain tissue 

estimated to be a sphere of approximately 5 mm radius surrounding the electrode 

(von Ellenrieder et al., 2012).

ECoG electrodes measure cortical activity differently compared to sEEG electrodes. Their 

subdural position covers a large cortical surface area (i.e., up to tens of cm2) and captures 

the origin of grey matter signals orthogonal to the cortical surface; as compared to sEEG 

electrodes, which sample, from different spatial orientations, depths, and discrete brain 

volumes (i.e., a few cm3), by straddling different tissues and potentially different cortical 

layers. Finally, it is worth noting that the ability to pick up iEEG signals does not only 

depend on electrode properties, but also on the characteristics of the neural source itself: its 

spatial extent, its location and orientation relative to the electrode contact and the degree 
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of synchronization among the active neural population (see (Cosandier-Rimélé et al., 2008; 

Ramantani et al., 2016) for a thorough investigation of the neurophysiological models of 

sources in sEEG and scalp EEG).

There are other specialized electrodes that we do not consider further here, for example 

microelectrodes specifically designed for the recording of activity of individual neurons or 

shafts with very closely spaced small electrodes to record the laminar potential distribution 

((Kellis et al., 2016; Tóth et al., 2016) and see section 6.4). Their use requires recordings 

with much higher sampling rates and filter settings than regular ECoG and sEEG.

1.3.4 Supplementary channels and behavior—Along with iEEG signals, additional 

physiological signals may be recorded for clinic and/or research and may help identify 

artifacts (see sections 1.3.5 and 3.2). Electrocardiographic activity (i.e., ECG/EKG) is 

almost systematically recorded in the clinical environment, not only to monitor the patienťs 

cardiac activity, but also to allow distinguishing ECG/EKG artifacts from rhythmic interictal 

epileptiform discharges in the EEG. ECG/EKG can also be used to guide iEEG signal 

analysis (Kim et al., 2019; Park et al., 2018). Electrodermal activity (EDA, also referred to 

as galvanic skin response (GSR), psychogalvanic reflex (PGR), skin conductance response 

(SCR), or sympathetic skin response (SSR)) a marker for sympathetic skin activity, can be 

used for seizure monitoring, detection and prediction (Vieluf et al., 2021) as well as for 

studying cognitive processes (e.g., emotional processing, see for an example (Chen et al., 

2021; D’Hondt et al., 2010)). For research purposes, electro-oculogram (i.e., the horizontal 

(HEOG) and vertical (VEOG) eye movements) or eye-tracking (i.e. eye gaze and/or a 

measure of pupillometry) can be recorded to monitor gross and fine eye movements, 

respectively (Ball et al., 2009; Cimbalnik et al., 2022; Golan et al., 2017, 2016; Jerbi et al., 

2009a; Katz et al., 2020; Kern et al., 2021; Kovach, 2011; Lachaux et al., 2006; Podvalny 

et al., 2017). Similarly, surface electromyography (EMG) can be recorded to probe muscular 

activity (i.e.: voluntary and involuntary movement, (Talakoub et al., 2017)). Last, natural 

breathing can be recorded, for instance to investigate the influence of the respiratory cycle 

on the activity of specific brain areas and on cognitive functions (Herrero et al., 2018; 

Zelano et al., 2016), however, this requires specialized equipment that may require a lot of 

adjustment.

In most iEEG research paradigms, the participant receives instructions and performs a 

specific task. Therefore, iEEG data is often complemented by behavioral recordings which 

can be either discontinuous events (e.g., button presses) or a continuous data stream, e.g., 

from a microphone for speech tasks (Bouchard et al., 2013; Chartier et al., 2018; Hamilton 

et al., 2021, 2018; Mesgarani et al., 2014); eye tracking (Golan et al., 2017, 2016; Podvalny 

et al., 2017); or hand movements recorded with a dataglove (Miller et al., 2012). To relate 

the iEEG data to behavioral measure(s), synchronization between the two recordings is 

critical (see sections 1.2.4 and 1.3.1). For discontinuous events, corresponding time-points 

are either marked as triggers in a dedicated file accompanying the iEEG data (e.g., .vmrk 

in BrainVision Analyzer format one of the iEEG BIDS formats, see section 1.3.8), or 

events are tagged in a dedicated trigger channel (i.e., as binary pulses, numbers or strings). 

For some continuous streams a different sampling rate may be used (e.g., for audio as 

analog inputs, at least 16 kHz is needed, whereas the typical iEEG is sampled at about 1 
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kHz). Some systems allow implicit synchronization for recording iEEG along with other 

signals at different rates, whereas in other cases explicit synchronization between multiple 

systems is needed. The acquisition of continuous signals in parallel with the iEEG recording 

presents many advantages and moves forward to naturalistic neuroscience (see section 6.5). 

As mentioned in section 1.3.1, the continuous recording of supplementary channels can be 

used as ‘ground-truth’ in the timeline of iEEG data. Moreover, recording continuous signals 

allows for higher sensitivity in some research fields, like in the investigation of natural 

speech production where the specific spectrotemporal characteristics of the recorded audio 

stream can be analyzed and compared with neural activity (Ozker et al., 2022), which is not 

possible when only speech onset is marked as a discrete trigger-event.

Just like clinicians annotate the signals using the clinical monitoring system (e.g., to indicate 

seizure onset and/or associated behavior), researchers can document iEEG data to drive 

analyses (e.g., manual screening for real-life conversation or other activities, see for example 

(Glanz et al., 2018; Mercier et al., 2017), Figure 2). To that aim, the Hierarchical Event 

Descriptor tag (or HED schema2) offers a standard to annotate brain imaging data. It has 

been adopted as part of BIDS (see (Robbins et al., 2021) and section 1.3.8). Supplementary 

channels and annotations add value to iEEG data: they guide preprocessing (e.g., to identify 

artifacts; see section 3) and to integrate behavioral correlates in signal analyses (see sections 

4.1.3 and 4.2.4 for common practices to relate behavior and iEEG signal through data 

visualization).

1.3.5 Monitoring artifacts—The term “artifact” refers to signal features that are not 

relevant or undesired for the research purpose, in iEEG these would be signals that do not 

originate from the brain or pathological neural activity. The signals not originating from 

the brain can further be divided into two: physiological and non-physiological artifacts. 

Pathological epileptiform activity during seizures or between seizures is discussed in section 

3.2.1. If artifacts are identified during monitoring, the researcher can annotate them and 

possibly try to avoid or reduce them.

Physiological artifacts are generated by the patient, from sources other than the brain. The 

most common are eye blinks, eye movements (i.e., saccades or micro-saccades measured 

with EOG and/or eye-tracking), cardiac activity (EKG/ECG), and muscle activity (EMG) 

(Ball et al., 2009; Jerbi et al., 2009a; Kern et al., 2013, 2021; Kovach, 2011; Melloni et al., 

2009; Mosher et al., 2020; Otsubo et al., 2008). Physiological artifacts are a major source 

of contamination in non-invasive neurophysiological techniques (e.g., MEG, EEG). While 

their presence in the iEEG signal is less evident to the naked eye, they can mix with the 

signal of interest spatially, temporally, and/or spectrally (see section 3.2.2). In addition, some 

unwanted brain responses can occur from experimental events (e.g., the patient hears the 

sound of their own button press when giving a behavioral response).

Non-physiological artifacts arise from a potentially large number of external elements 

including electrical stimulation artifacts, other electrical equipment (e.g., patient monitoring 

equipment, intravenous pumps, etc.), electrical motors (e.g., to incline the patienťs bed), 

2. https://www.hedtags.org/ 
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electronic devices (e.g., screen, speakers, cell phones), and sway in improperly anchored 

electrode cables. Other sources of interference can produce low-frequency patterns, punctate 

high-frequency artifacts and continuous power line interference (50/60 Hz and harmonics, 

see section 3.2).

1.3.6 Combining intracranial and non-invasive electrophysio- logical 
recordings—iEEG has a high signal-to-noise ratio (SNR) and a high spatial specificity: it 

directly records brain signals and is mainly focused on activity originating from summated 

post-synaptic potentials from populations of neurons in the immediate vicinity of the 

electrode. Yet, iEEG is spatially sparse because the clinical exploration targets only a 

specific subset of brain regions.

MEG and EEG also record summated neurophysiological activity, but with sensors covering 

the whole scalp, therefore offering a more complete spatial coverage of the whole brain. 

However, these measurements are made outside of the brain and skull and have significantly 

reduced SNR relative to iEEG. Additionally, localizing and reconstructing the time course 

of activity in the brain requires source modeling and solving the inverse problem as 

measurements are not taken directly from the source locations.

Simultaneous invasive and non-invasive electrophysiological recordings can combine the 

qualities of each technique to describe as accurately (high SNR, high spatial specificity) 

and as comprehensively (whole brain) possible brain processes. For instance, a limited 

set of fronto-central EEG electrodes can help to identify sleep stages during iEEG. Since 

the development of high density EEG and MEG (M/EEG), there is increasing interest to 

investigate the relationship between surface signals and the spatiotemporal configuration of 

underlying brain sources. In this context, iEEG can only provide some “ground truth” for 

characterizing sources in brain areas where electrodes are implanted. Cosandier-Rimélé et 

al. (Cosandier-Rimélé et al., 2008) modeled the impact of several factors (e.g., distance 

to sources, skull conductivity, source area, source synchrony, background activity) on the 

observability of simultaneous rapid discharges in sEEG and scalp EEG signals. Empirical 

studies have tested ability for non-invasive techniques to detect activity originating in deep 

structures (Fahimi Hnazaee et al., 2020; Koessler et al., 2015; Pizzo et al., 2019; Seeber et 

al., 2019), to determine the lateralization of seizure onset (Sammaritano et al., 1987) and 

provided insights into the quality of source reconstruction (Mikulan et al., 2021, 2020). For 

cognitive research, the joint analysis of depth and surface signal evoked by individual stimuli 

can contribute to understanding the neural activity linked to cognitive processes (Dalal 

et al., 2009; Dubarry et al., 2014). Simultaneous recordings can also provide additional 

information relating to tissue that is actively generating the patient’s seizures (Gavaret et 

al., 2016; Kakisaka et al., 2012; Santiuste et al., 2008). For instance, MEG data time-locked 

to iEEG interictal epileptiform discharges revealed an additional generator in a region not 

covered by the iEEG implants (Gavaret et al., 2016).

While these studies provide unique perspectives on brain activity, simultaneous recordings 

are difficult to implement. There are infection control and pain-related issues due to the 

craniotomy and burr hole sites. It can be difficult to place non-sterile scalp EEG electrodes 

on patients with extensive intracerebral electrode implantation as they might contact iEEG 
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probes (i.e., cables, screws). Scalp EEG electrode type can affect signal quality and 

practicality (e.g., transcutaneous electrodes can be more stable, while adhesive electrodes 

are easier to place). Scalp EEG recording should begin shortly after these electrodes are 

placed by the clinical team as the signals will be optimal at this time. Furthermore, when 

interpreting scalp EEG signals, changes in electric field propagation caused by the implants 

themselves, and discontinuities in the skull due to craniotomies and associated burr holes 

must be considered (Dalal et al., 2009; Kirchberger et al., 1998; Oostenveld and Oostendorp, 

2002; Voytek et al., 2010).

Recording MEG simultaneously with iEEG presents physical challenges, e.g., transporting 

the implanted patient to the MEG laboratory, introducing iEEG hardware inside the shielded 

MEG environment, and getting the patient’s head successfully into the rigid MEG helmet. 

The amount of time the patient spends outside the EMU must be kept to a minimum, so the 

recording session must proceed efficiently (see section 1.2.2). Unfortunately, the quality of 

MEG signals can be severely compromised by the iEEG hardware. Because of these major 

technical challenges, it is possible, but in practice rare to acquire data in the three modalities 

(iEEG, EEG and MEG) simultaneously (Dubarry et al., 2014).

In summary, recording non-invasive and intracranial neural signals simultaneously can 

provide a more complete perspective for integrating and evaluating brain activity recorded 

by different methods. This conveys potentially important benefits for improving methods, 

and for interpreting clinical and cognitive questions that are addressed by these same 

approaches when used in isolation. However, concurrent neurophysiological recordings are 

technically and logistically challenging, from patient consent (explaining procedures), to 

data acquisition, analysis and interpretation. Performing such recordings should only be 

attempted when the research hypothesis clearly motivates this and there is strong support 

from the clinical staff.

1.3.7 Imaging data—As part of the clinical procedure, imaging data is routinely 

acquired and is available for research purposes if the patient gives their consent (Figure 

2). Notably, pre-implantation structural MRI and post-implantation CT or MRI scans are 

critical for localizing and categorizing electrode contacts (e.g gray vs white matter, specific 

sulci/gyri) (see section 2), as well as for reporting and sharing data (see section 1.3.8). 

Sometimes additional complementary neuroimaging investigations may exist (e.g. fMRI, 

MRI scans with different imaging sequences, PET or SPECT scans), and these might also 

be informative for the research data analysis. Importantly, some patients have had previous 

brain resections or have brain lesions that may, or may not, be epileptogenic. This has 

important implications for matching individual to template brains (see section 2.3.2), and 

interpreting and modeling neurophysiological brain activity. Some centers also use fMRI 

studies with localizer tasks prior to implantation to perform a non-invasive brain mapping 

that can complement iEEG investigations (see sections 1.1.4).

Functional MRI and iEEG signals have been combined in many studies (for review see 

(Ojemann et al., 2013)). Most of these studies performed separate iEEG and pre- or 

postoperative fMRI recordings using the same task in the same individuals, and a few 

carried out simultaneous recordings. Several approaches have been used to compare separate 
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recordings in the same individuals, including comparisons of the spatial distribution and 

comparisons of activity levels within electrodes across task conditions or time. Temporal 

approaches typically extract different iEEG measurements that are then convolved with a 

hemodynamic response function to predict the BOLD signal (Haufe et al., 2018; Mukamel et 

al., 2005). Initial spatial comparisons showed overlap between the sEEG high frequency and 

fMRI signal changes (Lachaux et al., 2007a; Nir et al., 2007). More complex relationships 

between these signals were revealed later (Hermes et al., 2012), where ECoG high frequency 

power increases and low frequency power decreases explain complementary variance in 

BOLD increases (see also (Haufe et al., 2018; Hermes et al., 2017)). One methodological 

consideration when integrating separately recorded fMRI and iEEG data is how to match 

voxels to iEEG electrodes (see section 2.1.4). A typical approach is to calculate a (weighted) 

average of the BOLD activity in a small region of gray matter cortex of about 3–8 mm 

around the electrode (excluding non-gray matter voxels), as correlations drop across larger 

regions (Hermes et al., 2012; Piantoni et al., 2021). When integrating iEEG with fMRI data, 

there may be serious fMRI signal dropout in anterior ventral temporal and orbitofrontal 

areas. These are often covered with iEEG electrodes (Ojemann et al., 1997; Shum et al., 

2013), so there may be an absence of complementary information from both imaging 

modalities.

Simultaneous fMRI-iEEG studies have reported spatial correspondence in the trial-by-trial 

correlations between the BOLD signal increases and ECoG high frequency power increases 

and low frequency power decreases (Murta et al., 2017), and have also used simultaneous 

recordings to explore the effects of electrical stimulation on the BOLD signal (Oya et al., 

2017). While scientifically interesting, simultaneous fMRI-iEEG recording requires specific 

authorization as it presents additional challenges with respect to fMRI compatibility with 

iEEG electrodes and recording devices (e.g., cables, amplifiers) and general patient comfort 

and safety. Surgical dressings themselves can be bulky and may impose space constraints for 

some MRI head coils - not to mention painful pressure points for the patient at the surgical 

site.

1.3.8 Reporting and sharing—An iEEG dataset consists of complex and often 

heterogeneous data, including information from the clinical team, pre- and post-operative 

neuroimaging data, results of neuropsychological assessments, electrical cortical mapping, 

assessments of patient participation in the experimental tasks, the actual neurophysiological 

and behavioral data recorded during the experimental tasks and associated annotations 

(Figure 2).

The Brain Imaging Data Structure (BIDS) provides a template for organizing neuroimaging 

data of various types in a standardized directory, filename and file structure that now 

covers multiple imaging modalities (for MRI, iEEG, MEG and EEG, see respectively 

(Gorgolewski et al., 2016; Holdgraf et al., 2019; Niso et al., 2018; Pernet et al., 2019)), 

with work continuing to incorporate additional modalities such as single unit activity. 

An iEEG dataset includes anatomical imaging data, location of intracranial electrodes, 

iEEG data in relation to the events in the experimental task, and behavioral measures 

(see Figure 2). As iEEG is acquired in clinical rather than lab settings, this introduces 

sources of variability across acquisition sessions and medical centers, so special attention is 
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needed to document metadata. Minimally, those metadata shall document the experimental 

environment (e.g., hardware, software, equipment wiring diagram), information concerning 

additional equipment, participant behavioral status, and the experimental protocol and/or 

deviations from the protocol due to unforeseeable reasons such as medical interventions 

during testing. Specific pre-processing is required for the raw dataset both from the 

clinical and research perspective (e.g., determining electrode locations from imaging data, 

identifying channels with epileptiform activity or non-functioning contacts), and these must 

be documented.

We recommend a research data management plan that not only considers the iEEG data 

but also supplementary data. The latter includes important information that changes at a 

slower rate than the main data of interest such as medication and clinical state of the patient, 

research questionnaires, and version control where time-stamped (pre)processing steps are 

documented in a clear readable workflow. This is important for the easy identification and 

tracking of data and its derivatives. This ensures that future researchers (from the same or 

another lab) will see what has already happened to the data, without having to repeat any 

steps. This will improve efficiency, quality and reproducibility of science. For an example of 

iEEG datasets in the BIDS format, see 3.

While a standardized format offers the most universal application of data, some researchers 

share valuable data in a lab-specific manner. In that case, the interoperable (I) and reusable 

(R) criteria of FAIR4 should be considered (Wilkinson et al., 2016). Specifically, i) the 

format of physiological and behavioral data should be sufficiently simple, and variables 

corresponding to each measurement should be explicitly described in companion documents, 

ii) co-registered anatomy in standardized coordinates should be integrated into a provided 

workflow, and allow plots to be easily made from analyses of time series data, and iii) 

a clearly written workflow and all code (fully and extensively commented) to reproduce 

every element of published work should be provided. For examples of this approach, see 

recent libraries of publicly-available, open-source, ECoG data and code 5, (Miller, 2019), or 

multimodal iEEG-fMRI dataset (Berezutskaya et al., 2022).

If the patient data is to be shared publicly according to Open Science principles, additional 

constraints will apply. For example, to support a paper with primary research findings, or 

alternatively the form of a data descriptor paper, it is crucial to consider the legal (e.g., 

GDPR or HIPAA) and ethical considerations regarding patient privacy. Anatomical imaging 

data that are shared with the published dataset must be defaced or skull-stripped to remove 

facial features, but that does not guarantee that it is impossible for the participant to be 

re-identified (Abramian and Eklund, 2019; Schwarz et al., 2021). The same considerations 

must be applied to appropriately handle any supplementary data that is identifiable, such 

as audio and video recordings, but also clinical and demographic data that is represented 

in simple tabular format. Furthermore, the specific configuration of implanted electrodes 

and the clinical information itself (e.g. brain lesions) can contribute to the risk of potential 

3. https://openneuro.org/search/modality/ieeg 
4. https://www.go-fair.org/fair-principles/ 
5. http://memory.psych.upenn.edu/Data 
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reidentification of the individual (Rocher et al., 2019). However, the scientific utility of 

the shared data can be compromised by de-identification approaches which also remove 

the critical features that are required for data interpretation and reuse (on behalf of the 

MAGNIMS Study Group and Alzheimer’s Disease Neuroimaging Initiative et al., 2020). To 

balance the value of the shared data with legal and ethical responsibilities to the patient, we 

recommend sharing the data under a data use agreement that permits bona fide research, but 

ensures that the patient’s interests are not harmed, more specifically that the identity of the 

patient is protected (Bannier et al., 2021; Eke et al., 2021; Jwa and Poldrack, 2021). Since 

sharing anonymized iEEG data is challenging, new techniques may have to be developed 

and the awareness for existing deidentification strategies should be increased (e.g., (Meurers 

et al., 2021; Prasser et al., 2014; Vinding and Oostenveld, 2022), and see section 6.2).

1.3.9 Challenges, recommendations and reporting advice

• Sharing iEEG data, or any other data from human research participants, requires 

written informed consent that explicitly specifies which data can be shared 

(e.g., iEEG signal, neuroimaging data, video), to which audience (e.g., other 

institute(s), public space) and what measures are undertaken to warrant data 

anonymization or de-identification to protect participant privacy ((Bannier et al., 

2021), see also 6). In addition, one needs to consider the safety of the tools used 

to share the data, as well as the necessity of setting up a data sharing agreement.

• Visualization of the raw signals and their power spectra permit the evaluation 

of data quality (if permitted by the acquisition software, the sanity check of 

power spectra should be performed during the actual recording, otherwise it must 

be performed offline, see section 3.2). When the signal from all electrodes is 

noisy (e.g., presence of 50/60 Hz and its harmonics) it is possible that the noise 

originates from the REF and/or the GND electrodes or cable; in that case these 

must be changed independently to identify the source of noise (see sections 1.3.2 

and 3.3). If noise only contaminates a single ECoG grid/strip or sEEG shaft), its 

cabling should be verified (i.e., cables, adaptors and plugs).

• Whenever possible, the reference electrode and ground electrode should be of the 

same material as the other electrodes to reduce the effect of half-cell electrode 

potentials (section 1.3.2).

• As researchers operating in the clinical environment have inherently less control 

over the software and hardware, it is important to preemptively itemize the tools 

available for research in the EMU and to accommodate any deficiencies with 

redundancy in experimental design and recording scheme (section 1.3.1).

• We recommend recording physiological artifact samples to ensure that some 

prototypical patterns are available when off-line reviewing and cleaning the data 

(see sections 1.3.5 and 3.2). These artifact templates are helpful to compare 

with those overlapping the signal during the experiment itself, especially when 

6. https://open-brain-consent.readthedocs.io/en/stable/ 
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artifacts are suspected to be present in the data in line with the task (e.g., jaw, lip 

and tongue movements for language production).

• As well as recording artifact templates, during data collection it is useful to keep 

track of any unexpected environmental or patient-related artifacts during the task 

(e.g., aura or prodrome prior to a seizure, seizure, sneezing, yawning, coughing, 

environmental noise, see (Mosher and Funke, 2020) in the context of MEG 

recordings). We recommend using annotation plug-ins directly in the acquisition 

software, or when that is not possible, to write notes in an experimental notebook 

or lab diary with times of occurrence (see section 1.3.8). Later, these annotations 

will allow the detection of artifacts in the recording and may provide insight into 

detecting ones that were not annotated.

• Considering experimental designs, different conditions might result in different 

amounts of artifacts, for example 50/60 Hz line noise when touching a button-

box/computer keyboard in one condition and not the other, or when one 

condition results in more participant movements. An experimental difference 

in artifacts should be considered as a potential confound for subsequent analysis 

(see section 3.2).

2 - Electrode localization and anatomy

2.0 Introduction

Intracranial electrodes are in close contact with the brain tissues from which electrical 

activity is generated (see Figure 1). For ECoG implants, neural activity passively propagates 

through volume conduction across several layers of the cerebral cortex, pia mater, 

cerebrospinal fluid and arachnoid mater before reaching the electrodes. For sEEG implants, 

neural activity passively propagates through gray matter, white matter and cerebrospinal 

fluid (see section 1.1.1 and 1.3.3). This confers to iEEG both a high SNR and a high spatial 

specificity. The iEEG spatial specificity is in the range of millimeters, which cannot be 

matched with surface EEG or MEG recordings (Buzsáki et al., 2012). To make the most 

of the high iEEG spatial specificity, one needs to localize the electrodes on/in the brain 

and to identify the anatomical structures the electrodes are implanted in or in contact with. 

Electrode localization therefore more strongly depends on imaging data and anatomical 

processing than is common for M/EEG studies. We discuss how to localize the implanted 

electrodes on/in the individual patient’s brain in section 2.1 below.

The sparse coverage of iEEG results in data that is not sampled from the whole brain. 

The scattered electrode placement is participant dependent, as dictated by individual clinical 

needs. While typical M/EEG analysis relies on averaging and comparing recordings across 

multiple participants with standardized sensor positions, iEEG recordings are idiosyncratic 

and difficult to compare across patients. For instance, sEEG electrodes can sit in sulci and 

it can be difficult to gauge which side of sulcus is the source of the activity, and differences 

in cortical folding patterns can make direct comparisons between participants even more 

complex. Two main approaches are used to collate and interpret iEEG data at the group 

level: using a normalized space or delineated parcellations (see section 5). In section 2.2, we 
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discuss how co-registering and normalizing the individual patienťs MRI (with corresponding 

electrode positions) permits work in a standard brain template space. In section 2.3, we 

discuss the procedure of matching anatomical or functional atlas labels from a template 

brain to an individual's brain. This procedure permits electrodes to be grouped with respect 

to the delineated feature in the individual’s anatomy.

There is no clear consensus in the iEEG research community about performing analyses 

either in normalized space or in native space. Yet, based on the literature and specialized 

toolboxes (see 7 for an updated list), a common workflow emerges (Figure 3). Here, we 

recommend a sequence of steps to obtain all information that may potentially be required 

in subsequent analyses of iEEG data. We assert that iEEG electrode localization is critical 

to fully utilize the high spatial specificity of iEEG, but also to acknowledge its limits and 

imperfections.

2.1 Individual space

The clinical procedure of electrode implantation involves a patient-specific surgery (see 

section 1.1). For sEEG, the positions (3D coordinates) of the sEEG shafts trajectories are 

pre-specified in the patient’s structural MRI and/or CT to guide stereotactic intervention 

by the neurosurgeon when targeting the region of interest while avoiding blood vessels. 

All information is uploaded to the neuro-navigation software to guide the planned 

stereotactic trajectory (Bakr et al., 2021; Brandmeir et al., 2018). However, during surgery 

the neurosurgeon may proceed differently than planned depending on the quality of 

perioperative recordings, the medical condition of the patient, existing vasculature or 

technical reasons. Surgical planning is usually not precise enough to properly estimate 

the final anatomical locations of the sEEG electrodes on the sole basis of the pre-surgical 

documentation, hence the complementary post-op imaging. With ECoG, the use of a neuro-

navigator could provide decent approximates with a few millimeters error (Gupta et al., 

2014; O’Shea et al., 2006).

To obtain accurate 3D coordinates and corresponding anatomical information (e.g., tissue 

types or brain regions), when available we recommend using a pre-implantation high-

resolution whole brain T1-weighted MR and post-implantation imaging exams (if only 

one is available CT is generally preferable to post-implant structural MRI, see section 

2.1.1 and 2.1.4). A three step procedure is then followed, which we describe in this 

section: (i) localization of each electrode contact from post-implantation anatomical images, 

(ii) coregistration of the post- and pre-operative images and (iii) segmentation of the pre-

implantation MRI to obtain tissue classification. The order of execution of these steps does 

not critically affect the outcome, although reslicing of imaging data as an intermediate step 

may affect electrode localization (see section 2.1.2).

As the diagnostic neuroimaging protocols of epilepsy surgery programs may not include 

an MRI and/or CT scan, we indicate in the following some alternative, but non-preferred, 

options for localizing the electrodes.

7. http://ielvis.pbworks.com/Links-to-other-free-software-for-analyzing-data-from-epilepsy-surgery-candidates 
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2.1.1 Electrode localization—The 3D coordinates of each electrode centroid are 

determined on the post-implantation imaging data by pinpointing the center of mass of 

the electrode artifact visible in the imaging data (Blenkmann, 2017; Branco et al., 2018b; 

Deman et al., 2018; Groppe et al., 2017; Hamilton et al., 2017; Hermes et al., 2010; 

LaPlante et al., 2017; Narizzano et al., 2017; Sebastiano et al., 2006; Stolk, 2018; Tao 

et al., 2009). Post-implant CT-scans offer high-resolution images with excellent contrast 

between soft tissue and the electrodes and skull. Therefore, to achieve a high accuracy in the 

electrode localization, the CT-scan provides clear unambiguous data with a straightforward 

procedure (see Figure 3).

When post-implantation CTs are not available, alternative approaches can be used to localize 

the electrodes: post-implant MRI (Kovalev et al., 2005; Morris et al., 2004; Yang et al., 

2012), intra-operative photographs taken during the surgery (Mahvash et al., 2007; Tao et 

al., 2009; Wellmer et al., 2002) or two orthogonal skull X-rays (Miller et al., 2007b; Winkler 

et al., 2000). However, these approaches lead to lower spatial precision: post-implant MRI 

shows large blurred artifacts around the electrode contacts due to their metallic structure, 

while photograph or skull X-rays imply some approximation in the reconstruction of the 

third dimension, and photography only applies to ECoG electrodes that are visible through 

the craniotomy and require to visually/manually relate them to underlying anatomical 

landmarks (e.g., gyri/sulci, blood vessels etc.). Usually, more than one of these approaches 

are used - taking advantage of their respective strengths and correcting for potential tissue 

deformations (see also section 2.1.4). For instance, Dalal and colleagues (Dalal et al., 

2008) proposed a multimodal approach for ECoG, where: (i) perioperative photographs 

are used to localize the electrodes visible during the craniotomy, (ii) the coordinates are 

transferred to the pre-operative MRI rendering, (iii) a 3D-2D projective transform on the 

X-ray radiographs is used to back project to the cortical surface the location of the occluded 

electrodes. Two recent ECoG studies further propose defining anchor points on perioperative 

photographs and then using them to constrain semi-automated electrode localisation from a 

post-operative CT (Trotta et al., 2018) or post-operative MRI (Pieters et al., 2013).

2.1.2 Coregistration—To link electrode coordinates to neuroanatomy, the post-implant 

image (CT or MRI) is coregistered with a pre-implant MRI that serves as the reference. This 

registration is performed using a rigid transformation (i.e., rotation-translation) estimated 

mostly from the skull shape (Friston, 2007; Jenkinson et al., 2012). If electrodes were 

localized prior to coregistration with the pre-implant MRI, the same transformation must be 

applied to the 3D electrode positions as to the post-implant image.

Following coregistration, the registered image (CT or MRI) can optionally be resliced/

resampled onto the reference image so that the two volumes match voxel-by-voxel. This 

is useful for quality control: overlaying the two images in the same view allows a visual 

check of whether coregistration was successful (see Figure 3). However, interpolation on 

a different voxel grid spacing does degrade image quality and spatial resolution of the 

post-implant image. CT scan resolution is typically higher than that of the pre-implant MR. 

Hence, we recommend performing localization of iEEG contacts on the post-implant (CT or 

MRI) images prior to reslicing. Once electrode coordinates are projected in the pre-implant 

MRI, electrodes can be visualized on/in the patienťs brain by scrolling through MRI slices.
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2.1.3 Segmentation—The pre-implant whole head MRI can be processed to quantify 

and reconstruct anatomical features of the brain (see Figure 3). Voxel-based morphometry 

methods provide tissue classification (skin, skull, blood vessels, CSF, gray matter, white 

matter, lesions). As an imaging voxel is not a biologically meaningful unit, other methods 

have been developed such as surface-based morphometry, which makes use of segmentation 

boundaries into parametric surface meshes representing the separation between tissues in 

3D (skull shape, pial envelope, gray-white interface) and providing related measures (e.g., 

cortical thickness, amount of CSF). T1-weighted MRI scans offer the optimal contrast 

between the tissues to be segmented, and are therefore recommended as the starting point 

for most segmentation pipelines (e.g., FreeSurfer, CAT, BrainSuite, BrainVISA, SimNIBS; 

(Fischl, 2012; Gaser et al., n.d.; Rivière et al., 2009; Shattuck and Leahy, 2002; Thielscher 

et al., 2015)). Some tools allow including additional T2 or FLAIR images to improve 

quality of the pial surface estimation (see for instance FreeSurfer, SimNIBS or SPM; 

(Lindig et al., 2018)). Specialized sequences for higher fidelity segmentation and tissue type 

identification such as the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR 

see (Sudhyadhom et al., 2009)) should be used where possible as adjuncts to assist in 

segmentation.

Some surgical procedures require additional MR angiography scans to guide the 

implantation and avoid vessels: a contrast agent (e.g., Gadolinium, see recommendation 

from (Bernasconi et al., 2019)) is injected intravenously and results in a hypersignal in 

T1-weighted images around blood vessels and lesions, and possibly lower contrast between 

tissues in the rest of the image (Hannoun et al., 2018; Maekawa et al., 2019; Vakharia 

et al., 2018). These effects may affect the quality of segmentation pipelines (e.g., making 

gray and white matter difficult to separate, or meningeal vessels classified as gray matter), 

therefore the use of such images is not recommended as input for the segmentation pipeline. 

If the use of a contrast agent is requested, it is recommended to perform a T1-weighted 

scan before and after the infusion (see recommendations from the International League 

Against Epilepsy: (Bernasconi et al., 2019)), and only the former should be used for brain 

segmentation and then for iEEG electrode labeling.

The segmentation can be used to provide multiple labels or tissue metrics for each electrode 

(e.g., Tissue Proximal Density, see (Mercier et al., 2017) and see Figure 4), which can help 

identify which channels to include/exclude in analysis and visualization (e.g. some contacts 

in SEEG electrodes might not be in the brain, see section 2.1.4). The geometrical surface 

meshes can be used for projecting ECoG electrodes on the folded cortical surface or the 

inside of the skull, for visualization purposes, and/or for brain shift correction (see sections 

2.1.4 and 3.1). The surface meshes and volumetric parcellations can also be used to compute 

volume conduction models of the head for modeling intracranial electrical currents (Medani 

et al., 2020).

2.1.4 Challenges, recommendations and reporting advice

• We recommend visual inspection of the output of each processing step as a 

sanity check (e.g., Figure 3). This verification can save a lot of time rather than 
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trying to figure out a posteriori at which step there was a failure in the pipeline 

(e.g., when left and right axes are flipped).

• Fiducial markers are reference points placed on the skin before performing brain 

imaging. Generally they are placed at the nasion, inion and/or pre-auricular 

points. Their use is recommended as these points help to reference and align 

different images. An additional fiducial, placed on one side of the head (e.g., the 

forehead), can prevent right/left confusion.

The 3D image acquisition can be performed with non-isotropic voxels and therefore to 

less detailed images along the axis with the coarser resolution; this results in more blurred 

localization accuracy of the electrode in that direction. When possible, we recommend using 

isotropic scans to avoid discrepancy between the three dimensions, so electrode localization 

is not impacted by the orientation of the electrode with respect to that of the scan.

Additional image data processing such as filtering or smoothing may introduce some 

approximation in the localization of iEEG electrodes. Only the center of mass of the iEEG 

electrode is localized, then the electrode is matched to a given voxel, which in most cases is 

smaller than the electrode itself (the size of an electrode contact is about a few millimeters, 

typically larger than the voxel size generally about 1 mm). As a consequence, electrode 

location must be considered as an estimation (Ken et al., 2007; Sebastiano et al., 2006) and 

see for a method review (Pieters et al., 2013)).

• We recommend localizing the center of mass of each electrode contact on the 

original volume (e.g., on post-implantation CT-scan) prior to any further imaging 

processing, notably coregistration, which can blur the contact shape and decrease 

spatial specificity.

Electrode localization can be performed manually or using a semi-automated or fully 

automated algorithm (for sEEG see (Arnulfo et al., 2015; Granados et al., 2018), for ECoG 

see (Branco et al., 2018b; Centracchio et al., 2021; Hunter et al., 2005; O’Shea et al., 2006; 

Sebastiano et al., 2006; Yang et al., 2012).

For sEEG, some semi-automatic procedures identify two points along the electrode shaft 

(e.g., the proximal tip and the distal entry point of the shaft in the skull) and interpolate 

the coordinates of other contacts based on the description of the electrode’s geometry (i.e., 

inter-electrode spacing, electrode size, etc.). This approach assumes that the contacts are 

on a line, however the shaft can bend during implantation due to the resistance of the 

tissues (e.g., Figure 6, 3D view panel). Consequently, electrodes along a shaft may deviate 

from a straight trajectory (Cardinale et al., 2012). To improve on this issue, some tools 

fit a spline to three or more points along the electrode shaft and distribute the electrodes 

along the spline (e.g., 8). More automated procedures based on CT-scan segmentation were 

specifically developed to take into consideration the bending of electrode shafts (Arnulfo et 

al., 2015; Granados et al., 2018).

8. https://www.fieldtriptoolbox.org/reference/ft_electrodeplacement/ 
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ECoG implants push the brain inward due to the thickness of the implant and because of 

a general reaction to the surgical intervention (e.g., CSF leakage due to dura opening, soft 

tissue swelling). These non-uniform and unpredictable brain shifts range up to 24 mm for 

cortical displacement and to 3 mm for deeper structures, ventricles and the midline (Dalal et 

al., 2008; Etame et al., 2011; Hartkens et al., 2003; Hastreiter et al., 2004; Hill et al., 1998; 

Roberts et al., 1998; Studholme et al., 2001; Tao et al., 2009). This deformation requires 

some correction of the 3D reconstruction by projecting ECoG electrodes at the surface of the 

brain using segmentation outputs (see below) or on the brain convex hull or the inner skull 

surface (see 9).

• We recommend correcting for brain shifts. Several effective automatic methods 

have been developed. In Hermes et al. (Hermes et al., 2010), ECoG electrodes 

are orthogonally projected from the local vector norm of the grid to the point 

on the cortical surface. Yang et al. (Yang et al., 2012) use the inverse of the 

gnomonic projection to “fold” the grid onto the smoothed pial surface. Finally, 

in Dykstra et al. (Dykstra et al., 2012), the procedure consists of two steps: first 

the initial coordinate estimates are projected to the dura smoothed surface via 

an energy-minimization algorithm (constrained by a minimal local displacement 

relative to each electrode original position, and by a minimal global deformation 

of electrodes configuration), then the new coordinates are projected to the closest 

vertex of the pial surface (e.i., euclidean distance). All these methods require 

the use of the MRI segmentation output (i.e., cortical mesh) and they must be 

applied in the individual space. The pre versus post brain shift corrected distance 

can be used to visually check the quality of the method (see Figure 2 in (Groppe 

et al., 2017)).

The distal ends of sEEG shafts are screwed in place on the skull and can remain in a fixed 

position, but for ECoG electrodes some shift can occur due to blood and cerebrospinal fluid 

accumulation-pressure and soft tissue swelling, especially when they are loosely sutured in 

place. Although the position of the electrodes is only determined once from the imaging 

data, such a displacement over time has consequences for the actual location from where the 

signal is recorded (LaViolette et al., 2011; Wellmer et al., 2002).

With sEEG, while the interest is typically in gray matter, the shafts go through several 

tissues and consequently some sEEG electrodes can be located at the interface with, or in the 

skull, soft tissues (e.g., skin, dura, muscles), cerebro-spinal fluid, gray matter or white matter 

(see Figure 4).

• We recommend using the brain mask computed from the volume segmentation 

to exclude the electrodes that are outside the brain from the analysis (see section 

3.1).

Anatomical labels (i.e., tissue maps) are generated by the segmentation pipelines and can 

be binary or probabilistic (see section 2.1.3). In the case of binary masks, each voxel of 

the image is associated with a single label. The class of the voxel with the centroid of an 

9. https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG#ECoG_grid:_G 
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iEEG electrode can be associated with the corresponding tissue label. For tissue probability 

maps (Ashburner and Friston, 2005; Lorio et al., 2016), the intensity of the voxel indicates a 

cumulative probability of belonging to each of the tissues (e.g., 0% skull, 10% soft tissues, 

80% gray, 10% white matter) and reflects an uncertainty on the classification of each voxel.

• For sEEG, because of the uncertainty on the 3D locations described above, 

we recommend taking a region around the contact centroid (e.g., 3x3x3mm, 

with respect to the size of the electrode that is no more than about 2mm 

wide) and counting the number of voxels of each label in this neighborhood 

volume (probabilistic approach in space, for an example of implementation see 

the Proximal Tissue Density index introduced in (Mercier et al., 2017)). Tissue 

probability maps can be combined with the uncertainty of a contact location by 

averaging the label probability across voxels around the centroid.

• For ECoG, grids and strips generally cover multiple gyri and some electrodes 

may face blood vessels (see Figure 4 and (Bleichner et al., 2011; Wang 

et al., 2016)). In this case, the tissue map provides information about the 

electrode vicinity and allows to compute, for each electrode, the distance to 

the leptomeningeal surface.

Along the localization pipeline, imaging data can be registered to different coordinate 

spaces (relative to the scanner origin, relative to external head or internal brain anatomical 

landmarks, etc.). It is important to know which referential space is used at each processing 

step, because 3D coordinates are valid only in one given spatial reference.

• It is crucial to document clearly in which coordinate system the spatial data 

and the position of electrodes are reported. The iEEG-BIDS specification 

(Holdgraf et al., 2019) provides guidelines to document the iEEG coordinates 

in a reproducible way (see 10).

2.2 Normalized space

2.2.1 Background—The first goal of registering the patient’s brain to a template is 

to project 3D electrode coordinates from individual space to a normalized space. Because 

of the anatomical variations between individuals, an accurate registration to a common 

brain template space requires a non-linear method. Two families of approaches exist to 

perform this registration. Volume-based pipelines (e.g., SPM12, FSL, Lead-DBS; (Friston, 

2007; Horn and Kühn, 2015; Jenkinson et al., 2012)) compute volume deformation fields 

and volume parcellations from the individual MRI to the template space based on tissue 

probability maps from the segmentation. Surface-based pipelines (e.g., FreeSurfer, CAT, 

BrainVISA, BrainSuite; (Fischl, 2012; Gaser et al., n.d.; Rivière et al., 2009; Shattuck 

and Leahy, 2002)) reconstruct the cortical surface of the individual brain, which is then 

parametrized and registered to the brain template surfaces based on topological properties 

(e.g., curvature, sulcal depth, sulci tracking, etc.). This gives access to surface-based 

10. https://bids-specification.readthedocs.io/en/bep-009/04-modality-specific-files/04-intracranial-
electroencephalography.html#coordinate-system-json-_coordsystemjson 

Mercier et al. Page 29

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://bids-specification.readthedocs.io/en/bep-009/04-modality-specific-files/04-intracranial-electroencephalography.html#coordinate-system-json-_coordsystemjson
https://bids-specification.readthedocs.io/en/bep-009/04-modality-specific-files/04-intracranial-electroencephalography.html#coordinate-system-json-_coordsystemjson


parcellations of the individual cortex, and is further used to compute volume deformation 

fields and volume parcellations.

A critical distinction must be made between these pipelines and their outputs. A volume-

based pipeline can produce a normalized individual cortical surface mesh, even though 

the volume-based registration procedure does not rely on this surface. Conversely, a surface-

based pipeline can, as an intermediate step, produce the individual brain as a volume 

in the normalized space. Some surface-based pipelines use the output of a volume-based 

pipeline (e.g., 11). The estimation of the "mapping quality" depends on the target(s): while 

volume-based mapping operates well for subcortical regions, surface-based mapping is 

more optimal for the cortex (Desai et al., 2005; Klein et al., 2010; Langers, 2014). We 

recommend the surface-based pipeline to label ECoG electrodes because it gives better 

individual-space cortical alignment (and parcellation) than the volume-based pipeline. We 

recommend volume-based pipeline output to label sEEG electrodes, as it operates on the full 

brain volume including subcortical regions, (see section 5.3.2.1).

Practically, volume and surface outputs differ in the way the spatial dimension is organized: 

respectively using a 3D matrix of voxels or using a sheet/mesh made of numerous vertices. 

Once 3D electrode coordinates are obtained for a given normalized space, it is possible 

to collate electrodes across patients on the basis of their normalized coordinates, to relate 

them to findings from other studies, and to report results relative to the normalized space 

(section 5.3.1). More broadly, once registered in a normalized space any individual data 

(e.g., MRIs, PET as with the iELVis toolbox (Groppe et al., 2017)) can be projected on 

the corresponding brain template to perform group-level analyses or comparisons with prior 

studies or databases.

The second goal of registering the patient’s brain to a template is to make use of various 

anatomical or functional information from atlas(es) matched to this template. While defined 

in space relative to a template, an atlas should not be equated with a brain template, rather 

an atlas is the projection of information on a template. Similar to an atlas of the world being 

defined by features over space (e.g., elevation, climate, social, geopolitical) projected on 

a given map, a brain atlas consists of labeled brain parcels with anatomical or functional 

information. Following this analogy, information from a brain atlas is projected to a spatial 

template brain. When working with data from multiple patients, a strategy can be to select 

and group electrodes from the different patients that fall within the same atlas parcel (see 

section 5.3.2.1).

2.2.2 Challenges, recommendations and reporting advice—Interpreting data in 

standardized space should be performed with care. Even within homologous brain areas 

across individuals, the representation for particular brain functions can be highly variable 

and be a product of that individual’s life experience, e.g., the remapping of auditory 

processing to the visual cortex in the blind (Klinge et al., 2010).

11. http://wwwneuro.uni-jena.de/cat/ 
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Each processing pipeline registers an individual brain to its own template (eg. fsaverage 

for FreeSurfer, USCBrain for BrainSuite, MNI152 for SPM12 and FSL, Colin27 for 

BioimageSuite), which are not always exactly compatible with each other (e.g., mapping 

between MNI volumetric and FreeSurfer surface coordinate systems see (Wu et al., 2018)). 

Over the past 20 years, the most widely used have been the successive MNI brain 

templates (MNI305, Colin27, MNI152, MNI452, see 12), jointly referred to as “MNI 

space” (Mazziotta et al., 2001, 1995). The deformation fields obtained can subsequently 

be applied to the iEEG electrode coordinates to map their location to the MNI standard 

space. Normalizing to the MNI space is a prerequisite for most group analysis approaches, 

yet it should be remembered that the MNI152 template is blurred, leading to a loss in spatial 

specificity. Various open-source software packages can perform the normalization to MNI 

space within a few minutes (SPM12, CAT, FSL, ANTs or Lead-DBS).

• Reporting 3D MNI coordinates implies that the reader can understand them. 

However, the term “MNI space” refers to various spaces that are not exactly 

equivalent (Brett et al., 2002). Although the few millimeter difference between 

Colin27 and MNI152 may not dramatically impact fMRI or EEG source imaging 

results, they are concerning for iEEG and critical for DBS. See the iEEG-BIDS 

specification and Lead-DBS website for a thorough review of the different “MNI 

spaces” (see 13 and 14). Since the reference space and the transformations 

estimated are specific to each program, the exact reference template space (e.g., 

MNI152NLin2009Asym) should be mentioned, together with the software used 

for the normalization of electrode locations to the MNI space.

Brain lesions pose a challenge for registration algorithms that would try to match the locally 

abnormal imaging intensity to the template. As epileptic activity can originate from lesioned 

tissue, it is actually common to have electrodes surrounding lesions. The position of these 

electrodes in the template is therefore more susceptible to imprecision. We recommend 

being particularly vigilant regarding electrode position in a normalized space for patients 

with a lesion, and we advise to visually assess the quality of the registration procedure and 

the respective electrode positions around the brain lesion. When possible, cross-checking 

with a neurologist or a neurosurgeon is a good practice. To better handle brain lesions, some 

segmentation and registration algorithms can use multiple imaging contrasts (T1, FLAIR, 

T2, see section 2.1.3). Additionally, some dedicated toolbox extensions (Griffanti et al., 

2016; Griffis et al., 2021; Guo et al., 2019; Schmidt et al., 2012; Schmidt, Paul, 2017), e.g. 

for FSL, FreeSurfer or SPM, implement methods such as lesion growth, machine learning, 

and Bayesian approaches to define lesion masks and improve registration (Cui et al., 2019; 

Despotović et al., 2015; Selvaganesan et al., 2019).

2.3 Transformations back to individual space

2.3.1 Background—Most MRI segmentation pipelines include the registration of the 

individual’s imaging data to a common template space and map it onto one or multiple 

atlases. This processing step is generally performed automatically. Even when working with 

12. https://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach 
13. https://bids-specification.readthedocs.io/en/latest/99-appendices/08-coordinate-systems.html#standard-template-identifiers 
14. https://www.lead-dbs.org/about-the-mni-spaces/ 
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data from only a single patient, establishing this mapping allows the transfer of useful atlas 

information to the individual level, i.e. reverse mapping (see Figure 3 and (Hamilton et 

al., 2017) Figure 1). Cortical or subcortical parcellations, and information associated with 

these parcels, can be used in the delineation of the individual brain volume or surface (see 

section 2.2.1). Consequently, iEEG electrodes can be automatically associated with various 

anatomical or functional labels, making the analysis, interpretation and reporting of an iEEG 

study easier (Taylor et al., 2021).

2.3.2 Challenges, recommendations and reporting advice—There are inherent 

approximations in the normalization process, such as anatomical data smoothing, cortical 

deformation, in addition to the approximation introduced by electrode location estimation 

(see section 2.1.4, e.g., the non-rigid deformation changes the distances between points; in 

sEEG whether an electrode is deep in the sulcus or more superficial; in ECoG whether an 

electrode facing a sulcus is associated with either of the two gyri).

• To take these spatial approximations into account (i.e., inherent to 

volume reconstruction, interpolation artifacts, segmentation thresholds, implant 

deformation, for a discussion see (Brett et al., 2002)), we recommend adopting 

a probabilistic approach when defining brain regions in which iEEG electrodes 

are located (like in some atlas, see for instance (Amunts et al., 2020)). This 

probabilistic approach in space consists of taking into account the voxels 

surrounding the electrode centroid. The size of this volume should both consider 

the contact size (2 to 2.4 mm, see sections 1.3.3) and the passive spread of the 

intracranial signal that is about 6 to 10 mm (for sEEG see (Lachaux et al., 2012; 

Mercier et al., 2017), for ECoG see (Kellis et al., 2016), for both see (McCarty et 

al., 2022)). Considering the electrode contact size and signal spread, we suggest 

using a sphere of a certain size centered on the electrode centroid rather than 

considering the signal to originate from an infinitely small point (see 15). The 

probabilistic approach leads to a number of voxels around the centroid that may 

contribute to the recorded activity (Piantoni et al., 2021).

2.4 Data visualization

For spatial iEEG visualization, it is important to make the distinction between the projection 

of an electrode to the anatomy (i.e., the cortical sheet or the surface that outlines a 

subcortical structure) and the interpolation of the functional values on the anatomy (i.e., on a 

surface or in a volume). The projection is more qualitative; it relates to the anatomy, that is 

electrode visualization and/or electrode labeling. The interpolation is more quantitative; it is 

the spatial extent from the electrode to which the data is color-coded, which should take into 

account passive signal spread (see section 2.3.2).

• Different strategies exist for anatomical visualization of the position of iEEG 

electrodes, each with pros and cons:

– For ECoG, as electrodes are visible on the brain surface, three 

dimensional brain display is convenient. When not all ECoG electrodes 

15. https://neuroimage.usc.edu/brainstorm/Tutorials/ECoG#Anatomical_labelling 
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are visible from a single point of view, the surface can be made 

transparent, the electrodes can be shown on the inflated pial surface or 

can be shown on an “flattened” or “unfolded” cortical sheet (see Figure 

5). However, the rendering of an inflated or unfolded surface loses the 

relative distance between ECoG electrodes, alike between brain regions.

– In the case of sEEG, as the shafts pass through different tissues 

and often target deep structure(s), the 3D brain display needs to be 

transparent to see all electrodes (see 3D view in Figure 6). Visualizing 

sEEG electrodes on an inflated or an unfolded surface, the electrodes 

would have to be projected to the cortical mesh, which implies a 

non-trivial projection that must be explicitly reported; furthermore, 

deep electrodes should not be projected to the superficial surface. 

Moreover, as with ECoG, the rendering of sEEG electrodes projected 

on an inflated or unfolded surface loses the relative distance between 

electrodes, and with the anatomical tissue.

• Many clinicians and researchers are able to identify brain structures in canonical 

axial, sagittal, and coronal views, but less easily along the shaft trajectory or 

in an inflated brain. When localization focuses on a specific sEEG shaft, it 

is convenient to depict a slice parallel to the electrode shaft. Some software 

offers this display by representing an arbitrary slice going through the shaft, plus 

a slider to rotate around the axis of the shaft (see Figure 6 from the Gardel 

software (Medina Villalon et al., 2018), see also IntrAnat 16 ).

• The projection of an sEEG electrode that is located in a sulcus or an ECoG 

electrode that overlies a sulcus (and thus faces the gray matter on both sides), 

to a single vertex of the triangulated cortical surface (and thereby a single 

sulcal wall) is misleading. This anchored location should not be used for the 

interpolation and display of functional data.

Electrophysiological results of the iEEG analysis can be represented on the patient brain: 

any other measure/statistic (e.g., ERPs or spectral power, see section 3) can be interpolated 

on the cortical surface or on a slice of the MRI (usually based on Euclidean distance, see 

Figure 7).

• Electrode projection and data interpolation are mutually exclusive operations; the 

interpolation of functional data on the anatomy should be performed using the 

original (non-projected) electrode location.

• Due to the sparse spatial sampling of the iEEG, only a limited number of voxels 

or triangles (i.e., volume based or surface based) would be represented with a 

color-coded value, whereas fMRI and MEG/EEG source reconstruction typically 

result in whole brain coverage. The resulting iEEG images can be misleading if 

there is no distinction between a voxel or triangle with no data versus one with 

a value below the display threshold. We therefore recommend representing the 

16. https://f-tract.eu/software/intranat 
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parts of the brain where no data was interpolated with a different color than the 

parts where data was interpolated, but considered not significant (see panels B 

and D Figure 7).

• The extent of this interpolation should be documented and should ideally reflect 

passive signal spread (i.e., about 6 mm see section 2.3.2). For instance, see 

panels B and D in Figure 7 and in (Stolk et al., 2018) Figure 6 of pt.51.

• The interpretation of the interpolation can be ambiguous. For example, if 

the data at two electrodes are the same, they can be interpreted as activity 

originating from the in-between area, but it might also be that both electrodes 

pick up activity that is not seen by the other. To take into account the 

potential interplay between activity observed by different electrodes, we 

anticipate that future developments in electromagnetic modeling will provide 

better visualization solutions with estimates of intracranial currents using Finite 

Element Method (FEM) (Medani et al., 2021, 2020). The combination of better 

inverse methods, forward models and more detailed source models (see for 

example (Cosandier-Rimélé et al., 2008)) will enable source localization from 

iEEG, and reconstructed activity will for example suffer less from ambiguous 

representations on both sides of a sulcus.

3 - Preprocessing

3.0 Introduction

Preprocessing aims to provide better exploitable signals for subsequent analysis that 

targets the experimental question or explores a phenomenon of interest. Hence we define 

preprocessing as mostly neutral with respect to the research question, whereas analysis is 

specific to the research question. The preprocessing stage also provides an opportunity to 

familiarize oneself with the data, especially in case the researcher was not present during 

data acquisition. In this section, we specifically address three preprocessing operations that 

are commonly used in iEEG studies, and explain how these steps increase the specificity 

(e.g., local activity) and the selectivity of the signal (e.g., brain signal).

The first step consists of identifying channels (e.g., the signals measured between an 

electrode of interest and a reference electrode) that are expected to show meaningful neural 

signals (i.e., either electrodes in contact with the leptomeningeal surface for ECoG and/or 

the gray matter for sEEG). Specifically in the case of sEEG, some electrodes might be 

located outside the brain or in the white matter.

The second step aims at identifying channels and/or time segments that include epileptiform 

activity or that are contaminated by physiological and non-physiological artifacts. Although 

epileptiform activity is the prime reason for doing the clinical recordings and is the subject 

of research on the epileptiform features of iEEG signal, it is to be avoided for cognitive 

neuroscientific research questions for the sake of generalization to healthy brains.

The third step consists of re-referencing the signals. This operation focuses the signal on 

neural activity generated in the close vicinity of the electrode; and thus derives signals that 
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are less affected by distant activity that can be observed through passive volume conduction. 

Re-referencing can also help to reduce common sources of noise.

The outcomes of these preprocessing steps consist of (1) tables or arrays indicating which 

electrodes to keep for the analysis, (2) tables with the timestamps of artifacts, and (3) 

montage(s) for re-referencing. Although these steps do not modify the raw data, they should 

be documented as they provide valuable information for sharing and reuse. Subsequently, 

the preprocessing completes with epoching, demeaning and filtering.

3.1 Electrode selection based on anatomy

3.1.1 Background—The properties of the measured signal depend on the tissue in/on 

which an electrode is located (see Figure 4). In iEEG, the differences in signal amplitude 

between channels are not only caused by brain activity elicited by an experimental task/

protocol. Signal amplitude also depends on the distance between the electrode and the gray 

matter (i.e., geometry) and the properties of surrounding tissue(s) (i.e., tissue type). Some 

analyses, such as signal feature classification (e.g., using Receiver Operating Characteristic), 

are not necessarily affected by a weakened signal that is recorded centimeters away from the 

source (Torres Valderrama et al., 2010). However, weak signals are a concern when it comes 

to determining the location of the iEEG signal source.

With sEEG, while the gray matter is the main target, the electrode shafts inevitably go 

through different types of tissue and the majority of sEEG electrodes are surrounded by 

several tissue types. Some tissues, like the skull, are poorly conductive and passively 

spread the activity over long distances. Other tissues, such as the white matter, show a 

more complex profile with a mixture of passive volume conduction and active propagation 

(Mercier et al., 2017). The identification of the tissue surrounding sEEG electrodes requires 

a precise localization relative to the individual’s brain anatomy. Subsequent segmentation 

algorithms provide tissue classification and/or tissue probability maps (i.e., type/amount of 

tissue at each voxel). Knowing in which voxels(s) the electrode contact stands allows an 

easily automatized approach (see section 2.1.3 and 2.1.4). Not only sEEG electrodes located 

outside of the brain (e.g., in the skull or in soft tissues) can be identified and disregarded 

from further analysis; tissue classification and/or tissue probability map can also provide a 

quantification of the amount of gray matter surrounding electrodes in the brain and/or the 

distance to the nearest gray matter (see section 2.1).

With ECoG, it frequently occurs that a grid or strip extends over several gyri, leading 

to electrodes positioned on top of a blood vessel or over a sulcus, which are known to 

impact signal characteristics (see Figure 4). Specifically, signals recorded from electrodes 

on blood vessels have an attenuation of absolute power spectral density, especially in the 

high-frequency band (30–70Hz in (Bleichner et al., 2011) and 45–120 Hz in (Branco et al., 

2018c)). Besides affecting the spectral characteristic of the signal, blood vessels increase 

the distance between electrode(s) and neural source(s), thereby being sensitive for activity 

from a larger area, as if it is a virtually larger electrode. Last, pulsation and smooth muscle 

activity of arteries can directly contribute to low frequency signals. Intraoperative photos 

(Bleichner et al., 2011; Miller et al., 2009; Wang et al., 2016), as well as imaging data 

(e.g., magnetic resonance angiography (Branco et al., 2018c)), can be used to determine 
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which ECoG electrodes are in direct contact with the leptomeningeal surface. The tissue 

classification from the brain segmentation can also be used to estimate the distance to the 

cortical gray matter surface and thus to identify electrodes that are possibly placed over a 

vessel or a sulcus (see section 2.1.2).

3.1.2 Challenges, recommendations and reporting advice

• When electrodes are selected based on anatomical considerations, we 

recommend reporting how the selection was performed. For instance, what is 

the tissue classification method, and what are the thresholds applied to electrode 

selection, such as the distance to the gray matter, or the fraction of gray matter 

voxels in the electrode surroundings.

3. 2 Data selection based on the signal

3.2.1 Epileptic activity—As the clinical motivation is to localize and characterize the 

epileptogenic network, some electrodes are prone to record epileptiform activity. This 

activity is not limited to seizures; interictal (between seizure) epileptiform discharges can 

also cause unwanted artifacts which can sometimes propagate widely. Epileptic activity is 

often not relevant for the cognitive processes under study, nonetheless this pathological 

activity can add to, or interact with, the physiological activity that is of interest (e.g., 

interictal epileptiform discharges can transiently impair cognitive function (Boly et al., 2017; 

Henin et al., 2020; Kleen et al., 2013; Leeman-Markowski et al., 2021)). Hence it cannot be 

excluded that epileptic activity reduces the ability to detect the relevant cognitive activity, 

especially if the epileptic activity is time-related to the event of interest (e.g., stimulus onset, 

behavioral response, time period of interest). Furthermore, epileptic activity may cause false 

positive activity, if the investigated cognitive function or the region of interest is linked to the 

individual characteristics of the epilepsy.

The information gathered by the clinical team provides the basis to reject sites that belong 

to the epileptogenic network, to identify interictal activity and thus to alleviate some of the 

uncertainty related to epileptiform activity. This knowledge should be shared by the clinical 

team and used by the researchers to shed light on the brain sites showing epileptic activity 

and on the cognitive processes that might be impaired (see section 1.3.8 and Figure 2).

3.2.2 Transient artifacts—Although in the past it was believed that iEEG is immune 

to the major movement-related artifacts that contaminate scalp EEG, this view has been 

challenged with several studies showing iEEG being contaminated by eye movements (Jerbi 

et al., 2009a; Katz et al., 2020; Kern et al., 2021; Kovach, 2011), blinks (Ball et al., 2009) 

and movements of cranio-facial muscles (Otsubo et al., 2008). These artifacts overlap within 

frequency ranges for which task-related physiological signals are analyzed and reported (see 

Figure 8). Despite re-referencing or more advanced spatial filters such as ICA to reduce 

the passive volume conduction impact of these artifacts, some residual still affect frontal 

regions as well as the ventral, medial and lateral parts of the temporal lobe (Katz et al., 2020; 

Kovach, 2011).
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In addition, non-physiological artifacts can originate from stimulus delivery equipment, 

loose moving cables, or other electrical devices (see section 1.3.5). This contamination 

impacts not only data quality, but may bias the outcomes of certain analyses. A striking 

example of this was observed in speech decoding research, where some signal components 

initially thought to be speech-related turned out to originate from the mechanical action 

of the sound on the recording chain (Roussel et al., 2020). Similarly, using ECoG and 

DBS leads, it was reported that speech production itself induced high-frequency artifacts 

through mechanical vibration (Bush et al., 2021). More mundane but along a similar line, the 

auditory response to the audible click of a response-button could be mistakenly interpreted 

as evidence that the auditory cortex participates in task-related processes.

The operations of artifact detection and rejection benefit from knowing what artifact patterns 

look like. For instance, saccade-related artifacts occur as short, massive power increases 

above 50 Hz in the immediate vicinity of oculomotor muscles in the medial temporal lobe, 

coincident with eye movements (see Figure 8). Collecting and annotating a set of “artifact 

templates” can be used as training support for researchers that are new to iEEG, whereas 

for already skilled researchers they also provide documentation about which electrodes are 

susceptible to physiological artifacts (see sections 1.3.4, 1.3.5 and 1.3.9). Last, the spatio-

temporal characteristics of “artifact templates” can be used in post-hoc control analyses (see 

below).

Some artifacts are more likely to co-occur with certain aspects of cognitive tasks, and are 

thus correlated with task-related neural activity and/or behavior (e.g., frowning during a 

difficult task, systematic blinking at the offset of visual stimuli, or muscle tension due to 

anxiety). Due to that correlation, the cleaning procedure can remove a mixture of artifactual 

and relevant data, and obscure the true relationship between physiology and behavior. A 

compelling example for this occurred during the detection of saccade-related artifacts in 

the anterior temporal lobe (Jerbi et al., 2009a). The hypothesis was that a “go-signal” 

in high-level visual areas would trigger the subsequent saccade when the local visual 

analysis was complete. The hypothesized signal was a burst of high-frequency energy in the 

anterior temporal lobe time-locked to saccades; however these turned out to have the same 

characteristics as saccade-related artifacts. This was subsequently verified from ‘artifact 

templates’ and EOG. Other examples report blink and saccade related suppression effects 

occurring in visual regions (Golan et al., 2016; Katz et al., 2020) and mediating visual 

processing during natural viewing (Kern et al., 2021), or pursuit related activity in occipital, 

frontal and parietal regions (Bastin et al., 2012).

In some clinical settings, electrical stimulation is performed during clinical testing, or 

during single pulse electrical stimulation to map networks (see section 6.6). The analysis 

of iEEG data from such settings requires some understanding of how these artifacts depend 

on recording and amplifier settings. Most amplifiers require cortical electrodes that are 

stimulated to be disconnected from recordings and do not record data. On the other 

electrodes that are recorded, the stimulation typically causes immediate artifacts that can 

saturate the signal; the duration of these effects should be carefully assessed (Miller et 

al., 2019) and/or can be modeled to correct the signal (Trebaul et al., 2016). Electrical 

stimulation can also result in slower offsets in electrodes close to the stimulated electrodes 

Mercier et al. Page 37

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Prime et al., 2020), where the signal then exponentially returns back to baseline. Besides, 

during electrical stimulation in the brain, electrical artifacts can also occur when performing 

somatosensory evoked response studies with an electrical stimulator located on the limbs, 

torso or face.

3.2.3 Data selection in practice—The primary aim of artifact detection and rejection 

is to obtain data that is as clean as possible. That said, statistical power can be jeopardized if 

an overly large proportion of data is discarded. Artifacts can have confounding effects on the 

analysis (e.g., increased heart rate or eye blink frequency in one condition than another, see 

section 3.2.2). Spending too much time in manual artifact-screening can be not as effective 

as re-referencing and/or getting more data, especially as some artifacts (i.e., confounds) 

may result in false positives, while other artifacts (e.g., uncorrelated interictal epileptiform 

discharges) are less likely to cause false positives but mostly decrease the sensitivity. An 

efficient artifact detection procedure requires training: it must be guided by information 

about the data and should be well-balanced in time for efficacy. The optimal data-cleaning 

strategy differs between studies as it depends on the research question (e.g., the time window 

of interest or electrodes of interest) and on the methods that are used in the analysis (e.g. 

frequency analysis).

Considering the experimental events (i.e., triggers) while reviewing the recordings can 

uncover relations between artifacts and the neural signals of interest for the study. The iEEG 

signal to noise ratio is so high that many response components can be seen in raw data at 

the single trial level (See Figure 11). Artifact detection is facilitated when individualized 

‘artifact templates’ are available, as they identify susceptible electrodes (see sections 1.3.4, 

1.3.5 and 1.3.9).

Many research teams start the detection procedure by a quick visual inspection of the data, 

which provides a first understanding of the type and shape of artifacts and immediately 

reveals “bad channels”, either being flat (the signal shows no variance) or showing 

substantial amounts of noise or persistent epileptogenic activity. To complete this first 

examination, we recommend a systematic rapid evaluation by looking at the power spectral 

density (PSD; +/- its variance) of all channels over the entire recording (see Figure 9 panel 

A).

Semi-automated artifact detection procedures have been proposed, taking statistical signal 

metrics into account (e.g., normalized amplitude, variance, kurtosis or the correlation 

coefficient between neighboring electrodes, see for instance (Tuyisenge et al., 2018)). Often, 

multiple passes are carried out, such as on the broadband signal and on high-frequency 

activity (typically above 50 Hz), to accommodate the 1/f law and thus to avoid biasing 

artifact identification toward the lowest frequencies (i.e., to facilitate artifact identification 

in the higher frequency range usually concealed due to its lower amplitude, see section 

4.2.3.4). No consensus exists currently within the iEEG community regarding an optimal 

semi-automated procedure. Nevertheless, the lack of objective procedures should not be 

taken as a hurdle to improve traceability: describing the (automatic or manual) methods and 

thresholds are part of the good practices.
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Some researchers carefully check the result of (semi-) automatic procedures “by hand” to 

adjust rejection thresholds to individual SNR and keep a sufficient number of trials for the 

analysis (see section 4.1.2). In the ideal case, experiments should yield a great number of 

trials, but the time a patient participates in a single experiment is obviously limited and the 

number of trials might be small. Therefore experimental designs with many conditions and 

statistical contrasts should be avoided to retain sufficient statistical power (see also section 

1.2.3). A recent meta-study by Meisler and colleagues (Meisler, 2019), evaluated different 

approaches to eliminate artifacts in iEEG: automated artifact rejection based on statistical 

properties of times series (standard deviation or kurtosis) and manual artifact rejection 

based on expert annotation. This study showed that with automatic thresholding, statistical 

power did not increase with more liberal criteria. In contrast, conservative approach reduced 

statistical power as much as with manual exclusion (i.e., based on experts' notes). Critically, 

bipolar referencing (BPR, see section 3.3) outperformed common average referencing 

(CAR) in increasing statistical power by attenuating noise for the automated and manual 

approaches. Overall, to increase statistical power, Meisler and colleagues advised collecting 

more data and the use of bipolar or local reference schemes, rather than spending a lot of 

time detecting artifacts. Thorough artifact scrutiny (e.g., performed manually, trial-by-trial) 

appears to be less time efficient than quick and semi-automatic approaches. In addition to 

the lack of real improvement of statistical power, it can be tedious, time-consuming and 

visual detection criteria can be subjective and unstable over time. Yet, manual cleaning 

permits the researcher to get a better feel for the signal. If detailed visual inspection is 

performed, it must be documented and traceable, similar to semi-automated approaches.

3.2.4 Challenges, recommendations and reporting advice—In M/EEG the 

channels usually show the underlying sources of interest with a similar order of magnitude 

and all channels are therefore processed in the same way. In iEEG, the sensitivity to 

the signal of interest can vary a lot across channels. Researchers familiar with M/EEG 

artifact rejection should therefore be aware of several peculiarities of iEEG data. In M/EEG, 

sensors are (i) uniformly distributed at systematic positions, (ii) centimeters away from the 

neural sources; with (iii) similar signal-to-noise ratio; and provide (iv) smooth topographical 

activity due to the passive volume conduction that causes spatial blurring. Conversely, iEEG 

electrodes (i) are scattered over more or less distributed brain areas, (ii) are directly in 

contact with the brain, sometimes right at the level of the neural sources, with a signal that 

is orders of magnitude stronger than in EEG; (iii) have a variable signal-to-noise ratio due to 

conductance differences between electrodes (especially as sEEG electrodes might be located 

in different types of tissues); (iv) provide signals that are rather independent from each other, 

and the sparsity in iEEG hinders topographic analysis or interpolation of noisy/bad channels. 

Such specificities therefore lead many iEEG researchers to homogenize or standardize (e.g., 

by z-scoring) the signals across electrodes prior to performing artifact detection to compare 

the normalized signals between electrodes.

When only few trials are available and only a few electrodes are relevant for the research 

question, one may consider preprocessing iEEG channels separately, without comparing the 

raw recordings across electrodes. Tailored signal selection/rejection is a convenient strategy 

when the effect of artifacts are limited to specific electrodes, since a global rejection would 
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discard a data segment from all channels, whereas it is only “bad” for one channel. Such 

tailored individual rejection retains more “good” trials for each channel. Of course, this 

rejection strategy is not appropriate for multivariate analysis where distributed signals across 

channels are estimated.

If the online reference used during the recording was noisy, we recommend that the data is 

re-referenced to a common reference prior to inspecting the data for artifacts (see section 3.3 

and Figure 10).

3.2.5 Data visualization

• The power-spectral density of the continuous data is useful to immediately detect 

artifacted channels and thereby electrode(s), as their power spectra often stand 

out from the non-artifacted electrodes (see Figure 9 panel A, as implemented in 

Brainstorm (Tadel et al., 2011)). Computed trial-by-trial (or epoch-by-epoch), it 

permits to additionally estimate variance across time and thus determine if the 

artifact is transient or sustained.

• The complexity of rejecting artifact-contaminated data resides in finding a 

compromise between excluding epochs with transient spread of epileptic activity 

or other artifacts across artifacted channel(s) and excluding channel(s) with 

frequent epileptic activity or other artifacts. Some techniques/recommendations 

and clever data visualization can considerably accelerate the visual inspection 

step, for instance for assessing the number of epochs that would need to be 

rejected due to repetitive artifacts occurring on the same electrode. A convenient 

approach is to create heat-maps that show for each channel a metric of the 

signal (e.g., z-score of signal amplitude) as a function of time (trial/epoch on 

x-axis) and electrodes (y-axis) (see Figure 9 panel B, as implemented in the 

ft_rejectvisual function used with the summary method in FieldTrip (Oostenveld 

et al., 2011); see also (Tuyisenge et al., 2018) for alternative approaches). Maps 

can be created for broadband as well as frequency-specific signals (the effect of 

muscular or epileptiform activity is more visible above 50 Hz) and all channels 

can be visually inspected within a few minutes, to quickly identify those that 

should be analyzed further.

• More generally, reviewing artifacts requires some training. At the beginning 

it implies finding the adequate display for data visualization, which is often 

subjective. Once the visualization strategy is defined (e.g., scaling, filters, 

layout), the review process is facilitated and accelerated.

3.3 Re-referencing

3.3.0 Introduction—During the acquisition, the online reference is chosen to obtain 

clean signals with minimal contamination by artifacts or noise (see section 1.3.2). After 

the recording, the signal can be re-referenced to an offline reference to improve the 

spatial interpretation of the signal. Typically, re-referencing is a subtraction that can be 

implemented as a linear combination of channels: depending on the reference scheme, 

some signal features are lowered (e.g., far field or distant activity) while other features are 

Mercier et al. Page 40

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heightened (e.g., local activity). Therefore, the optimal reference scheme depends on the 

researcher’s definition of noise and their assumptions on the signal of interest.

The iEEG signal reflects a mixture of activity that originates close to the electrode of 

interest (see section 1.3.3), activity from sources further away that passively spreads by 

volume conduction (see section 2.3.2) and activity that is mostly captured by the reference 

and thereby also affects the potential difference (see section 1.3.2). Offline re-referencing 

permits: (i) to reduce common mode potentials with the original reference (line noise at 

50Hz or 60Hz), (ii) to diminish the contribution of distant sources through passive volume 

conduction, (iii) to lower the correlation between channels and thus increase the SNR of 

some components of the signal (e.g., local features, see Figure 10). It is critical to know the 

original recording reference, as it might be the cause for distant activity appearing in the 

signals. In cases where a distributed signal is relevant to the research question, for example 

slow waves (4–7 Hz), the investigation does not benefit from a local reference scheme 

(Zaveri et al., 2006). A local reference scheme is more appropriate for analyzing focal 

high-frequency activity (e.g., bipolar activity acts as a high-pass filter because low-frequency 

signals tend to be more widespread). Each reference scheme has its own strengths and 

weaknesses, which explains the absence of a general consensus. Comparing results obtained 

with different referencing schemes helps to interpret the spatial origin of the analyzed signal 

(see Figure 12). Below, we present and discuss various alternatives for re-referencing.

3.3.1 Background

3.3.1.1 External reference: As discussed in Section 1.3.2, an external electrode can be 

utilized as an online reference during the acquisition. Keeping or applying an external 

electrode for data analysis or for offline re-referencing is less optimal, as it mixes the iEEG 

signal with external noise and global brain activity passively volume-conducted through 

the tissues. The resulting signals may thus comprise a combination of these components, 

leading to a feature common to all channels. Unless the subsequent analysis method 

permits removing this common undefined component (e.g., based on spatial filtering), we 

recommend re-referencing the signal to one or several internal electrodes.

3.3.1.2 Internal reference: When using an internal reference, at least four types of 

reference schemes can be considered (see Figure 12). Note that while some reference 

schemes are identical for all electrodes, other reference schemes are specific to each 

electrode (i.e., the reference is not the same for all electrodes).

• Common Average Reference method (CAR): the mean signal over all artifact-

free electrodes is computed and subtracted from every electrode. The rationale 

is that the noise which affects all electrodes can be approximated by the mean. 

The subtraction of the mean from all electrodes adds a (negative) common 

component to all channels and thereby can increase the correlation between 

channels, which is to be considered in certain analyses (e.g. connectivity 

analysis). The CAR makes spatially focal features less salient compared to 

widely distributed signal features. Last, the CAR can be spatially biased by 

the distribution of electrodes (e.g., in the case where the density of electrodes is 
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higher over the temporal cortex as compared to the other cortical lobes, it leads 

to an over representation of activity of the temporal region).

• The Local Average Reference method (LAR) is similar to the CAR, except that 

it consists in subtracting the mean over a subset of artifact-free electrodes from 

each of the electrodes of that same subset. The subset of electrodes is generally 

based on the type of implant, for instance a single ECoG grid or strip, or a 

sEEG shaft. Here, and as compared to the CAR, the assumption of having equal 

representation of the noise across electrodes of the subset is more likely due to 

the spatial proximity of the electrode subset (both in the brain and at the level 

of the recording device, e.g., cable sheath). Still, the LAR results in correlation 

between channels of the same subset due to the shared reference, and can inject 

high focal activity from one electrode into the entire subset.

• BiPolar Reference method (BPR): each electrode is referenced to one of its 

nearest neighbors (one site only). BPR yields an estimate of the first-order spatial 

derivative. This is a popular choice in sEEG: the signals recorded along an 

electrode shaft are thus replaced by the subtraction of two spatially consecutive 

signals along the 1-D linear array, leading to a virtual channel shaft with one less 

channel than the real electrode shaft. In the absence of artifacted electrodes, the 

BPR is more systematized across all electrodes than with the Local Composite 

Reference (LCR, see next paragraph). The BPR gives the compound signal of the 

activity close to both electrodes and the volume-conducted activity of the tissue 

in between. The result of the BPR is often visualized as a virtual channel located 

at the mid-point between the two original electrodes (see section 3.2.2). The 

BPR reduces signal features shared between neighboring electrodes and neural 

response components with a wide spatial distribution.

• Local Composite Reference method (LCR): each electrode is referenced to the 

average of its nearest neighbors (excluding artifacted electrodes). The LCR is an 

estimate of the second-order spatial derivative (i.e., Laplacian), where a stronger 

weight is assigned to local signal features compared to features shared between 

electrodes. For a 2-D ECoG grid for instance, the average that is subtracted is 

computed over n=4 neighboring electrodes for an electrode that lies inside the 

grid, n=3 if it lies on the border and n=2 if it lies on the corner. For narrow ECoG 

strips (i.e., 1-D) or sEEG, the mean signal is computed from the two neighboring 

electrodes. A disadvantage of the LCR is that for electrodes at the edge it has to 

be computed with a different number of neighbors, or that it has to be skipped for 

electrodes at the edge. Moreover, the LCR can spread highly focal activity from 

one electrode to its nearest neighbors that do not originally record that activity 

(e.g., neighboring electrodes located on different sides of a sulcus). Last, LCR 

reduces signal features that are local but shared between neighboring electrodes 

and neural response components with a wide spatial distribution.

Specific considerations about sEEG and white matter: As sEEG electrodes may be located in 

white matter, clinicians have commonly used such signals as a reference (online or offline), 

based on the observation that the signals recorded from the white matter typically show a 
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lower variance, presumably because it does not correspond to actual neural activity. While 

it is true that neural activity is not directly generated in the white matter, activity generated 

in the distant gray matter actively spreads along fiber tracts. Therefore, the notion that 

white matter electrodes do not record neural activity is only an assumption and must be 

assessed (e.g., by computing the variance of the broadband signal as well as of the low 

amplitude high-frequency activity, see (Mercier et al., 2017) and (Uher et al., n.d.)). Further, 

the conclusion that a channel lies in the white matter is not always straightforward as there is 

some uncertainty in the precise location of an electrode (see sections 2.1.4 and 2.3.2). Last, 

a white matter electrode can be surrounded by gray matter, and thus records neural activity 

that has passively spread from it ((Mercier et al., 2017; Rizzi et al., 2021) and see section 

6.8). There are two main types of white matter montage:

• White matter reference (WMR or average white matter reference, AWMR) 

consists in subtracting from each channel the activity recorded at a chosen iEEG 

electrode located in the white matter (or the mean activity across all artifact-free 

electrodes located in the white matter).

• Proximal white matter reference (PWMR): each iEEG site in the gray matter is 

re-referenced to the closest site in the white matter (Arnulfo et al., 2015).

Recently a low variance average reference montage was proposed by Uher and colleagues 

(Uher et al., n.d.). They reported that electrodes in the white matter can record signals 

with high variance and that such electrodes are thus not necessarily electrically neutral (as 

shown in (Mercier et al., 2017)). They proposed instead to use a virtual channel as reference, 

corresponding to the average signal of all channels with a low variance signal.

In iEEG research, less commonly used methods can serve the same purpose as re-

referencing by using spatial filtering of the data to enhance signal-to-noise ratio (for a 

discussion see (Michael X Cohen, 2017)), for instance ICA (Michelmann et al., 2018; 

Whitmer et al., n.d.), PCA (Alexander et al., 2019), or Spatio-Spectral Decomposition 

(Schaworonkow and Voytek, 2021).

3.3.2 Challenges, recommendations and reporting advice

• We recommend first processing the artifacts and then re-referencing the data, 

unless the online reference used during the recording was itself noisy, which 

complicates artifact detection.

While a local reference provides the highest human readability of local features of the iEEG 

signal, it can artificially mix activity from/to the neighboring electrodes. For instance when a 

non-local reference is used in ECoG, activity projected on the grid can reveal gyri and sulci, 

but when the local reference montage is applied it may shift some activity that jumps over 

a sulcus. It follows that in order to verify the genuine origin of a given activity, it is always 

informative to systematically compare the pattern of activity obtained using a low-variance 

reference scheme to the activity pattern obtained with a local reference montage. Finally, the 

use of a local reference montage may introduce artificial correlations between neighboring 

channels, which in turn may bias some subsequent analysis (e.g., connectivity) or statistical 

comparisons or corrections (e.g., dependent versus independent variables).
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• Reference schemes should be applied only as lightweight (“on the fly”) linear 

transformations, especially when doing the first pass of data reviewing. They 

can be used as a fully reversible montage, as long as data is processed linearly. 

Most software and toolboxes permit applying a reference scheme to the data 

almost instantaneously. The montage is generally provided as a matrix indicating 

for each electrode the weights specific to the reference scheme. Also, when it 

comes to sharing iEEG data, it is preferable to share the original signals plus the 

montages used to visualize and/or process them.

• After applying a reference scheme, the output leads to virtual channels that do 

not necessarily spatially match the physical electrode used for acquisition. To 

obtain the coordinates of iEEG channels when a BPR is used, we recommend 

computing the position of the "virtual sensor" in between the two real sensors. 

This is done in the individual space first (see section 2.1): for each channel 

the coordinates are obtained by averaging the coordinates of the two original 

electrodes used from the bipolar montage. These channel coordinates shall then 

be transferred in the normalized space by applying the non-linear transform 

obtained from the non-linear registration of individual space to the normalized 

space (see section 2.2). As for spatial specificity, the signal of the virtual 

channels can be misleading for the neighboring electrodes along the shaft that 

sample from distinct functional areas (i.e., the functional specificity is then 

mixed in the virtual channel).

• Ideally, bipolar referencing should be standardized to ease the comparisons 

between participants and between studies. In sEEG, electrode numbering is 

always performed from the most mesial contact to the most lateral, but there 

is a lack of common strategy when performing signal subtraction between two 

adjacent sEEG electrodes. We here propose to follow the same scheme used 

by most clinical teams, that is, to compute the bipolar referencing from the 

most inner electrode to the most external one (e.g., c1-c2, c2-c3, etc.; this 

is the by-default-approach followed in both the Brainstorm and the FieldTrip 

toolboxes, (Oostenveld et al., 2011; Tadel et al., 2011)). In ECoG, electrode 

numbering is not standardized with respect to brain anatomy; it is generally 

defined on the position of the cables on the grid or shaft. A common strategy 

for bipolar referencing is therefore not possible, yet in the case of ECoG grids 

the bipolar referencing should take place along all directions of the grid (i.e., 

vertical, horizontal and diagonal).

3.3.3 Data visualization

• The choice of a reference scheme is not straightforward, as it builds on 

information relative to signal quality and electrode location, as well as on 

expertise. It is effective to be able to go back and forth between different 

reference schemes (e.g., using keyboard shortcuts as in the Brainstorm toolbox as 

illustrated in Figure 10 (Tadel et al., 2011), or using a drop-down menu as in the 

Anywave free software see Figure 5 in (Colombet et al., 2015)) while visualizing 
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the data, especially if anatomical information is combined (e.g., to identify an 

electrode at the interface with the skull or over a blood vessel).

3.4 Additional preprocessing

Several steps are often associated with preprocessing, like epoching, demeaning-detrending, 

filtering, especially when data is processed with software that groups these steps together. 

As some of these processing steps limit the analyses that can or cannot be performed 

subsequently, they are not extensively developed in this section. In addition, they are 

identically applied in M/EEG and in iEEG. Therefore we only briefly introduce them and 

indicate some references for more in-depth consideration.

Epoching consists of segmenting the recorded signal into periods of interest, either in trials 

containing at least one experimental event (event-related paradigm), or in segments of a 

continuous recording (block paradigm). Epochs are defined in conjunction with the research 

question(s) and are then generally processed as repeated measures. Excluding trials due to 

artifacts should be done blind to the condition to avoid selection biases.

Demeaning (a.k.a DC-offset correction) corresponds to centering the signal around zero. 

Detrending consists of correcting for a linear drift. The signal features that we aim to remove 

with demeaning or detrending generally originate from the acquisition equipment and are 

not interesting. These corrections can be applied on an entire dataset or on single epochs 

depending on the planned analysis. For long trials, a high-pass filter at low frequency could 

be prefered (e.g., at 0.01 Hz). They facilitate signal visualization such that the average signal 

value during a predefined baseline epoch is zero.

Frequency filtering refers to the removal of specific spectral components, such as the 

ambient electrical noise (i.e., 50Hz or 60 Hz notch, plus harmonics). It can also be used to 

remove low-frequency components if the neural activity of interest is in higher frequencies, 

or to remove high-frequency components when the interest is in lower frequencies (e.g., 

Event Related Potentials). As such, filtering parameters depend on the brain dynamics that 

are being studied. Recommended filtering parameters are the same in iEEG and M/EEG 

and can impact signal measures (e.g., latency, amplitude). We redirect the reader to more 

specific references on filtering in human electrophysiological data (de Cheveigné, 2018; de 

Cheveigné and Nelken, 2019; Vanrullen, 2011; Widmann et al., 2015) and the subsequent 

commentaries from (Rousselet, 2012; Widmann and Schröger, 2012)). Filter parameters 

(such as filter type, order, frequency parameters, and direction) should always be reported.

4 - Signal analysis

4.0 Introduction

Many aspects of iEEG signal analysis do not differ that much from M/EEG or other 

continuously sampled electrophysiological data such as LFPs in animal research (Pesaran et 

al., 2018). A number of the methods described below were initially developed and applied 

in M/EEG research; however, their application to intracranial data benefits from the high 

spatial specificity and SNR of iEEG. Therefore, we provide a didactic overview of the most 
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analysis methods, their neurophysiological significance and some specific recommendations 

for iEEG. We will particularly focus on the iEEG analysis steps that differ from M/EEG.

The analysis methods listed here are not to be taken as a catalog of approaches to undertake 

sequentially until a potentially interesting pattern emerges. Rather, good research practices 

imply that the choice of a method is driven by the research question that is elaborated 

beforehand. This stands not only for hypothesis-driven research but also for exploratory 

research (see section 5), as in both cases the analysis method is inscribed in a more 

theoretical framework of neurophysiology of brain function which leads to the interpretation 

of the results. Last, to perform an analysis (e.g., frequency, time-frequency, connectivity), 

the wide range of measures (e.g., wavelet, coherence) and their algorithmic complexities, 

requires a motivated choice to prevent getting lost in the garden of forking paths (Gelman 

and Loken, 2014). The selection of a given measure must be based on a solid understanding 

of that measure, its strengths and its limitations.

First, we introduce Event Related Potentials (ERPs), which, by definition, implies that there 

is evoked activity that is elicited by experimental events. The ERPs computed from the iEEG 

signal are considered to reflect mainly post-synaptic synchronized activity of pyramidal 

neurons (Buzsaki et al 2012) due to coincident incoming inputs to a substantial population 

of neurons in the vicinity of the iEEG recording site.

Second, we present frequency analysis. It can be used to quantify neural activity in the 

absence of events, for example in spontaneous activity. When computed in a time-resolved 

fashion, frequency analysis can also be used to quantify neuronal activity related to but not 

necessarily precisely time-locked to events. One of the main interests in frequency analysis 

is to distinguish or focus on activity in specific frequency band(s), either reflecting wide 

modulatory inputs or more local neural processes.

Third, we present connectivity measures that express the relationship between signals 

recorded at spatially distant sites. Connectivity estimates provide information about long 

range communication between iEEG channels (i.e., nodes in brain-wide networks) and are 

essentially performed in the time-frequency domain.

Last, we introduce cross-frequency coupling (CFC) which characterizes the link between 

signal components occurring in different frequency bands. CFC can be used to investigate 

the local architecture (i.e., within the signal of one recording site), or at the network level 

(i.e., between signals recorded from distant sites).

4.1 Event related potentials

4.1.1 Background—Computing ERPs consists of averaging the brain's response over 

multiple trials that are defined by a specific type of experimental event (e.g., stimulus onset, 

motor response). Neural activity that is precisely time-locked and phase consistent over trials 

remains in the average, whereas activity that is uncorrelated over trials (the “noise”) tends 

to cancel out (see Figure 11). Note that activity that is elicited by events but whose timing 

is variable will not be seen by the averaging procedure (see section 4.2.1). The calculation 

of ERPs for intracranial data does not differ from scalp EEG, or event-related fields (ERFs) 
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obtained from MEG. Good practices and reporting guidelines in ERP/ERF research are 

thoroughly documented elsewhere (Gross et al., 2013; Keil et al., n.d.; Pernet et al., 2020; 

Picton et al., 2000) and are not repeated here. In the following we will mention some critical 

aspects that are specific to iEEG research.

4.1.2 Challenges, recommendations and reporting advice—A recurring question 

pertains to the number of trials needed to obtain an ERP with a sufficient SNR. 

When designing the experimental protocol, it is of strategic importance to minimize the 

experimental duration for patients who are susceptible to seizures and who donate their time 

and energy at a challenging time for them (see section 1.2.3). Because of the high SNR 

of iEEG, especially in functionally specialized regions, the brain responses of interest are 

often visible in a single trial (see Figure 11). This high SNR makes it easier, as compared 

to M/EEG, to relate responses to single events to behavioral data (e.g., response times, 

see section 4.1.3). That said, patients may have frequent epileptiform abnormalities which 

can limit the number of artifact-free trials for task-related stimuli. We note that it is also 

important to emphasize that all of the preprocessing parameters—low-pass filter setting, 

reference scheme, baseline period, and artifact removal approach—interact to influence the 

final estimate of ERP amplitude (see section3.4 and (Clayson et al., 2021)).

Figure 11 shows ERPs recorded in the primary auditory cortex (AudCx) in response to pure 

tones. As expected, the SNR increases proportionally to the square root of the number of 

trials. The number of trials required to obtain a robust ERP depends on many factors, but 

the examples in Figure 11 provide a lower estimate of the minimum number of trials (for 

comparison with surface EEG, see (Boudewyn et al., 2018), for MEG see (Chaumon et al., 

2021)). Following a procedure similar to the one used in Figure 11, it is possible to simulate 

the minimal number of trials needed to reach a stable estimate of a metric (e.g., ERP): (1) a 

given subset of trials is randomly selected (e.g., 10 out of the overall number of 20 trials); 

(2) the metric of interest is computed (e.g., ERP, magnitude at a frequency of interest); (3) 

the variance of the metric is calculated across many drawings of the chosen subset of trials 

(e.g., 10 trials); (4) the variance is compared for different subset sizes (e.g., n=3 to n=19); 

(5) the minimal number of trials corresponds to the subset size for which the variance across 

drawings does not decrease further as compared to the next-larger subset size (see for an 

illustration (Oehrn et al., 2015)).

In scalp EEG, the recommended nomenclature of ERPs consists of the letter P or 

N indicating a positive or negative deflection, combined with its nominal latency in 

milliseconds (e.g., N170, P300). Some early investigators have referred to event-related 

components by successive deflections in the EEG waveform (e.g., P1, N1, P2, N2, etc), 

however, this system of nomenclature is not generally recommended (Pernet et al., 2020). 

In iEEG, the polarity depends on the location of the electrode of interest and its reference 

relative to the active neural source, or the reference scheme. Using a bipolar reference 

scheme in sEEG focuses the sensitivity of the corresponding channel to the activity between 

two neighboring electrodes (see section 3.3). In that case, each electrode picks up another 

pole of the source and the polarity of the ERP is opposite at the two electrodes which 

comprise the bipolar channel (see phase reversal example in Figure 12). Consequently, the 

polarity is arbitrary, as it depends on whether the bipolar channel is computed as E1-E2 or 
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E2-E1. Hence, the polarity of an intracranial ERP cannot be interpreted as-is, but should be 

put into perspective when compared with the classic EEG nomenclature (e.g., the “N170”, 

for a negative deflection at 170 ms, can show up as a positive deflection for an iEEG 

electrode in the fusiform gyrus (Allison et al., 1994; Puce et al., 1999); the “P3”, for a 

positive deflection at 300 ms can show up as a negative deflection for an iEEG electrode 

(Smith et al., 1990)).

• To appreciate the relativity of ERP polarity in iEEG, it is useful to compare 

ERPs obtained with a local reference (e.g., bipolar) to the ones obtained 

with a common monopolar reference. Applying a systematic strategy when it 

comes to computing a bipolar reference scheme helps to compare ERP between 

individuals (for instance, by always subtracting the most internal electrode in 

each pair, as routinely done in clinic, see section 3.3.2). Anatomy also brings 

complementary information about polarity, especially in the case of sEEG where 

it indicates on which side of the gray matter an electrode is located (outermost or 

innermost layer) and at which distance. Last, in some cases the ERP polarity can 

be flipped to match the polarity of a known similar component recorded from 

the surface (see N2-P3 example in (Baudena et al., 1995; Halgren et al., 1995a, 

1995b)).

DC offset removal, sometimes also referred to as baseline correction, is a generalized 

practice to center the ERP around zero, by subtracting the mean activity of the baseline 

from the entire epoch of interest (e.g. using pre-stimulus period). As for scalp EEG, we 

recommend including an integer number of cycles of the prevalent frequency (e.g., with 

a predominant frequency at 10 Hz, the length of the baseline period would be an integer 

multiple times 100 ms). When possible, the baseline should be chosen to be free of any 

cognitive process of interest for the study (see the last paragraph of section 4.2.3.3). If 

a prestimulus effect is suspected (e.g., due to attention fluctuation), averaging across the 

baseline period of all trials and then subtracting this trial-averaged baseline may weaken 

spurious effects. That is, it avoids prestimulus effects in a given trial being subtracted from 

the post-stimulus period of that same trial, which leads to ‘finding’ the effect during the 

post-stimulus period while it is actually in the prestimulus period. Alternatively, when the 

timing of such processes are unknown, or possibly encompasses the full trial length, the 

baseline might include the entire epoch or might be extracted from another part of the 

recordings, thereby avoiding a bias towards the activity at specific latencies.

When channels are compared (e.g., statistics between participants, see section 5), and as 

SNR can highly vary across iEEG electrodes (see section 3.2.4), a normalization within 

each channel might be performed before comparing channels (e.g., computing a z-score per 

channel by removing the mean and dividing by the baseline variance).

The high SNR of iEEG makes it a sound method to analyze the relationships between 

a continuous stimulus (or stimuli presented in very short succession causing the ERP to 

overlap) and the corresponding continuous brain response (for instance, cross-correlation 

analyses (Mégevand et al., 2020) or spectro-temporal response functions (Zion Golumbic et 

al., 2013)). Analyses like the General Linear Model are a means to address potential bias 
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introduced by signal drifts when the baseline period is included in the statistical analysis as a 

covariate (Alday, 2019).

4.1.3 Data visualization

• Two conventions have co-existed for plotting human electrophysiological data: 

in most recent publications the positive voltage points upward, but there is 

another (older) convention, where the positive voltage points downward (Hari 

and Puce, 2017). We recommend that positive up be used, consistent with other 

recommendations (Hari and Puce, 2017; Pernet et al., 2020).

• Comparing ERPs obtained with different reference schemes helps to understand 

their anatomical origin. While local and bipolar reference schemes increase 

salience of local activity across electrodes (e.g., by revealing polarity reversal), 

a monopolar low-variance montage provides a broader picture including the 

attenuation of the ERP with distance to the source and passive volume 

conduction (see Figure 12 panel B or (Bidet-Caulet et al., 2007) Figure 4).

• Systematic depiction of variance estimate (e.g., mean absolute deviation) of an 

ERP is advised to instantly inform about single-trial distribution and/or to infer 

difference between conditions (see section 5.4).

• The signal over multiple trials can also be represented using a two dimensional 

heat-map, where color-coded lines (time: x-axis) are stacked (trial: y-axis). 

These ERP-images (Delorme et al., 2015) show the consistency over trials (i.e. 

variance) and can reveal specific temporal organization patterns when they are 

sorted to a given feature (e.g., the response times, in (Flinker et al., 2015) Figure 

3).

4.2 Frequency and time-frequency analysis

Most cognitive processes trigger a rich repertoire of frequency-specific neural patterns 

whose signatures range from well-defined and quasi-periodic patterns (e.g., alpha rhythms 

around 10 Hz) to responses extending over wider, yet limited, frequency ranges (e.g., 

in the high-frequency activity, above 50 Hz). The orchestration of neural activity in 

different frequency bands permits to organize local assemblies of neurons and to coordinate 

interactions between distant sites (Buzsáki et al., 2012; Varela et al., 2001). iEEG is an 

ideal technique to study this dynamical architecture at the millimeter resolution, though 

care needs to be taken to ensure that oscillations are truly present when performing time-

frequency analyses for this purpose (Donoghue et al., 2021; Lopes da Silva, 2013). Readers 

should be aware that different methods and nomenclatures are common in literature for 

describing the spectral changes related to an event, including for example Event-Related 

Band Power analysis (ERBP), Event-Related Spectral Perturbations (ERSP), Event Related 

Synchronization and Desynchronization (ERS and ERD).

4.2.1 Background—A theoretical neuroscience foundation helps to make 

physiologically informed methodological choices that are next expressed in directing proper 
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signal computation. Depending on the aim of the study, frequency analysis can be performed 

on block-design epochs or on event-related epochs.

When a paradigm is block-design, the continuous data is epoched on the basis of long 

blocks corresponding to experimental conditions. Then the frequency analysis is generally 

applied on these single epochs to get repetitions for statistical assessment. Last, single epoch 

frequency spectra are averaged to obtain the magnitude-power spectra representation of each 

block/condition.

When the precise timing of stimuli or cognitive events is known, the frequency analysis 

can be made time-resolved with respect to the events (i.e., event-related). To assess periodic 

activity in different frequency bands, the time-frequency decomposition can be performed 

either on the ERP (i.e., after trial averaging) or on the single trial (i.e., before averaging 

across trials). Applied to the ERP, the time-frequency transform can only show evoked 

activity that is phase-consistent across trials and precisely time-locked to the event (events 

used to align the single trials before computing the ERP). Applied at the single trial level, 

the time-frequency transform reveals in addition the induced activity, the timing and phase 

of which vary across trials (Tallon-Baudry and Bertrand, 1999). The difference between 

evoked and induced activity tends to be more pronounced in high frequencies as the faster 

an oscillation is, the less likely it is for the phase of the oscillation to be time-locked 

across observations. For instance, if a stimulus elicits a strong and systematic oscillatory 

response at 40 Hz in the iEEG signal, but the phase of that oscillation jitters across 

trials, averaging the signals across trials will cancel that component. In contrast, averaging 

the time-frequency magnitude across trials will reveal an increase in magnitude after the 

stimulus around 40 Hz (the induced response).

4.2.2 Methods and neurophysiological interpretation—For block-design data for 

which precise timing of events of interest and related activity is unknown, the frequency 

analysis is commonly conducted using Fast Fourier Transforms (FFT). When the timing 

of events is known and time-frequency analysis is performed, a variety of methods are 

available, among others sliding-window FFT, the combination of band-pass filtering and 

Hilbert transform, wavelet analysis, multi-tapering, or matching pursuit analysis, or the 

demodulated band transform (Bénar et al., 2009; Kovach and Gander, 2016; Mitra and 

Pesaran, 1999; Tallon-Baudry et al., 1997). Some time-frequency analyses might be more 

appropriate for specific questions regarding specific types of neural responses (e.g., the 

precise frequency extent of a short broadband response, the number of cycles of well-defined 

sustained oscillation). For a particular situation, choosing “the” most appropriate method 

requires good understanding of the method and what aspects of the signal it captures 

best. In most cases, the different methods lead to similar results (Bruns, 2004; Le Van 

Quyen et al., 2001), especially in iEEG, thanks to the high SNR. A comprehensive 

presentation of the different methods available is beyond the scope of this article, and we 

encourage the interested reader to consult publications dedicated to time-frequency analysis 

of electrophysiological signal (Cohen, 2014; Gross, 2014; Herrmann et al., 2014; Roach and 

Mathalon, 2008; Wacker and Witte, 2013) and to related guidelines (Gross et al., 2013; Keil 

et al., n.d.; Pernet et al., 2020). Here, we introduce some key concepts for understanding 
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different neurophysiological scenarios that are characterized more easily with iEEG (due to 

its spatial specificity) than with scalp EEG which is blurred by volume conduction.

Briefly, any frequency transform decomposes the original signal into a set of sinusoidal 

functions that are often taken to imply oscillatory signals. For each frequency (and each 

time-point in the case of time-frequency analysis), the output is a complex number from 

which two elemental measures are derived: the magnitude (sometimes referred as amplitude, 

we here prefer the term magnitude which implies an unsigned number that is the norm of a 

vector) and the phase (the shift of the oscillation along the time-axis). For a given data-point, 

the depiction of the complex number in the polar coordinate system provides an intuitive 

view: the magnitude is the norm of the vector, the phase is its angle from the origin (abscissa 

axis):

• The magnitude represents the norm of the vector, i.e., the absolute value, 

whereas power refers to the norm squared, hence magnitude and power have a 

monotonic but non-linear relationship. The magnitude or power averaged across 

trials with respect to an event will show a modulation due to an induced (if it is 

jittered in time across trials) or evoked (if it occurs in-phase across trials) effect.

• The phase indicates where the signal stands in its cycle with respect to its 

oscillatory estimate. Phase averaging across trials is generally performed by 

taking the norm of the normalized complex-vectors averaged across trials (i.e., 

magnitude is set at 1). In particular, the phase consistency across trials indicates 

if the phase of ongoing oscillations is reset by the same event across trials. 

This index is normed between 0 and 1, follows a right skew distribution and 

is generally named: Inter-trial coherence (ITC), Phase-Locking-Factor (PLF) or 

inter-trial phase clustering (ITPC).

Thus, the use of time-frequency analysis allows to draw four possible analytic scenarios 

following the occurrence of an event (Makeig et al., 2004): (a) a change in magnitude 

co-occurs with a phase reset; (b) a change in magnitude but no phase-reset (a.k.a. pure 

induced activity); (c) no change in magnitude but a phase-reset (a.k.a. pure phase-reset); 

(d) no change in magnitude and no phase-reset. The link between ERP, power modulation 

and phase resetting is still an ongoing debate (Klimesch et al., 2007; Lopes da Silva, 

2006; Makeig et al., 2004; Sauseng et al., 2007; Shah et al., 2004) and some measures 

have been elaborated to investigate these questions (such as the phase-preservation index 

which evaluates the pre-to-post event phase relationship, see (Mazaheri and Jensen, 2006)). 

Critically, these scenarios are hard to dissociate using surface recordings because the passive 

spread of the signal mixes magnitude change and phase modulation across electrodes. The 

spatial specificity and SNR of iEEG permits a finer characterization of magnitude and phase 

modulation(s) caused by an event. For example, (Mégevand et al., 2020; Mercier et al., 

2013) show pure phase reset as a mechanism for cross-modal modulation in the sensory 

cortex.

4.2.3 Challenges, recommendations and reporting advice

4.2.3.1 Distinguishing oscillations from activity in a canonical band: Time-frequency 

analyses allow activity at neighboring frequencies to be visualized and thereby are 
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informative for distinguishing between general spectral magnitude or power changes in 

fixed canonical EEG bands versus the presence of specific oscillations (i.e. narrow band 

activity of a periodic, rhythmic nature) (Donoghue et al., 2021; Lopes da Silva, 2013). 

There is a growing literature that posits that some oscillatory phenomena are non-stationary, 

infrequent, and bursty (Jones, 2016) and that non-oscillatory periods are dominated by what 

is referred to as “aperiodic” activity (Donoghue et al., 2020; Gerster et al., 2022) that is 

itself dynamically modulated by task states (Podvalny et al., 2017), is likely physiologically 

relevant (Gao et al., 2017) and can be related to behavior (Brookshire, 2021; Wolpert and 

Tallon-Baudry, 2021).

4.2.3.2 Examining magnitude change and phase modulation: Time-frequency 

decomposition provides both magnitude and phase as a function of time and frequency. 

To dissociate induced responses from evoked responses (i.e., same phase across trials), we 

recommend considering both in relation to each other by visualizing them side by side. 

Beyond a more complete characterization of the brain response, grasping the bigger picture 

permits to reveal mathematically or physiologically questionable scenarios. For instance, 

some baselining choices (e.g., time-period method) can result in a decrease in magnitude 

accompanied by a phase-reset at the same frequency. Such a result is difficult to interpret 

from a physiological point of view, as it would mean that, across trials, the magnitude of 

local neural activity decreases and at the same time becomes more synchronized. Also, 

the potential consequences of the experimental design on the baseline activity should be 

considered when assuming the baseline to be “neutral” relative to the active period of 

interest (see also the last paragraph of the next bullet point). More specifically, some 

unlikely scenarios can be due to the reference scheme. In the example above, the decrease in 

power and the phase-reset at the same frequency can originate from different channels, with 

their signal being mixed by the use of a specific reference scheme. This example underlies 

the interest of comparing results obtained with different reference montages.

4.2.3.3 Baselining signal magnitude: It is common to investigate frequency-specific 

increases or decreases in magnitude related to a given cognitive process. Measuring 

modulation over time usually involves the comparison of time-frequency magnitude or 

power when the process is active versus when it is not active, the latter being referred to 

as the “baseline” period. Once a proper baseline period has been defined, a number of 

approaches are commonly used, although there is no consensus. While baselining signal 

magnitude is not specific to iEEG, it is a cornerstone of time-frequency analysis that should 

be minutely considered. Various methods commonly used in such analysis are described 

here (see Table 1 and Figures 12 and 13).

Absolute baseline: This method consists in subtracting for each frequency the mean 

magnitude over the baseline from the period of interest; the result is therefore expressed 

in the original units (e.g., μV2). This approach assumes that the task-induced magnitude or 

power adds linearly to the baseline power and equally across frequencies. While this is not 

a problem per se, it should be kept in mind that, due to the 1/f fall-off, some task-induced 

absolute magnitude increases can be stronger at low-frequencies (see Figure 13). Notice that 

this approach leads to different outcomes when applied on magnitude or on power because 
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of their nonlinear relationship (e.g., when the power doubles the magnitude increases by one 

unit, making change in higher frequencies more visible).

Z-scoring baseline: Here the absolute baseline is further divided by the standard deviation 

of the magnitude/power over the baseline period. The result corresponds to Z-values that can 

be conveniently interpreted as standard scores. Note here that the result depends on baseline 

variance (SNR) which might not be equal across frequencies. Thus, what can be seen as 

an equal increase in power at two frequencies can be due to a real increase with respect to 

baseline at one frequency, while being due to a lower variance in the baseline at the other 

frequency without genuine increase with respect to the baseline. Only in the case where the 

variance is proportional across frequencies, the z-scoring baseline compensates for the 1/f 

frequency fall-off (see section 4.2.3.4).

Relative baseline: This approach relies on a gain model, where the period of interest is 

divided by the baseline mean and the result is expressed in percentage. With this method, 

event-related increase and decrease with respect to baseline are not treated equally: after 

baselining data-values are positively skewed: while task-induced decrease range from 0 to 1 

(underestimation), task-induced increase range from 1 to +infinite (overestimation).

Log-transform baseline: Another way to correct for the 1/f fall-off is to express the relative 

magnitude or power compared to the baseline in decibel (dB) using a log-transform. As for 

the previous approaches, the log-transform does not lead to the same outcomes when applied 

on magnitude or on power (due to their nonlinear relationship, see above).

Absolute-relative baseline (relative change): This method involves first subtracting the 

mean baseline activity and then dividing by the mean baseline activity. This approach has 

the advantage of centering the magnitude before expressing it in percentage, which avoids 

the asymmetry introduced when the signal is not centered first (as with the relative baseline).

Normed baseline: This method involves first subtracting the mean baseline activity and then 

dividing by the sum of the magnitude or power at each data point and the mean baseline 

activity over the baseline period. This approach is similar to the absolute-relative baseline.

A remaining question is whether the baseline correction should be performed at the single 

trial level and/or on the average. That issue has been assessed in two studies, which showed 

that both should be combined to minimize the contribution of outliers (Grandchamp and 

Delorme, 2011; Hu et al., 2014).

When choosing the baseline period, the temporal leakage of the time-frequency 

decomposition has to be kept in mind, otherwise the risk is that post-onset activity 

contributes to the baseline estimate over the pre-onset period. Due to the length of the 

window used to estimate the time-frequency magnitude or power, the estimated power 

immediately before a stimulus can be affected by oscillatory processes occurring after that 

stimulus. To avoid any overlap between the baseline period and the window of interest, 

we recommend using a baseline period that ends before any post-onset leakage (e.g., three 
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cycles at 8 Hz = 375 ms, activity at time 0 ms backward leaks to –187.5 ms, therefore the 

baseline should be taken before).

The notion of “baseline correcting” or “normalization” has different meanings depending 

on the background of the researcher and/or the experimental paradigm. Here, we would 

adopt the notion that the baseline can initially be considered as any other condition. A 

baseline may be seen as ‘neutral’ with regard to an ‘active’ condition, but not with regard 

to the state of the brain. The brain is never fully switched off in the baseline period: 

when the experimenter presents a stimulus, this adds input to an already active system and 

the experimenter measures the subsequent interplay between the ongoing activity and that 

event. The baseline state of the brain can therefore influence the processing of an incoming 

stimulus, memory performance, the making of a decision, the construct of a prediction or a 

motor response (Benedetto et al., 2020; Fiebelkorn and Kastner, 2019; Makeig et al., 2004; 

Mayer et al., 2016; Norman et al., 2017; Schroeder et al., 2010; VanRullen, 2016). It follows 

that the relationship between the response to an event and the baseline preceding it, is not 

as symmetric as an ‘active’ versus a ‘passive’ period. We recommend bearing in mind this 

symmetry (i.e., the baseline being another condition) or asymmetry (i.e., the baseline having 

a causal effect on the processing of an event), especially as most of the approaches described 

above are asymmetric, except the absolute baseline and the log-transform baseline. That is, 

inverting the baseline-condition and the condition-of-interest is in most cases not equivalent 

to flipping the colormap of the time-frequency representation.

4.2.3.4 1/f drop-off and broadband analysis: The power spectral density of neural 

signals is roughly inversely proportional to the frequency and follows a 1/f decrease (see 

(Donoghue et al., 2020; He et al., 2010; Miller et al., 2009; Milstein et al., 2009; Samaha 

and Cohen, 2022; Zhigalov et al., 2017, 2015). As different frequency bands contain 

signatures of different neural processes, some analyses focus on a single or a limited 

number of discrete frequency bands, rather than the entire spectrum. The choice can be 

driven by canonical frequencies from the literature, or be data-driven (e.g., by identifying 

individual frequencies where the power peaks or where the shape exceeds the 1/f spectrum). 

For instance, high-frequency activity (e.g., 50 Hz to 150 Hz) is often considered as a 

proxy of population-level local spiking activity (Le Van Quyen et al., 2010; Mukamel et 

al., 2005; Ray et al., 2008). Yet, broadband high-frequency activity and multi-unit activity 

index different features across layers (Leszczyński et al., 2020), furthermore broadband 

high-frequency can overlap with narrow-band oscillations (Arnulfo et al., 2020; Hermes et 

al., 2015). In the example of high-frequency activity, the result of an analysis conducted 

over the whole high frequencies range at once, is dominated by the lowest frequencies. 

Disentangling broadband, 1/f, signal changes can be difficult. The phenomenon can be 

obscured at high frequencies by the noise floor introduced by the amplifier system, and at 

low frequencies by coexistent oscillations (Miller et al., 2014).

When analyzing a wide range of frequencies, we recommend giving a similar weight 

to high and low-frequencies e.g., by normalizing each frequency before processing or 

averaging them or by “whitening” the PSD (as an example see (Groppe et al., 2013; 

Roehri et al., 2021; Vidal et al., 2010). Note that simply filtering the signal to perform a 

broadband analysis is not optimal; the characteristic of the signal is better described with 
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a dedicated (time-)frequency analysis. Last, when a broadband analysis is conducted, we 

recommend further analyzing neighboring frequencies to assess the frequency specificity of 

the studied neural process. As a complement to methods that correct or adjust for the 1/f 

drop-off, there are several emerging approaches for explicitly modeling and parameterizing 

it. Several of these approaches—such as BOSC (Hughes et al., 2012), eBOSC (Kosciessa 

et al., 2020), and IRASA (Wen and Liu, 2016)—focus on modeling the 1/f drop-off in 

order to separate it from oscillations in order to better analyze oscillatory activity. Other 

approaches, such as spectral parameterization (Donoghue et al., 2020) conceive of the 1/

f-like activity as a physiologically relevant signal that should be explicitly parameterized 

into its total broadband power, spectral exponent or slope, and a “knee” frequency, the 

latter of which describes the point where the 1/f drop-off occurs (Miller et al., 2009). 

This approach defines the 1/f-like activity as an aperiodic signal that arises from the total 

postsynaptic and transmembrane currents that underlie the local field potential and iEEG 

signal (Buzsáki et al., 2012). In this view, the total broadband power is related to total 

synaptic inputs, as highlighted above, while the power spectral exponent and knee arise as a 

natural consequence of the fact that the local currents exponentially rise and decay in time 

(Manning et al., 2009; Miller, 2010). This double-exponential in the time domain manifests 

as a knee and exponential decay in the frequency domain; as the relative contributions of 

e.g., excitatory and inhibitory currents into a region change, so too does the knee frequency 

and spectral exponent (Gao et al., 2020, 2017).

4.2.3.5 Phase across frequencies: The phase of a wide frequency band has little 

physiological meaning, as it mixes-up phases from oscillations at different frequencies. 

Thus, we recommend avoiding averaging phase across frequencies.

4.2.3.6 Phase quantification: Even if a phase estimate relies on good SNR, like with 

iEEG, the quantification of phase consistency across trials, or across time, is biased by the 

number of samples (i.e., the consistency is overestimated for too few trials). Sample size bias 

is inherent to the computation of any metric reflecting the magnitude of a vector like the 

Phase Concentration Index (Vinck et al., 2010). Such a metric always has non-zero positive 

values and is greater for a low number of observations. To circumvent this issue, an option 

is to compute every possible phase angle difference between all the trials, which leads to 

a distribution of pairwise circular differences next evaluated for non-uniformity around the 

circle (as proposed in (Gulbinaite et al., 2017) from the Pairwise Phase Consistency (Vinck 

et al., 2010)). Practically, if the phase angles of all single trials are similar, the distribution 

of every combination of paired-trial phase differences should not be random but rather tends 

towards zero degree. Thus, this combinatorial approach is making the most of single trials to 

be less subjected to small sample bias. When comparing the phase consistency across trials 

between conditions, equating the number of trials for the two conditions is a more simple 

way to elude the sample size bias. Nonetheless this must be a prerequisite when comparing 

conditions.

4.2.3.7 Influence of the reference on phase angle estimate: An ambiguity in the phase 

estimate comes from the reference as the phase angle of a signal is defined relative to 

the signal at the reference (i.e., 0 degree, see (Shirhatti et al., 2016)). With EEG, the use 
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of the same reference montage across participants favors the correspondence of the phase 

angle estimate within the population. With iEEG, even if the same reference montage is 

used across participants, the peculiarity of electrode locations makes the phase angle hardly 

comparable between participants. Moreover, at the individual level, the phase angle estimate 

changes when the reference montage is changed (see comment on ERP phase reversal in 

section 4.1.2, and Figure 12). Changing the reference montage shifts the angle of the phase 

estimate, and can introduce some noise in the estimate (e.g., if the signal at the reference is 

artifactual or modulated by an experimental factor). Thus, as the angle is arbitrary, analysis 

should focus on phase angle relationships across trials or across time. We also recommend 

performing the time-frequency decomposition for phase analysis twice: once with a local 

reference scheme and once with a monopolar reference, to assert if the electrode(s) used 

as reference is/are ‘neutral’ phase wise or, in contrast, if it/they show(s) some phase angle 

consistency (see panel E in Figure 12).

4.2.3.8 The reference and the estimate of signal magnitude/power: Signal magnitude 

is impacted by the reference montage, as it represents the magnitude difference between 

a given electrode and the reference electrode(s) in the frequency domain (Shirhatti et al., 

2016). Also, it is critical to make sure that the signal(s) used as reference is neither artifacted 

or modulated by experimental factor(s), which would then be mixed with the signal(s) of 

interest. We recommend looking at the same dataset with different reference montages to 

verify that the electrode(s) used as reference do(es) not contaminate the signal, enabling one 

to understand the spatial features of the referenced signal(s) (see Figure 12).

4.2.4 Data visualization

• When plotting color-coded data, such as time-frequency responses, the choice 

of the colormap can lead to misleading effects. A colormap with a non-

isoluminance/hue gradient (e.g., jet/rainbow colormap) can introduce illusory 

boundaries that are not present when the same data is plotted using a black and 

white colormap (Cooper et al., 2021). We recommend choosing an isoluminant 

color map (e.g., ‘batlow’) to avoid result misinterpretation (for examples and an 

in-depth discussion see (Crameri et al., 2020)).

• When visually comparing a time-frequency response across frequencies, it is 

necessary to correct for the 1/f fall-off; otherwise the greatest modulations 

measured in the low frequencies bury the more modest modulations measured 

in the higher frequencies (see section 4.2.3.4). Frequency specific re-scaling 

requires baseline correction and we recommend the absolute relative or z-score 

approach to avoid a bias in the visualization (see previous section and Figure 13).

• The visualization of a time-frequency response that is averaged over multiple 

trials does not provide variance estimates across the trials. As all display 

dimensions are already used (i.e., x-axis for time, y-axis for frequencies and 

color for the magnitude or power or phase consistency), one solution is to 

plot the mean magnitude or power (or phase consistency) and its variance, 

computed per frequency over time, on the side of the time-frequency map, for the 

baseline and for the active period (see Figure 13). When focusing on a specific 
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frequency band, a 2D heat map depicts inter-trial variance over time either for 

the magnitude or the phase, like an ERP-image (see section 4.1.3). That is, trials 

are stacked above each other and eventually sorted by a variable of interest (e.g., 

a behavioral variable, see Figure 10 in Dubarry et al., 2022, or (Ossandón et al., 

2012)). It supports a better understanding of single trial dynamics, for instance 

by revealing phasic or sustained response.

4.3 Connectivity analysis

4.3.0 Introduction—Following the connectome perspective, which aims at defining 

the structural connectivity underlying brain networks (Sporns et al., 2005), the dynome 

perspective proposes to investigate the dynamic interactions at play in brain networks 

(Kopell et al., 2014). This perspective posits a particular emphasis on neural oscillations 

and on relationships between the fine temporal structures of distributed neural activity 

(Sadaghiani et al., 2022; Siegel et al., 2012). Despite the limited and non-systematic 

coverage of iEEG, its high spatial and temporal resolution make it very suited to study 

such interactions. A large variety of connectivity measures have been proposed to detect 

long-range neural interactions, which are typically computed as bi-variate measures between 

pairs of iEEG channels. Connectivity measures can be split into two main classes: functional 

connectivity measures that are correlative and directed/effective connectivity measures that 

model causal relationships. Within each class, different measures applied to the same data 

can yield very different connectivity patterns (Strahnen et al., 2021; Wang et al., 2014). 

It is therefore important to understand which aspect of neural coupling is quantified by 

each measure (e.g., coupling between magnitude or phases). The coupling mechanisms 

considered are so diverse that so far no single connectivity measure has emerged as the tool 

of choice. A comprehensive review of different connectivity measures can be found in a 

number of dedicated didactic reviews (Bastos and Schoffelen, 2015; Greenblatt et al., 2012; 

O’Neill et al., 2018). The following section primarily introduces the main approaches used 

so far and some of the improvements to them that aim to resolve specific issues.

4.3.1 Functional connectivity

4.3.1.1 Background: One of the most intuitive connectivity measures is the correlation 

between amplitude envelopes of two signals (Bruns et al., 2000). This assesses the temporal 

correspondence in the magnitude fluctuations in a given frequency band in two electrodes. 

For instance, high-frequency activity (HFA) between 50 and 150 Hz is thought to represent a 

proxy of population-level spiking activity for neurons ((Buzsáki et al., 2012) and see section 

4.2.3.4); therefore one can assume that two distant neural populations cooperating to process 

information should have HFA fluctuations that are correlated in time (Fries, 2005; Vidal et 

al., 2012).

As the excitability of neurons is modulated by sub-threshold fluctuations in cell-membrane 

potentials, the phase of ongoing oscillations can contribute to the exchange of information 

between distant groups of neurons (Fries, 2015; Varela et al., 2001). Rather than looking at 

magnitude (amplitude or power) correlations, the Phase-Locking Value (PLV) can be used 

to estimate phase synchronization. The PLV quantifies across trials or time the phase angle 

difference between two signals for a given latency and frequency window. When computed 
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across trials, PLV measures if the phase difference between two signals is consistent across 

trials with respect to the event that defines the trials (i.e, the output is a mean across trials 

per time point). When the PLV is computed over time, the metric assesses the stability over 

time of the phase difference between the two signals (i.e., the output is a mean over time 

per trial). PLV values range between 0 (for totally random) and 1 (for perfect phase-locking). 

It is the bivariate homologue of the univariate index of phase consistency (see section 4.2) 

(Lachaux et al., 1999; Tass et al., 1998).

The dichotomy between amplitude and phase illustrates the intricacy of connectivity 

analysis and the relevance to inscribe any investigation in a physiologically grounded 

theoretical framework supporting communication in brain networks. Amplitude coupling 

and phase coupling lead to different but nevertheless non-exclusive measures. Distant 

coupling mechanisms might cause oscillations to rise and decay at the same time in two 

neural populations, with or without precise phase relationships. This illustrates that the 

application of different connectivity measures can provide a more comprehensive view of 

the coupling mechanisms within brain networks (Engel et al., 2013).

Coherency and coherence provide a mixed measure of amplitude and phase correlations. 

Coherency and coherence are based on the standardized cross-spectrum of two complex 

signals across time or trials. When expressed as a complex number, it is usually named 

coherency; taking the magnitude of coherency leads to the coherence coefficient. Ranging 

from 0 to 1, it quantifies the correlation in the frequency domain, taking both amplitude 

and phase consistency into account. Thus, coherence appears similar to PLV modulo signal 

magnitude: coherence considers both amplitude and phase consistency, while PLV is only 

sensitive to phase consistency. However, as any phase estimate depends on the amplitudes 

of the sine and cosine components, the PLV does depend on signal magnitude and SNR. 

Given a certain amount of noise, signals with a larger magnitude will result in a better 

phase estimate, therefore higher PLV values (Bastos and Schoffelen, 2015). Weighting 

events by their respective magnitudes can obscure possibly meaningful low amplitude events 

containing weak but genuine phase synchronization (see modeling study by (Hurtado et al., 

2004)).

When getting started with connectivity analysis we recommend using either magnitude 

correlation, as it gives a straightforward and intuitive measure especially when analyzing 

HFA activity, or coherence for broader analysis scopes and when exploratory analysis 

is conducted. Once these initial measures have resulted in more explicit expectations or 

hypotheses of connectivity, other measures can be used to further characterize the underlying 

magnitude or phase related physiological mechanisms and address potential biases.

4.3.1.2 Advanced methods to work out potential biases: There are various aspects of the 

data and of the analysis of underlying activity that can cause spurious or biased estimates 

of basic connectivity measures. Additional methods have been developed to address these 

issues.

Sample size bias: Functional connectivity estimates (just like the phase consistency 

measure, see section 4.2.2) that are based on the magnitude of an averaged complex 
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vector are dependent on the sample size even with high SNR (i.e., the number of vectors/

trials that are averaged). The Pairwise Phase Consistency (PPC) index addresses this issue 

by computing the distribution of all pairwise phase angles differences, and tests for non-

uniformity (Vinck et al., 2010). This measure does not test for consistency over all the 

trials (like the PLV) but across each possible pair of trials. By exploiting the combinatorial 

data over trials, PPC is more sensitive to true positives, less sensitive to false negatives and 

turns out to be equivalent to the squared PLV. PPC is therefore recommended to control for 

sample size bias. When the research question is to compare connectivity estimates across 

conditions, the sample size bias can also be addressed by stratifying the data (i.e., to equate 

the number of trials in the conditions). With this approach, if the number of trials is low, the 

estimate (i.e., the mean vector) for the two conditions should be equally inflated.

The common input problem: One common criticism is that most connectivity measures 

fail to distinguish direct and indirect interactions between neural populations (i.e., two 

populations driven by a common input would also be highly correlated if they are not 

directly connected). The partial coherence was proposed to remove the contribution of 

putative common inputs (Rosenberg et al., 1998). However, partial coherence requires 

data from potential common inputs. In the case of spatially sparsely sampled iEEG, those 

common sources may lie far from any electrodes. Yet, it can be used in some instances 

to estimate whether an increase in connectivity is due to a common artifact picked up by 

several electrodes. There the use of a ‘neutral’ electrode (i.e., with respect to the studied 

cognitive process) capturing the common artifact permits testing if the connectivity measure 

between two ‘active’ electrodes is due to the common artifact.

The passive volume conduction problem: Another source of spurious correlation between 

signals is volume conduction when two recording electrodes capture, with no delay, a 

common biophysical activity. Compared to M/EEG, iEEG is less prone to such effects 

due to the focal specificity of the implanted electrodes, especially when a local reference 

montage is used (see section 3.3). It is worth mentioning that several connectivity measures 

have been designed to reduce the effect of volume conduction. These are based on the notion 

that a physiological coupling mechanism between distant sources should impose a delay 

in information transmission, and therefore a time lag between correlated signals, whereas 

volume conduction is instantaneous. One approach is to only consider the imaginary 

part of Coherency (Nolte et al., 2004) and discard contributions along the real axis; this 

removes zero (in-phase) and anti-phase contributions to the signal. Similarly, the Phase 

Lag Index (PLI) measures the asymmetry, relative to the real axis, of the distribution of 

phase angles differences (Stam et al., 2007). PLI was further extended as the Weighted 

PLI (Cohen, 2015; Vinck et al., 2011), where the sign of the angle difference is scaled 

by the magnitude of the imaginary component (i.e., the distance from the real axis,). A 

similar approach was developed for power envelopes by orthogonalizing signals, that is to 

eliminate instantaneous correlation (Brookes et al., 2010; Hipp et al., 2012). In practice, 

these connectivity measures are recommended to characterize the immediacy/delay of 

connectivity (i.e., phase synchronization or magnitude correlation). If the connectivity result 

is replicated with these methods, the finding is strengthened and the lag can be reported 

(see next paragraph). Otherwise, the immediacy of the connectivity must be reported and/or 

Mercier et al. Page 59

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tests should be performed to find the origin of a common source (e.g., common reference or 

artifact, see previous paragraph and section 4.3.3).

The temporal precedence problem: When considering two sinusoidal signals with a relative 

time shift between them, it is non-trivial to determine which of two signals leads or 

lags. If the two signals with a constant time delay are not merely constant oscillations 

but are represented in a broader frequency range, the phase difference between the two 

signals will increase linearly with the frequency of the oscillations. Building upon this, 

the Phase Slope Index quantifies the phase difference over a range of frequencies and 

provides an interpretation of temporal delays (Nolte et al., 2008). As for the correlation 

between amplitude envelopes, a straightforward extension is the cross-correlation measure, 

which further estimates the lag between the two correlated signals (Adhikari et al., 

2010). We recommend these approaches to examine connectivity time-delay. Moreover, 

they purposefully back-up data visualization such as rose plots in the case of phase 

synchronization or cross-correlogram in the case of magnitude cross-correlation. While there 

are promising decomposition techniques aimed at disentangling overlapping oscillations 

(Nikulin et al., 2011) that have recently been adapted for iEEG (Schaworonkow and Voytek, 

2021), great care still needs to be taken when interpreting such results.

4.3.2 Directed connectivity—Given that there is a correlation between the iEEG 

signals at distant sites, one can proceed to determine whether one of the neural sources 

drives or causes the other. A time difference in functional connectivity by itself is not 

sufficient to conclude statistical causation and is often mistakenly interpreted as a causal 

relationship (Friston, 2011). While an exhaustive review of directed/effective connectivity 

methods is beyond the scope of this paper, we mention the most common approaches 

used in electrophysiology. Model-based directed connectivity includes measures of Wiener-

Granger causality (Bressler and Seth, 2011; Oya et al., 2007) or directed transfer function 

(Kamiński and Blinowska, 1991; Korzeniewska et al., 2008). Model-free methods derived 

from information theory (e.g., Mutual Information (Ince et al., 2017; Kraskov et al., 2004) 

include transfer entropy (Schreiber, 2000), Phase transfer entropy (Lobier et al., 2014) or 

Feature-specific Information transfer (Bím et al., 2019)). As the common input problem also 

applies to causal measures, partial approaches were developed to disambiguate the role of 

auxiliary node(s) in the assessment of the causal link between the two nodes of interest. 

These methodologies include the partial directed coherence (Baccalá and Sameshima, 2001), 

partial/conditional Granger causality (Ding et al., 2006; Guo et al., 2008; Wen et al., 

2013), or the partial information decomposition (Wibral et al., 2017). While these methods 

have been less exploited in iEEG research due to the sparse spatial sampling and only 

partial coverage of the brain, multivariate autoregressive models include and extend the 

bivariate model, thus allowing causal inference at the full network scale (Kuś et al., 2004). 

Compared to functional connectivity analysis, effective connectivity analysis leads to more 

complete models of the large-scale cognitive networks, with detailed causal relationships 

and information spreads between brain areas.

We advise iEEG researchers to test the validity of the methods on simulated data prior 

to their application on acquired datasets. We also recommend comparing the differences 
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between methods’ outputs and interpret the results in light of the literature related to the 

structural organization of the network of interest (including its hierarchical organization). 

Especially, the benefit remains to be explicit for hypothesis driven research and sometimes 

more risky for exploratory research.

4.3.3 Challenges, recommendations and reporting advice

• The referencing scheme has a major impact on connectivity measures. A 

common reference adds a common component to all signals and therefore 

can artificially increase connectivity measures (Bastos and Schoffelen, 2015; 

Fein et al., 1988; Guevara et al., 2005). This also applies when connectivity 

is computed between two channels that share the same reference, for example 

with a bipolar reference scheme for three sEEG electrodes resulting in two 

neighboring channels. We recommend that each channel included in the 

connectivity estimation should be referenced to a different reference. When this 

is not possible, a less ideal solution is to contrast connectivity measures obtained 

in two different experimental conditions (see for example (Fell et al., 2001; 

Sehatpour et al., 2008)), or before and after an event of interest. In that case, 

the artificial inflation of connectivity is included in the comparison. Note that 

this solution assumes that the common component increases the connectivity 

measure similarly in the two conditions, or before and after the event of interest. 

As this assumption cannot be tested, results should be interpreted with caution 

and this potential pitfall of the analysis should be stated in the reporting.

• Stationarity is one of the assumptions underlying the computation of connectivity 

over time or trials. When it is plausible that some jitter introduces variability, 

it can be critical to temporally re-align the data to the feature at the origin 

of the jitter. For instance, if an increase of phase synchronization is due to 

motor preparation, aligning the trials to the response times makes the phase 

synchronization visible, which otherwise may be absent if the trials are aligned 

to the stimulus onset (e.g., (Mercier et al., 2015)).

• Both magnitude-based and phase-based connectivity measures are affected by 

SNR. In practice, the connectivity measure between two signals decreases when 

one of them is contaminated by strong noise, but increases if both signals are 

contaminated by the same noise source. Typically, we recommend comparing 

connectivity measures between conditions with similar SNR. One way to 

estimate SNR is to compute a variance estimate for each signal (see section 

4.1.2).

• Similarly, connectivity measures are dependent on the number of trials used in 

the computation. For instance, if there are fewer trials in one condition, the 

connectivity estimate is likely more biased as compared to another condition 

with more trials. Similar to phase quantification (see section 4.2.3.6), here we 

recommend using the same amount of trials to compute the connectivity measure 

for two conditions that are to be compared. This is easily done by randomly 

drawing a subsection of trials, based on the lowest number of trials between 

conditions.
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• Removing instantaneous interaction to circumvent passive volume conduction 

discards genuine in-phase or anti-phase interactions (i.e., at an angle of 0 or 

180 degrees). To assess instantaneous interaction some controls exist, such as 

comparing between conditions (which assumes that passive volume conduction 

is identical between conditions), cross frequency comparisons as passive volume 

conduction is not entirely frequency specific (i.e., if an effect is not frequency 

specific it can be due to broadband passive volume conduction), or the use of a 

partial connectivity measure.

• When applying directed connectivity measure, special consideration should be 

taken regarding (pre)processing steps (e.g., artifact removal, re-referencing or 

filtering) as they can lead to causal artifacts by introducing temporal correlation 

or disrupting time series (see for further details (Florin et al., 2010; Seth, 2010)).

• Some causal inference often hypothesizes ideal unidirectional interactions 

while many network connections are bidirectional. Also, directed connectivity 

measurement should be performed in both directions to be able to assess cross-

talk between signals.

4.3.4 Data visualization—The result of a complete bivariate connectivity analysis is 

a graph, in the sense of a mathematical structure used to model pairwise relations (i.e. 

graph theory approach). With bivariate connectivity measure, such a graph quantifies the 

strength of the connections (“edges”) between iEEG channels (“nodes”) used to compute the 

connectivity measure. Where functional connectivity provides only a global measure (i.e., 

non-directional) for each pair of nodes, effective connectivity also provides a directionality 

for those connections. Graph theoretical measures can subsequently be used to characterize 

properties of brain interaction architecture at the network level (Bassett and Sporns, 2017; 

Bullmore and Sporns, 2012; Sporns and Betzel, 2016). From a visualization perspective, 

rather than depicting connectivity measure results as “a spaghetti plot”, graph theory is 

an efficient way to sum up connectivity results. For instance, graph theory measures 

allow defining local/central hubs, path redundancies or time-dependent organization. One 

obvious limitation of iEEG is the sparse spatial sampling in single individuals. A global 

understanding of brain-level networks can therefore only be achieved by combining the 

connectivity measure graphs over a large number of participants (see as an example (Betzel 

et al., 2019)). Yet, another constraint relates to the localization of the electrodes. Either, 

because the granularity of some parcel(s) may exceed the spatial specificity of iEEG, (i.e., 

channels with different response profiles are projected and grouped into a wide parcel); 

or because some electrodes can be surrounded by different tissues which obscure spatial 

specificity (e.g. white matter). As such, limitations should be acknowledged when drawing a 

network-graph and when computing some graph metrics.

4.3.5 Statistical consideration—Considering the rich repertoire of methods to 

compute functional and effective connectivity, one obvious pitfall is to “try them all” until 

one provides “interesting” results that are consistent with the ongoing working hypothesis. 

Good research practices dictate to also report all negative results, as (i) the multiplication of 

attempts was part of the performed research, (ii) negative results provide insights about the 
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type of connectivity measure supporting the studied cognitive process, and (iii) repetition of 

assessments has to be taken into account in the statistics (i.e multiple comparison problem).

4.4 Cross-frequency coupling analysis

4.4.1 Background—Because iEEG offers both high temporal and spatial specificity, 

advanced iEEG analysis faces a multiscale challenge that is to integrate neural activity 

across different temporal and/or spatial scales (Engel et al., 2013). For instance, many 

iEEG studies analyze and report separately task-related effects in different frequency bands 

(theta, alpha, beta, gamma), which might (mis)leadingly indicate that the different frequency 

components of iEEG signals are categorical and functionally independent from each other. 

Cross-frequency coupling (CFC) was developed to assess relationships between frequency 

bands, either locally or over some distance (i.e., CFC computed between electrodes). 

It offers a methodological framework that can bridge local computation and long-range 

functional connectivity. To assess the local hierarchy across frequency bands or the efficacy 

of communication on the modulation of local neural activity (Hyafil et al., 2015), four main 

CFC sketches were proposed (Jensen and Colgin, 2007): power to power, phase to phase 

(Palva et al., Siegel et al), phase to frequency (Colgin et al., 2009) and phase to amplitude 

(Canolty et al., 2006). Among those, Phase Amplitude Coupling (PAC) has attracted 

attention due to a plausible physiological mechanism with the phase of low frequencies 

reflecting neural excitability and the magnitude or power of high frequencies reflecting local 

neural activity (Canolty and Knight, 2010; Jacobs et al., 2007; Rutishauser et al., 2010). 

PAC has been proposed to represent a hierarchy across oscillatory activity (Lakatos et al., 

2005), leading to compelling neuronal computation such as phase coding (Lisman, 2005). In 

this framework, the dynamic of interaction between frequencies represents how oscillations 

emerge from the intrinsic local activity or are imposed by another network. Altogether CFC 

can be computed at an electrode as well as between electrodes, making CFC a connectivity 

measure integrating time and space. Several methods exist to compute CFC that have been 

reviewed and compared in instructive publications (Canolty et al., 2012; Michael X. Cohen, 

2017; Dvorak and Fenton, 2014; Miller et al., 2012; Penny et al., 2008; Tort et al., 2010).

4.4.2 Challenges, recommendations and reporting advice—The estimation 

and correct interpretation of cross-frequency coupling faces multiple methodological 

challenges and requires thorough controls in the analysis (Aru et al., 2015). For instance, 

nonstationarities in the signal, due to spectral correlations (i.e., harmonics), introduce 

spurious cross-frequencies coupling (Lozano-Soldevilla et al., 2016). This can be due 

to the non-sinusoidal morphology of the periodic signals due to sharp signal edges or 

asymmetrical waveforms, or due to filtering (Kramer and Eden, 2013; Scheffer-Teixeira 

and Tort, 2016). There is growing evidence that these non-sinusoidal morphologies are 

physiological (Cole and Voytek, 2017; Sherman et al., 2016) and are altered in disease 

states, such as Parkinson’s disease, which can manifest as apparent CFC (Cole et al., 2017). 

Because of this, it is recommended that CFC analyses be complemented by time-domain 

approaches that can quantify these non-sinusoidal morphologies (Cole and Voytek, 2019) 

and to help better identify multi-rhythm CFC from apparent CFC (Vaz et al., 2017).
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5 - Statistics

5.0 Introduction

When interpreting iEEG signal analysis and/or testing the significance of a research 

hypothesis, most statistical methods are shared with M/EEG. However, iEEG is remarkable 

for its (i) high SNR and (ii) sparse and variable spatial sampling across participants, which 

leads to a number of particularities in the statistical approach that we address in this chapter. 

First, the combination of the high SNR and high spatial specificity substantiate iEEG 

observation(s) established in a single participant and value the publication of single case 

studies (as compared with single case M/EEG study conducted in a healthy participant). 

Second, when a group of participants is considered to generalize results, the sparse and 

variable sampling requires defining some equivalence between recording sites, which may 

or not be defined a priori (i.e., hypothesis driven region of interest (ROI)). This equivalence 

relies on the electrode localization and related anatomical/spatial normalization processes 

(see section 2).

No consensus has emerged within the iEEG community regarding a standard statistical 

procedure, yet from the various practices described in the literature, two issues stand out that 

we will address: the type of research conducted (hypothesis driven vs. exploratory) and the 

number of participants. In the following, prior to moving into the specific aspects of iEEG, 

we first provide a general reflection on how the type of research relates to the particularities 

of statistics in iEEG. Second, from the literature we review the spectrum of approaches, 

we posit the challenge of generalizing findings from one or multiple iEEG participants to 

the population, and stress the importance of relating group analysis to individual analysis. 

Finally, we present concrete ways to combine electrodes over multiple participants.

5.1 Exploratory versus hypothesis-driven research

Dictated by the clinical dimension of iEEG (epilepsy prevalence, surgical planning, selection 

of participants...), the sparse spatial sampling and multiple comparison problem often 

motivates researchers to define ROIs, as is typical in fMRI research. Only electrodes placed 

in the chosen area(s) are investigated and participants without electrodes in these ROIs 

are excluded. Conversely, other investigations are conducted on the whole brain without 

any prior regions of interest; in these cases all electrodes available in all participants are 

investigated. These practices reflect two general scientific research approaches: hypothesis-

driven and exploratory (Figure 14). In this section, after elaborating on these concepts, 

we put them in perspective within the framework of iEEG research and related statistical 

considerations.

5.1.1 The types of research conducted—Scientific research is based on a 

fundamental dissociation between exploratory research (a.k.a postdiction) and hypothesis-

driven research (a.k.a. prediction). Discoveries stem from data-driven exploratory research 

that makes few, if any, prior assumptions. The investigation aims to make observations, build 

a model from these observations, and generate new questions and hypotheses. Next, the 

hypotheses or models have to be empirically tested according to a dedicated protocol. Here 

comes the hypothesis-driven approach, where the investigation is planned prior to observing 

Mercier et al. Page 64

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a newly acquired dataset. The hypothesis/model that was stated beforehand is validated (or 

not) based on the data, and can be accepted or (partially) rejected and modified (see Figure 

14).

It is often the case that during a hypothesis-driven study, some exploration also happens, 

as the researcher might notice an interesting pattern that warrants investigation in a follow-

up study. It is generally admitted that scientific knowledge builds on this recursive loop 

between prediction and postdiction (Nosek et al., 2018), but the distinction is not always 

explicitly made. The need for a critical distinction has recently attracted attention in the field 

of cognitive neuroscience, as mixing the two types of research lies at the roots of circular 

reasoning (Kriegeskorte et al., 2009), post-hoc theorizing (Kerr, 1998) and other cognitive 

biases that impact good research practices, reproducibility and scientific credibility.

Acknowledging the distinction between exploratory and hypothesis-driven research is 

important at the onset of any research project:

• Within the multidisciplinary iEEG research team that contributes different 

perspectives to a project: When a research proposal is discussed, the research 

type (exploratory or hypothesis-driven) should be explicitly stated. “Work in 

progress” meetings are propitious to verify that the project remains aligned with 

the initial plan, or to identify that an initially hypothesis-driven project turns into 

or leads to an exploratory project.

• Within the framework of preregistered study: In recent years, with the aim 

to tackle the replication crisis and to recognize the foundation of hypothesis-

driven research, registered reports were implemented to distinguish a priori 

planned analysis from unplanned or post-hoc analyses. Among others fostered 

by the Open-Science Framework (see 17), the principle relies on depositing or 

pre-registering a manuscript that details the hypotheses, methods, and planned 

analysis of a study prior to it being conducted. Several cognitive neuroscience 

journals have implemented the format of preregistered articles: after review and 

in principle acceptance, the study protocol is registered as a manuscript and data 

can be collected; following analysis, the report with the results is submitted to 

the same journal and is subjected to a reviewing process that does not focus on 

the outcomes but only on it adhering to the preregistration (for a guideline see 

(Paul et al., 2021)). This style of work is particularly suited for hypothesis-driven 

iEEG research, considering the time it can take to record data from a sufficiently 

large group of patients.

Because of the sparse spatial sampling combined with the high specificity and the high 

sensitivity, iEEG data is more prone to be explored at the individual participant level (c.f., 

the seminal work by (Penfield and Rasmussen, 1950)). Even if only a few electrodes are 

localized consistently in a handful of iEEG participants, their investigation can nevertheless 

result in serendipitous findings. In contrast to iEEG, M/EEG data from a single research 

participant often has a SNR that is too low to draw clear inferences and consequently 

17. https://osf.io/ 
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M/EEG data is commonly acquired for a group of participants in well-controlled hypothesis-

driven research.

At the larger scale, science advances through the alternation of exploratory and hypothesis-

driven research; something that can be exploited within a single study using a cross-

validation procedure that dissociates the two research types. Using a first (pilot) dataset 

that is already acquired, its exploratory analysis provides a hypothesis that is subsequently 

tested on a second dataset that remains to be recorded, or that is recorded but not yet 

analyzed (here the pilot dataset is not to be included in the subsequent analysis). Analyzing 

pilot data prior to the acquisition of the remaining dataset allows some time to get a similar 

electrode placement for the remaining dataset. As such, the reported choice of predefined 

ROI prevents circular analysis. The second dataset validates the hypothesis generated by the 

exploration of the first dataset. This procedure can be adapted when the dataset for an entire 

group is already available by simply splitting participants into an exploratory and validation 

group. Then, data from the validation cohort is held out from the initial analysis (performed 

on the exploratory cohort) and is used solely to validate the hypothesis/model.

This dichotomy, or perspective, is fundamental considering the general context of iEEG 

research, which is prone to selection bias (see sections 1.1.5 and 1.2.3). The limited 

recording time with the participant and the richness of the data often motivate the use 

of anatomical and/or functional criteria to select participants and/or electrodes. Typically, 

this choice can stem from the anatomical location of the electrodes and/or the working 

hypothesis guided by independent data collected from the same patients (e.g., fMRI 

performed prior to the implantation) or by the literature (e.g., (Lachaux et al., 2006) where 

ROIs are defined based on independent MRI studies). The decision to record a given 

protocol in a specific patient can also be motivated by the functional response to a ‘localizer’ 

(see section 1.1.4). In the case of complex analysis leading to a large amount of data 

(e.g., directed connectivity), a subset of electrodes can be selected on the basis of their 

signal features determined beforehand (e.g., by contrasting conditions, by using parametric 

regression or by using an informed spatial filter). In any case, it is a good research practice 

to document the choice of ROI to avoid a selection bias in the interpretation of the results. 

Conversely, if a protocol is run after checking that there was some response to the paradigm, 

the absence of acknowledgment in the recruitment would lead to circular reasoning: results 

are seen because it was known that they were there.

5.1.2 Descriptive statistics and inferential statistics—Although not systematic 

in practice, the two types of research are commonly associated with different statistical 

approaches: exploratory research mainly relies on descriptive statistics, and hypothesis-

driven research requires inferential statistics. Descriptive statistics summarize quantitative 

measures of the data, such as the central tendency (e.g., mean or median) along with 

measures of dispersion (e.g., variance, median absolute deviation, quantiles). As in M/EEG, 

the descriptive metrics are valuable to data visualization, whereas inferential analysis is 

commonly based on null-hypothesis significance testing (Pernet, 2016) or decision-making, 

where the p-value cannot exist without a hypothesis. Some hypotheses are phrased prior to 

looking at the data, some after looking at the data. In the latter case, the researcher is not 

controlling the potential errors in the inferential decision.
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Although the focus is often on the resulting p-value and the binary decision of significance, 

it is a good research practice to further provide the magnitude of the effect (i.e., effect 

size) and its precision (i.e., confidence interval) (Groppe, 2017). These measures are 

complementary to significance testing, as they set the weight on a quantitative dimension of 

the inference: how large (effect size) and how certain (interval estimate) it is. In addition to 

bringing a different view to interpreting the data, they permit better inference: by avoiding 

over confident claims from inadequate samples and improving comparisons of results 

(Calin-Jageman and Cumming, 2019). Last, the effect size estimate grounds cumulative 

evidence and permits meta-analysis. For these reasons, computing and reporting effect size 

and confidence intervals are now being adopted in scientific journals (Bernard, 2019).

5.1.3 Challenges, recommendations and reporting advice

• We recommend documenting the progress of the iEEG project to keep track 

of its evolution and track the changes from the original plan. Starting with the 

rationale of the conducted research and the anticipated analysis/result; then the 

recording of participants and eventual selection; the analysis conducted with 

the unanticipated adaptation such as new ROIs; all the results found, even the 

unexpected ones. This strategy helps to distinguish when some part of the project 

departs (e.g., from hypothesis-driven to exploratory analysis) or when some new 

information comes into play and influences decisions (e.g., feed-back from a 

colleague regarding another experiment run on the same participants).

• Papers reporting the results of iEEG studies should explicitly state in their 

introduction which a priori hypotheses will be tested (if any), whether post-hoc 

hypotheses will be tested, and whether results from exploratory analysis will be 

reported.

• In ROI studies, sites outside the ROI might implicitly be considered as not 

showing the effect under investigation. Whether this conclusion can be drawn 

depends on whether those other regions were actually tested. To avoid an 

incorrect interpretation of the reported results, we recommend explicitly stating 

whether sites not included in the ROIs were tested and, in the case they were 

tested, to report the corresponding results (i.e., the non-ROI sites showing and 

not showing the effect of interest). While it could be argued that in hypothesis-

driven ROI studies, sites outside the ROI relate to exploratory analysis, the use 

of a "negative-control" ROI allows showing that the effect is ROI-selective. To 

that aim, we recommend systematically selecting a "negative-control" ROI to 

verify the spatial specificity of the result(s) (i.e., by testing for a ROI x condition 

interaction).

• Assessing a statistical difference between conditions must be done directly 

on the data from the two conditions, without corrections or normalizations 

that would reduce sensitivity or that would cause effects to appear differently. 

For instance, baseline correcting time-frequency analyses can hide differences 

present in the baseline window and make them appear in the post-stimulus 

window.
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• Assumption of statistical tests should be tested and reported (for guidance see 

(Wilcox and Rousselet, 2018)). For instance, parametric tests require verifying 

the type of distribution; in many cases they are not suitable for phase analysis 

(e.g., phase consistency across trials, due to the asymmetry and the bounds of the 

measure, see section 4.2.2 and 4.2.3).

• When an iEEG study is published, we recommend sharing analysis code and 

making data available (conditional on the participants’ consent, see section 

1.3.8). The reuse of data is valuable for replication purposes and for extending 

previously reported findings. It should be acknowledged that data sharing might 

come with some hidden risks: the multiplication of statistical tests and double 

dipping / circular reasoning. When the same data is re-analyzed, some tests are 

repeated without correction for multiple comparisons and with an inflated risk 

of false positives. Knowing what to look for can influence analysis processes 

in order to find again the initially postulated effect. To reduce these risks, we 

recommend in follow-up studies to take previous analyses into account.

5.2 The spectrum of practices

The literature of iEEG research describes a wide spectrum of practices, ranging from single 

case studies to investigations that include several tens of participants. Consequently, there 

are a myriad of statistical approaches. The scientific aims of a particular study but also the 

practical opportunities influence which path is chosen: either strongly conservative or more 

liberal. For instance, a clinically oriented study in a single patient going for surgical brain 

resection necessitates other risk/benefit considerations than a study that aims to generalize 

a correlation between cognition and brain activity to the healthy population. iEEG research 

practices can be considered from the perspective of quality (e.g., a single case is scrutinized 

or an investigation of a group with a very specific focus) or quantity (e.g., a big-data 

approach) (see (Tibon et al., 2022) for further discussion on small versus large scale studies 

and its implications for the interpretation of research findings).

From the perspective of an ideal neuroscientific or cognitive experimental design, the 

researcher would like to have a large group of participants (i.e., “N=many”) with largely 

consistent recordings, to be able to draw inferences that generalize to the population rather 

than being limited to the small sample. However, as the researcher is dealing with patients, 

it can also happen that recordings are only available in a single patient; these findings can 

still be shared as a single case (i.e., “N=1”) report. Finally, it can happen due to limited 

participant/patient availability, clinical or other experimental constraints that the sample 

size is larger than one, but not large enough to consider it a proper group study. In the 

following, we summarize the spectrum of practices (ordered by the number of participants) 

and underline their strengths and weaknesses.

5.2.1 Single case studies—The format of single case reports is historically linked 

to clinical practice, where the singularity of a medical case is reported to the community, 

pending replication. Single case reports in iEEG permit to provide, and/or to take into 

account, numerous peculiarities of the individual beyond its status of patient. It can be 

motivated by the rareness of electrodes placement and/or electrode type (e.g., prototype used 
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in (Saleh et al., 2010)), the rareness of the patient’s specific skill set (e.g., a case study in 

a musician with iEEG electrodes (Martin et al., 2018)), the richness of the data available 

for the same participant (e.g., longitudinal study, PET, fMRI, electro-cortical stimulation, 

e.g., (Bruns and Eckhorn, 2004; Mégevand et al., 2014; Schippers et al., 2021)) or the wish 

to focus on the applicability/relevance of a series of methods applied on the human brain 

(Brovelli et al., 2005; Moses et al., 2021).

From the perspective of cognitive neuroscience studies, the analysis is performed on 

multiple trials and eventually validated through a test-retest procedure across two distinct 

datasets (for a discussion on inter-individual variability see (Jeffery et al., 2018)). While 

supported at the individual level by iEEG sensitivity (i.e., SNR), the main limitation of 

single case studies is the difficulty to generalize the result to the population and the 

significance of a single case study is reached when converging evidence from multiple 

patients (with various etiologies or foci) assure some generalisability. Yet, a thorough 

investigation of a single case permits to reach a high level of qualitative description, 

potentially leading to a “black swan” effect: an observation made for the first time can lead 

to a breakthrough. Therefore, a single case study must be well documented (i.e., including 

with meta-data), to permit both replication and the re-use of the data in future meta-analyses 

(see recommandation in section 1.3.8).

5.2.2 Multiple cases studies—To generalize findings from an individual and thus 

establish common features at the population level, the strategy of single case studies can 

be repeated over multiple participants across which the same effect(s) is (are) tested. 

Equivalence between participants’ recording sites is illustrated in every individual brain 

and/or determined in reference to a normalized space (e.g., MNI) or an atlas (see sections 

2 and 5.3) and possibly supplemented with some recorded functional response (see sections 

1.1.4 and 5.3.3). There are two statistical approaches commonly used: either the analysis 

is performed and reported at the level of single participants (i.e., trials being the repeated 

measures) and the results corroborated, or the trials are pooled across participants to create a 

‘meta’ participant.

The first approach resembles most non-human primate (NHP) studies on old world 

monkeys, where often two individuals are used to cross-validate results from data recorded 

over many sessions within the same region in each individual. With human iEEG the 

number of participants tends to be larger, but with more variation in the placement of 

electrodes. The large number of sessions in NHP studies provide strong statistical power 

to individual data analyses. With human iEEG, time constraints do not allow recording a 

very large amount of data and consequently the inferential or descriptive meta-analyses 

performed over the individual results can differ from that of a NHP study. An option is 

to combine p-values across participants (Fisher, 1970) (Demerath, 1949) (Darlington and 

Hayes, 2000; Demerath, 1949; Fisher, 1970; Whitlock, 2005). The different methods have 

been compared (Bailey and Gribskov, 1998; Heard and Rubin-Delanchy, 2018; Loughin, 

2004; Manolov and Solanas, 2012; Winkler et al., 2016; Won et al., 2009) to highlight their 

characteristics (e.g., sensitivity, more or less conservative) and the prerequisites of their use 

(e.g., independence between the combined p-values). This approach for multiple cases study 

Mercier et al. Page 69

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presents the advantage of describing individuals as well as assessing the representativity of 

the findings across the participants.

In the second approach (i.e., the ‘meta’ participant), the trials from all participants are 

pooled and treated as if they were recorded from one participant. The statistic is similar to 

fixed-effect analysis, where the true effect size is assumed to be the same across participants 

and the only source of variation is presumed to be the measurement error. As any source of 

variability across participants (e.g., the pattern of brain response, the electrode localization, 

the number of trials per participant) would have a critical impact on the results, this 

‘meta’ participant approach would require assessing the homogeneity across participants 

by looking at individual responses and at individual electrode locations before pooling all 

the data together. Critically, with this approach it follows that the inference is restricted 

to that population of participants. Therefore, this approach is no longer recommended in 

iEEG studies because it mixes intra-individual and inter-individual variance Null hypothesis 

significance testing can be performed within individual participants and then the prevalence 

of that effect in the population can be inferred from the proportion of participants showing 

an effect, see the Bayesian method proposed by (Ince et al., 2021).

5.2.3 Group studies—In a group study, statistical analysis is performed at the 

population level like in M/EEG studies. The only difference relates to the set of channels 

included in the analysis. Because electrode positions vary between participants, only 

electrodes with equivalent positions between participants shall be included in the analysis. 

Equivalence between electrodes relies on individuals’ brain registration to a normalized 

space (which then might be used for labeling in the individual space, see section 2 and 5.4). 

Then electrode coordinates or brain parcels are used to aggregate electrodes and participants 

are considered as independent measures. There, the statistic is similar to random-effect 

analysis, the true effect size is assumed to vary across participants, each representing a 

random sample of effect sizes, and the sources of variation are measurement error and 

response magnitude over participants. It follows that the inference is not restricted to that 

population.

Group studies require a commitment to the assumed spatial scale at which electrodes can 

be grouped, e.g., an anatomically defined ROI, which almost inevitably sacrifices spatial 

specificity that is available on the single participant level (see below). They critically rely 

on the procedure used to aggregate electrodes across participants. Hence, group studies may 

be considered less detailed as compared to the multiple cases approach. Here, we therefore 

also recommend providing quantitative estimates to assess the similarity/variability across 

participants within the assumed spatial scale (e.g. as in Figure 15 from the free software 

HiBoP18, also available as an online platform19, or in the MIA software (Dubarry et al. 

2022)). Other approaches support both fixed- and random-effect models to take into account 

inter-individual variability (e.g. Frites20 toolbox (Combrisson et al., 2021), see also section 

6.9.1)).

18. https://github.com/hbp-HiBoP/HiBoP 
19. https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/ 
20. https://brainets.github.io/frites/index.html# 
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5.2.4 Insights about the necessary number of participants—In cognitive 

neuroscience, a good practice consists in establishing a priori how many participants should 

be included in a study to support an exploratory study or to obtain a specific statistical power 

in a hypothesis-driven study. Similarly to M/EEG studies, a power analysis (and forthcoming 

result robustness) is more difficult when there are many different analytical measures, 

each coming with different effect sizes that may vary between frequencies, regions, etc., 

which becomes more complicated if several of these measures are combined. In iEEG, the 

complexity of the answer stems from the association of four aspects of iEEG: the SNR, the 

spatial specificity, the spatial sparsity of the sampling that is variable across patients and the 

possible pathological physiology.

Concretely, iEEG is so spatially specific that it is not rare to observe a task-induced response 

pattern on one recording site that is absent at a neighboring site just a few millimeters 

away. Considering the high SNR, the effect on that electrode can outclass the criteria for 

significance with both a large effect size and a high confidence interval by several orders of 

magnitude. With such an effect that is clear in that participant, the question is then whether it 

generalizes to other participants and toward the population.

iEEG research also needs to deal with the complexity related to the precise anatomy. 

Interpreting results at the group level and generalizing to the population implies defining 

the homology of brain regions and reporting phenomena at a scale that is coarser than 

that of the individuals’ observations, similar as it is for instance done in EEG to report 

on a specific ERP component such as a P300 at a specific electrode and latency. Yet, one 

should keep in mind that the validity of the simplification depends on the granularity of the 

anatomical parcellation that is used. This can be compared to smoothing of data along other 

dimensions: too little smoothing highlights the interindividual variability which then might 

be interpreted as noise, whereas too much smoothing washes out the effects. The right level 

of smoothness is an empirical question: establishing the relationship between anatomy and 

function with iEEG implies a detailed participant-level anatomical investigation, and to go 

back-and-forth between group-level and individual analysis (even when many participants 

have been recorded).

Because the electrode positions are variable across patients, recording at sufficiently similar 

locations in multiple participants requires enough participants and hence time to collect 

the complete dataset. Whether a sufficiently large sample can be collected depends on 

whether that particular cortical location is frequently targeted by intracranial surgery. 

The feasibility to acquire data from identical electrode locations is further reduced when 

studying coupling between cortical areas, as in that case both electrodes comprising a 

pair need to be consistently located. Thus, in some cases, it may seem unreasonable to 

expect iEEG studies to display perfectly identical functional responses in more than a few 

participants. However, the association of high specificity and high sensitivity legitimates 

iEEG findings from a (few) participant(s), which can be reported as case(s) study (i.e., with 

a number of participants that would not be endorsed in M/EEG).

Last, because iEEG relies on the recording of a brain with epilepic activity, a frequent 

criticism states that no iEEG study can ever claim that its conclusion is a general property 
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of the healthy human brain. To assert that an observation is not incidental and/or due to 

the medical condition of the participant, it is at least necessary to show that the effect 

of interest is not particular to one patient, with a particular type of epilepsy or cortical 

(re)configuration. In this case, two participants with completely different epileptic profiles 

are a primer to generalization. In fact, the replication in two participants echoes the 

requirements of NHP electrophysiological studies, which often report results obtained in 

two specimens (this comparison is further bolstered by the LFP analogy). Beyond two 

participants, replication across more participants is then “more convincing” that the results 

are replicable. That is, it increases the likelihood that if other researchers record from the 

exact same cortical location in the same paradigm, they will observe the reported effect. 

For that reason, in order to guide the interpretation and inform robustness, we recommend 

always reporting the number of participants recorded in the exact same region and showing / 

not showing the effect of interest. Additionally, comparing behavior between patients and 

healthy controls can serve as a check whether the observed brain activity correlated with this 

behavior is likely to reflect the normal function of the brain area(s) under study.

5.2.5 Challenges, recommendations and reporting advice

• The review of the spectrum of practices shows a gradation from observation 

made at the single participant level to group studies allowing generalization to 

the population. With the recent rise of open-data, it has become easier for a 

researcher to complement data of a single case with data published by another 

researcher, facilitating replication to scale up findings to multiple cases or even 

to generalize from a group. Good iEEG practices must favor the prerequisite for 

combining knowledge. For that reason we recommend always preparing iEEG 

data so that any single participant can be added without further effort in a larger 

study (even if it might at first be intended as a single case report). Information 

needed to aggregate electrodes across participants (i.e., individual MRI and 

electrode coordinates) must be accessible to allow future use of the data (see 

section 1.3.8).

• Combining data (e.g. across research centers) does not necessarily imply 

improving statistical power or result robustness. The cornerstone is the 

harmonization of approaches between centers (e.g. in data acquisition, 

preprocessing and use of complementary information): it can be more effective 

to combine a small number of high quality datasets than to use all available 

data sets (see the context of non-human primate neuroimaging, Autio et al., 

NeuroImage 2021).

• We recommend always including detailed information about individual 

participants when possible: (i) the implantation schemes, (ii) seizure onset zone, 

(iii) handedness, (iv) type of epilepsy, (v) possible brain lesion, malformation or 

previous resection, (vi) neuropsychological impairments, (vii) post-implantation 

status (e.g. seizure-free after resection).

• Given iEEG sensitivity and specificity (i.e., high SNR and spatial specificity), a 

finding that is not significant at the group level but that is replicated in a subset 
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of the participants can be a serendipitous finding and therefore worth reporting as 

a non-significant observation of interest.

• Some statistical approaches (e.g., combining p-values or correcting for multiple 

comparisons) imply some prerequisite(s) such as the (in)dependence of the 

measures (e.g., iEEG channels). Data’s prerequisite(s) inherent to the use of a 

given statistical method should be explicitly stated.

• Although correction for multiple comparisons is required to control the number 

of false positives (type-I errors), there is currently no good way to deal with 

how type-II error rates are affected by the spatial sparsity (e.g., the density 

of surrounding contacts being different for each brain location), the difference 

between working with a volume-based or a surface-based approach and the 

related dependence between electrodes. Acknowledging the potential limit of the 

statistical approach and providing related information should be part of the iEEG 

good practice to assist future replication.

5.3 Combining recording sites across participants

Combining data across participants implies expressing individual participants’ electrode 

locations in a space that is common for all participants (see section 2) and consequently 

aggregating electrodes. This procedure faces two main challenges. The first challenge is the 

tailored surgical placement of electrodes in each participant. The second challenge is the 

variability in each individual’s brain anatomy and underlying brain function.

To combine data across participants, three main approaches are followed. The first relies 

only on spatial normalization, which can either be volume based or surface based. It 

results in a table with the coordinates ([x y z] positions in mm) in a normalized space 

(e.g., MNI) for each electrode. In the second approach, the normalization is combined 

with a parcellation (atlas based or geometrically based), where the labels are mapped to 

the electrodes. It results in a table containing a list of electrode names and corresponding 

labels (i.e., name of the parcel). These two approaches can be further complemented using 

functional information (e.g., a localizer task). In the following sections, we describe the 

different approaches and discuss their advantages and weaknesses, especially regarding the 

challenges raised by individuals’ peculiarities.

5.3.1 Based on coordinates—Once the brain and electrode locations of each 

participant are registered in a standardized space (e.g., MNI, see section 2.2), the electrodes 

with similar coordinates can be compared between participants. A simple way is to 

aggregate electrodes based on their distances to each other. However, this approach neglects 

anatomical information, for instance by aggregating electrodes located on two opposite 

sides of a sulcus while not aggregating more distant electrodes lying on the same gyrus. 

To circumvent this issue, aggregating based on electrode coordinates has been sometimes 

completed by considering broad anatomical landmarks, such as cortical lobes or gyri (see 

the first paragraph of section 5.3.2.2). That is to aggregate electrodes close to each other 

and visually belonging to a ROI. While refined as compared to a pure distance-based 

approach, this alternative often relies on a subjective appreciation of the ROIs which does 
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not favor replicability and remains coarse, especially for those uninitiated in brain anatomy. 

Nevertheless, working with electrode coordinates facilitates comparison between studies, 

especially when it comes to combining single cases.

• In single case reports we recommend providing electrode coordinates in a 

normalized space (e.g., MNI, including the exact reference template space 

and the procedure for normalization and electrode mapping, see section 2.2.2) 

to make further meta-analysis possible. Electrode coordinates should ideally 

be complemented with a visualization of their anatomical location in the 

individual’s brain.

5.3.2 Based on labels—A finer and more objective means to combine electrodes across 

participants is to make use of a parcellation by aggregating electrodes belonging to the same 

parcel (see section 2.3). Parcellation can either be derived from an atlas projected on a 

template brain, or based on a geometrical parcellation of a template brain. The parcels are 

then defined by the parcellation granularity (i.e., the number and the size of the parcels). 

When the parcellation is atlas-based, parcels are further informed by the atlas feature(s) 

(e.g., anatomical, functional).

• For multiple case studies and group studies, we recommend aggregating 

electrodes on the basis of the anatomical information defined by a parcellation 

and to report all information regarding the procedure applied to label the 

electrodes (i.e., registration, electrode mapping, parcellation reference and 

probabilistic approach, as described in section 2.3.2). Because there are more 

ways to define parcels than there are brain templates, aggregating electrodes 

using labels adds variability in the literature. However, this approach relies better 

on brain anatomy than aggregating using coordinates.

5.3.2.1 Atlas based: Registration of the individual’s space to a normalized space allows 

the researcher to deal with electrode positions in both the normalized space and the 

individual space. The transformation of the electrodes from individual to normalized space 

maps the electrodes to the related atlas parcellation(s); inversely, the transformation also 

permits mapping the atlas parcellation to a delineation of the individual’s brain (see section 

2.3). In both cases, the electrode positions are labeled based on the parcellation and therefore 

can be aggregated across participants. The two approaches lead to similar results as both 

approaches rely on the same transformation. The normalized space is evidently convenient 

to visualize electrodes from different participants on the same template brain. However, 

there are two advantages to going back to individual space. First, it offers the possibility 

to visually check that the atlas parcellation is correctly mapped and translated into the 

individual delineation. Individual peculiarity in brain anatomy is not rare (Zilles et al., 

1997) and not always well handled by registration algorithms. For instance, Heschl's gyrus 

is duplicated in a large portion of the healthy population (Marie et al., 2015). Second, 

visualizing electrodes in their original individual space facilitates evaluating if an electrode 

is fully or partly belonging to a given parcel. Third, a significant subset of participants may 

have brain anomalies which might not be well handled by normalization algorithm and need 

to be visually checked (see section 2.2.2)
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To map ECoG electrodes, we recommend working with the tissue described as a mesh (i.e., 

surface) because grids/strips lie on the surface of the cortex. In practice, when an ECoG 

strip is inserted between the two hemispheres, working with a surface takes into account 

the fact that the strip of electrodes are only facing one hemisphere. This type of mapping is 

less suitable for sEEG because these depth electrodes are located inside the brain, therefore 

the tissue must be described as a volume (i.e., voxels). An sEEG electrode records activity 

from the various cortical locations in its 3D vicinity, therefore it is not recommended to 

project it to one point (or one parcel) of the cortical surface (e.g., located between two 

sulci, an electrode records activity from both of them). Last, some sEEG shafts penetrate the 

cortical sheet to target deep subcortical structure(s). Because volume-based mapping relies 

on volume deformation of the whole brain (i.e., not only on the cortex but also subcortical 

regions), it is more appropriate for mapping sEEG electrodes on a template brain and for 

labeling sEEG electrodes (see recommendations in section 2.4).

Electrode localization implies some uncertainty inherent to the procedure itself (see section 

2). To take into account this uncertainty and the fact that the surface or the volume of an 

electrode (respectively in ECoG and in sEEG) can span more than one parcel of an atlas, we 

encourage the use of a probabilistic approach in electrode labeling to guide the aggregating 

of electrodes (see section 2.3.2 and 5.4.3).

5.3.2.2 Geometrically defined: Prior to the development and widespread availability of 

digital atlases, iEEG researchers used to delineate an individual’s brain and to combine 

recording sites manually (Allison et al., 1994; Halgren et al., 1994; McCarthy et al., 

1995; Puce et al., 1999). For instance, electrodes located in/over the gyrus anterior to the 

central sulcus were labeled ‘motor cortex’, while the ones in/over the gyrus posterior to 

the central sulcus were labeled ‘somatosensory cortex’. This precise but tedious hand-made 

labeling was guided by human brain anatomy atlases such as that of Talairach and Tournoux 

(Talairach and Tournoux, 1988) or Brodmann (Brodmann Korbinian, 1909). With the digital 

era, automation led to a faster labeling procedure, but possibly also to an overconfidence 

in the automated results. This becomes more striking when the spatial precision of the 

electrodes is at a scale that does not match the atlas. First, when an electrode is at the 

border of two parcels, a binary classification (e.g., this electrode belongs to parcel A but 

not to parcel B) overlooks the approximation due to the individual’s brain normalization and 

overlooks the influence of local passive spread of the signals (see probabilistic approach in 

Section 2.3.2). Second, the granularity of the atlas can vary with brain regions and depends 

on the original atlas authors' goals and data used to build the atlas. This may lead to some 

brain regions that are more finely parcellated than others. Consequently, parcels are not 

equal in size which makes some parcels more likely to be associated with the electrodes.

To objectify geometrical structure homology, Trotta and colleagues came up with a solution 

example in the context of ECoG by defining isometric surface-based parcels on the brain 

template to then adjust them to the individual’s cortical anatomy (Trotta et al., 2018). The 

sampling of the standardized surface with parcels permits the investigator to establish a 

correspondence between sets of vertices across participants and thus makes it possible to 

aggregate electrode data over parcels for comparison across participants.
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The method introduced by Trotta and colleagues highlights how difficult it is to perform 

the aggregation of data across participants, and especially the relation between mapping 

electrodes to parcels and the passive signal spread that affects the spatial selectivity of the 

electrodes. When the cortical sheet is projected onto a sphere, two neighboring gyri are 

further away as they are separated by the sulcus in between them, which misrepresents 

the actual distance between the gyri that is relevant from the point of view of passive 

signal spread. Furthermore, this method exemplifies the arbitrary spatial scale at which 

data is aggregated (going from electrodes to parcels), allowing for flexibility in parcel size. 

Combined with the uncertainty in electrode localization (e.g. an electrode that spans a sulcus 

can be assigned to two different gyri), the spatial scale at which data is analyzed results in 

non-trivial consequences for estimates of connectivity and for statistical analysis, as some 

electrodes may be assigned to two parcels whereas other electrodes are only assigned to 

a single parcel. Thus, practically it leads to dependency between some parcels, but not 

between some others (see section 5.3.4).

5.3.3 Based on a functional response or localizer—From a functional perspective, 

even when electrodes are located at a similar location, slight differences in brain folding 

and/or brain organization may explain brain response variability across participants. When 

electrodes are combined across participants, some functional correspondence is assumed 

or expected between electrodes. Yet, the risk of not examining the results from the single 

participant analysis is to overlook inter-participant functional differences within parcels 

and inter-participant functional similarities between parcels. The aggregation of electrodes 

can be functionally informed to take interindividual variability in anatomy and functional 

organization into account. While aggregating electrodes only on the basis of functional 

responses may not be appropriate, functional responses can complement the coordinate-

based or label-based aggregation. For instance, if two electrodes from two participants 

are localized at a distance of more than a few millimeters in a standardized space or in 

neighboring parcels, they are unlikely to be aggregated on the basis of their anatomical 

location. If they do show the same response pattern (defined on neural activity or on iES 

result, see section 1.1.4), it makes sense to aggregate them as their identical response 

suggests their functional correspondence.

However, this flexibility must come with precaution to avoid double dipping. Aggregating 

electrodes using functional responses should not be performed using the statistical effect 

of the response of interest, but to adjust an anatomically-informed aggregation (e.g., 

probabilistic approach in electrode labeling, see section 2.3). Here, the use of an independent 

or orthogonal functional localizer avoids such bias as the functional response is defined on a 

different set of data than the one investigated. For instance, if the research question relates to 

face processing in the fusiform gyrus, running a functional localizer helps to select in each 

participant the electrode, located in the vicinity of the fusiform gyrus, that shows the highest 

SNR in response to faces. In any case, when a functional response is used to aggregate 

electrodes, it has to be reported.
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5.3.4 Challenges, recommendations and reporting advice

• In practice, we recommend making the most of the different approaches to 

aggregate electrodes across participants.

– First, the aggregation must be based on anatomy as it is the primary 

objective feature of electrode location. This step corresponds to 

the labeling of the electrodes (either atlas parcellation or geometric 

parcellation).

– Second, for each participant the electrodes must be visualized 

in individual space together with the individual’s delineation and 

compared to electrode mapping in the normalized space with the 

template brain delineation. This sanity check permits adjusting 

electrode labeling to individual anatomical fine peculiarities and to 

eventually correct the normalization (e.g., an electrode that is located on 

a specific gyrus in single participant space, may end up at the other side 

of a sulcus in normalized space).

– Third, the adjustment can be guided thanks to a probabilistic approach 

in the labeling (see section 2.3) and may be informed by functional 

data that have to be orthogonal/independent to the effect of interest. For 

instance, if an electrode is on the edge of a parcel but its centroid is 

outside, it can be reasonable to incorporate this electrode to that parcel, 

especially if the response is more similar to the ones observed in that 

parcel in other participants.

• The granularity of a parcellation is critical when iEEG data is aggregated across 

participants. The number of recorded participants being limited, one can try 

to use wider regions/parcels which increases the chance of matching electrode 

locations over participants. However, as part of the iEEG signal is confined to 

a few millimeters, compiling results in regions/parcels with larger size lessens 

its specificity. Thus, the size of the ROI indicates how a given effect (e.g., brain 

response) is highly focal or spans a wide region. More generally, we recommend 

defining the level of granularity or the choice of an atlas in link with the research 

question.

• As epilepsy is more prevalent and epilepsy surgery more likely to be successful 

in some regions (e.g., temporal lobe), electrode density varies over the brain 

making some regions/parcels more likely to host electrodes and thus more likely 

used for analysis. Thus, in iEEG, aggregating electrodes across participants faces 

sampling variability in spatially sparse data. That is, electrode density varies over 

each participant’s brain and between participants, making participants unlikely to 

contribute equally to the group analysis.

– We recommend considering the potential confounding effect of having 

a different number of electrodes per parcel over participants. These 

confounding effects depend on the quantification of the effect, e.g., 

for ERPs averaged over electrodes there is no amplitude bias, whereas 
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such a bias can be present if non-linear measures are applied. As with 

any selection of data points, if some electrode(s) is (are) selected as 

representative of a given parcel, it should be motivated by the research 

objective and reported. Overall, such selection process introduces many 

degrees of freedom (e.g., which possibly valuable data is thrown out) 

and only applies to statistical scenarios where inter-electrode and inter-

participant variance cannot be separately accounted for. However, using 

a nested model may in principle be enough to account for multiple 

electrodes per participant (see section 6.9.1).

– In multiple case studies and in group studies, we also recommend 

reporting the density of electrodes per region/parcel to inform about 

the spatial sampling bias at the population level. This can be achieved 

by depicting electrode distributions over the brain with a color code 

to indicate which electrodes are aggregated together across participants 

(see also section 2.4). If the electrode density is different over different 

brain regions, that should be acknowledged and reported, as the 

statistical results from a densely sampled region will be more robust 

and are more likely to be representative of the population than those 

from poorly sampled regions.

– Conversely, in the case where electrodes from all participants are 

considered together to create a ‘meta participant’ (as in a multiple 

cases study, see section 5.3.2), some disparity may arise with some 

participants contributing more than others. While the ‘meta participant’ 

is not recommended, if this approach would be followed it would 

require reporting the contribution of each participant, for instance by 

plotting all electrodes in a normalized space with a color code for each 

participant.

• The variability of brain responses is part of the richness of iEEG data and reflects 

differences in brain organization. We recommend visualizing the individual 

response patterns when combining electrodes across participants and to estimate 

the variance across the combined response. As an example, slight variability in 

the placement of an electrode within the active cortical area or the choice of 

the reference could result in an ERP polarity reversal across participants (see 

section 4.1.2). This illustrates the relevance of visualizing individual data before 

averaging across individuals.

• Parcels from the same participant are not independent for statistical purposes, 

and even less when the method used to combine electrodes allows for 

redundancy (i.e., an electrode is mapped to different parcels). This lack of 

independence must be kept in mind for statistical analysis, especially in the case 

of connectivity measures as it introduces artificial correlation between parcels. 

Furthermore, the dependence between parcels should be taken into account in the 

choice of a method to combine p-values (see section 5.2.2) or when correcting 

for multiple comparisons (Groppe et al., 2011).

Mercier et al. Page 78

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• As discussed in section 2.4, electrode projection should not be confused 

with functional data interpolation. The projection of electrodes permits linking 

recording sites to the anatomy, and combining sites across participants. The 

interpolation of the functional outcomes of the iEEG analysis is useful for 

visualization, yet it is not recommended for grouping data across participants.

5.4 Data visualization

• The graphical representation of the statistical results is at the heart of good 

research practices as it conveys/summarizes both the interpretation of the 

analysis and the quality of the assessment (Rousselet et al., 2016). For 

that reason we recommend providing as much information as possible about 

the distribution (e.g., confidence intervals, individual/single trials data, in 

experimental design with paired comparisons one should provide the distribution 

of pairwise differences; for an example see Figure 1 in (Rousselet et al., 

2016), for illustrations of statistical summaries si (Wickham, 2016)21, for further 

discussion see (Weissgerber et al., 2015)). Some of this functionality is available 

in the “R Analysis and Visualization of iEEG” (RAVE) software (see Figure 4 

in (Magnotti, 2020)) and in the MIA toolbox (Figure 10; Dubarry et al. 2022). 

When it is not possible to depict on the same figure the effect of interest and 

its representativeness, we recommend providing the necessary information as 

supplemental material.

• The depiction of iEEG results as a volume or on the surface implies in most 

cases an interpolation in space (otherwise the data is barely visible as it is limited 

to the single voxel corresponding to the electrode centroid). The extent of that 

projection should take into account passive signal spread (see section 2.3.2) and 

should be reported as it can visually bias the representation of density-sparsity of 

the electrode (see sections 2.4 and 5.3.4).

• When all patients from a group study have been combined in a normalized 

space, we recommend going back-and-forth between the global picture and 

its individual components. That is, to first explore the data/result in a 4D 

representation (i.e., space and time) to reveal potential ROI and corresponding 

single electrodes, and then zoom in on each individual's response profile 

accompanied by the individual’s localization (see Figure 15 from the free 

software HiBoP22 available as an online platform23, HiBoP is designed 

specifically to combine group-level and single patient-level analysis).

6. Perspectives

The previous sections of this article show the current state of iEEG research. In this section 

we present where we envision research in iEEG to be in ten years from now. In the last 

decade, iEEG research progressed in many ways, but the directions that were taken might 

21. https://ggplot2-book.org/statistical-summaries.html 
22. https://github.com/hbp-HiBoP/HiBoP 
23. https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/ 
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not only be the ones that were anticipated ten years ago. Inherited from the global tendency 

to set a parallel between scientific advancement and technical/methodological progress, 

anticipations on iEEG progress commonly tend to overlook what can be done with what is 

already accessible. While it is certain that the use of new technologies energizes discoveries, 

achievements are also reached thanks to a better organization of current resources (Frith, 

2020; Salo and Heikkinen, 2018; Stengers et al., 2018). Also when it comes to envisaging 

the most promising steps forward on the basis of what they were ten years ago, it is 

reasonable to assert that technology indirectly fuels iEEG research as much as directly (e.g., 

big data servers versus micro-electrodes).

Probably the most remarkable advance of the last decade is the spread of the use of iEEG 

for fundamental research. Together with the multiplication of iEEG research centers, a 

multitude of tools have been published and shared with the community. In the same vein, 

the emergence of open science and the realization of its utility for both the researcher and 

the common good had fostered the sharing of data and methods. Beside, while the use of 

new techniques such as micro-electrodes tends to be restricted to some specialized centers, it 

has brought a cardinal perspective in cognitive neuroscience linking both spatial scales and 

investigations across species.

6.1 Strengthen patient-centered collaborative work

In the next few years, the trend is likely to see a larger number of centers implanting 

patients, which might reduce the number of patients implanted in some established centers. 

Yet, the overall number of patients participating in research is expected to continue to 

increase as well as the tendency to see the implantations being more individually-tailored. 

Another tendency among current iEEG centers, pertains to a move from ECoG to sEEG, 

possibly due to the procedural morbidity of ECoG (Jehi et al., 2021; Tandon et al., 2019). 

In the long run, a possible scenario that must be envisaged is a decrease in the number of 

acutely implanted patients, thanks to improved diagnostics and treatment for epilepsy. This 

positive medical perspective should motivate the storage and the sharing of structured data, 

to make the most out of the current opportunity to directly record from the human brain 

(at least for ECoG data if it becomes rare). Concurrently, we may see an increase in the 

use of chronic implants to complement, or replace, pharmaceutical treatment; an approach 

which offers opportunities for longitudinal recordings (Henin et al., 2019; M. Aghajan et 

al., 2017; Meisenhelter et al., 2019; Rao et al., 2017; Topalovic et al., 2020) and naturalistic 

neuroscience (see section 6.5). These scenarios are more likely to occur if collaborative 

work is strengthened and if good practices are placed at the heart of iEEG research. It 

follows that in the near future we expect to see a more efficient use of the current iEEG 

resources at two levels: between research centers with an expansion to the Open Science 

framework, and within iEEG centers with more synergistic interactions between the clinic 

and the research (Figure 2).

6.2 Transparent reporting and data sharing

The rationale for good research practices encompass a wide spectrum of motives. On the one 

hand research is a common good supported by public funding, which implies duties such as 

openness and credibility; on the other hand scientific standards and publication guidelines 
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force us to be critical about what we do. At minimum, good research practices include clear 

reporting as well as the sharing of data and analysis scripts to allow replication (i.e., the 

same results are found if the same data is analyzed the same way).

Recent initiatives for reproducible M/EEG research promote good practices in reporting by 

defining recommendations and warning on issues related to data analysis (Keil et al., n.d.; 

Pernet et al., 2020). It might be argued that the high spatial sensitivity and high SNR of 

iEEG make iEEG results less dependent on the choice of an analysis method. For instance 

there is potentially less ambiguity about localizing neural activity as compared to the use of 

M/EEG: with iEEG the measure does not depend on a specific inverse solution algorithm. 

Yet, it is crucial to specify how data were processed, especially for referencing and for 

normalizing the individual brain getting coordinates in a normalized space. Following the 

M/EEG initiatives, and anticipating the need to grant future iEEG research, the present 

guidelines aim at paving the way for good practices in iEEG.

Replicable research implies publishing with sufficient detail to make the study/data reusable. 

It relies also on open data sharing that must follow a community-driven organizational 

framework to make data understandable. To serve that purpose the Brain Imaging Data 

Structure specification (BIDS) was created for MEG (Niso et al., 2018), for EEG (Pernet 

et al., 2019) and subsequently extended to human intracranial electrophysiology (Holdgraf 

et al., 2019). For now, the iEEG BIDS specification and examples mainly relate to the 

technical aspects of the recording and not so much the clinical aspects of the participants. 

In the future, we anticipate the iEEG community will extend the existing BIDS raw format 

and define BIDS derivatives (e.g., with clinical annotations and details on lesions and 

impairments), in line with Figure 2 that indicates the interaction between the clinical and 

research team. We hope that this article will encourage and prime the definition of these 

improvements to BIDS.

As an aftermath of BIDS systematization, we foresee the multiplication of open access 

local iEEG libraries (e.g., see 24, 25(Miller, 2019) or (Berezutskaya et al., 2022)). Akin 

to the ERP-core for EEG (see 26), the BrainMap (see 27) and Brain Activity Atlas (see 
28) for fMRI, we further expect the emergence of online meta-databases that will permit 

examining iEEG results from studies that investigated a certain topic and/or a specific part 

of the brain. The ERP-core is a free online resource for human ERP research building upon 

the standardization of ERP paradigms and analysis protocols across studies (Kappenman et 

al., 2021). The BrainMap is a database of published functional and structural neuroimaging 

experiments (Vanasse et al., 2018) and the Brain Activity atlas (BAA) is a battery of 

functional localizers in a large cohort of healthy adults using task-evoked fMRI. Similarly, a 

recent initiative, the Human Intracranial EEG Platform, is an open-source platform designed 

for large scale and optimized collection, storage, curation, sharing and analysis of multiscale 

human iEEG data at the international level (see 29 and 30).

24. http://memory.psych.upenn.edu/Data 
25. https://searchworks.stanford.edu/view/zk881ps0522 
26. https://github.com/lucklab/ERP_CORE 
27. http://brainmap.org/ 
28. http://www.brainactivityatlas.org/ 
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Such meta-database resources will be an efficient way to re-use data, and transfer what has 

been done from one study to another by different members of the iEEG community. iEEG 

databases should not be restricted to group studies but also open to single-case studies. It 

will help test reproducibility (e.g. if there is a channel at a given location what can we expect 

to record there?), as well as going back and forth between an individual and a population 

(i.e. taking into account the richness of data variability). Open databases will be pertinent 

to combine multiple datasets from different protocols to disambiguate/complement results. 

Last, knowing “what is happening where” helps to refine hypothesis-driven research (e.g., to 

select an experiment with regard to electrode localization, to build some priors in a Bayesian 

perspective) and it can reveal the “holes in the map” (i.e., foster exploratory research).

As Open Science practices become more common in general, we expect this to positively 

impact the sharing of knowledge in iEEG practices. Sharing common iEEG artifacts is 

one concrete example that would benefit the community (see sections 1.3.4, 1.3.5 and 

3.2). Many researchers have gained experience with identifying artifacts in iEEG data, 

but this knowledge/expertise remains available in somewhat isolated form within smaller 

communities of researchers (e.g., in a local research lab). A shared database of iEEG 

artifact templates (both physiological, e.g. spikes, and non-physiological), contributed to by 

different researchers, would be a valuable resource for the community, and especially for 

the training of early stage researchers in iEEG analyses. Ideally, in this ‘atlas’, the iEEG 

signal would be accompanied by other types of recording to validate the artifacts (e.g., EOG 

or EMG recordings) and to better understand iEEG physiology (i.e. passive field spread). 

An interest for artifact-contaminated data also applies when developing new data analysis 

methods. For instance, for machine learning approaches both "positive" and "negative" data 

samples are needed to prevent bias in classification results (see section 6.9.2). In the making 

of such database(s), the contribution by various researchers would align with the concept 

of "team science" and a live database format would allow information to be updated and 

improved, differently from the static format of regular peer-reviewed publications.

While iEEG can be considered a niche, and as such might be overlooked by researchers 

working with other approaches, it provides an incomparable opportunity to cross-validate 

results through a multimodal approach. In the next decade, we anticipate more translational 

work between approaches (e.g., iEEG and fMRI), as well as within iEEG (e.g. passive 

recording and electrical stimulation) and with the deep-brain approach used in movement 

disorders (de Hemptinne et al., 2015; Little et al., 2021). With a great deal of precautions 

regarding ethical issues (see section 1.3.8), clinical information available about the 

participants (e.g., electrostimulation, multiscale recordings) may be incorporated, thereby 

creating multimodal databases similar to those available in the fields of MRI (see for 

instance the Allen institute initiative, see 31). The results of these may fuel brain modeling 

such as in the Virtual brain project or biophysical models based on iEEG signal model (see 
32 and (Medani et al., 2021)). Last, this multimodal approach is also likely to go beyond 

29. https://www.humanbrainproject.eu/en/medicine/human-intracerebral-eeg-platform/ 
30. https://ebrains.eu/ 
31. https://portal.brain-map.org/ 
32. https://simnibs.github.io/simnibs/build/html/index.html 
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imaging data in humans, like interspecies cross-scale measures (Paulk et al., 2021) or the use 

of additional big data such as genetics (Gao et al., 2020).

6.3 Bringing together the clinic and the research

Bringing together clinicians and researchers creates many opportunities for future research, 

given their overlapping interests and complementary skills. As participants usually 

participate in several studies, in addition to the standard clinical procedures, it makes sense 

to share and discuss findings collectively; in much the same way as clinical meetings often 

discuss single patients. It is obviously beneficial for the patient, because an exhaustive 

knowledge of task-induced brain activations can complement or guide functional mapping 

(Crone et al., 1998b, 1998a; Sinai et al., 2005). It is also desirable for research teams, who 

might use observations made in that patient in other cognitive paradigms to discriminate 

between alternative interpretations of their own results. Last but not least, the synergy 

between clinical and neuroscientific expertise is needed to address the complex relationship 

between pathology and cognition, for instance the effect of epileptic activity on cognition. 

Nonetheless, non-clinically validated research (e.g. task, methods) entails a risk if it 

influences clinical decision making. Clinicians need to be aware/informed of the validation-

status of any research result. Research should not modify the clinical electrode placement 

plan and it should be always clear to the patient that participation in research is not part of 

the clinical routine (e.g., by itself it should not guide surgery away from major functional 

networks as it is not certain that it would prevent post-surgical cognitive deficits).

The medical expertise is unique for iEEG as the clinic is by essence multimodal and 

multidisciplinary. Clinicians start the exploration of the patient before the implantation 

with different approaches (e.g. semiology, surface recording, imaging, see section 1.1.1). 

Knowledge about the medical history, pre-op imaging, and iES can potentially shed a light 

on the results of some research protocols, for instance, when epileptic status influences 

cognitive performance, to the reorganization of some brain functions or to the effect of direct 

electrical stimulation.

In parallel, researchers in iEEG can encourage technical and methodological development 

in the clinic. For instance by pursuing higher standards in data quality, by encouraging 

the clinical validation and use of high-density probes, or by motivating the application of 

advanced signal processing. In the past decade, common iEEG hardware has not changed 

significantly (i.e., amplifiers and electrodes). Considering the recent technical advances with 

cochlear implants, peripheral nerve recording-stimulation, or deep-brain-stimulation, we see 

some potential in technical modernization and we anticipate a convergence of clinical and 

research sides to meet the same standards (e.g., technical and methodological) for a mutual 

benefit.

6.4 Innovations in electrodes

A brief review of the technical innovations of the last decades shows that many electrode 

prototypes have been developed but that their use has been limited to few hospitals/centers 

(Engel et al., 2005). For instance, the multipronged temporal pole electrode array developed 

to target the temporopolar cortex (Abel et al., 2014). Another example is the depth-strip 
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hybrid operculo-insular electrode that was developed to investigate perisylvian/insular 

refractory epilepsy (Bouthillier et al., 2012), and whereas this hybrid sEEG-ECoG approach 

on the same probe was interesting, it did not disseminate in the iEEG community. Cross-

scale measurements, however, have had a long history in iEEG. Already in the nineties, a 

model of hybrid depth electrodes that included high-impedance bipolar contacts between 

low-impedance sEEG contacts allowed the recording of both single neuron spikes and LFPs 

(Howard et al., 1996). Since then, different configurations of iEEG probes for single-unit, 

multi-unit and LFP recording have become more common (Pothof et al., 2016). The two 

most famous of which are the Behnke-Fried microwires inserted through the macroelectrode 

shaft and protruding from the tip of a depth sEEG macroelectrode (Fried et al., 1997; 

Lehongre et al., 2022); and the high density ECoG grids with smaller contacts which 

increase spatial density of the implant (Bleichner et al., 2016; Branco et al., 2017; Flinker 

et al., 2011; Muller et al., 2016; Ramsey et al., 2018). The study of epileptiform activity 

has been further facilitated by the use of dense two-dimensional cortical microelectrode 

arrays (Schevon et al., 2008) and laminar probes to drive current source density from multi-

unit activity recorded across cortical layers (Csercsa et al., 2010; Dougherty et al., 2019; 

Halgren et al., 2015, 2019). Laminar ‘optodes’ have also been developed to compare the fine 

hemodynamic response with laminar source current density and multi-units activity (Keller 

et al., 2009). Last, sEEG recording was used to perform microdialysis by means of a probe 

inserted through the lumen of the depth, which permitted to directly sample extracellular 

neurotransmitter concentration in midbrain (Fried et al., 2001). The aftermath of these 

advances on iEEG probes is twofold. First, they show that technological developments in 

the field of iEEG may serve the clinical cause. Second, they led to important findings in 

cognitive neuroscience, especially in domains where animal research has its limits (e.g., 

language function).

We anticipate that, in the next decade, technical developments will mainly focus on a 

quantitative orientation with an increase in the electrode density per probe or grid (Chang, 

2015; Schippers et al., 2021). As for now, the dissemination of the multiscale probes and 

probes with higher spatial density beyond the centers where they were developed, is to 

be expected only if a clear benefit for the patient is established. For instance, the use of 

multiscale electrodes may spread if it contributes to micro-surgical intervention which in 

return must lead to an improvement of epilepsy treatment (i.e., diminish epileptic seizure 

and lessen the risk of brain function deficit as compared to a classic intervention). In 

direct link with the progress in electrode specification (e.g. micro-electrodes), the acquisition 

set-up should reach higher standards, especially regarding the acquisition sampling rate to 

allow seeing single unit activity. The main limits to this renewal of the materials being the 

cost for the hospital and the regulatory issues (e.g., onerous approval, insurance coverage).

6.5 Naturalistic neuroscience and discovery science

Major neuroscientific conclusions can be reached by investigating neural activity during 

unconstrained behavior and in naturalistic conditions (di Pellegrino et al., 1992; Glanz et 

al., 2018; Hamilton and Huth, 2020; Matusz et al., 2019; Rizzolatti and Fabbri-Destro, 

2010). Yet, two factors must coexist to make such a discovery possible: 1) high signal-

to-noise recordings, with reliable neural responses at a single-trial level (even during 
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free movements); 2) high spatiotemporal resolution, to capture the immediate effect of 

environmental events or behaviors. iEEG offers such properties and is therefore suited 

to investigate the neural basis of realistic behavior (Del Vecchio et al., 2020; Podvalny 

et al., 2017). These characteristics are also critical when considering the development of 

close-loop experimental settings (Branco et al., 2018a; Zelmann et al., 2020), and related 

foreseen technological applications for brain computer interface (Moran, 2010). Because 

iEEG appears as the tool of choice for observation-driven 'discovery neuroscience' (Genon 

et al., 2018), we forecast that research with ecological approaches will spread in upcoming 

years.

The prospect of seeing an increase of ecological iEEG research is fostered by the emergence 

of active wireless devices (i.e., amplifier/transmitter implants) for epilepsy monitoring. We 

predict that these electrodes will have a drastic impact on iEEG research for three reasons. 

First, the signal-to-noise ratio of iEEG is good enough to extract meaningful neural signals 

in unique situations (e.g., single trials, individual movements). Second, iEEG is relatively 

immune to most artifacts that contaminate scalp signals when participants perform daily 

life activities (but see recommendations in section 3.2). Last, iEEG does not imply strict 

restrictions on the participants' motor behavior, in contrast with non-invasive recordings 

(e.g., fMRI, MEG), for which strict technical aspects prevent unconstrained exploratory 

neuroscience (e.g., supine position, limited space exploration, altered visual feedback). In 

that regard, the recent development of wireless iEEG and chronic recordings from implanted 

devices opens endless perspectives to naturalistic neuroscience (M. Aghajan et al., 2017; 

Meisenhelter et al., 2019; Stangl et al., 2021; Topalovic et al., 2020) and will likely recast 

the clinical monitoring. Continuous iEEG monitoring is a unique opportunity to study 

human brain activity as it happens in daily life (e.g., active reading, conversation) and not 

only in link with the pathological activity. For researchers, it permits testing, in ecological 

situations, the validity of functional interpretations drawn from 'classic' lab experiments (see 

the BrainTV approach (Jerbi et al., 2009b; Lachaux et al., 2007b) or the BCI2000 approach 

(Schalk et al., 2008)). Surely, wireless devices will require clinical approval, which might 

be facilitated by the fact that: (i) it permits a continuous recording, even when the patient 

has to move in the hospital, (ii) wireless devices reduce movement related artifact thanks to 

the absence of cables/headbox, (iii) the risk of infection is lowered due to the absence of 

transcutaneous wires.

The ability of participants to report their subjective experience opens a whole new universe 

of possibilities, as changes of neural activity can be related not only to externally-triggered 

events but also to internally-generated ones (see for example the investigation of spatially 

sparse but action specific brain activation during real-life orofacial motor behavior captured 

with the audiovisual monitoring system (Kern et al., 2019)). This requires that patients have 

access to their own neural activity in real-time, to detect systematic relationships with their 

own perceived mental events (such as emotions, mental images, verbalized thoughts, etc.). 

iEEG offers that opportunity, and a set-up for such neuro-phenomenological investigation 

has already been proposed more than a decade ago (Jerbi et al., 2009b; Lachaux et al., 

2007b). We believe that in the future, this kind of approach will spread in most iEEG 

centers as more and more groups seek to investigate the neural grounding of naturalistic 

behavior (including covert mental acts) and the ecological validity of conclusions obtained 
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in constrained laboratory conditions. To go beyond a mere collection of unrelated anecdotes, 

one could envision that a set of patients are recorded - with the video - during a systematic 

sequence of natural behaviors under the guidance of an experimenter. There the research 

would simply engage the patients in a scripted set of activities, as in neuropsychological 

evaluation. To make the most of this approach, we anticipate that iEEG databases will 

incorporate video recording of natural behavior by means of techniques to replace the 

patient with an avatar. Finally, the development of live/online-analysis will permit a closed-

loop approach (Zelmann et al., 2020), which will improve research investigations by 

optimizing stimulation approaches using neurally informed personalized targets, as well 

as direct electrical stimulation protocols and neuromodulatory therapies.

6.6 Electrical stimulation used for research purposes

Intracranial electrical stimulations (iES) are used clinically to map the organization of 

functional and epileptic networks in the patient’s brain (see section 1.1.4.1). iES consists of 

either a high-frequency train of 50 or 60 Hz stimulation lasting a couple of seconds (HFS), 

or of a series of individual pulses sent typically every second (LFS). Historically, the two 

types of iES can be traced to the two iEEG approaches: HFS was first implemented in ECoG 

(Penfield and Boldrey, 1937) and LFS in sEEG (George et al., 2020). Each iES type has 

its advantages; for example, HFS is more effective to induce seizures, with LFS the false 

positives are rare, and the brief stimulation artifact in LFS allows visualizing the evolution of 

induced discharges (Kovac et al., 2016; Mouthaan et al., 2016; Munari et al., 1993; Valentín 

et al., 2005; Zangaladze et al., 2008). Also, there is a large variability in the use of iES from 

center to center, which is further increased by contextual factors: the interference of iES with 

a cognitive process manifest during active engagement of that process, in some instances the 

effect of iES varies with the timing relative to an external stimuli (Keller et al., 2017), and 

different brain regions do not have the same responsiveness (Murphey et al., 2009; Trevisi 

et al., 2018) (see section 1.1.4.1). In line with our forecast of increased interaction between 

clinic and research, we expect further developments related to iES (see next paragraphs): 

first the exploitation for research purposes of iES data stemming from clinical procedure 

(i.e., functional mapping), second in the application of iES during research protocol. In 

turn, these developments will contribute to a better understanding of the neurophysiology 

of iES (i.e., the links between ES specs and the underlying electrophysiological outcomes), 

and to define standards for iES parameters (e.g., current amplitude, duration of the HFS 

stimulation, inter-stimulation-interval of the LFS).

When an electrical pulse (LFS) is applied at a given iEEG site, this can generate an evoked 

potential (ERP) at iEEG sites that are anatomically connected to the stimulated site (David 

et al., 2010; Keller et al., 2014; Matsumoto et al., 2004), such iES related potential (iESRP) 

is also referred to as Cortico-Cortical Evoked Potentials (CCEP). Analyses of the latency 

and the amplitude of such iESRPs provide a measure of connectivity between the two 

sites (see sections 4.3.1 and 4.3.2) and permit drawing neural networks of the patienťs 

brain. Using a ROI-like approach, this method permits grouping sites over different patients 

which lie within the same brain region and are connected to the same target regions. Using 

this approach on iEEG data over different centers, and originally acquired for clinical 

purposes, a large-scale open initiative has resulted in the construction of a Functional Brain 
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Tractography atlas33 (Trebaul et al., 2018). Until now, due to the lasting HFS artifacts, the 

investigation of data with high-frequency train stimulation (HFS) remains less investigated 

(Barborica et al., 2022; Perrone‐Bertolotti et al., 2020). Yet, considering the amount of HFS 

datasets existing in iEEG centers, and more generally of any iES, we anticipate HFS data to 

be exploited similarly (e.g. to construct HFS based connectivity atlasses) and expect further 

investigations comparing stimulation types, and between iES based atlases and structural 

connectivity (Crocker et al., 2021; Donos et al., 2016; Silverstein et al., 2020).

During the functional mapping in clinic, it is common to observe that iES impacts cognition 

by either eliciting or impairing a process (see section 1.1.4.1), such as the perception of a 

stimulus (e.g., disruption of face recognition, hallucination of a place), enhancing (Ezzyat et 

al., 2018) or disrupting memory (Goyal et al., 2018; Jacobs et al., 2016), or motor behavior 

(e.g. speech arrest, eye movement). In link with some research questions, iES has been 

utilized to establish causal inference, not only to relate a structure and a function but also 

to assess the neurophysiological basis underlying a cognitive process. For instance, iES 

was used to mimic local neural activity (Jacobs et al., 2012), which can in turn modulate 

behavioral performance (Alagapan et al., 2019; Kucewicz et al., 2018; Suthana et al., 

2012; Titiz et al., 2017) in a task specific manner (Hansen et al., 2018; Jun et al., 2020), 

and/or shape network dynamics (Beauchamp et al., 2012; Fell et al., 2013; Khambhati et 

al., 2019; Kim et al., 2018; Solomon et al., 2018). However, these investigations remain 

sparse. Because iES is the only approach allowing interplay with neural activity in humans 

with millimeter spatial specificity, we forecast a growing interest for the use of iES during 

research paradigms.

6.7 From iEEG to the neuroscience of brain lesions

An increasingly diffuse approach in the drug-resistant focal epilepsy surgery is represented 

by sEEG-guided Radiofrequency-Thermocoagulation (RFTC), i.e. a set of small focal 

cortical lesions informed by the sEEG recordings that are performed as a therapeutic 

option immediately before the sEEG electrode removal (Bourdillon et al., 2017; Cossu 

et al., 2015; Dimova et al., 2017). Beyond their relevant clinical value (Cossu et al., 

2015), such a procedure may offer a solution to a longstanding issue in the neuroscience 

of brain lesions. Indeed, a major goal of system neuroscience is the comprehensive 

understanding of the structural, functional and connectional modifications following brain 

lesions. However, the impossibility to compare the post-lesional recordings with pre-lesional 

ones prevented the achievement of mechanistic insights into post-lesional processes like 

adaptive neuroplasticity and diaschisis (Fornito et al., 2015).

In this realm, the effects of controlled lesions can be assessed with spatially resolved 

electrophysiological recordings and compared to prelesional measurements within the same 

individual (Russo et al., 2021). Following this principle, Russo et al (2021) demonstrated 

that after RFTC, not only the perilesional area presented an increased delta activity whose 

amplitude rapidly decayed with distance, but also that sleep-like slow waves were prominent 

33. https://f-tract.eu/atlas/ 
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in the perilesional areas but could also percolate through a network of connected areas as 

predicted by individual patterns of long-range effective connectivity.

Despite the application of RFTC being solely guided by clinical purposes, the collection of 

pre- and post-lesional iEEG data might enrich and complement the current knowledge about 

brain functions with causal, focal and well-localized evidence.

6.8 Exploiting white matter signals

In the case of sEEG about 30–40% explore the white matter (WM) (Mercier et al., 2017). 

To date, these signals have been used mostly to compose the reference channel (see sections 

1.3.2 and 3.3.1.2), yet the value of the WM signals is still underexplored. In a recent study, 

Mercier and coworkers showed that, once accounted for the backpropagation and volume 

conduction effects from the nearby cortical electrodes, the signals recorded from white 

matter tracts can also reflect neuronal communication between distant regions of cortex 

through WM fiber tracts, with small but positive cross-correlation time lag values. Similar 

conclusions were obtained by Rizzi and colleagues (Rizzi et al., 2021), who showed that the 

WM recordings increase in the gamma band power along visual stimulations following the 

neuroanatomical distribution of the optical radiation according to both in-vivo and ex-vivo 

investigations. Furthermore, even in this study the timing observed in the leads intersecting 

the optical radiation differed from that observed in the other leads exploring the WM or 

the gray matter leads, reinforcing the notion that the sEEG signal collected from WM leads 

has peculiar features related to the functional role of the networks incorporating the specific 

fibers. Studies have also investigated WM contacts using intracranial electrical stimulation 

(iES, see sections 1.1.4.1 and 6.6), and showed the relevance of electrically stimulating WM 

to defined functional connectivity in brain networks (Koubeissi et al., 2013; Solomon et al., 

2018).

Such a picture opens up to two main points to be considered in the design of an iEEG 

experiment and the analysis of the relative data. On one hand, WM leads cannot be defined 

as being neutral regardless of the neural processes that will be engaged in the patient; 

consequently, WM contact(s) that compose the reference should not only be anatomically 

identified but also characterized according to functional criteria (e.g., minimum variance, 

see section 3.3.1.2). On the other hand, the large amount of data regularly collected from 

WM leads in sEEG recordings provides valuable information to describe the anatomical and 

functional correlates of several WM bundles. Given their coherence with tractography and 

anatomical data, these studies would contribute to characterize the human connectome with 

an innovative source of information, complementing the neuroimaging techniques with a 

four-dimensional (i.e., space and time), time-dependent characterization of WM structures.

6.9 Advances analysis methods

6.9.1 Mixed-effects multilevel analysis to take into account spatial sparsity—
The field of iEEG increasingly acknowledges the importance of appropriately modeling the 

correlation structure of the data, e.g., that electrodes should not simply be pooled across 

participants in statistical group analyses. Improperly accounting for the correlation structure, 

e.g., that electrodes within an ROI will be more correlated within a participant than between 
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participants, can lead to an inflation of Type I errors (Yu et al., 2021). So-called linear 

mixed effects (LME) models provide a flexible statistical framework that allows for group 

analyses and the correlation structure of the data. Such models include both fixed effects, 

such as experimental conditions, which are constant across individuals, as well as random 

effects, which refer to factors that take into account variability between participants or 

observations (see section 5.2.3). Furthermore, they allow the inclusion of nested random 

effect factors, which allow explicit hierarchical grouping of observations (Galbraith et 

al., 2010; Krzywinski et al., 2014), e.g., electrodes within a participant. Thereby, such 

analyses are guarded against individual participants (or electrodes) driving the effects. 

Furthermore, they can easily account for sparse, missing, or unequal numbers of electrodes 

per ROI. Additionally, by nature of being a random effects analysis, the results are readily 

generalizable beyond the participants under study. For these reasons, this type of statistical 

analysis is becoming increasingly prevalent in iEEG studies (e.g., (Golan et al., 2016; 

Kadipasaoglu et al., 2014; Schwiedrzik et al., 2018). LME models are straightforwardly 

implemented in R, e.g., in the well known LME package (Bates et al., 2015), as well as in 

recent versions of MATLAB (some alternatives exist in Python, for iEEG see (Combrisson 

et al., 2021)). However, LME modeling is not without caveats. For example, it remains an 

unresolved question whether to model the data with the maximal random effect structure 

allowed by the experimental design, which includes random intercepts and random slopes 

for all within experimental factors, or to target specific statistical hypotheses with more 

parsimonious models.

6.9.2 Multivariate analysis and machine learning—Like in MRI and M/EEG 

(Haynes, 2015; King and Dehaene, 2014; Ritchie et al., 2019), multivariate analysis benefits 

from the high dimensionality of iEEG data because it combines information from all 

available features (e.g., electrodes and time/frequency points). Moreover, this approach 

provides a means to deal with the varying sensitivity of the iEEG signal across channels (see 

section 3.2.4).

Supervised learning methods (using, among others, multivariate pattern analysis, linear 

discriminant analysis or support vector machine), are generally based on a cross-validation 

procedure (for an introduction see: (Blankertz et al., 2011; Grootswagers et al., 2017; 

Guggenmos et al., 2018)). The algorithm initially classifies experimental conditions 

on a subset of the data by defining decoding weights assigned to each feature (e.g. 

electrode); the weights reflecting how a feature contributed to maximizing the decoding. 

Subsequently, it decodes conditions in another subset of the data and provides decoding 

scores (Anumanchipalli et al., 2019; Moses et al., 2021; Pasley et al., 2012). Decoding 

analysis can be run on processed data (e.g., frequency analysis), not necessitating a-priori 

assumptions on specific data features (e.g., frequency range of interest) and allowing for 

different brain regions (or electrodes) having relevant information in different frequency 

bands (Baroni et al., 2020; Combrisson et al., 2017; Henin et al., 2021; Iemi et al., 2022; 

Ter Wal et al., 2020). This permits to caracterise interplay in functional networks (see 

section 4.3 and 4.4). However, caution is required to reach the full potential of these 

methods and to avoid pitfalls (Combrisson and Jerbi, 2015). For instance, interpreting the 

weights is not straightforward. While their transformation back into activation patterns 
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should permit identifying features that distinguish experimental conditions, in some cases it 

can be misleading (e.g., if a feature provides information about the noise which turns out 

to help the decoding). How to combine data from multiple participants is also a matter of 

debate and, as for other types of analyses, no consensus emerged until now (see section 5).

Multivariate analysis of iEEG data is nonetheless at an early stage and we expect a spread in 

its application to iEEG research, as well as the adoption of other machine learning methods 

such as time-varying dynamic Bayesian network (Collard et al., 2016) and deep neural 

networks (Li et al., 2022).

6.10 Network dynamics—Brain functions can overlap in time and/or space. iEEG 

offers the unique possibility of obtaining electrophysiological recordings with high temporal 

and spatial resolution (ms over a volume of mm3). This allowed researchers to overcome 

the “Heisenberg principle” of non-invasive neuroimaging and recording techniques, i.e., the 

impossibility of having both spatially resolved and dynamic profiles of functioning brain 

networks (see sections 4.3, 4.4 and (Avanzini et al., 2016)).

Thanks to iEEG, four-dimensional maps (spatial coordinates plus the time dimension) 

and networks are now increasingly considered as elements to understand brain activity 

in fundamental neuroscience (Johnson and Knight, 2015; Nakai et al., 2019; Wang et 

al., 2021) and clinical neuroscience (Bartolomei et al., 2017; Burns et al., 2014; Laufs, 

2012; Stam, 2014). The time course of activity (either in terms of amplitude, in terms 

of spectral magnitude or phase) provides a pivotal factor to make a distinction among 

different functional implementations of processes in these networks. Such an analytical 

approach has been successfully applied to studies of conscious perception, in which iEEG 

revealed that sustained, tonic high-frequency responses are required to make the patient 

consciously perceive visual (Fisch et al., 2009) and somatosensory (Del Vecchio et al., 2021) 

stimulations. As the majority of neurons have multidimensional response properties, their 

ensemble activity leads to representations in a high-dimensional space (Gothard, 2020). 

Highly-resolved temporal features of network response allow for the identification of and 

distinguishing between functional roles (Del Vecchio and Avanzini, 2020). We see value in 

further subdividing the temporal domain into multiple scales (e.g., milliseconds, days/weeks, 

age), each reflecting and indexing different neural processes (e.g., brain dynamics, plasticity 

and learning, aging, see (Sonoda et al., 2021)).
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Glossary

7.

To ensure a consistent nomenclature throughout the manuscript and with other guidelines 

(e.g., iEEG BIDS and M/EEG COBIDAS), we here provide a short summary of terms 

related to iEEG research.

patient, research participant, and subject
After being informed about the research goals and the fact that the research does not aim 

to contribute to, but will also not impeach, the clinical procedures, the patient may give 

consent to participate in the research study and from that moment on becomes a participant. 

This is similar to a healthy person that volunteers or signs up for a study: after that person 

receives information about the research protocol and she/he consents, that person becomes 

a participant. Patient stresses the clinical side, participant the experimental side. The term 

‘subject’ relates to being (passively) subjected to experimental manipulations; it is a term 

that we prefer to avoid, as we prefer to highlight the role of an active contributor and 

stakeholder in the research

epileptogenic zone
The region(s) that is (are) necessary and sufficient for initiating seizures and whose removal 

(or disconnection) is indispensable for complete abolition of seizures (Jehi, 2018; Lüders et 

al., 2019; Rosenow et al., 2016; Talairach and Bancaud, 1966)

seizure onset zone
The region(s) from which clinical seizures are initiated. Because the overlap of the seizure 

onset zone (identified by iEEG measurements) and the epileptogenic zone can be imperfect, 

surgical resection of the seizure onset zone may be insufficient to achieve lasting seizure 

freedom (Jehi, 2018; Rosenow and Lüders, 2001)

seizure semiology and symptomatogenic zone
The symptoms experienced by the patient, and the clinical features that they display, during 

a seizure. The seizure semiology is related to the concept of the symptomatogenic zone 

(Rosenow and Lüders, 2001), which does not necessarily coincide with the seizure onset 

zone

interictal epileptiform discharge and irritative zone
A brief pattern of EEG activity that is used as a marker of epilepsy in epilepsy patients. 

Interictal epileptiform discharges originate in the irritative zone (Rosenow and Lüders, 

2001). As their name implies, interictal epileptiform discharges are distinct from seizures. 
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Here, we avoid the commonly-used term “epileptic spikes” to prevent confusion with 

neuronal spiking (i.e. action potentials)

pre/post-implantation imaging
Medical images acquired before and after surgical placement of the iEEG implants to 

allow an accurate representation of the implants’ placement with respect to internal brain 

structures. The post-implantation imaging provides the location of individual recording 

electrode contacts of the implant. Because the implants create imaging artifacts, post-

implantation imaging is generally combined with pre-implantation imaging which allows 

for a high quality rendering of the anatomy. Pre/post-implantation comparison also allows to 

assess post-implant tissue displacement due to edema or any injury due to the implant; in the 

latter case, pre/post-implantation imaging can be further completed with a post-explantation 

scan (i.e., after the electrode implants have been removed). This is also known as pre/post-

surgical scan and post-explantation scan, where surgery refers to the implantation. The scans 

can be MRI and/or X-ray CT

atlas
An atlas is the result of mapping 3D information (such as population density) on a 

geometrical template (description + delineation). The represented information can be 

continuous (such as the amount of rain that falls) but is often restricted to a spatial 

delineation and geographic description (e.g., roads, cities, municipalities). The results of 

such a mapping can be considered an atlas once they are shared with the purpose of re-use 

for another dataset. An atlas is helpful to visualize and interpret spatial information

parcellation
Delineation of brain regions on the basis of anatomical and/or functional information. A 

given parcellation is generally defined on an atlas. If an individual brain is geometrically 

co-registered with the atlas, it is possible to project the parcellation on the individual brain

Individual space
This refers to a 3-D cartesian coordinate system where the direction of the axes and the 

origin of the coordinate system (i.e., the point [0, 0, 0]) is defined in relation to anatomical 

landmarks of the individual (i.e., the single person whose brain activity is being measured). 

The relationship of these landmarks is preserved across different people, but the relative 

distances between them is different. The most common example of this in the brain would 

be a coordinate system defined by the anterior & posterior commissures and the brain’s 

midline. This is sometimes also referred to as the “native” space or coordinate system, 

but here we avoid that to prevent confusion with the device coordinate system where the 

direction of the axes and the origin are expressed relative to the scanner (i.e., the center of 

the gradient coils in case of MRI)

iEEG implant / probe / shaft / grid / strip
There are two main types of intracranial electroencephalography (iEEG) implants (a.k.a. 

intracranial probes): stereo-encephalographic implants (sEEG) are stereotactically inserted 

intraparenchymal semi-rigid electrode shafts with multiple contacts whose endpoints target 

particular anatomical structures within the brain itself (e.g. hippocampus), while contacts 
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along the shaft typically target cortical areas. sEEG probes are sited through boreholes 

drilled through the skull. Electrocorticographic implants (ECoG) consist of either electrode 

arrays arranged in grids (2D) or strips (1D) that are inserted below the dura mater to line the 

surface of the brain

electrodes and electrode contacts
The term was introduced in physics to name an electrical conductor used to make contact 

with a nonmetallic part of a circuit. Therefore it refers to the sensor that is in contact with 

the recorded tissue. In ECoG, individual sensors are arranged in arrays in grid or strip 

configuration. These individual sensors can also be called electrode contacts. A semi-rigid 

sEEG shaft houses multiple electrode-contacts

site
In this manuscript we use it as the physical location where an electrode is located on or in 

the brain

channel
A single signal from an amplifier or transducer that is digitally sampled. For iEEG this is 

the output of the analog-to-digital (ADC) conversion from the amplified voltage difference 

between an electrode contact of interest and a reference electrode. A channel does not have 

to correspond to a single site or physical electrode. For instance in the case of a bipolar 

reference: one electrode is re-referenced to its neighbor, the result is generally considered as 

a channel that is virtually located at mid-distance between the two electrodes

signal
A time series of the data being recorded by an analog-digital converter, which can include 

both brain and non-brain activity. After recording to disk, the signal is subjected to offline 

preprocessing and analysis with the aim to increase the signal feature(s) related to neural 

activity

acquisition or recording
Storing a signal for either online or offline analysis

impedance
Electrical impedance is the resistance to electric current (which is the flow of electric 

charge), or to changes in electric current for capacitive and inductive impedance. The 

impedance is of relevance in biopotential measurements, as it impacts the signal quality. A 

distinction must be made for the impedance of the different elements that play a role in 

the signal acquisition. There is the impedance of the biological tissue, the impedance of the 

interface between the tissue and the electrode, the impedance of the electrodes and the wires, 

and that of the electronic components in the amplifier. Different brain tissues have different 

impedances, which can vary with tissue integrity (e.g., inflammation) and over time (Sillay 

et al., 2013)

volume conduction
Volume conduction refers to the passive signal spread in the conductive tissues and can be 

modeled with Maxwell’s equations. It is sometimes called passive ‘propagation’; in French 

Mercier et al. Page 93

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



it is sometimes referred to as ‘diffusion’ (which is technically not appropriate when it 

comes to electricity). In this manuscript we restrict the use of ‘propagation’ for the active 

biochemical processes at the synapses and along the cell membrane of neurons

active propagation
Biochemical processes corresponding to the propagating electrical impulse traveling along 

the cell membrane of neurons and nerve fibers

activity
The biochemical neural activity can be split into postsynaptic potentials (at the dendrites) 

and action potentials (along the axon). Local Field Potentials recorded with iEEG originate 

mostly from the postsynaptic potentials; an LFP is the sum of these synchronized inputs 

that passively spreads and contributes to the signal detected on the electrode. From a 

neural perspective, post-synaptic potentials are graded potentials (i.e. synaptic potentials, 

subthreshold oscillations…) that initiate or inhibit action potentials. Action potentials travel 

along the nerve fiber (i.e., axon). As the neuron membrane depolarization-repolarization 

lasts a few milliseconds, measuring action potential requires higher frequency sampling 

than LFPs (generally >10kHz) and therefore dedicated equipment (e.g. amplifier, micro-

electrode)

reference scheme or montage
Reference scheme (or reference montage) refers to the way the online or offline referencing 

between electrode pairs is performed to amplify, record and/or visualize the potential 

differences. In a ‘unipolar’ reference scheme one electrode is used as the reference for 

all other electrodes. In a ‘bipolar’ scheme each electrode is referenced to a neighboring 

electrode. In a common average reference scheme all electrodes are referenced to the 

average of all electrodes. It is also possible to have composite reference schemes. The term 

‘multipolar’ is to be avoided

spatial resolution
In the field of neurophysiology, the term "spatial resolution” can pertain to various aspects 

that are somehow related: spatial specificity for picking up different physiological sources, 

(spatial) density of the recording electrodes, the spatial extent of a single electrode (i.e., 

the electrode contact size), and the (spatial) coverage. Rather than using “spatial resolution” 

in the manuscript, we prefer to explicitly use these specific terms where applicable.Spatial 

specificity can be defined as “the ability to extract independent time course estimates 

of electrical brain activity from two separate brain locations in close proximity" (from 

(Brookes et al., 2010)) The (spatial) density of the recording relates to the distance between 

recording sites, like in the commonly used expression “high density EEG”. The electrode 

contact size relates to the spatial extent of the electrode-electrolyte interface over which 

the biopotential is integrated. Small electrodes pick up focal (spatially specific) activity, 

whereas large electrodes average over a larger area. The (spatial) coverage refers to the 

extent of the samping relative to the whole brain (e.g. unilateral/bilateral implant, number 

of lobes or sublobar region covered). This can be compared to MRI, where the coverage 

can be configured as a few slices, the whole brain, or even the whole head. An analogy 

can be drawn to the field of digital photography where spatial resolution depends not only 
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on the number of pixels in the CCD chip, but also on the optical characteristics of the 

lens (the focal length and aperture) and on the focus of the lens. We employ the term 

spatial resolution to refer to the spatial specificity, as with iEEG the sampling is always 

sparse, while the signal can be focused to achieve high spatial specificity (i.e., through 

re-referencing). In the photography analogy, spatial coverage refers to the field-of-view

time-frequency decomposition and time-frequency representation
the decomposition refers to the process (analysis), the representation refers to the outcome 

of that process (figure, statistics…). More generally in this manuscript we mostly consider 

the methodological aspects and try to use specific terminology and avoid general terms, 

such as: “activity” (unless it refers to the actual neural activity, not the signal that is being 

analyzed) or “measures” (not specific enough, unless it relates to the signal itself or to a 

metric). Other terms could be appropriate when considering the actual activity, for instance 

Event-Related Synchronization/Desynchronization (ERS/ERD), or Event Related Spectral 

Perturbation (ERSP). Those terms relate to, or suggest, an active neural process, whereas 

the results of a time-frequency analysis can be flat, and a change in activity only revealed 

after baseline correction. Finally, some terminology relates more specifically to the kind of 

analysis that was performed, for example Event-Related Band Power (ERBP) which is a 

time-locked analysis focusing on the power in a given frequency band

oscillations or brain rhythms
The terms “oscillation” or “rhythms” generally are used to reflect the periodic changes in the 

measured voltages. These were the earliest observed phenomena in neuroelectrophysiology, 

and can generally be seen in the raw trace. Spectral analysis can reveal distinct peaks in the 

power that are indicated with greek-letter names (e.g., delta, theta, alpha, beta, gamma). It 

is useful to consider the distinction between the neurophysiological mechanisms (e.g., brain 

rhythms), the signals that are recorded, and the results of an analysis on those signals (e.g., 

oscillation from Fourier transform)

aperiodic and broadband activity
In contrast to commonly-described oscillations or rhythms centered at a specific frequency, 

there are also signal features that have no specific timescale and do not have a periodic 

structure. The raw voltage traces of these changes appear as shifts in the random-walk 

aspects of the signal that are often treated as “background noise”. Careful parameterization 

of these broadband signals—often using Fourier-domain approaches that extract spectrally 

wide features—provides another avenue for analyzing the data in a manner that provides 

physiological insights not captured by oscillations

non-sinusoidal oscillation
Common analysis approaches as often implemented (e.g., Fourier- or wavelet-based 

approaches) decompose the signal into mixtures of simple sine and cosine components 

of different frequencies. However, most neural oscillations are not sinusoidal; rather they 

exhibit a rich variety of periodic waveforms that can include the the classic mu-shaped 

rhythm in somatosensory cortex, V-shaped alpha oscillations in visual cortex, and sawtooth-

shaped beta oscillations in motor cortex or theta oscillations in hippocampus. These 

non-sinusoidal features are easily overlooked using common approaches or confounded 
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for cross-frequency coupling, despite the fact that they might carry critical physiological 

information

non-stationarity
This characterizes a time series whose statistical properties are not stable over time. In 

iEEG analysis this most commonly refers to oscillations, where oscillation power, frequency, 

and phase are dynamic and change over time. This is especially important given that 

many oscillations are “bursty”—where non-oscillatory periods are dominated by “aperiodic 

activity”—and where narrow band filtering can give the appearance of a stable oscillation 

where one might not exist

baseline
The baseline is a concept that relates to signal processing, data visualization and statistics. 

Considering preprocessing and ERP analysis, the baseline window refers to the time interval 

(often pre-stimulus) in which the baseline DC offset is estimated; this estimate can be used 

to subtract the constant potential offset. Rather than referring to this as baseline correction, 

in this manuscript we prefer the term DC offset removal. In time-frequency analysis the 

baseline window refers to the time interval in which the background spectral activity is 

estimated, and this period may vary depending on analysis type. The estimated spectral 

activity can be used in visualization and statistical assessment to express the change with 

respect to the baseline background oscillatory activity (the foreground being the one of 

interest).Generally, we think of baseline periods as those where no defined task or process is 

taking place. However, the brain is never quiescent, so the expectation of the experimenter is 

that the effect of undefined (ongoing) brain activity is removed due to averaging, revealing 

the effect of the defined task or process
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Highlights

• We provide good practices for both new and experienced iEEG researchers.

• We bridge the patient, clinician and researcher perspective.

• Sections include data collection, processing, localization, analysis and 

statistics.

• Each section provides a review, gives recommendations and demonstrates 

visualization.

• We provide an outlook and discuss perspectives on continued iEEG 

development.
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Figure 1. 
Intracranial EEG recordings and basic signal features.

iEEG can be measured using three different recording strategies: stereotactic EEG (sEEG), 

Electrocorticogram (ECoG), and deep-brain stimulation (DBS). Signal features are generally 

characterized as oscillations, broadband changes, and event-related potentials.
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Figure 2. 
Schematic representation of the interaction between clinic and research.

Left panel: starting from surgical planning, with involvement over time of the clinical and 

research procedure. The clinical team provides the research team with the iEEG data, 

imaging data, and clinical annotations (e.g., epileptic activity). In return, the research 

team(s) can provide the precise localization of the electrodes (Loc), and activation tasks 

with associated event-related results regarding brain functions (Events).

Right panel: illustration of the different types of data in an iEEG study: iEEG (Signal) 

and imaging data, clinical annotations (Annot), electrode locations (Loc) and (responses to) 

task-related events (Event).
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Figure 3. 
Canonical framework of iEEG electrode localization using illustrations utilized as a sanity-

check for the outputs of each step of the processing pipeline.
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Figure 4. 
Examples of differences in signals related to the surrounding tissue.

A: ECoG signal as a function of electrode location.

The left panel shows the location of the ECoG grid on the individual's brain. Three 

electrodes are highlighted (but not at scale): over a blood vessel and sulcus (in yellow), 

on the bank of a gyrus and close to a blood vessel and sulcus (in orange), and over a gyrus 

(in red). The insert shows the angiogram (vessels) projected on the cortical surface. The 

right panel shows 30 sec of the high-frequency band signal (frequency analysis using Morlet 

wavelets, high-frequency band power extracted in 1-Hz bins and averaged over 45–120 Hz 

with 1-second smoothing) for the three electrodes (same amplitude scale).

B: sEEG signal as a function of electrode location.

The left panel shows the location of three sEEG electrodes (not at scale): one in the skull (in 

purple), one at the interface of the soft tissues (in pink), and one in the gray matter (in red). 

The right panel shows 2 sec of the raw signal for the three electrodes (same amplitude scale).
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Figure 5. 
Brain depiction and electrode visualization

ECoG electrodes are color-coded according to the anatomical label that corresponds to their 

location. Electrodes are shown on (A) the original pial surface of the participant’s brain, 

where the grid structure may be best appreciated, (B) the inflated cortical surface and (C) 

the flattened cortical surface (in this case based on the projection onto the fsaverage brain). 

The inflated and flattened surfaces are colored according to surface curvature calculated in 

FreeSurfer, where darker gray indicates the sulci, and lighter gray indicates gyri. The best 

choice of representation (pial, inflated or flat) depends on the coverage of electrodes as well 

as which areas are to be compared.

Mercier et al. Page 136

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Oblique slice aligned with sEEG shaft.

Graphical interface allowing the display of MRI slices aligned with a selected sEEG shaft 

highlighted in blue in the list. In the oblique slice sEEG contacts are represented as green 

dots. In the 3D view the plane corresponding with the shaft axis is depicted in green with a 

transparent brain, sEEG contacts are here represented as black spheres.
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Figure 7. 
Electrode display and data interpolation.

For ECoG (Panel A) and sEEG (Panel C), the amplitude of the iEEG signal is represented 

at their corresponding 3D locations, then projected orthogonally along the three axes (as in a 

glass brain view), and depicted on MRI slices.

In panels B (ECoG) and D (sEEG), the amplitude of the signals is interpolated on a 3D brain 

(left column) and on an inflated brain (right column, with light gray indicating gyri and dark 

gray indicating sulci). Signal interpolation was done using a sphere of 5mm for the upper 

Mercier et al. Page 138

Neuroimage. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



row and 15 mm for the lower row. In panel B the ECoG electrodes are indicated in green; 

in panel D two sEEG shafts are indicated in red and green. While activity is identical in the 

upper row and in the lower row, the extent of the interpolation changes the rendering.
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Figure 8. 
Examples of artifacts due to eye and mouth movements.

A. Ocular artifacts in sEEG. The EOG and iEEG were recorded while the participant was 

asked to either blink or move his eyes leftward (upper left panel, color-coded in blue and 

red respectively). EOG single-trial averaging (n=16) shows time-locked muscular-related 

activity on cardinal EOGs (upper middle panel); and on vertical and horizontal EOGs 

obtained through bipolar referencing (upper right panel). Intracranial EEG was recorded 

from 252 electrodes relative to a reference located in the white matter (yellow circle on 
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the lower left panel). Broadband Event Related Potentials computed with both a monopolar 

reference (WMR) and a bipolar reference (Bp) are depicted for a frontal and a posterior 

electrode. For the frontal sEEG electrode, the artifact time-locked to muscular activity 

recorded with EOG is visible with the monopolar reference and is reduced when the bipolar 

montage reference is applied. The posterior electrode shows activity that is not reduced 

by the bipolar referencing and that is delayed with regards to EOG activity. The frontal 

electrode shows muscular activity that has passively diffused from the eye muscles, while 

the posterior electrode shows local neural activity that is consecutive to the eyes movement 

(e.g. change in visual input or corollary signal).

B. Oral artifacts in sEEG. The participant was asked to clench his teeth ten times 

while sEEG was recorded. Broadband and high-frequency activity recorded from frontal 

electrodes reveal artifacts time-locked to jaw-contraction (color-coded in pink and in green 

respectively).
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Figure 9. 
Interfaces examples for artifact detection

A. The Power Spectrum Density (PSD) of all channels can help to identify artifacted 

channels with artifacts (in red).

B. A display per channel and per trial can be used to identify short-lived artifacts. The 

heatmap represents for every trial (along the horizontal axis) and every channel (along the 

vertical axis) a metric (here the variance) which is color-coded from blue to yellow. The 

panels to the right and below the heatmap represent the maximum variance over trials and 
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over channels, respectively. A channel with high variance over most trials is highlighted by 

the magenta rectangle. A trial with high variance over channels is highlighted by the orange 

rectangle.
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Figure 10. 
Interface showing reference switch.

Illustration of displays with two different montages (unipolar reference on the left and 

bipolar reference on the right). The montages are selected graphically in a dedicated menu 

(here in Brainstorm). When switching from the unipolar to the bipolar montage, the low- and 

high-frequency artifacts shared over all channels are reduced.
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Figure 11. 
Signal-to-noise ratio (SNR) as a function of the number of trials.

Activity was recorded in the primary auditory cortex of a participant while listening to pure 

tones (1000 Hz).

A. Activity is depicted for different numbers of averaged trials. The broadband ERP is 

depicted on the left, the magnitude envelope of high-frequency activity is shown on the 

right.
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B. SNR varies with the number of trials used for averaging. SNR was computed using the 

maximum amplitude of the activity divided by the variance over the baseline (S/N).
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Figure 12. 
Influence of the reference montage on iEEG signal analysis.

A. Location of sEEG electrodes in the brain of the participant (axial slice on the left, coronal 

slice on the right).

B. ERP computed with different reference montages, respectively in black for monopolar 

white matter reference (WMR), dark blue for common average reference (CAR), light blue 

for local average reference (LAR, using all electrodes of the sEEG shaft), and red for 

bipolar reference (Bp). A schematic of the sEEG shaft is depicted to illustrate the spatial 
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organization of the activity and especially the phase reversal revealed by the bipolar montage 

(e.g., at the level of channel #11).

C. Power from time-frequency analysis computed with different reference montages, 

respectively from left to right: WMR, CAR, LAR and Bp. Both CAR and LAR introduce a 

strong correlation of high-frequency activity over channels, absent in the WMR.

D. Phase Concentration Index from time-frequency analysis computed with different 

reference montages, respectively from left to right: Bp, WMR, CAR and LAR. Both CAR 

and LAR introduce a strong correlation of high-frequency activity over channels, absent in 

the WMR. Note the presence of induced activity, that is only visible in the power depiction 

(part C), and of evoked activity that is visible in both the depictions of power and Phase 

Concentration Index (e.g., see channel 8–9 with Bp montage).

E. Phase angle distribution represented for different reference montages, respectively from 

left to right: Bp, WMR, CAR and LAR. The data corresponds to the red square indicated 

in the time-frequency plane of channel 6. While the absolute angle measure varies with the 

reference montage, the relative measure (i.e., PCI) is consistent across reference montages.
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Figure 13. 
Baseline correction and time frequency representation.

The same time-frequency representation of power is depicted with different baselining 

methods computed from −1 sec to −0.5 s. Within a frequency range (orange) and two time 

ranges of interest (purple and red), the mean and the mean-absolute-deviation are depicted 

at the bottom and on the side. The choice of the baseline method enhances/reduces the 

visibility of particular features in the data (for instance the 1/f effect, see sections 4.2.3.3 and 

4.2.3.4.1).
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Figure 14. 
Distinction and interaction between prediction, i.e., hypothesis based confirmatory research, 

and postdiction or exploratory research.
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Figure 15. 
Combining group-level and patient-level anatomical analysis.

Group-level functional activations show HFA response components at specific latencies. 

This allows the definition of a Region of Interest (ROI) for further investigation. Panel A 

shows a strong group-level (n=67) HFA response in the basal temporal cortex 400 ms after 

the display of a written word during a reading task contrasting attended vs. ignored words. 

Panel B shows a group representation of all iEEG sites in the ROI in the left temporal 

lobe (pink sphere), across all patients. Subsequently, each site can be visualized onto a 
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3D representation of the corresponding individual brain (panel C), to understand how the 

strength of the response depends on its precise localization relative to specific individual 

anatomical landmarks, such as the lingual gyrus. Repeating the same procedure for all 

subjects and sites within the ROI leads to a detailed anatomical characterization of iEEG 

sites with a homogenous functional response (visualizations and analysis were made with 

HiBoP).
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Table 1

Baselining methods used in time-frequency analysis. A can be read as “active” and stands for the time-

frequency resolved magnitude or power in the period of interest. B stands for the baseline period. An 

overscore indicates taking the mean over the time in the baseline; the standard-deviation σ is also computed 

over the time in the baseline.

Absolute baseline Z-scoring baseline Relative baseline Log-transform 
baseline

Absolute-relative 
baseline

Normed baseline

A  −  B A − B
σB

A
B 10 ⋅ log10 A

B
A − B

B
A − B
A + B
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