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APPROXIMATION DIFFUSION FOR THE NONLINEAR SCHRÖDINGER

EQUATION WITH A RANDOM POTENTIAL

GRÉGOIRE BARRUÉ1, ARNAUD DEBUSSCHE1,2, AND MAXIME TUSSEAU1

1 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France;
2 Institut Universitaire de France (IUF);

Abstract: We prove that the stochastic Nonlinear Schrödinger (NLS) equation is the limit of
NLS equation with random potential with vanishing correlation length. We generalize the perturbed
test function method to the context of dispersive equations. Apart from the difficulty of working
in infinite dimension, we treat the case of random perturbations which are not assumed uniformly
bounded.

1. Introduction and main result

We study in this work the limit of Non-Linear Schrödinger Equation with randomness. More
precisely, we consider the following problem

(1.1) i∂tX
ε(t) = −∆Xε(t) + λ|Xε(t)|2σXε(t) +

1

ε
Xε(t)m(t/ε2),

on the domain Rd, with regular initial data. Such an equation occurs in many situations, for instance
in optical fibers dynamics (see [18], [25]). More generally, the Nonlinear Schrödinger equation is an
equation describing wave propagation in a nonhomogeneous dispersive medium and random effects
often enter the description via a potential. Here we consider such a random potential which depends
on time t ⩾ 0 and space x ∈ Rd with a scaling of the form 1

εm( tε2 , x).
Under such a scaling, we are in the situation of approximation-diffusion. The random term

formally converges to a spatially dependent white noise in time and we expect to obtain a white noise
driven stochastic partial differential equation at the limit. Such stochastic non-linear Schrödinger
equations are used in the physics literature and have been mathematically studied, for example
in a conservative version by Debussche and de Bouard ( [7], [8], [9] ...). Barbu, Röckner and
Zhang proved in [1] well posedness results in both conservative and nonconservative cases thanks
to rescaling transformations, while Brzezniak and Millet studied in [4] the stochastic Nonlinear
Schrödinger equation on a two-dimensional manifold. We can also cite [20] and [21] where the
authors study the one dimensional L2-critical and supercritical cases for Nonlinear Schrödinger
equation with spatially correlated noise and space time white noise. We believe that it is important
to prove that these equations are limits of equations with realistic noises such as (1.1).

Our basic tool is the Perturbed Test Function method. This method provides an elegant way for
approximation-diffusion problems; it was first introduced by Papanicolaou, Stroock and Varadhan
[22] in a finite dimensional case, and one can find many applications in the book of Fouque, Garnier,
Papanicolaou and Solna [17]. Generalizations in infinite dimension have been recently developped,
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for instance in [10], [11] or [14]. Our aim is to develop this method in the context of the Nonlinear
Schrödinger equation with a random potential. The difficulty is that the fundamental object for
this method is the infinitesimal generator of the Markov process associated to (1.1), which is a
complicated object since we work in infinite dimension. Besides the Perturbed Test Function
method is based on compactness arguments which are not trivial in the case of (1.1) whose space
variable lives in the full space Rd. We overcome this latter problem by working in a weighted space.

In [1], the main tool to study the stochastic Nonlinear Schrödinger equation is the rescaling
transform. This changes the stochastic equation containing a spatially dependent white noise into
a Nonlinear Schrödinger with continuous in time random terms. The counterpart is that the Laplace
operator is replaced by a linear differential operator with varying coefficient. It is not clear how to
use the scaling transform for our study since these linear operators would depend on ε. Moreover,
the rescaling transform is useful only for purely multiplicative noise. Our arguments immediately
extend to more general equations, for instance if 1

εX(t)m( tε2 ) is replaced by 1
εΛ(X(t))m( tε2 ) for a

Nonlinear operator of Nemitsky type Λ with sublinear growth such that Λ(z)z̄ is real valued. For
the sake of clarity we decided to restrict to the case Λ(z) = z.

The driving noise m is an ergodic Markov process with values in a Sobolev space to be described
below. In all the articles mentioned above on approximation-diffusion problem for partial differential
equations, this noise is assumed to be uniformly bounded. This is important to get a priori estimates.
In this article, we introduce a new argument which allows to replace this assumption by a much
more satisfactory one: we only assume thatm has sufficiently many finite moments. This introduces
several difficulties. In particular the correctors cannot be bounded uniformly in ε. We use a stopping
time argument which, together with a control of the growth of stationary process, allows to obtain
a bound on the correctors. Another difficulty is to obtain bounds on the solutions of (1.1) uniform
in ε. In particular, the control of the energy is very delicate. Our idea has been used and improved
in a recent work on approximation diffusion for kinetic equations (see [24]).

We work with solutions in the Sobolev space H1(Rd) and assume that the non linear term is
subcritical:

(1.2) 0 ⩽ σ <
2

d− 2
, d ≥ 3 or 0 ⩽ σ, d = 1, 2.

Moreover, we work with global solutions and, when λ < 0, we need a further assumption. Namely,
we assume

(1.3) σ <
2

d
, if λ < 0.

Our main result can be stated informally as follows. Precise assumptions are given below.

Theorem 1.1. For all T > 0 and 0 < ζ ⩽ 1, assume that Xε
0 converges in law to X0 in the space

Σζ , see (2.1), then for all s ∈ [0, 1) the C([0, T ];Hs(Rd))-valued process Xε, solution of (1.1) with
initial data Xε

0 converges in law in C([0, T ], Hs(Rd)) to X solution of

(1.4) idX =
(
−∆X + λ|X|2σX − i

2
FX

)
dt+XQ1/2dW

with initial data X0, where F,Q are defined respectively by (2.26) and (2.36) below, and W is a
cylindrical Wiener process on L2(Rd).

The last two terms in (1.4) actually correspond to the Stratonovitch noise X ◦ Q 1
2 dW . The

covariance operator Q is described below and is explicit in terms of the correlation of m, see (2.24)
and (2.36) below. As mentioned above, we could consider a more general noise. Let Λ : C → C
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be a map with sublinear growth such that Λ(z)z̄ ∈ R for all z ∈ C. If in (1.1), the random term
1
εX(t)m( tε2 ) is replaced by 1

εΛ(X(t))m( tε2 ), the limit equation would be the stochastic Nonlinear
Schrödinger with the Stratonovitch noise Λ(X) ◦ dW .

The article is organized as follows. We first introduce the notations and state preliminary
results on the Schrödinger equation and on the driving process m. In Section 3, we adapt Kato’s
method (see [5]) to get global existence of the process Xε. The estimates are obtained by classical
manipulations of the equation and blow up when ε → 0. To avoid this we adapt the perturbed
test function method to our problem in Section 4 and 6.1. This enables us to get both tightness of
the process and the expression of the infinitesimal generator of the limit. In Section 5 we use all
the results proved in Section 3 and Skorohod Theorem (see [2]) to prove the weak convergence of
Xε to X. Finally, Appendix A is devoted to details about an example of process m that can be
considered in (1.1) and to proofs of technical estimates.

In this article C, C or c denote constants whose value may change from one line to the other and
which unless explicitely stated are independent of ε or of the smoothing parameter δ introduced
below. They may eventually depend on other parameters such as T, d, σ,R or η and if needed we
may precise the dependences by denoting for example CT .

2. Preliminaries and Main result

2.1. Notations. Throughout this paper, for p ≥ 1, we denote by Lp(Rd, ;C) the Lebesgue space of
p integrable C-valued functions on Rd, endowed with the usual norm. For p = 2, (·, ·) is the inner
product of L2(Rd;C) given by

(f, g) = Re

∫
Rd

f(x)ḡ(x)dx.

For s ∈ R, we use the usual Sobolev space Hs := Hs(Rd;C) of tempered distributions u ∈ S ′(Rd)
such that ⟨ξ⟩sû(ξ) ∈ L2(Rn;C), where ⟨ξ⟩ =

√
1 + |ξ|2, endowed with the usual norm

∥u∥Hs = ∥⟨ξ⟩sû(ξ)∥L2 ,

where û denotes the Fourier transform.
For m ∈ N and p ≥ 1, we also use the standard Sobolev spaces Wm,p(Rd;C) consisting of

functions which are in Lp(Rd;C) as well as their derivatives up to order m. It is classical that
Hm(Rd;C) =Wm,2(Rd;C).

We also consider the same spaces for R-valued functions, they are denoted by the same symbols
with C replaced by R. When there is no ambiguity, we omit Rd and C or R. For instance, we
simply write H1 for H1(Rd;C).

In this article, the following weighted Sobolev spaces are particularly useful. We define for
0 < ζ ⩽ 1,

(2.1) Σζ =
{
u ∈ H1(Rd;C); ⟨x⟩ζu ∈ L2

}
endowed with the norm ∥u∥Σζ = ∥u∥H1 +

∥∥⟨x⟩ζu∥∥
L2 . Such weighted spaces are commonly used in

the theory of the deterministic Schrödinger equation. The group S(t) introduced below has some
smoothing effect in these spaces for instance ([5], section 2.5). They are also useful to study finite
time blow-up ([5], section 6.5).

Given a Banach space E, C(E) (resp. Ck(E)) denotes the space of real valued continuous (resp.
Ck) functions on E. And Cb(E) (resp. Ckb (E)) is the space of bounded continuous functions (resp.
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Ck bounded as well as their derivatives up to order k). Finally CP (E) is the subset of C(E) of
functions with polynomial growth:

(2.2) CP = {ψ ∈ C(E),∃κ > 0, p ≥ 0 : ∀n ∈ E, |ψ(n)| ⩽ κ(1 + ∥n∥E)
p} ,

When H, K are Hilbert spaces, we denote by L(H,K) the space of linear operators from H to
K. If H = K, we simply write L(H). We also denote by L2(H,K) the space of Hilbert-Schmidt
operators from H to K.

Given a Hilbert space H endowed with a scalar product (·, ·) and a Banach space E continuously
embedded in H, we use the common abuse of notations for the duality between E and E′:

⟨ℓ, x⟩E′,E = (ℓ, x), ℓ ∈ E′, x ∈ E.

We denote by S(t) the group associated to the linear homogeneous equation and defined by
S(t) = eit∆. The solution of (1.1) is taken in the mild sense.

As already mentioned we assume that (1.2), (1.3) hold so that we are able to prove global well
posedness of (1.1) in H1(Rd;C) (see [5] and Proposition 3.1 below).

The energy of u ∈ H1(Rd;C) is denoted by H(u) and is given by

(2.3) H(u) =
1

2
∥∇u∥2L2 +

λ

2σ + 2
∥u∥2σ+2

L2σ+2 .

By Sobolev embeddings, we know that H1(Rd;C) ⊂ Lp(Rd;C) for p ∈ [2, 2d
d−2 ] when d ≥ 3,

p ∈ [2,∞) when d = 2 and p ∈ [2,∞] when d = 1. Thus, by (1.2), this is a well defined quantity
for u ∈ H1(Rd;C).

In order to justify the computations when getting energy estimates, we may need a regularization
procedure, so we choose ρ a mollifier, namely a function which satisfies

(2.4) ρ ∈ C∞(Rd,R), ρ ≥ 0,

∫
Rd

ρ(x)dx = 1 and suppρ ⊂ B(0, 1).

Finally for δ > 0, we define ρδ(x) =
1
δn ρ

(
x
δ

)
and u ⋆ v stands for the convolution of u and v, when

it makes sense.

2.2. The random process m. We assume that m is a centered, càdlàg, stochastically continuous,
stationary E = Hs0(Rd,R)-valued process, for s0 >

d
2 + 3 so that E ↪→ W 3,∞(Rd,R) and E is

an algebra, on a probability space (Ω,F ,P) adapted to a filtration (Ft)t∈R (see [23] for the basic
theory of Hilbert space valued Markov processes). In particular that m(t, x) is real valued. We also
define the rescaled process

(2.5) mε(t) = m(t/ε2), t ≥ 0,

which is centered stationary E = Hs-valued process (Fε
t )t∈R-adapted, where Fε

t = Ft/ε2 .
Note that, as it is often the case in the study of partial differential equations, functions depending

on space and time are seen as functions depending on time with values in a space of spatially
dependent functions. That is, in the case of the process m, we use the identification m(t, x) =
m(t)(x). With this in mind, the rescaling above may be writen:

mε(t, x) = m(t/ε2, x), t ≥ 0, x ∈ Rd.

The process m is supposed to be an homogeneous Markov process. We denote by (Pt)t≥0 the
transition semigroup associated to m, M its infinitesimal generator. For simplicity, we assume that
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there exists a Markov process (m̃(t, n))t≥0,n∈E on (Ω,F ,P) adapted to the filtration (Ft)t∈R such
that m̃(t,m(0)) = m(t) and, for bounded borelian function φ on E, Ptφ(n) = E(φ(m̃(t, n))), t ≥ 0.1

Recall that a borelian function φ on E is in the domain of the infinitesimal generator M if for
n ∈ E

φ(m̃(t, n))−
∫ t

0

Mφ(m̃(s, n))ds

is an integrable martingale. It is in general difficult to describe completely the domain of an
infinitesimal generator. Here we only require that sufficiently many function are in the range of the
generator. More precisely, we assume that there exist sets PM and DM included in CP (E) such
that DM included in the domain of M and PM is included in the range of M. For ψ ∈ PM, we
assume that there exists M−1ψ ∈ DM such that for n ∈ E

(2.6) M−1ψ(m̃(t, n))−
∫ t

0

ψ(m̃(s, n))ds

is an integrable martingale. In other words, M−1ψ is in the domain of M and MM−1ψ = ψ. This
is an ergodicity assumption on m. Below we require that some specific functions are in PM

We assume that m̃ has a unique invariant measure ν, which is the invariant law of m. Clearly,
our setting requires that

(2.7) Eν [ψ] =
∫
E

ψ(n)dν(n) = 0, ψ ∈ PM.

We need that PM contains sufficiently many functions. Let us define for u, v ∈ H1:

(2.8) Ψu,v1 (n) = (un, v).

We assume that for each u, v ∈ H1, Ψu,v1 ∈ PM and there exist L1 : E → E continuous such that

(2.9) M−1Ψu,v1 (n) = (uL1(n), v).

Informally, this says:

(2.10) L1(n) = M−1n.

Then we define for u, v ∈ H1:

(2.11) Ψu,v2 (n) = (unL1(n), v)− Eν(unL1(n), v),

(2.12) Ψu,v3 (n) = (u∇n, v∇L1(n))− Eν(u∇n, v∇L1(n)),

and assume that for each u, v ∈ H1, i = 2, 3, Ψu,vi ∈ PM and there exist L2 : E → E and
L3 : E → Hs−1 continuous such that

(2.13) M−1Ψu,vi (n) = (uLi(n), v).

Again, informally this may be written as:

(2.14) L2(n) = M−1(nL1(n)− Eν(nL1(n))) = M−1(nM−1n− Eν(nM−1n))

and

(2.15)
L3(n) = M−1(∇n · ∇L1(n)− Eν(∇n · ∇L1(n)))

= M−1(∇n · ∇M−1n− Eν(∇n · ∇M−1n))

1We do not really need this and could require the existence of m̃ such that m̃(t,m(0)) = m(t) only in distribution.

We think that this slightly stronger assumption allows to lighten the definitions and proofs below. Note that, with
this assumption, we have a process (m̃(t, n))t≥0 for all n ∈ E, even if m does not visit the whole space E.
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We need to invert a further function of n. For u, v ∈ H1, we define

(2.16) Ψu,v4 (n) = (un, v)(uL1(n), v)− Eν(un, v)(uL1(n), v)

and assume that for each u, v ∈ H1, Ψu,v4 ∈ PM and there exists L4 : E → L∞(Rd×Rd) continuous
such that

(2.17) M−1Ψu,v4 (n) = Re

∫
Rd

∫
Rd

u(x)u(y)L4(n)(x, y)v̄(x)v̄(y)dxdy.

Informally:

(2.18) L4(n)(x, y) = M−1(n(x)L1(n)(y)− Eνn(x)L1(n)(y)) and L2(n)(x) = L4(n)(x, x).

In previous articles on approximation-diffusion for PDEs, the process is assumed to be almost
surely bounded: ∥m(t)∥E ≤ K for all t ≥ 0, P a.s. for some deterministic constant K. This
boundedness assumption is replaced here by the weaker assumption that there exist γ > 6 and a
constant C such that the following estimate holds

(2.19) E

(
sup
t∈[0,1]

∥m(t)∥γE

)
⩽ C.

By stationarity of m, this implies that for all k ∈ N:

(2.20) E

(
sup

t∈[k,k+1]

∥m(t)∥γE

)
⩽ C.

Note that this implies: ∫
E

∥n∥γEdν <∞

and
sup
t∈[0,T ]

∥m(t)∥E <∞, a.s.,

for any T ≥ 0.
We need some control on the growth of the functions Li introduced above. We assume that there

exist η < γ/2− 1 and p ∈ N such that:

(2.21)

∥Li(n)∥E ⩽ c(1 + ∥n∥E)η, n ∈ E, i = 1, 2,

∥L3(n)∥Hs−1 ⩽ c(1 + ∥n∥E)η, n ∈ E,

∥L4(n)∥L∞(Rd×Rd) ⩽ c(1 + ∥n∥E)η, n ∈ E.

In many situations, M−1ψ is given by:

M−1ψ(n) = −
∫ ∞

0

Ptψ(n)dt,

and, in particular, for each n ∈ E, Ptψ(n) is an integrable function: t 7→ Ptf(n) ∈ L1(0,∞). Here
we do not need this but we simply use the assumption that there exists λ ∈ L1(0,∞) such that:

(2.22) ∥E(m̃(t, n))∥E ⩽ λ(t)(1 + ∥n∥E)γ−1

and that L1 is given by

(2.23) (w,L1(n)) = −
∫ ∞

0

E [(w, m̃(t, n))] dt, w ∈ E′.
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We also use the following object in next section. Note that assumptions (2.19) and (2.22) imply
that, for x, y ∈ Rd, t 7→ E(m(0)(x)m(t)(y)) is integrable over [0,∞), so that we can define:

(2.24) k(x, y) =

∫ ∞

0

E(m(0)(x)m(t)(y) +m(t)(x)m(0)(y))dt for x, y ∈ Rd.

It is not difficult to check that k ∈W 3,∞(Rd × Rd) ∩H1(Rd × Rd). We assume that

(2.25) k(·, ·) : x 7→ k(x, x) ∈W 1,1(Rd), ∆1k(·, ·) : x 7→ ∆1k(x, x) ∈ L1(Rd),

where ∆1 denotes the Laplace operator with respect to the first variable of k.
We use the notation

(2.26) F (x) = k(x, x).

Thanks to (2.22), it can be seen that F ∈ E.
We end this section with the following Lemma. It is similar to [6, Lemma 15.4.4] and is funda-

mental to avoid the uniform boundedness assumption on the process m.

Lemma 2.1. For all T > 0, and ε > 0, and α > 2
γ

P

(
sup
t∈[0,T ]

∥mε(t)∥E ≥ ε−α

)
→ 0,

when ε goes to 0.

Proof. For k ∈ N, denote by ηk the random variable

ηk := sup
t∈[k,k+1]

∥m(t)∥E ,

then by the Markov inequality and (2.20) we have for all δ and k

P(ηk ≥ kδ) ⩽
E (ηγk )

kδγ
⩽

C
kδγ

,

and choosing δ such that δγ > 1, we have∑
k≥0

P(ηk ≥ kδ) <∞,

so we get by the Borel-Cantelli lemma that for P almost every ω ∈ Ω, there exists k0(ω) such that
ηk ≤ kδ for k ≥ k0(ω). It follows that, for t ≥ k0(ω), ∥m(t)∥E ≤ tδ and

P− a.s.,∀t ∈ R+, ∥m(t)∥E ⩽ Z1 + |t|δ,
with the random variable Z1 defined by Z1(ω) = sups∈[0,k0(ω)] ∥m(s∥E . Finally, since{

sup
t∈[0,T ]

∥mε(t)∥E ≥ ε−α

}
⊂

{
Z1 +

∣∣∣∣ Tε2
∣∣∣∣δ ≥ ε−α

}
and the probability of the right-hand side event goes to 0, when ε→ 0, under the condition α > 2δ,
this ends the proof. □

We naturally define the (Fε
t )-stopping time τε by

(2.27) τε = inf{t ∈ [0, T ], ∥mε(t)∥E ≥ ε−α},
with the convention that τε = T when this set is empty.
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Note it is possible that τε is equal to 0, this is the case when ∥mε(0)∥E ≥ ε−α. Otherwise, when
τε > 0, we have supt∈[0,τε] ∥mε(t)∥E ≤ ε−α.

We will use many times that P(τε < T ) ⩽ P(supt∈[0,T ] ∥mε(t)∥E ≥ ε−α), which together with
Lemma 2.1 yields

(2.28) P(τε < T ) →ε→0 0.

2.3. An example. An example of assumptions on the process m that can be checked in practice
and are sufficient to satisfy all the above hypotheses is the following:

(1) For every n ∈ E, (m̃(t, n))t⩾0 is a stochastically continuous Markov process associated to
the semigroup (Pt)t⩾0.

(2) (Pt)t⩾0 is Feller.

(3) For every k ∈ N and n ∈ E, E[∥m̃(t, n)∥kE ] is finite and there exist Ck > 0, ℓk ∈ N such that
for every t ∈ [0, T ]

(2.29) E[∥m̃(t, n)∥kE ] ⩽ Ck(1 + ∥n∥E)
ℓk , n ∈ E.

(4) There exist κ > 0, γ > 0, k0 ∈ N such that for any n1, n2 ∈ E we can construct a coupling
(m1(t),m2(t)) of (m̃(t, n1), m̃(t, n2))t⩾0 such that

(2.30) P
(
m1(t) ̸= m2(t)

)
⩽ κ (1 + ∥n1∥E + ∥n2∥E)

k0 e−γt.

By coupling, we mean that the law of (m1(t))t≥0 (resp. (m2(t))t≥0 is the same as (m̃(t, n1))t≥0

(resp. (m̃(t, n2))t≥0). It follows classically from this last assumption that (Pt)t⩾0 has a unique
invariant measure ν which is exponentially mixing. We finally need

(5) ν is centered:

∫
E

nν(dn) = 0, and for any k ∈ N

(2.31)

∫
E

∥n∥kE ν(dn) <∞.

We then take m as a stationary process with law ν such that m̃(t,m(0)) = m(t).
Define

PM =

{
ψ ∈ CP (E),

∫
E

ψ(n)dν(n) = 0

}
.

For ψ ∈ PM, we may define

(2.32) M−1ψ(n) = −
∫ ∞

0

Ptψ(n)dt.

Our assumptions imply that M−1ψ ∈ CP (E) and that (2.6) is an integrable martingale. We define

DM =
{
M−1ψ,ψ ∈ PM

}
.

Clearly for any M−1ψ ∈ DM, we may take MM−1ψ = ψ and L1, · · · , L4 can be constructed
and follow our assumptions.

Let us now construct a process satisfying 1 to 5. We consider the following stochastic equation
in a Hilbert space H: for t > 0, x ∈ H

(2.33)

{
dXt = (AXt +G(Xt))dt+ σdWt,
X0 = x,



APPROXIMATION DIFFUSION FOR NLS WITH RANDOM POTENTIAL 9

where A is an unbounded operator on D(A) dense in H, invertible with a compact inverse, which
generates an analytic semigroup (etA)t⩾0 and such that

(2.34) ⟨Ax, x⟩ ⩽ −λ1 ∥x∥2H , x ∈ D(A),

and ∥∥etA∥∥L(H)
⩽Me−ηt, t > 0,

for some k > 0,M > 0, η > 0. Assume moreover that, for all t > 0, etA is Hilbert-Schmidt on H
and ∥∥etA∥∥L2(H)

⩽ Lt−γ , t > 0,

with L > 0, γ ∈ [0, 12 ).

Remark that if H = L2(Rd), A = −(−∆ + |x|2)r where −∆ is the Laplace operator, then A
satisfies our assumptions provided that r > d.

The nonlinear term G can be chosen in various ways, for simplicity we assume that it is Lipschitz
bounded. The covariance of the noise σ is an invertible operator on H. It has been proved in [12]
that (2.33) defines a Markov process in H. We consider a continuous linear invertible operator
Λ : H → E and take

(2.35) m̃(t, n) = Λ
(
X(t,Λ−1n+ x̄)− x̄

)
,

where x̄ =

∫
H

xν(dx), ν being the invariant measure of Xt, and, for x ∈ H, X(t, x) being the

unique solution of (2.33).
When H = L2(Rd) and A = −(−∆+ |x|2)r, one may consider Λ = (−∆+ |x|2)γ . Then, Λ maps

H into E and (2.25) is satisfied for γ > d + 1. At the end of section 2.4, we introduce a further
assumption which is satisfied for γ ≥ 2d. More generally, Λ can be the solution map associated to
an elliptic equation of sufficiently high order and containing a confining potential.

The conditions (1), (2) and (4) follow from corresponding properties on Xt proved in [12].
Concerning (3) and (5), they may be proved by classical computations based on the change of
unknown

Y (t) = X(t)−
∫ t

0

eA(t−s)σdWs

in (2.33) and energy estimates. In Appendix A we give details and prove that the process m(t, n)
satisfies conditions 1 to 5 and that these conditions are indeed sufficient to construct L1, · · · , L4 as
above.

Remark 2.1. We could also build an example based on a Markov chain in E as in [13].

2.4. The covariance operator. Let Q be the linear operator defined by

(2.36) Qf(y) = Re

∫
Rd

k(x, y)f(x)dx for f ∈ H1
C.

Since k ∈ H1(Rd × Rd), Q maps H1
C into itself.

The following lemma, whose proof can be found in [15], is useful to prove that Q is non-negative.

Lemma 2.2 (Wiener-Kintchine). Let
(
x(t)

)
t∈R be a real-valued stationary and centered process,

we set C(t) = E(x(t)x(0)) and assume C is integrable on R. Defining

x̂T (ν) =

∫ T

−T
x(t)e−iνtdt
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we have ∫
R
C(τ)eiτνdτ = lim

T→+∞

1

2T
E
∣∣∣x̂T (ν)∣∣∣2.

We now use the last assumptions on m and PM to show the following properties:

Proposition 2.1. The operator Q has finite trace on L2, is self-adjoint and non-negative: (Qf, f) ≥
0 for all f ∈ L2. Moreover the following identities hold

(2.37) k(x, y) =

∫
R
E(m(t)(x)m(0)(y))dt,

(2.38)

∫ ∞

0

E(m(t)(x)m(0)(y))dt = −
∫
E

n(y)L1(n)(x)dν(n),

where ν is the law of m(0).

Proof. We have assumed that k(·, ·) ∈ L1(Rd) so Tr(Q) < ∞, and k is obviously symmetric.
Moreover the stationarity of m yields∫ ∞

0

E
(
m(0)(x)m(t)(y)

)
dt =

∫ ∞

0

E
(
m(−t)(x)m(0)(y)

)
dt

=

∫ 0

−∞
E
(
m(t)(x)m(0)(y)

)
dt,

and we easily get (2.37). Let us now prove the positivity of Q. We define x(t) = (m(t), f), which
is centered stationary process, and denote by C(t) = E(x(t)x(0)) its correlation function. Then
definitions (2.36) and (2.37) of k and Q and Lemma 2.2 yield

(Qf, f) =

∫
R
C(τ)dτ = lim

T→+∞

1

T
E
∣∣∣x̂T (0)∣∣∣2 ≥ 0.

Finally, we write thanks to (2.23) with w = δx ∈ E′:

−
∫
E

n(y)L1(n)(x)dν(n) = −E
(
m(0)(y)L1(m(0))(x)

)
= E

(
m(0)(y)

∫ ∞

0

E (m̃(t,m(0))(x)|F0) dt
)

=

∫ ∞

0

E(m(t)(x)m(0)(y))dt,

this proves (2.38) □

Thanks to Proposition 2.1, we may define the operator Q1/2 which is Hilbert-Schmidt on L2.
Let us denote by q its kernel. Then, we have:

k(x, y) =

∫
Rd

q(x, z)q(z, y)dz.

We need a little more smoothness on this operator. We have seen that F ∈ E, therefore

(2.39) F ∈W 1,1 ∩W 1,∞,

with F defined in (2.26). We also know that Q1/2 is Hilbert-Schmidt from L2 to H1 since:

∥Q1/2∥2L2(L2,H1) ⩽
∫
Rd

k(x, x) + |∆1k(x, x)|dx.
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We assume that it is also γ-radonifying (see [3] or [7] for the definition) from L2(Rd) to W 1,p(Rd)
for any p ≥ 2. It is shown in [3] that this amounts to assume that q ∈ W 1,p(Rd;L2(Rd)). This is

true for instance if x 7→ ∆β
1k(x, x) ∈ L1(Rd) for β ≥ d as can be seen from Sobolev embeddings

since Q1/2 is γ-radonifying from L2(Rd) to W 1,p(Rd) for any p ≥ 2 when it is Hilbert-Schmidt from
L2(Rd) to Hd/2(Rd).

Under these properties on Q1/2 and F , it is shown in [8] that (1.4) has a unique global solution
in H1.

2.5. Main result. We state here our main result, where we recall all the assumptions needed on
the process m.

Theorem 2.1. Let d ∈ N, λ ∈ R, 0 ⩽ s < 1, and let σ ∈ R such that

0 ⩽ σ <
2

d− 2
, d ⩾ 3 or 0 ⩽ σ, d = 1, 2

and

σ <
2

d
if λ < 0.

Consider the randomly perturbed Nonlinear Schrödinger equation

i∂tX
ε(t) = −∆Xε(t) + λ|Xε(t)|2σXε(t) +

1

ε
Xε(t)m(t/ε2),

where m is a centered (Ft)-adapted, stationary E = Hs(Rd)-valued homogeneous Markov process
for which there exist γ > 6 and C > 0 such that

E

[
sup
t∈[0,1]

∥m(t)∥γE

]
⩽ C.

Assume furthermore that (2.21),(2.22), (2.23) and (2.25) are satisfied. Finally, consider F and Q
respectively defined in (2.26), (2.36), with k defined in (2.24) which can be written as

k(x, y) =

∫
Rd

q(x, z)q(z, y)dz

where q is the kernel of the operator Q
1
2 . Assume that q ∈ W 1,p(Rd, L2(Rd)) for any p ⩾ 1. Then

for all T > 0 and 0 < ζ ⩽ 1, assuming that Xε
0 converges in law to X0 in Σζ defined in (2.1),

the C([0, T ], Hs)-valued process Xε solution of the above Schrödinger equation with initial data Xε
0

converges in law in C([0, T ], Hs(Rd)) to X solution of

idXt =
(
−∆Xt + λ|Xt|2σXt −

i

2
FXt

)
dt−XtQ

1/2dWt

with initial condition X0 and where Wt is a cylindrical Wiener process on L2(Rd).

The proof of this theorem is detailed in section 5. We first study equation (1.1) and the generator
of the couple (Xε,mε). This allows to introduce the perturbed test function method which is the
key tool to obtain tightness and prove the main result.
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3. The equation

3.1. The Cauchy problem. This subsection is devoted to prove the following proposition. It
states the existence of Xε and provides a bound in H1. This bound is obtained by standard
arguments but is not uniform in ε. A uniform bound is obtained with more sophisticated tools
below.

Proposition 3.1. Given Xε
0 ∈ H1, then almost surely, there exists a unique mild solution Xε of

(1.1) with initial data Xε
0 which lies in C([0, T ], H1(Rd) ∩ Lr(0, T ;W 1,2σ+2(Rd)), r = 4(σ+1)

nσ , for
any T . Moreover, we have CT , CT,ε such that P− a.s. for 0 ⩽ t ⩽ T :

∥Xε(t)∥L2 = ∥Xε
0∥L2 ,

∥∇Xε(t)∥L2 ⩽ CT eCT,ε

(
H(Xε

0) + sup
s∈[0,t]

∥mε(s)∥2E ∥Xε
0∥2L2 + cλ∥Xε

0∥
pd
L2

)
,

(3.1)

with pd = (2σ + 2− σd) 2
2−σd and cλ = λ− is the negative part of λ: cλ = −λ if λ < 0 and cλ = 0

for λ ≥ 0. Finally if Xε
0 is F0-measurable then the process Xε is (Fε

t )-adapted.

Proof. We solve (1.1) pathwise and consider the equation

i∂tu
ε = −∆uε + λ|uε|2σuε + 1

ε
mε(t, ω)uε.

We use here Kato’s method (see [5, Theorem 4.4.1]) to get existence and uniqueness of Xε(ω) = uε

for a small enough T0. We recall that Xε is the fixed-point of ϕ defined for u ∈ ET by:

(3.2) ϕ(u)(t) = S(t)Xε
0(ω)− iλ

∫ t

0

S(t− s)|u(s)|2σu(s)ds− i

ε

∫ t

0

S(t− s)u(s)mε(s)ds

in the space

ET ={u ∈ L∞([0, T0];H
1(Rd)) ∩ Lr(0, T0;W 1,2σ+2(Rd));

∥u∥L∞(0,T0;H1(Rd)) ⩽M, ∥u∥Lr(0,T0;W 1,2σ+2(Rd)) ⩽M}

endowed with the distance

d(u, v) = ∥u− v∥L∞(0,T0;L2(Rd)) + ∥u− v∥Lr(0,T0;L2σ+2(Rd)) .

Kato’s method proves that ϕ is a contraction for well chosenM , T0, and allows to get the continuity
in time of the solution.

Since ϕ given by (3.2) maps (Fε
t )-adapted processes onto (Fε

t )-adapted processes, and that Xε

is obtained by iterating ϕ, this gives that Xε is (Fε
t )-adapted.

Moreover, it is easy to verify that ∥Xε(t, ω)∥L2 = ∥Xε
0∥L2 . To prove the bound on the gradient,

we use the energy H defined in (2.3) and a regularization is necessary to justify the computations.
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We denote now by Xε
δ = ρδ ⋆ X

ε(ω) ∈ Hk for all k ∈ N. And we compute H(ρδ ⋆ X
ε(t)):

dH(ρδ ⋆ X
ε(t))

dt
= H′(Xε

δ (t)).(ρδ ⋆ ∂tX
ε)

= Re

(∫
Rd

(−∆Xε
δ + λ|Xε

δ |2σXε
δ )∂tX

ε
δdx

)
= Re

(∫
Rd

(−∆Xε
δ + λ|Xε

δ |2σXε
δ )(−i∆Xε

δ + iλρδ ⋆ (|Xε|2σXε +
i

ε
ρδ ⋆ (Xεmε)))dx

)
= Re

(∫
Rd

−∆Xε
δ (iλρδ ⋆ (|Xε|2σXε) +

i

ε
ρδ ⋆ (Xεmε))dx

)
+Re

(∫
Rd

λ|Xε
δ |2σXε

δ (−i∆Xε
δ + iλρδ ⋆ (|Xε|2σXε) +

i

ε
ρδ ⋆ (Xεmε))dx

)
.

Since ∇Xε ∈ L∞(0, T0;L
2) ∩ Lr(0, T0;L2σ+2)) we get that ∇Xε

δ → ∇Xε in Lr(0, T0;L
2σ+2) and

similarly ρδ ⋆ (|Xε|2σXε) converges to |Xε|2σXε in Lr
′
(0, T0;W

1, 2σ+2
2σ+1 ) as δ goes to 0. The other

terms are treated similarly and after integration in time, and δ → 0 we obtain

H(Xε(t)) =H(Xε
0)−

1

ε

∫ t

0

Im

∫
Rd

∇Xε(s).∇mε(s, ω)Xε(s)ds

which leads to, using the Cauchy-Schwarz and Young inequalities

(3.3) H(Xε(t)) ⩽ H(Xε
0) +

1

2ε

∫ t

0

∥mε(s)∥2E ∥Xε
0∥

2
L2 + ∥∇Xε(s)∥2L2 ds.

This implies (3.1) when λ ≥ 0. For λ < 0, we use the Gagliardo-Nirenberg and Young inequalities
and have for u ∈ H1 and σ < 2/d

(3.4)
1

2σ + 2
∥u∥2σ+2

L2σ+2 ⩽ C ∥u∥2σ+2−σd
L2 ∥∇u∥σdL2 ⩽

1

4
∥∇u∥2L2 + C ∥u∥pdL2 .

Thus condition (1.3) implies that the energy provides a control on the L2 norm of the gradient. In
fact, the energy bound (3.3), the Gronwall lemma and the conservation of the L2 norm yield the
result. Global existence follows from (3.1) and the conservation of the L2 norm.

□

3.2. Persistence in the spaces Σζ. The result given in this subsection is a modification of [5,
Theorem 6.5.1].

Proposition 3.2. Assume Xε
0 ∈ Σζ for some 0 < ζ ⩽ 1 then Xε ∈ C([0, T ],Σζ) almost surely for

any T > 0. More precisely there exists CT > 0 a deterministic constant such that

(3.5)
∥∥Xε(t)⟨x⟩ζ

∥∥2
L2 ⩽ CT

(∥∥Xε
0⟨x⟩ζ

∥∥2
L2 +

∫ t

0

∥∇Xε(s)∥2L2 ds

)
.

Remark 3.1. Since the constant CT does not depend on ε, this result shows that if we are able to
prove a bound on the H1 norm of the solution uniform in ε, a uniform bound in ε on the weighted
norm follows immediately.

Proof. Recall that we denote by ⟨x⟩ =
√

1 + |x|2. Given δ ∈ (0, 1), denote by φδ the function

φδ(u) =

∫
Rd

⟨x⟩2ζ |u(x)|2e−δ⟨x⟩dx.
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Note that:

(Xε(t),−i|Xε(t)|2Xε(t)) = Re

(∫
Rd

−iXε(t)|Xε(t)|2Xε(t)dx

)
= 0,

and similarly, since mε is real valued, (Xε(t),−imε(t)Xε(t)) = 0. It follows:

d

dt
φδ(X

ε(t)) = 2(Xε(t), ∂tX
ε(t)⟨x⟩2ζe−δ⟨x⟩)

= 2(Xε(t), i∆Xε(t)⟨x⟩2ζe−δ⟨x⟩)

= 2Im

(∫
Rd

Xε(t)∇Xε(t).∇
(
⟨x⟩2ζe−δ⟨x⟩

)
dx

)
+ 2Im

(∫
Rd

∇Xε(t).∇Xε(t)⟨x⟩2ζe−δ⟨x⟩dx
)
.

Note that the last term vanishes. Since Xε is sufficiently smooth, no regularization argument in
the computation above is needed.

We have ∇(⟨x⟩2ζe−δ⟨x⟩) = (2ζ⟨x⟩2ζ−2 − δ⟨x⟩2ζ−1)e−δ⟨x⟩x and since |x| ≤ ⟨x⟩:

|∇(⟨x⟩2ζe−δ⟨x⟩)| ≤ (2ζ⟨x⟩2ζ−1 + δ⟨x⟩2ζ)e−δ⟨x⟩.

It follows:

φδ(X
ε(t)) = φδ(u

ε
0)

+ 2Im

(∫ t

0

∫
Rd

X̄ε(t)∇Xε(t).
(
(2ζ⟨x⟩2ζ−2 − δ⟨x⟩2ζ−1)e−δ⟨x⟩x

))
dx

≤ φδ(u
ε
0)

+ 2

(∫ t

0

∫
Rd

∣∣∣Xε(t)⟨x⟩ζe− δ
2 ⟨x⟩

2ζ
∣∣∣ |∇Xε(t)| (2ζ⟨x⟩ζ−1 + δ⟨x⟩ζ)e− δ

2 ⟨x⟩
)
dx.

(3.6)

Since (2ζtζ−1 + δtζ)e−
δ
2 t ≤ 2(1 + e−1) for ζ ≤ 1, t ⩾ 1, δ ⩽ 1, and φδ(u

ε
0) ⩽

∥∥u0⟨x⟩ζ∥∥2L2 we deduce

φδ(X
ε(t)) ⩽

∥∥u0⟨x⟩ζ∥∥2L2 + C
∫ t

0

∥∇Xε(s)∥L2

√
φδ(Xε(s))ds

which, thanks to the Young inequality and the Gronwall lemma, leads to

φδ(X
ε(t)) ⩽ CT

(∥∥u0⟨x⟩ζ∥∥2L2 +

∫ t

0

∥∇Xε(s)∥2L2 ds

)
.

Finally, by Fatou’s lemma, letting δ ↓ 0:∥∥Xε(t)⟨x⟩ζ
∥∥2
L2 ⩽ CT

(∥∥u0⟨x⟩ζ∥∥2L2 +

∫ t

0

∥∇Xε(s)∥2L2 ds

)
which is exactly (3.5). Then by (3.1), we see that the right-hand side of (3.5) is bounded, which
implies Xε ∈ L∞([0, T ],Σζ). Since we already know that it is continuous with values in H1, we
deduce Xε ∈ Cw([0, T ],Σ

ζ), where the subscript w indicates weak continuity in time. Letting δ ↓ 0
in the first part of (3.6) we see that∥∥Xε(t)⟨x⟩ζ

∥∥2
L2 =

∥∥u0⟨x⟩ζ∥∥2L2 + 4ζIm

∫ t

0

(∫
Rd

Xε(s)⟨x⟩2ζ−2∇Xε(s).xdx

)
ds

and since the right-hand side is continuous, we get the strong continuity: Xε ∈ C([0, T ],Σζ) □
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3.3. Generator of (Xε,mε). In order to determine the law of the limiting process X, we need to
identify the generator of Xε. Clearly, Xε is not a Markov process, because its increments depend
on mε, but the couple (Xε,mε) is a Markov process, since m is.

We compute now the generator Lε of the process (Xε,mε). We are able to compute this generator
acting on functions such as in the next definition. There are many such functions. In particular, we
can choose functions independent on n: (u, h)ℓ for ℓ = 1, 2, h ∈ H1 which allow to characterize the
dynamic or a diffusion process. When we apply the generator to these functions, other functions
of the form (uLi(n), h), i = 1, 2 are needed, the correctors, and thanks to the assumptions on Li
these also are good test function in the sense of the definition below. We also use the energy H and
associated correctors to obtain H1 bounds independent on ε.

We consider functions depending on (u, n) ∈ H1
C × E, for such function φ we denote by Dφ its

differential with respect to the variable u.

Definition 3.1 (Good test function). We say that Ψ : H1
C × E −→ R, (u, n) 7→ Ψ(u, n) is a good

test function if the following holds:

• Ψ is continuously differentiable with respect to u, the differential is denoted by DΨ.
• Ψ is subpolynomial in u and n; ∃CΨ,∃ p1 ∈ N,∃ γ1 < γ, ∀(u, n) ∈ H1 × E,

|Ψ(u, n)| ⩽ CΨ(1 + ∥u∥p1H1)(1 + ∥n∥γ1E ).

• (u, n) 7→ DΨ(u, n) is continuous from H1 × E to L(H1
C;C).

• DΨ(u, n) is continuous with respect to the H−1 norm and satisfies the following subpolyno-
mial bound in u: ∃CΨ,∃ p2 ∈ N,∃ γ2 < γ − 1,∀(u, h, n) ∈ H1 ×H−1 × E,

|DΨ(u, n).(h)| ⩽ Cψ(1 + ∥u∥H1)
p2(1 + ∥n∥γ2E ) ∥h∥H−1 .

• ∀u ∈ H1
C,Ψ(u, .) ∈ DM

• MΨ is continuous and subpolynomial in u and n; ∃CΨ,∃ p3 ∈ N,∃ γ3 < γ, ∀(u, n) ∈ H1×E,
|MΨ(u, n)| ⩽ CΨ(1 + ∥u∥p3H1)(1 + ∥n∥γ3E ).

With these good test functions, we may identify the generator Lε of the Markov process (Xε,mε).
For the definition of the predictable quadratic variation of a martingale, we refer to [19] and recall
that it coincides with the quadratic variation when the martingale is continuous.

Proposition 3.3. For a good test function φ , the infinitesimal generator Lε of (Xε,mε) is given
by the formula:

Lεφ(u, n) = 1

ε2
Mφ(u, n)

+
1

ε
(Dφ(u, n).(−iun))

+Dφ(u, n).(i∆u− iλ|u|2σu)

for u ∈ H1
C, n ∈ E. More precisely, if E ∥Xε

0∥
p
H1 <∞ for all p:

Mφ(t) = φ(Xε(t),mε(t))− φ(Xε
0 ,m

ε(0))−
∫ t

0

Lεφ(Xε(s),mε(s))ds

is a càdlàg and integrable (Fε
t ) zero-mean martingale. If furthermore γ1, γ2 + 1, γ3 < γ/2 and φ2

is also a good test function, its continuous quadratic variation is given by:

(3.7) ⟨Mφ,Mφ⟩t =
∫ t

0

(Lεφ2 − 2φLεφ)(Xε(s),mε(s))ds.
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Proof. Let t ≥ s ≥ 0 and s = t0 < ... < tn = t be a subdivision of [s, t] with supi|ti+1 − ti| = δ̄.
Given g a Fε

s -measurable and bounded function, we have

E [(φ(Xε(t),mε(t))− φ(Xε
0 ,m

ε(0))) g] = E
[(∫ t

s

Lεφ(Xε(σ),mε(σ))dσ

)
g

]
+ I + II,

where

I =

n−1∑
i=0

E [(φ(Xε(ti+1),m
ε(ti+1))− φ(Xε(ti),m

ε(ti+1))

−
∫ ti+1

ti

Dφ(Xε(s),mε(s)).(i∆Xε(s)− iλ|Xε(s)|2σXε(s)− i

ε
Xε(s)mε(s))ds ) g]

=E
[(∫ t

0

iδ̄(s)ds

)
g

]
with

iδ̄(s) = −
n−1∑
i=0

1[ti,ti+1](s) (Dφ(X
ε(s),mε(ti+1))−Dφ(Xε(s),mε(s))) .

dXε

dt
(s),

and

II =

n−1∑
i=0

E [(φ(Xε(ti),m
ε(ti+1))− φ(Xε(ti),m

ε(ti))

− 1

ε2

∫ ti+1

ti

Mφ(Xε(s),mε(s))ds ) g]

=E
[(∫ t

0

iiδ̄(s)ds

)
g

]
.

To treat iδ̄, we write dXε

dt (σ) = i∆Xε(s) − i|Xε)(s)|2σXε(s) − i 1εX
ε(s)mε(s) and since Dφ is

regularizing and subpolynomial, we have

(3.8)

∣∣∣∣Dφ(Xε(s),mε(s)) ·
(
i∆Xε +

Xεmε

ε
(s)

)∣∣∣∣ ⩽ Cε,φ(1 + ∥Xε(s)∥p2+1
H1 )(1 + ∥mε(s)∥γ2+1

E ).

Also, since σ < 2
n−2 , we know that H1 is continuously embedded in L2σ+2 and by duality L

2σ+2
2σ+1 is

continuously embedded in H−1. We deduce:

|Dφ(Xε, n) ·
(
|Xε|2σXε

)
| ⩽ Cε,φ(1 + ∥Xε(s)∥p2H1)(1 + ∥mε(s)∥γ2E )

∥∥|Xε|2σXε
∥∥
L

2σ+2
2σ+1

⩽ Cε,φ(1 + ∥Xε(s)∥p2H1)(1 + ∥mε(s)∥γ2E ) ∥Xε∥2σ+1
H1

which gives, thanks to (3.1) and (2.19), the uniform (in (s, ω)) integrability of iδ̄ Moreover, since Xε

is almost surely continuous andmε is stochastically continous,Dφ(Xε(s),mε(ti+1))−Dφ(Xε(s),mε(s))
converges to 0 when δ̄ → 0 in probability, so I converges to 0, as δ̄ tends to 0.

We claim that

iiδ̄(s) =
1

ε2

n−1∑
i=0

1[ti,ti+1] (Mφ(Xε(ti),m
ε(s))−Mφ(Xε(s),mε(s))) .
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Indeed, for u ∈ H1, φ(u, ·) ∈ DM (see Definition 3.1) and

Mε(u, t) = φ(u,mε(t))− φ(u,m(0))−
∫ t

0

1

ε2
Mφ(u,mε(s))ds

is a (Fε
t )-martingale. As Xε(ti) and g are Fε

ti-measurable, we get

E ([φ(Xε(ti),m
ε(ti+1))− φ(Xε(ti),m

ε(ti))] g)

=
1

ε2
E
([∫ ti+1

ti

Mφ(Xε(ti),m
ε(s))ds

]
g

)
.

Since Mφ satisfies the polynomial bound in Definition 3.1 we get the uniform integrability of iiδ̄.
The convergence in probability to 0 comes from the continuity of Mφ.

The quadratic variation ⟨M,M⟩ is characterized by the property that M2(t) −
∫ t
0
⟨M,M⟩(s)ds

is a martingale. Let s < t and (ti)i be a subdivision of [s, t] with supi |ti+1 − ti| = δ̄. Recall the
following sequence of identity:

(3.9)

E(M2(t)−M2(s)−
∫ t

0

(Lεφ2 − 2φLεφ)(Xε(s),mε(s))ds

=
∑
i

E(M2(ti+1)−M2(ti)−
∫ ti+1

ti

(Lεφ2 − 2φLεφ)(Xε(s),mε(s))ds

=
∑
i

E((M(ti+1)−M(ti))
2 −

∫ ti+1

ti

(Lεφ2 − 2φLεφ)(Xε(s),mε(s))ds,

where the last equality follows from

E((M(ti+1)−M(ti))
2) = E(M2(ti+1)− 2M(ti+1)M(ti) +M2(ti))

and

E(M(ti+1)M(ti)) = E(E(M(ti+1)M(ti)|Fti)) = E(M2(ti)).

Hence, it suffices to show that the right hand side of (3.9) goes to zero as δ̄ → 0.
Let us write:

(M(ti+1)−M(ti))
2 =

(
φ(Xε(ti+1),m

ε(ti+1))− φ(Xε(ti),m
ε(ti))

−
∫ ti+1

ti

Lεφ(Xε(σ),mε(σ))dσ

)2

=φ2(Xε(ti+1),m
ε(ti+1))

− 2φ(Xε(ti+1),m
ε(ti+1))φ(X

ε(ti),m
ε(ti)) + φ2(Xε(ti),m

ε(ti))

− 2(φ(Xε(ti+1),m
ε(ti+1))− φ(Xε(ti),m

ε(ti)))

∫ ti+1

ti

Lεφ(Xε(σ),mε(σ))dσ

+

(∫ ti+1

ti

Lεφ(Xε(σ),mε(σ))dσ

)2

.

Applying the above to φ2 implies that the process

M̃(t) = φ2(Xε(t),mε(t))− φ2(Xε(0),mε(0))−
∫ t

0

Lεφ2(Xε(σ),mε(σ))dσ



18 G. BARRUÉ, A. DEBUSSCHE, AND M. TUSSEAU

is a martingale for the filtration generated by mε. We can now write

n−1∑
i=0

(M(ti+1)−M(ti))
2 =

n−1∑
i=0

M̃(ti+1)− M̃(ti) +

∫ ti+1

ti

Lεφ2(Xε(σ),mε(σ))dσ

− 2φ(Xε(ti),m
ε(ti))

(
φ
(
Xε(ti+1),m

ε(ti+1))− φ(Xε(ti),m
ε(ti)

))
− 2(φ(Xε(ti+1),m

ε(ti+1))− φ(Xε(ti),m
ε(ti)))

∫ ti+1

ti

Lεφ(Xε(σ),mε(σ))dσ

+

(∫ ti+1

ti

Lεφ(Xε(σ),mε(σ))dσ

)2

and ∑
i

E((M(ti+1)−M(ti))
2 −

∫ ti+1

ti

(Lεφ2 − 2φLεφ)(Xε(s),mε(s))ds

= 2
∑
i

E
(∫ ti+1

ti

φLεφ(Xε(s),mε(s))ds− φ(Xε(ti),m
ε(ti))

× (φ (Xε(ti+1),m
ε(ti+1))− φ(Xε(ti),m

ε(ti)))

)
−2
∑
i

E
(
(φ(Xε(ti+1),m

ε(ti+1))− φ(Xε(ti),m
ε(ti)))

∫ ti+1

ti

Lεφ(Xε(σ),mε(σ))dσ

)
+
∑
i

E

((∫ ti+1

ti

Lεφ(Xε(σ),mε(σ))dσ

)2
)
.

Again, the inequalities (2.19) and (3.1) and uniform integrability can be used to prove that the
three terms of the right hand side go to zero under the extra assumption that γ1, γ2 +1, γ3 < γ/2.

□

Remark 3.2. This proof is not completely rigourous. Indeed, we have differentiated φ(Xε(t)) with
respect to t but we do not know whether Xε is C1 with values in H1. This is easily overcome by a
regularization argument as in the proof of Proposition 3.1: we replace φ by φδ = φ(ρδ ∗ ·) and let
δ → 0 at the end of the proof.

4. The perturbed test function method

4.1. Correctors. From the expression of Lεφ(u, n), we see that negative powers of ε are present.
The term of order -2 cancels if φ does not depend on n. Since we are interested only in the behaviour
of Xε when ε → 0, it is natural to consider such functions. To treat the -1 order term we need to
add correctors to φ. Assuming φ1, φ2 are good test functions we have

Lε(φ+ εφ1 + ε2φ2)(u, n) =
1

ε2
Mφ(u)

+
1

ε
(Dφ(u).(−iun) +Mφ1(u, n))

+Mφ2(u, n) +Dφ1(u, n).(−iun) +Dφ(u).(i∆u− iλ|u|2σu)
+ ε

(
Dφ2(u).(−iun) +Dφ1(u, n).(i∆u− iλ|u|2σu)

)
+ ε2Dφ2(u, n).(i∆u− iλ|u|2σu).
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Recall that the notation Dφ denotes the differential of φ with respect to u. Let us compute formally
the correctors. As already mentionned, the −2 order term vanishes because we chose a function φ
depending only on u. The first corrector is chosen so that the −1 order term cancels. It is formally
given by:

φ1(u, n) = M−1Dφ(u) · (iun) = Dφ(u) · (iuM−1n) = Dφ(u) · (iuL1(n)),

with L1 defined in (2.8), (2.9), (2.10).
The second corrector enables to identify the limit generator. The average with respect ot ν of

the third line is given by

Lφ(u) =Dφ(u) · (i∆u− iλ|u|2σu)
+ Eν

(
D2φ(u) · (−iun, iuM−1n) +Dφ(u) · (unM−1n)

)
=Dφ(u) · (i∆u− iλ|u|2σu)
+ Eν

(
D2φ(u) · (−iun, iuL1(n)) +Dφ(u) · (unL1(n))

)(4.1)

and we choose φ2 such that:

Mφ2(u, n) +Dφ1(u, n).(−iun) +Dφ(u).(i∆u− iλ|u|2σu)− Lφ(u) = 0.

In this way, we formally get Lε(φ + εφ1 + ε2φ2)(u, n) → Lφ(u) and we indeed identify the limit
generator.

We do not need to justify rigorously the above computation for many functions. As we shall
see below, for our purpose, it is sufficient to consider test functions of the form: φ(u) = (u, h)ℓ for
h ∈ H1, ℓ = 1, 2. It is clearly a good test function and satisfies all assumptions of Proposition 3.3.

Proposition 4.1 (First corrector). Let φ(u) = (u, h)ℓ with h ∈ H1, ℓ = 1, 2. Then there exists φ1

a good test function such that:

Dφ(u).(−iun) +Mφ1(u, n) = 0 ∀u, n ∈ H1
C × E.

Moreover, φ1 = ℓ(u, h)ℓ−1(iuL1(n), h) and satisfies all assumptions of Proposition 3.3.

Proof of Proposition 4.1. For any k ∈ H1, Dφ(u) · k = ℓ(u, h)ℓ−1(k, h). Therefore:∫
E

Dφ(u).(−iun)dν(n) =ℓ(u, h)ℓ−1

∫
E

(−iun, h)dν(n) = ℓ(u, h)ℓ−1(−iu
∫
E

ndν(n), h)

=0

where ν is the law of m(t), which is centered. Thanks to our assumptions, φ1 is given by

φ1(u, n) = ℓ(u, h)ℓ−1(iuL1(n), h).

By (2.21), we easily see that this is a good test function and Proposition 3.3 applies. □

Note that thanks to (2.21), we have:

|φ1(u, n)| ⩽ C(1 + ∥n∥E)
η∥u∥ℓH1∥h∥ℓH1 .

Moreover, for k ∈ H1,

Dφ1(u, n) · k = ℓ(u, h)ℓ−1(ikL1(n), h) + ℓ(ℓ− 1)(k, h)(iuL1(n), h).

We now compute the second corrector. For the test function φ(u) = (u, h)ℓ, we have

Lφ(u) =ℓ(u, h)ℓ−1(i∆u− iλ|u|2σu, h)

+ Eν
(
ℓ(ℓ− 1)(−iun, h)(iuL1(n), h) + ℓ(u, h)ℓ−1(unL1(n), h)

)
.
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The equation for φ2 then writes:

(4.2)
Mφ2(u, n) = ℓ(ℓ− 1)(iun, h)(iuL1(n), h) + ℓ(u, h)ℓ−1(unL1(n), h))

+Eν
(
ℓ(ℓ− 1)(−iun, h)(iuL1(n), h) + ℓ(u, h)ℓ−1(unL1(n), h)

)
.

The following proposition is again a straigthforward application of our assumptions.

Proposition 4.2 (Second corrector). Let φ(u) = (u, h)ℓ with h ∈ H1, ℓ = 1, 2. Then there exists
φ2 a good test function such that:

Mφ2(u, n) = ℓ(ℓ− 1)(iun, h)(iuL1(n), h) + ℓ(u, h)ℓ−1(unL1(n), h))

+Eν
(
ℓ(ℓ− 1)(−iun, h)(iuL1(n), h) + ℓ(u, h)ℓ−1(unL1(n), h)

)
.

Moreover, φ2
2 is also a good test function.

Proof. Let ℓ = 1, then the right hand side of (4.2) is of the form (2.11). It follows that φ2 exists
and by (2.13), (2.14) is given by:

φ2(u, n) = −(uL2(n), h).

Similarly, for ℓ = 2, the right hand side of (4.2) is of the form (2.16) and by (2.17), (2.18) is given
by:

φ2(u, n) = −2

∫
Rd

∫
Rd

u(x)u(y)L4(n)(x, y)h̄(x)h̄(y)dxdy − 2(u, h)(uL2(n), h)

Thanks to (2.21), we have in both cases:

|φ2(u, n)| ⩽ C(1 + ∥n∥E)
η∥u∥ℓH1∥h∥ℓH1 .

It follows that φ2 and φ2
2 are good test functions. □

Proposition 4.3 (Perturbed test-function method). Let φ(u) = (u, h)ℓ, where h ∈ H1, ℓ = 1, 2,
and φ1, φ2 given by Propostions 4.1 and 4.2. For ε ∈ (0, 1), we define φε = φ+ εφ1 + ε2φ2. Then
φε verifies for u ∈ H1, n ∈ E:

(1)

|φε(u, n)− φ(u)| ≤ Cε∥u∥ℓH1∥h∥ℓH1(1 + ∥n∥E)η.
(2)

(4.3) |Lεφε(u, n)− Lφ(u)| ⩽ Cε(1 + ∥u∥2σ+ℓH1 )∥h∥ℓH1(1 + ∥n∥E)η+1.

(3) The process

Mφε(t) = φε(Xε(t),mε(t))− φε(Xε
0 ,m

ε(0))−
∫ t

0

Lεφε(Xε(s),mε(s))ds

is a càdlàg and integrable (Ft) zero-mean martingale.

Proof of Proposition 4.3. We treat the case ℓ = 1. The case ℓ = 2 is similar but lengthier. The first
assertion clearly follows from the bound we have written above on φ1 and φ2.

By definition of Lφ and φε:

Lεφε(u, n)− Lφ(u) =ε
(
Dφ1(u, n).(i∆u− iλ|u|2σu) + εDφ2(u, n).(−iun)

)
+ ε2Dφ2(u, n).(i∆u− iλ|u|2σu).
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Recalling the expressions of φ1, φ2, we have∣∣∣Dφ1(u, n).(i∆u− iλ|u|2σu) + εDφ2(u, n).(−iun)
∣∣∣

⩽ C|h|H1(|L1(n)|E∥i∆u− iλ|u|2σu∥H−1 + ε|u|H1∥nL2(n)∥E)

and ∣∣∣Dφ2(u, n).(i∆u− iλ|u|2σu)
∣∣∣

⩽ C|h|H1 |L2(n)|E∥i∆u− iλ|u|2σu∥H−1 .

We have seen in the proof of Proposition 3.3 that

∥i∆u− iλ|u|2σu∥H−1 ≤ C(1 + ∥u∥H1)2σ+1.

The estimate of the second assertion follows easily. By Proposition 4.1, Proposition 4.2 we know
that φε is a good test function. Therefore Proposition 3.3 applies and the third point is also
clear. □

4.2. Tightness of the process Xε. In this subsection, we aim to obtain tightness of the family
of stopped processes (Xε,τε

)ε where Xε,τε

(t) = Xε(t ∧ τε). The definition (2.27) of τε depends on
α. We choose α < 2/γ such that α(η + 1) < 1.

The crucial ingredient used in previous works on diffusion-approximation in infinite dimension
is an assumption on uniform boundedness of the driving process in the adequate functional space,
which would be L∞(0, T ;E) in our case, w.r.t. ε (see [14] and [10]). Under our weaker assumptions,
the result remains true provided we use the stopping time τε. We will see that this is sufficient to
conclude.

Proposition 4.4. Assuming Xε
0 → X0,P−a.s. in the space Σζ for some 0 < ζ ⩽ 1 then the family

of process (Xε,τε

)ε>0 is tight in C([0, T ], Hs) for s < 1.

This result strongly relies on the following a priori estimate.

Lemma 4.1. Let p ≥ 1. Assume that supε>0 E (∥Xε
0∥L2 +H(Xε

0))
p ⩽ Cp, and let Xε be the

solution of (1.1) with initial data Xε
0 and τε the stopping time introduced in (2.27). Then for any

stopping time τ ⩽ T , there exists a constant Cp(T ) depending on T and p but not on ε such that
for t ∈ [0, T ]:

(4.4) E
[∥∥∥Xε,τε

(τ)
∥∥∥p
H1

]
⩽ Cp(T ).

The proofs of Lemma 4.1 and Proposition 4.4 are technical and are postponed to section 6.
We remark that this lemma, together with (3.5) and assuming E

∥∥Xε
0⟨x⟩ζ

∥∥p
L2 ⩽ C show that the

following inequality holds

(4.5) E
(∥∥∥Xε,τε

(τ)
∥∥∥p
Σζ

)
⩽ Cp(T ).

5. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into 3 steps. First we identify the SPDE associated to
L, then we prove the weak convergence of Xε to X solution of (1.4), linked to L, and finally we
conclude using the uniqueness of the solution.
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Proof of Theorem 1.1. Step 1: Identification of the limiting generator
For h ∈ H2−s with s < 1, we use the functionals φ(u) = (u, h) and φ2 which are clearly good

test functions. We now compute Lφ and Lφ2,

Lφ(u) = Dφ(u).(i∆u− iλ|u|2σu) + Eν

D2φ(−iun, iuL1(n))︸ ︷︷ ︸
0

+Dφ(u).(unL1(n))


=
(
i∆u− iλ|u|2σu+ EνunL1(n), h

)
=

(
i∆u− iλ|u|2σu− 1

2
uF, h

)
,

where F is given by (2.26) (see (2.38)). In the case of φ2, we again have

Dφ2(u).(i∆u− iλ|u|2σu) + Eν
(
Dφ2(u).(unM−1n)

)
= Dφ2(u).(i∆u− iλ|u|2σu− 1

2
uF )

but now the term EνD2φ(−iun, iuM−1n) does not vanish,

EνD2φ2(−iun, iuL1(n)) = 2

∫
E

(−iun, h)(iuL1(n), h)dν(n)

= 2E
(∫

Rd

∫
Rd

m(0)(x)Re(iu(x)h̄(x))
( ∫ ∞

0

m(t)(y)dt
)
Re(iu(y)h̄(y))dxdy

)
since m(t) is real-valued

=

∫
Rd

∫
Rd

k(x, y)Re(iu(x)h̄(x))Re(iu(y)h̄(y))dxdy.

Let us denote now by q the kernel of Q1/2 where Q is given by (2.36), we have

k(x, y) =

∫
Rd

q(x, z)q(z, y)dz

and

EνD2φ2(−iun, iuL1(n))

=

∫
Rd

∫
Rd

∫
Rd

q(x, z)q(z, y)Re(iu(x)h̄(x))Re(iu(y)h̄(y))dzdxdy

=

∫
Rd

(
iuq(., z), h

)(
iuq(., z), h

)
dz

=
1

2
Tr
(
D2φ2.(iuQ1/2, iuQ1/2)

)
.

Finally, we have

(5.1) Lφ(u) = Dφ(u).(i∆u− iλ|u|2σu− 1

2
uF )

and

(5.2) Lφ2(u) = Dφ2(u).(i∆u− iλ|u|2σu− 1

2
uF ) +

1

2
Tr
(
D2φ2.(iuQ1/2, iuQ1/2)

)
.

Step 2: Convergence
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Given 0 < ζ ⩽ 1, by Propostion 4.4, we have a subsequence of (Xε,τε

)ε>0, still denoted by
(Xε,τε

), of law P ε and a probability measure P on C([0, T ], Hs) such that

P ε → P weakly on C([0, T ], Hs).

Since [0, T ] is compact and Hs is separable, C([0, T ], Hs) is also separable, and by Skohorod

theorem (see [2]) there exist a probability space (Ω̃, F̃ , P̃) and random variables X̃ε, X̃ on Ω̃ with
values in C([0, T ], Hs) such that

X̃ε → X̃ in C([0, T ], Hs), P̃ a.s. as ε→ 0

and L(X̃ε) = P ε and L(X̃) = P . For h ∈ H2−s, we use the test function φ(u) = (u, h) and
φ1, φ2 the correctors given by Propositions 4.1 and 4.2. We define φε = φ + εφ1 + ε2φ2, then by
Proposition 4.3, the process

M(t) = φε(Xε(t),mε(t))− φε(Xε(0),mε(0))−
∫ t

0

Lεφε(Xε(s),mε(s))ds

is a martingale for the filtration (Fε
t )t, and the stopped process M(t∧ τε) is also a martingale, that

is for all 0 ⩽ s1 ⩽ ... ⩽ sn ⩽ s ⩽ t and g ∈ Cb
(
(Hs)n

)
E
((
φε(Xε(t ∧ τε),mε(t ∧ τε))− φε(Xε(s ∧ τε),mε(s ∧ τε))

−
∫ t∧τε

s∧τε

Lεφε(Xε(s′),mε(s′))ds′
)
g(Xε(s1 ∧ τε), ..., Xε(sn ∧ τε))

)
= 0.

Moreover, we easily have∫ t∧τε

s∧τε

Lεφε(Xε(s′),mε(s′))ds′
)
g(Xε(s1 ∧ τε), ..., Xε(sn ∧ τε))

=

∫ t∧τε

s∧τε

Lεφε(Xε,τε

(s′),mε∧τε

(s))ds′
)
g(Xε,τε

(s1), ..., X
ε,τε

(sn)).

Then we get:

E
((
φ(Xε,τε

(t))− φ(Xε,τε

(s))−
∫ t

s

Lφ(Xε,τε

(s′))ds′
)
g(Xε,τε

(s1), ..., X
ε,τε

(sn))
)

= E
[(

− ε
(
φ1(X

ε,τε

(t),mε(t ∧ τε))− φ1(X
ε,τε

(s),mε(s ∧ τε))
)

− ε2
(
φ2(X

ε,τε

(t),mε(t ∧ τε))− φ2(X
ε,τε

(s),mε(s ∧ τε))
)

−
(∫ s

s∧τε

Lφ(Xε,τε

(s′))ds′ −
∫ t∧τε

t

Lφ(Xε,τε

(s′))ds′

−
∫ t∧τε

s∧τε

(Lεφε − Lφ)(Xε(s′),mε(s′ ∧ τε))ds′
)
g(Xε,τε

(s1), ..., X
ε,τε

(sn))
]

= E[T1 + T2 + T3 + T4].
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We now use Proposition 4.3 and Lemma 4.1 and notice that T1 = T2 = 0 when τε = 0 to get the
bound:

E[T1 + T2] ≤ CεE

(
1τε>0 sup

s′∈[0,T ]

∥∥∥Xε,τε

(s′)
∥∥∥
H1

∥h∥H1

(
1 + sup

s′∈[0,T ]

∥mε(s′ ∧ τε)∥E

)η)
≤ Cε1−αη.

Similarly:

E[T4] ≤ Cε1−α(η+1).

By the embedding H1 ⊂ L2σ+2 (see (1.2)) and the Hölder inequality, we have∣∣∣Lφ(Xε,τε

(s′))
∣∣∣ ⩽ ∥∇h∥L2

∥∥∥∇Xε,τε

(s′)
∥∥∥
L2

+ ∥h∥L2σ+2

∥∥∥Xε,τε

(s′)
∥∥∥2σ+1

L2σ+2

+ ∥F∥L∞ ∥h∥L2

∥∥∥Xε,τε

(s′)
∥∥∥
L2

⩽C∥h∥H1(1 +
∥∥∥Xε,τε

(s′)
∥∥∥
H1

)2σ+1.

Lemma 4.1 and Hölder inequality yield

E
[( ∣∣∣∣∫ s

s∧τε

Lφ(Xε,τε

(s′))ds′
)
g(Xε(s1), ..., X

ε(sn))

∣∣∣∣ )]
⩽ C∥h∥H1E

[∫ s∧τε

s

(1 +
∥∥∥Xε,τε

(s′)
∥∥∥
H1

)2σ+1ds′

]

⩽ C∥h∥H1

(
E
[
(s− s ∧ τε)2

])1/2
:= r1(ε),

with r1(ε) → 0 when ε→ 0 by Lemma 2.1 and the uniform integrability. Similarly we have

E

∣∣∣∣∣
∫ t∧τε

t

Lφ(Xε,τε

(s′))ds′g(Xε(s1), ..., X
ε(sn))

∣∣∣∣∣ ⩽ r2(ε),

with r2(ε) → 0 when ε→ 0.
Finally, we obtain

(5.3)

∣∣∣E((φ(Xε,τε

(t))− φ(Xε,τε

(s))−
∫ t
s
Lφ(Xε,τε

(s′)ds′
)
g(Xε,τε

(s1), ..., X
ε,τε

(sn))
)∣∣∣

⩽ Cε1−(η+1)α + r1(ε) + r2(ε),

where C does not depend on ε. Moreover, as Xε,τε

and X̃ε have the same law, then (5.3) is also

true by replacing Xε,τε

by X̃ε, and P by P̃. Since φ, Lφ and g are continuous from Hs to R
(the continuity of Lφ requires the continuity of the nonlinearity which is given by the embedding
Hs ⊂ L2σ+1), taking the limit ε→ 0, we get

(5.4) Ẽ
((
φ(X̃(t))− φ(X̃(s))−

∫ t

s

Lφ(X̃(s′))ds′
)
g(X̃(s1), ..., X̃(sn))

)
= 0.

Then the process

M̃(t) = φ(X̃(t))− φ(X̃(0))−
∫ t

0

Lφ(X̃(s))ds
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is a martingale with respect to the filtration Gs generated by X̃(s). Note that this martingale is
continuous.

Similarly, we can pass to the limit ε→ 0 in the definition of the quadratic variation and obtain
that the quadratic variation of M̃ is given by:

⟨M̃, M̃⟩(t) =
∫ t

0

(
L(φ)2 − 2φLφ

)
(X̃(s))ds.

Note that this step requires the use of the perturbed test function method applied to φ2(u) = (u, h)2.
From (5.1) and (5.2), we deduce(

L(φ)2 − 2φLφ
)
(u) =2(u, h)(i∆u− iλ|u|2σu− 1

2
uF, h) + Tr

(
(iuQ1/2, h)2

)
− 2(u, h)

(
(i∆u− i

2
uF, h)

)
=Tr

(
(iuQ1/2, h)2

)
The continuous H−1-valued martingale

M(t) = X̃(t)− X̃(0)−
∫ t

0

i∆X̃(s)− i|X̃(s)|2σX̃(s)− 1

2
X̃(s)F

has the quadratic variation ∫ t

0

(
iX̃(s)Q1/2

)(
iX̃(s)Q1/2

)∗
ds

then, using the martingale representation theorem (see [6]) and up to enlarging the probability
space, there exists a cylindrical Wiener process W such that:

M(t) =

∫ t

0

iX̃(s)Q1/2dW (s).

Step 3: Uniqueness of the limit Note that X̃ε also satisifies (4.4). Letting ε → 0, we deduce

that X̃ ∈ L∞(0, T ;Lp(Ω̃;H1(Rd))) for any p ≥ 1 is a martingale solution of (1.4). Using the
integral form of (1.4), we see that it has paths in L∞(0, T ;H1(Rd)). We know from [1] that under
our assumptions that (1.4) has a unique solution with paths in L∞(0, T ;H1(Rd)). This implies
uniqueness in law for martingale solutions.

As P is the law of X̃, we deduce this is the law of the solution of (1.4). By uniqueness of the
limit, we conclude that the whole sequence (Xε,τε

) converges in law to X, in the space of probability
measure of C([0, T ], Hs).

Finally, we obviously have for δ > 0,{
sup

0⩽t⩽T

∥∥∥Xε(t)−Xε,τε

(t)
∥∥∥
H1

> δ

}
⊂ {τε < T} ,

and together with Lemma 2.1 yields the convergence in probability of Xε −Xε,τε

to 0.
Using finally [2, Theorem 4.1], we obtain the weak convergence of Xε to X in C([0, T ], Hs).

□
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6. Technical proofs

6.1. Proof of Lemma 4.1. As seen in Section 3, a straight application of standard energy ar-
guments gives a very bad dependance on ε. The idea is to use the perturbed test function. This
mimics Itô formula which is used to get a priori estimates for the limit equation with white noise
(see [8]).

If one tries to use similar arguments to those of Proposition 4.3 with the functional H, defined
by (2.3), in place of linear or quadratic functional, this requires a lot of smoothness on H and the
useless assumption (σ ≥ 1/2). We proceed slightly differently. We first smooth the functional and
take advantage of the various cancelations before constructing the correctors.

Proof of Lemma 4.1. We give the proof only for p = 2. The general case is not more complicated
but is lengthier.

We consider the functional φδ(u) = H(ρδ ⋆ u), where ρδ is the mollifier introduced at the end of
Section 2.1. We claim that it is a good test function. Indeed, we have for u, h ∈ H1

(6.1) Dφδ(u) · h =
(
−∆ρδ ⋆ u+ λ|ρδ ⋆ u|2σ(ρδ ⋆ u), ρδ ⋆ h

)
,

and there is no difficulty to verify that φδ satisfies the condition in Definition 3.1. By Proposition
3.3, we know that the process

Mε
δ (t) = φδ(X

ε(t))− φδ(X
ε
0)−

∫ t

0

Lεφδ(Xε(s),mε(s))ds,

is a martingale. It can be seen that φδ(u) → H(u) when δ → 0 and u ∈ H1. Moreover, we have

Lεφδ(Xε(s),mε(s))

=
1

ε

(
−∆ρδ ⋆ X

ε(s) + λ|ρδ ⋆ Xε(s)|2σ(ρδ ⋆ Xε),−iρδ ⋆ (Xε(s)mε(s))
)

+
(
−∆ρδ ⋆ X

ε(s) + λ|ρδ ⋆ Xε(s)|2σ(ρδ ⋆ Xε), iρδ ⋆
(
∆Xε(s)− λ|Xε(s)|2σXε(s)

))
,

and we proved in Proposition 3.1 that the second term of the right-hand side converges to 0, when
δ → 0. Similarly we have when δ tends to 0

|ρδ ⋆ Xε(s)|2σXε(s) → |Xε(s)|2σXε(s) in L
2σ+2
2σ+1 ,

ρδ ⋆ X
ε(s)mε(s) → Xε(s)mε(s) in L2σ+2,

so that (
|ρδ ⋆ Xε(s)|2σXε(s), iρδ ⋆ X

ε(s)mε(s)
)
→
(
|Xε(s)|2σXε(s), iXε(s)mε(s)

)
= Re

(∫
Rd

i|Xε(s)|2σ+2mε(s)dx

)
= 0,

since m is real valued. In the same way, we have

(−∆ρδ ⋆ X
ε(s), iρδ ⋆ X

ε(s)mε(s)) → (∇Xε(s), iXε(s)∇mε(s)) .

Finally, as δ converges to 0, Mε
δ (t) converges almost surely to

Mε(t) := H(Xε(t))−H(Xε
0)−

∫ t

0

1

ε
(∇Xε(s), iXε(s)∇mε(s)) ds,

and sinceMδ(t) is a (Fε
t )-martingale, from (3.1) and the dominated convergence theorem, we deduce

immediately that Mε(t) is also a (Fε
t )-martingale.
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We define then the first corrector

(6.2) φ1(u, n) = (∇u,−iu∇L1(n)) .

This is not a good test function. For δ > 0, we set φ1,δ(u, n) = φ1(ρδ ⋆ u, n). There is no difficulty
to see that φ1,δ is a good test function and then, we obtain by Proposition 3.3 that the process

Mε
1,δ(t) :=φ1,δ(X

ε(t),mε(t))− φ1,δ(X
ε(0),mε(0))

−
∫ t

0

Lεφ1,δ(X
ε(s),mε(s))ds,

is a martingale. After computations, we have

Lεφ1,δ(u, n) =
1

ε2
(∇ρδ ⋆ u,−iρδ ⋆ u∇n)

+
1

ε
[(∇ρδ ⋆ (un),∇L1(n)ρδ ⋆ u)− (∇ρδ ⋆ u, n∇L1(n)ρδ ⋆ u)]

+ 2 (∆ρδ ⋆ u,∇L1(n)∇ρδ ⋆ u) + (∆ρδ ⋆ u, ρδ ⋆ u∆L1(n))

− 2λ
(
ρδ ⋆ (|u|2σu),∇ρδ ⋆ u∇L1(n)

)
− λ

(
ρδ ⋆ (|u|2σu), ρδ ⋆ u∆L1(n)

)
,

after integration by parts, we get

(∆ρδ ⋆ u, ρδ ⋆ u∆L1(n)) = − (∇ρδ ⋆ u,∇ρδ ⋆ u∆L1(n))− (∇ρδ ⋆ u, ρδu∇∆L1(n)) ,

(∆ρδ ⋆ u,∇L1(n)∇ρδ ⋆ u) = −1

2
(∇ρδ ⋆ u,∇ρδ ⋆ u∆L1(n)) ,

and (
∇ρδ ⋆ (|u|2σu), ρδ ⋆ u∇L1(n)

)
= −

(
ρδ ⋆ (|u|2σu),∇ρδ ⋆ u∇L1(n) + ρδ ⋆ u∆L1(n)

)
.

Finally, taking the limit δ → 0 and using

(2σ + 2)
(
|u|2σu,∇u∇L1(n)

)
=
(
∇|u|2σ+2,∇L1(n)

)
= −

(
|u|2σ+2,∆L1(n)

)
,

we get that the process Mε
1 (t) given by

Mε
1 (t) :=φ1(X

ε(t),mε(t))− φ1(X
ε(0),mε(0))

−
∫ t

0

1

ε2
(∇Xε(s),−iXε(s)∇mε(s))

− 1

ε
[(Xε(s)∇mε(s), Xε∇L1(m

ε(s)))]

+ 2 (∇Xε(s),∇Xε(s)∆L1(m
ε(s))) + (∇Xε, Xε∇∆L1(m

ε(s)))

+ λ
σ

σ + 1

(
|Xε(s)|2σ+2,∆L1(m

ε(s))
)
ds

is a martingale.
We finally consider the C1

P test function

φ2(u, n) := M−1 ((u∇n, u∇L1(n)− Eν (u∇n, u∇L1(n)))) = (uL3(n), u),

where L3 was defined in (2.12), (2.13), (2.15). Again,thanks to (2.21) and the assumptions on L3,
it is not difficult to check that φ2 is a good test function.

Using Proposition 3.3, we know that

(6.3) Mε
2 (t) := φ2(X

ε(t),mε(t))− φ2(X
ε(0),mε(0))−

∫ t

0

Lεφ2(X
ε(s),mε(s))ds
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is a (Fε
t )-martingale. After computation we obtain Lεφ2:

Lεφ2(u, n) =
1

ε2
(u(∇n∇L1(n)− Eν∇n∇L1(n)), u)

− 2 (i∇u.∇L3(n), u)
(6.4)

where we strongly used that n is real-valued.
Consequently, we know that the following process Mε(t) is a martingale, with respect to the

filtration (Fε
t ).

Mε(t) :=Mε(t) + εMε
1 (t) + ε2Mε

2 (t)

=H(Xε(t))−H(Xε
0) + ε (φ1(X

ε(t),mε(t))− φ1(X
ε
0 ,m

ε(0)))

+ ε2 (φ2(X
ε(t),mε(t))− φ2(X

ε
0 ,m

ε(0)))

−
∫ t

0

(Xε(s)(Eν∇n∇L1(m
ε(s)), Xε(s))

+ 2ε (∇Xε(s),∇Xε(s)∆L1(m
ε(s))) + ε (∇Xε, Xε∇∆L1(m

ε(s)))

+ ε
λσ

σ + 1

(
|Xε(s)|2σ+2,∆L1(m

ε(s))
)

− 2ε2 (i∇Xε(s)∇L3(m
ε(s), Xε(s)) ds.

Hence, since τε, given by (2.27), is a bounded (Fε
t )-stopping time, the process M(t ∧ τε) is a

martingale. From the identity above, the L2 conservation, (6.2) and (6.4) we have

E[H(Xε,τε

(t))] ⩽ E
[
|H(Xε

0)|+ Cε1τε>0 ∥L1(m
ε)∥E ∥Xε

0∥L2

(∥∥∥∇Xε,τε

(t)
∥∥∥
L2

+ ∥∇Xε
0∥L2

)
+ Cε21τε>0 ∥L3(m

ε)∥Hκ ∥Xε
0∥

2
L2 +M(t ∧ τε)

+ C
∫ t∧τε

0

Eν [∇n∇L1(n)] ∥Xε
0∥

2
L2 + ε

∥∥L1(mε)
∥∥
E

∥∥∥Xε,τε

(s)
∥∥∥2σ+1

L2σ+2

+ ε ∥L1(m
ε)∥E

(∥∥∥∇Xε,τε

(s)
∥∥∥2
L2

+
∥∥∥∇Xε,τε

(s)
∥∥∥
L2

∥∥∥Xε,τε

(s)
∥∥∥
L2

)
+ε2

(
∥L3(m

ε)∥2Hκ +
∥∥∥∇Xε,τε

(s)
∥∥∥2
L2

)∥∥∥Xε,τε

(s)
∥∥∥
L2
ds

]
.
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We recall that ∥Xε(t)∥L2 = ∥Xε
0∥L2 and that, when τε > 0, ∥mε(t ∧ τε)∥E ⩽ ε−α according to

Lemma 2.1. Hence using (2.21), (3.4),

E
[ ∥∥∥∇Xε,τε

(t)
∥∥∥2
L2

]
⩽ 2E

[
|H(Xε

0)|+ Cε1−αη(∥Xε
0∥L2 ∥∇Xε

0∥L2 +
∥∥∥∇Xε,τε

(t)
∥∥∥2
L2

+ ∥Xε
0∥

2
L2)

+ C ∥X0∥pdL2 + Cε2(1−αη)
∥∥∥Xε,τε

(t)
∥∥∥2
L2

+ C
∫ t∧τε

0

Eν [∇n∇L1(n)] ∥Xε
0∥

2
L2 + ε1−αη(∥Xε

0∥
2
L2 +

∥∥∥∇Xε,τε

(s)
∥∥∥2
L2
)

+ ε1−αη(
∥∥∥∇Xε,τε

(s)
∥∥∥2
L2

+ ∥Xε
0∥
pd
L2) + ε2(1 + ∥Xε

0∥
2
L2 +

∥∥∥∇Xε,τε

(s)
∥∥∥2
L2
)ds

]
,

then for ε small enough we get

(6.5) E
[∥∥∥∇Xε,τε

∥∥∥2
L2

]
⩽ C(T, ∥Xε

0∥
pd
L2 , |H(Xε

0)|) + Cε1−αη
∫ t∧τε

0

E
[∥∥∥∇Xε,τε

(s)
∥∥∥2
L2

]
ds.

The Gronwall Lemma and the conservation of the L2 norm give us that for any t ∈ [0, T ]

(6.6) E
[∥∥∥Xε,τε

(t)
∥∥∥2
H1

]
⩽ C(T ).

Then, taking τ a stopping time such that τ < T , we can do the same computations as before and
get a similar bound as (6.5):

E
[∥∥∥∇Xε,τε

(τ)
∥∥∥2
L2

]
⩽ C(T, ∥Xε

0∥
pd
L2 , |H(Xε

0)|) + Cε1−αE

[∫ τ∧τε

0

∥∥∥∇Xε,τε

(s)
∥∥∥2
L2
ds

]

⩽ C(T, ∥Xε
0∥
pd
L2 , |H(Xε

0)|) + C
∫ T

0

E
[∥∥∥∇Xε,τε

(s)
∥∥∥2
L2

]
ds

and using the bound (6.6) we are able to conclude. □

6.2. Proof of Proposition 4.4. To prove the tightness of the sequence (Xε,τε

)ε→0 in the space
C([0, T ];Hs(Rd)), we use Aldous criterion, which can be found in [2, Theorem 16.10] in the finite
dimensional case. In the case of an infinite dimensional separable space H, the hypothesis (16.22)
in [2] has to be replaced. Let us state the criterion we use.

Proposition 6.1. Let H be a complete separable space, and (uε)ε>0 be a sequence of process on
[0, T ] such that, for any t ∈ [0, T ], uε(t) is H valued. Assume that

(1)

For every η > 0, for every t ⩾ 0 there exists a compact set Γη,t ⊂ H, such that

inf
ε>0

P(uε(t) ∈ Γη,t) ⩾ 1− η,(6.7)



30 G. BARRUÉ, A. DEBUSSCHE, AND M. TUSSEAU

(2)

For every λ, η > 0, there exist δ0, ε0 such that for δ < δ0, and ε < ε0, if τ

is a stopping time then

P (∥uε(τ + δ)− uε(τ)∥H > λ) ⩽ η.

(6.8)

Then the sequence (uε)ε>0 is tight in C([0, T ], H).

We can prove this result using the same proof as for [2, Theorem 16.10], but instead of hypothesis
(16.22) we assume (a) in [16, Theorem 7.9].

Proof of Proposition 4.4. Lemma 4.1 and Proposition 3.2 ensure that (Xε,τε

)ε>0 satisfies (6.7) for
H = Hs(Rd), 0 ⩽ s < 1. Indeed, according to these two lemmas, we have

E
[∥∥∥Xε,τε

(t)
∥∥∥
Σζ

]
⩽ C(T ),

with C(T ) independent on ε.
Thus for any η > 0 and t ∈ [0, T ]:

P
(∥∥∥Xε,τε

(t)
∥∥∥
Σζ

> R
)
⩽
C(T )

R
⩽ η

for R large enough independent on ε. Thus Xε,τε

(t) lives in a bounded set of Σζ with probability
larger than 1− η. It remains to prove that the embedding Σζ ↪→ Hs(Rd) is compact. Let (un)n∈N
be a bounded sequence in Σζ . Then by compact embedding and diagonal extraction, there exists a
subsequence (unk

)k∈N which converges to u ∈ L2(B(0, R)) for every R > 0. Now we compute:

∥unk
− u∥2L2(Rd) ⩽ ∥unk

− u∥2L2(B(0,R)) +

∫
B(0,R)c

|unk
(x)− u(x)|2dx

⩽ ∥unk
− u∥2L2(B(0,R)) + (1 +R)−ζ

∫
B(0,R)c

⟨x⟩ζ
(
|unk

(x)|2 + |u(x)|2
)
dx

for any R > 0, thus (unk
)k∈N converges to u in L2(Rd), and is bounded in H1(Rd), so that by

interpolation the subsequence also converges to u in Hs(Rd), 0 ⩽ s < 1.
We also need to prove that Xε,τε

satisfies the second condition of Proposition 6.1. We first prove
that (6.8) holds with H replaced by H− 1

2 (Rd,C). For this we use the Perturbed Test Function
method, and the equality:

∥u(τ + δ)− u(τ)∥2
H− 1

2
= ∥u(τ + δ)∥2

H− 1
2
− ∥u(τ)∥2

H− 1
2
− 2⟨u(τ + δ)− u(τ), u(τ)⟩

H− 1
2
.

First we apply the Perturbed Test Function method to φ(u) = ∥u∥2
H− 1

2
. We compute Lεφ:

Lεφ(Xε) = 2⟨(1−∆)−
1
2Xε, i∆Xε − iλ|Xε|2σXε⟩ − 2

ε
⟨(1−∆)−

1
2Xε, iXεm(

t

ε2
)⟩.

We choose the first corrector φ1 in order to cancel the term of negative order in ε, and recalling
that L1(n) = M−1n we get

(6.9) φ1(u, n) = 2⟨(1−∆)−
1
2u, iuL1(n)⟩,

on which we have a bound using hypothesis (2.21):

(6.10) |φ1(u, n)| ⩽ 2 ∥u∥H−1 ∥u∥L2 ∥L1(n)∥E ⩽ 2 ∥u∥2L2 ∥L1(n)∥E .
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Now we apply the infinitesimal generator Lε to φ+ εφ1:

Lε (φ+ εφ1) (X
ε,mε) =2⟨(1−∆)−

1
2Xε, i∆Xε − iλ|Xε|2σXε⟩

+ 2⟨(1−∆)−
1
2Xε, XεmεL1(m

ε)⟩

+ 2⟨(1−∆)−
1
2 (Xεmε) , XεL1(m

ε)⟩
+ εDuφ1(i∆X

ε − iλ|Xε|2σXε).

Thus, treating the operator (1−∆)−
1
2 as a kernel operator with kernel k∆, we set

φ2(u, n) =Re

∫
R2n

ū(x)k∆(x, y)u(y)L4(n)(y, x)dxdy

− 2⟨(1−∆)−
1
2u, uL2(n)⟩,

(6.11)

where we recall that formally L2(n) = M−1 (nL1(n)− Eν [nL1(n)]). Finally, defining φε = φ +
εφ1 + ε2φ2, we obtain that:

Lεφε(Xε,mε) =2⟨(1−∆)−
1
2Xε, i∆Xε − iλ|Xε|2σXε⟩

+ 2⟨(1−∆)−
1
2Xε, XεEν [nL1(n)]⟩

− 2Eν
[
⟨(1−∆)−

1
2 (Xεn) , XεL1(n)⟩

]
+ ε

(
Duφ1(i∆X

ε − iλ|Xε|2σXε) +Duφ2(−iXεmε)
)

+ ε2Duφ2(i∆X
ε − iλ|Xε|2σXε).

(6.12)

First we get an estimate of φ2(u, n) in (6.11). We have

⟨(1−∆)−
1
2u, uL2(n)⟩ ⩽ ∥u∥H−1 ∥u∥L2 ∥L2(n)∥L∞ ,

and for the other term in the right-hand side of (6.11) we use the assumptions made on L4 to get
the bound:

Re

∫
R2n

ū(x)k∆(x, y)u(y)L4(n)(y, x)dxdy ⩽ ∥u∥H−1 ∥u∥L2 ∥L4(n)∥L∞(Rd×Rd) .

Finally we obtain the following bound on φ2:

|φ2(u, n)| ⩽2 ∥u∥H−1 ∥u∥L2 (∥L2(n)∥L∞ + ∥L4(n)∥L∞(Rd×Rd))

⩽2 ∥u∥2L2 (∥L2(n)∥L∞ + ∥L4(n)∥L∞(Rd×Rd)),
(6.13)

with L2 and L4 defined in (2.11), (2.13) ,(2.14) , (2.16), (2.17), (2.18).
Now we work on the different terms of the expression of Lεφε in (6.12). First we deal with the

terms of order 0 in ε. Using integrations by parts and (3.4) we get

(6.14) ⟨(1−∆)−
1
2u, i∆u− iλ|u|2σu⟩ ⩽ ∥u∥L2 ∥u∥H1 + ∥u∥L2

(
∥u∥pdL2 + ∥u∥2H1

)
.

Then we have

⟨(1−∆)−
1
2u, uEν [nL1(n)]⟩

= −Re
∫
Rd

(1−∆)−
1
2u(x)ū(x)E

∫ ∞

0

m(0, x)m(s, x)dsdx

=
1

2
Re

∫
Rd

(1−∆)−
1
2u(x)ū(x)k(x, x)dxdydz,



32 G. BARRUÉ, A. DEBUSSCHE, AND M. TUSSEAU

where k ∈W 3,∞(Rd × Rd) ∩H1(Rd × Rd) is defined in (2.24). We get:

(6.15) ⟨(1−∆)−
1
2u, uEν [nL1(n)]⟩ ⩽ ∥k∥2L∞(Rd×Rd)) ∥u∥

2
L2 .

We get the same estimate for the last term of order 0:

(6.16) Eν
[
⟨(1−∆)−

1
2 (un), uL1(n)⟩

]
⩽ ∥k∥2L∞(Rd×Rd)) ∥u∥

2
L2 .

Now we focus on the terms of order 1 in ε in (6.12). We recall the expression of the first corrector

φ1(u, n) = 2⟨(1−∆)−
1
2u, iuL1(n)⟩. Thus

Duφ1(i∆u− iλ|u|2σu) =2⟨(1−∆)−
1
2u, (λ|u|2σu−∆u)L1(n)⟩

+ 2⟨(1−∆)−
1
2 (∆u− λ|u|2σu), uL1(n)⟩.

We use integrations by parts to deal with the terms involving ∆u and we get that

⟨(1−∆)−
1
2u,∆uL1(n)⟩+ ⟨(1−∆)−

1
2∆u, uL1(n)⟩ ⩽ C ∥u∥L2 ∥u∥H1 ∥L1(n)∥E .

For the other terms, we use (3.4) to get

⟨(1−∆)−
1
2u, |u|2σuL1(n)⟩+⟨(1−∆)−

1
2 (|u|2σu), uL1(n)⟩

⩽ ∥u∥L2

(
∥u∥pdL2 + ∥u∥2H1

)
∥L1(n)∥L∞ .

Finally

(6.17) |Duφ1(i∆u− iλ|u|2σu)| ⩽ C ∥u∥L2 ∥u∥H1 ∥L1(n)∥E + ∥u∥L2

(
∥u∥pdL2 + ∥u∥H1

)
∥L1(n)∥L∞ .

It remains to control the terms coming from the introduction of the second corrector φ2 written in
(6.11). We have

1

2
Duφ2(h) =− ⟨(1−∆)−

1
2h, uL2(n)⟩ − ⟨(1−∆)−

1
2u, hL2(n)⟩

=Re

∫
R2n

h(x)k∆(x, y)ū(y) (L4(n)(x, y) + L4(n)(y, x)) dxdy
(6.18)

where k∆ denotes the kernel of the operator (1−∆)
1
2 and L4(n) is defined in (2.18). We start by

the estimate of Duφ2(−iXεmε). We can easily bound the terms involving L2(n):

⟨(1−∆)−
1
2 (iXεmε), uL2(m

ε)⟩+⟨(1−∆)−
1
2Xε, iXεmεL2(m

ε)⟩

⩽ C ∥Xε∥2L2 ∥mε∥L∞ ∥L2(m
ε)∥L∞ .

For the other term, compute:

Re

∫
R2n

h(x)k∆(x, y)ū(y)(L4(n)(x, y)+L4(n)(y, x))dxdy

⩽ 2 ∥h∥L2 ∥u∥H−1 ∥L4(n)∥L∞(Rd×Rd) .
(6.19)

We can use this bound to control the terms which do not involve L2(m
ε) in Duφ(−iXεmε):

Re

∫
R2n

iXε(x)mε(x)k∆(x, y)X̄ε(y) (L4(m
ε)(x, y) + L4(m

ε)(y, x)) dxdy

⩽ 2 ∥L4(m
ε)∥L∞(Rd×Rd)Re

∫
Rd

i(1−∆)−
1
2 X̄ε(x)Xε(x)mε(x)dx

⩽ 2 ∥L4(m
ε)∥L∞(Rd×Rd) ∥X

ε∥2L2 ∥mε)∥L∞ ,
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Finally we have

(6.20) |Duφ2(−iXεmε)| ⩽ C ∥Xε∥2L2 ∥mε∥L∞

(
∥L2(m

ε)∥L∞ + ∥L4(m
ε∥L∞(Rd×Rd)

)
.

It remains to controlDuφ2(i∆X
ε−iλ|Xε|2σXε). We use the same computations as forDuφ1(i∆X

ε−
iλ|Xε|2σXε) and the bounds (3.4) and (6.19) to get:

|Duφ2(i∆X
ε − iλ|Xε|2σXε)| ⩽C ∥Xε∥L2 ∥L2(m

ε)∥L∞

(
∥Xε∥pdL2 + ∥Xε∥2H1

)
+ C ∥Xε∥L2 ∥Xε∥H1 ∥L2(m

ε)∥E
+C ∥L4(m

ε)∥L∞(Rd×Rd)

(
∥Xε∥L2 ∥Xε∥H1 + ∥Xε∥L2

(
∥Xε∥pdL2 + ∥Xε∥2H1

))
.

(6.21)

Finally, estimates (6.13), (6.17), (6.20), (6.21) coupled with Lemma 2.1, conservation of the
L2-norm and Lemma 4.1 give us for τε the stopping time defined in (2.27):

E
[
1τε>0|φ(Xε,τε

)− φε(Xε,τε

,mε,τε

)|
]
⩽ C(T )(ε1−α + ε2−2α),

E
[
1τε>0|Lεφε(Xε,τε

,mε,τε

)|
]
⩽ C(T )(1 + ε1−α + ε2−2α),

where Xτε

,mτε

denote the stopped process Xτε

(t) = X(t ∧ τε),mτε

(t) = m(t ∧ τε).
We use this last estimate and the fact that

φε(Xε,τε

(t))− φε(Xε,τε

(0))−
∫ t

0

Lεφε(Xε,τε

(s))ds

is a martingale to compute for any stopping time τ :

E
[
∥Xε((τ + δ) ∧ τε)∥2

H− 1
2
.− ∥Xε(τ ∧ τε)∥2

H− 1
2

]
= E [φ(Xε((τ + δ) ∧ τε))− φ(Xε(τ ∧ τε))]
⩽ E [φε(Xε((τ + δ) ∧ τε))− φε(Xε(τ ∧ τε))] + Cε1−α + Cε2−2α

⩽ E

[∫ (τ+δ)∧τε

τ∧τε

Lεφε(Xε,τε

(s),mε,τε

(s))ds

]
+ Cε1−α + Cε2−2α

⩽ C(T )δ
(
1 + ε1−α + ε2−2α

)
+ Cε1−α + Cε2−2α.

Finally, for δ and ε small enough we get:

(6.22) E
[
∥Xε((τ + δ) ∧ τε)∥2

H− 1
2
− ∥Xε(τ ∧ τε)∥2

H− 1
2

]
⩽ η.

Then we apply the Pertubed Test Function method on φ(u) = ⟨u, h⟩
H− 1

2
for a fixed function

h ∈ L2(Rd). Computations lead us to choose two correctors:

φ1(u, n) =⟨iuM−1n, (1−∆)−
1
2h⟩

=⟨iuL1(n), (1−∆)−
1
2h⟩,

φ2(u, n) =⟨uM−1 (Eν [nL1(n)]− nL1(n)) , (1−∆)−
1
2h⟩

=⟨uL2(n), (1−∆)−
1
2h⟩,
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and the infinitesimal generator applied to φε = φ+ εφ1 + ε2φ2 is

Lεφε(Xε,mε) = ⟨i∆Xε − iλ|Xε|2σXε⟩+ ⟨XεEν [nL1(n)] , (1−∆)−
1
2h⟩

+ ε
(
⟨(λ|Xε|2σXε −∆Xε)L1(m

ε), (1−∆)−
1
2h⟩ − ⟨iXεmεL2(m

ε), (1−∆)−
1
2h⟩
)

+ ε2⟨(i∆Xε − iλ|Xε|2σXε)L2(m
ε, (1−∆)−

1
2h⟩.

(6.23)

Here again there are several quantities which need to be bounded. We use similar computations as
previously done for ∥u∥2

H− 1
2
and we obtain:

E
[
1τε>0|φ(Xε,τε

)− φε(Xε,τε

,mε,τε

)|
]
⩽ C(T )(ε1−α + ε2−2α),

E
[
1τε>0|Lεφε(Xε,τε

,mε,τε

)|
]
⩽ C(T )(1 + ε1−α + ε2−2α),

where C(T ) also depends on the L2-norm of h. Now taking τ a stopping time and h = Xε(τ ∧ τε),
knowing that conditioning by Fτ∧τε

Mt := φε(Xε(t))− φε(X0)−
∫ t

0

Lεφε(Xε(s))ds

is a martingale, we obtain

E
[
⟨Xε((τ + δ) ∧ τε)−Xε(τ ∧ τε), Xε(τ ∧ τε)⟩

H− 1
2

]
= E [φ(Xε((τ + δ) ∧ τε))− φ(Xε(τ ∧ τε))]
⩽ E [φε(Xε((τ + δ) ∧ τε))− φε(Xε(τ ∧ τε))] + Cε1−α + Cε2−2α

⩽ E [E [φε(Xε((τ + δ) ∧ τε))− φε(Xε(τ ∧ τε)) | Fτ∧τε ]] + Cε1−α + Cε2−2α

⩽ E

[
E

[∫ (τ+δ)∧τε

τ∧τε

Lεφε(Xε(s), )ds | Fτ∧τε

]]
+ E

[
E
[
M(τ+δ)∧τε −Mτ∧τε | Fτ∧τε

]]
+ Cε1−α + Cε2−2α

⩽ C(1 + ε1−δ + ε2−2δ)δ + Cε1−α + Cε2−2α.

Thus for ε, δ small enough, we have

(6.24) E
[
⟨Xε((τ + δ) ∧ τε)−Xε(τ ∧ τε), Xε(τ ∧ τε)⟩

H− 1
2

]
⩽ η.

Finally, gathering (6.22),(6.24) and using the Markov inequality, we get that for any stopping time
τ and R, η > 0, for ε, δ small enough:

P
(∥∥∥Xε,τε

(τ + δ)−Xε,τε

(τ)
∥∥∥
H− 1

2
> R

)
⩽ η.(6.25)

We then use an interpolation inequality to write for s ∈ [0, 1):∥∥∥Xε,τε

(τ + δ)−Xε,τε

(τ)
∥∥∥
Hs

≤ c
∥∥∥Xε,τε

(τ + δ)−Xε,τε

(τ)
∥∥∥2(1−s)/3
H− 1

2

∥∥∥Xε,τε

(τ + δ)−Xε,τε

(τ)
∥∥∥(1+2s)/3

H1
.
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It follows for any M > 0:

P
(∥∥∥Xε,τε

(τ + δ)−Xε,τε

(τ)
∥∥∥
Hs

> R
)

≤ P
(∥∥∥Xε,τε

(τ + δ)−Xε,τε

(τ)
∥∥∥
H− 1

2
> (Rc)

3/2(1−s)
M−(1+2s)/2(1−s)

)
+ P

(∥∥∥Xε,τε

(τ + δ)−Xε,τε

(τ)
∥∥∥
H1

> M
)
.

Thanks to Lemma 4.1 we can choose M such that the last term is smaller than η/2. Then, using
(6.25), we can choose R such that the first term of the right hand is less than η/2. Thus Aldous
criterion is satisfied, the process (Xε,τε

)ε is tight in C([0, T ], Hs(Rd)).
□

Appendix A. Details about the example in section 2.3

Consider Xt solution of (2.33):

(A.1)

{
dXt = (AXt +G(Xt))dt+ σdWt

X0 = x
,

where t > 0, and x ∈ H with H a Hilbert space. Then we define

m(t, n) = Λ
(
X(t,Λ−1n+ x̄)− x̄

)
,

with Λ : H → E a continuous invertible operator and x̄ =
∫
H
xν(dx) where ν is the invariant

measure of Xt. In order to show that m satisfies the assumptions in E, it is sufficient to show that
these assumptions are satisfied by X in H. It is straightforward that Xt is stochastically continuous,
and it is proved in [12] that Xt satisfies the coupling assumption 4. We first prove that the moment
of order 2 of Xt is bounded. Let us define

(A.2) Zt =

∫ t

0

eA(t−s)σdWs, Yt = Xt − Zt, t ⩾ 0.

Thanks to the assumptions made on A and σ we know that there exists α0 > 0 such that for any
k ∈ N,

(A.3) E

[
sup
t∈[0,T ]

∥Zt∥kD((−A)α0

]
⩽ C,

where D((−A)α) is the domain of the operator (−A)α. Besides Yt is solution of

(A.4)

{
dYt = (AYt +G(Yt + Zt))dt
Y0 = x

.

Lemma A.1. Let x ∈ H, and Xt the solution of equation (2.33) with initial data x. Then for any
k ∈ N there exists a constant Ck depending on T and x such that

E

[
sup
t∈[0,T ]

∥Xt∥kH

]
⩽ Ck.

Proof. The proof is based on a classical energy estimate. We start from the equation satisfied by
Yt:

∂tYt = AYt +G(Yt + Zt),
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and take the scalar product with Yt. We use the assumptions on A and the boundedness of G to
obtain the inequality

1

2
∂t ∥Yt∥2H + ∥Yt∥2

D((−A)
1
2 )

⩽M ∥Yt∥H
which, using (2.34) for the right-hand side of the inequality, gives:

(A.5)
1

2
∂t ∥Yt∥2H +

1

2
∥Yt∥2

D((−A)
1
2 )

⩽
M2

2λ1
,

where λ1 is the first eigenvalue of −A. Finally using (2.34) again:

∂t ∥Yt∥2H + λ1 ∥Yt∥2H ⩽
M2

λ1
.

Now multiply this inequality by ∥Yt∥k−2
H for k ∈ N:

2

k
∂t ∥Yt∥kH + λ1 ∥Yt∥kH ⩽ C ∥Yt∥k−2

H

⩽ Ck +
λ1
2

∥Yt∥kH .

A Grönwall argument allows to conclude that

(A.6) ∥Yt∥kH ⩽ Ck + ∥x∥kH e
− kλ1

4 t.

Then, coming back to the process Xt, we get

E

[
sup
t∈[0,T ]

∥Xt∥kH

]
⩽ CkE

[
sup
t∈[0,T ]

(
∥Zt∥kH + ∥Yt∥kH

)]
⩽ Ck(x),

because of the bound that we just proved for ∥Yt∥2H and because all moments of Zt are bounded. □

Now we can start to prove that Xt satisfies the different assumptions 1 to 5. The following
lemma ensures that Xt verifies 2.

Lemma A.2. Let Xt the process which is solution of (2.33), and denote by Pt its transition
semigroup. Then (Pt)t⩾0 is Feller.

Proof. Let x, y ∈ H, denote by Xx
t and Xy

t the solutions of (2.33) with initial data x and y. Then
we have

d(Xx
t −Xy

t ) = (A(Xx
t −Xy

t ) +G(Xx
t )−G(Xy

t )) dt.

By classical energy estimate, using the assumptions on A and the Lipschitz assumption on G, we
get by a Grönwall argument that

∥Xx
t −Xy

t ∥H ⩽ CeCt ∥x− y∥H .

Thus for any x ∈ H, for any t ⩾ 0, the process Xy
t converges almost surely to Xx

t if y converges to
x. Now let φ ∈ C(H) with polynomial growth, and (xn)n∈N a sequence in H which converges to
x ∈ H as n goes to +∞. The almost sure convergence proved above implies that φ(Xxn

t )− φ(Xx
t )

converges almost surely to 0 in H as n goes to +∞, and Lemma A.1 ensures uniform integrability,
so that finally

lim
n→+∞

∥Ptφ(xn)− Ptφ(x)∥H = 0.

□
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Now we are interested in the existence and uniqueness of an invariant measure for the process
Xt.

Lemma A.3. Let x ∈ H. Then Pt the transition semigroup of the process Xt solution of (2.33)
with initial data x has a unique invariant measure denoted by ν.

Proof. The existence of an invariant measure is based on the Krylov-Bogoliubov theorem. Here
again we use the processes Yt and Zt defined in (A.2), and start from equation (A.5):

1

2
∂t ∥Yt∥2H +

1

2
∥Yt∥2

D((−A)
1
2 )

⩽
M2

2λ1
.

If we integrate this inequality we get for t > 0:

1

t
∥Yt∥2H +

1

t

∫ t

0

∥Ys∥2
D((−A)

1
2 )
ds ⩽ C +

1

t
∥Y0∥2H ,

so that, using (A.3) there exists a random variable κ with all moments finite such that

1

t

∫ t

0

∥(−A)α0Xs∥H ds ⩽ κ.

If we denote by µt =
1
t

∫ t
0
L(Xs)ds with L(X) the law of X solution of (A.1), we have

µt

(
BcD((−A)α0 )(0, R)

)
⩽
C

R
.

Thus the sequence (µt)t>0 is tight and by Krylov-Bogoliubov theorem there exists an invariant
measure ν.

Now we prove the uniqueness of this invariant measure. It results from the coupling assumption
4 proved in [12] which gives for φ a continuous bounded function and x, y ∈ H:

|Ptφ(x)− Ptφ(y)| = |E [φ(Xx
t )]− E [φ(Xy

t )] |
= |E

[
(φ(Xx

t )− φ(Xy
t ))1Xx

t ̸=Xy
t

]
⩽ 2 ∥φ∥0 (1 + ∥x∥2H + ∥y∥2H)e−γt,

(A.7)

where we used the Cauchy-Schwarz inequality in the last step of the computation and denoted by
∥φ∥0 the supremum of φ. Let ν1, ν2 be two invariant measures. Let A ⊂ H and φ = 1A∩BH(0,R)

for R > 0. The fact that ν1 and ν2 are both invariant measures gives:

|ν1(A ∩BH(0, R))− ν2(A ∩BH(0, R))| = |
∫
H

Ptφ(x)ν1(dx)−
∫
H

Ptφ(y)ν2(dy)|

and according to the inequality coming from the coupling assumption we get:

|ν1(A ∩BH(0, R))− ν2(A ∩BH(0, R))| ⩽ 2(1 +R2)e−γt

which goes to 0 as t goes to +∞. However the left-hand side of this inequality does not depend on
t, thus it is equal to 0, for any R > 0. Finally we get that for any A ⊂ H, ν1(A) = ν2(A). □

It remains to prove that Xt satisfies assumptions 3 and 5. In this aim we decompose Xt and,
using (A.6), we have for any ε > 0

∥Xt∥kH ⩽ (∥Zt∥H + ∥Yt∥H)
k ⩽ Ck,ε ∥Zt∥kH +(1+ε) ∥Yt∥kH ⩽ Ck,ε(∥Zt∥kH +1)+(1+ε) ∥x∥kH e

− kλ1
4 t.

which gives us that assumption (3) is satisfied. Indeed, all the moments of Zt are bounded.
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Given t ⩾ t0 ⩾ 0, this inequality generalizes into:

E
[
∥Xt∥kH |Ft0

]
⩽ C + (1 + ε)e−

kλ1
k t ∥Xt0∥

k
H .

Choosing ε > 0 such that α = (1 + ε)e−
kλ1
4 < 1, we obtain, for n ∈ N,

E
[
∥Xn∥kH

]
⩽

C

1− α
+ αn∥x∥k.

Under our assumptions, we know that the left hand side converges to
∫
H
∥x∥kH ν(dx). We deduce:∫

H

∥x∥kH ν(dx) <∞.

Finally we proved that Xt satisfies assumptions (1) to (5) (except the zero-mean property), and so
does m(t, n) according to its definition in (2.35).

Now we can work on the construction of the functionals L1, · · · , L4. We state the following
result, which ensures the existence of L1.

Lemma A.4. Let u, v ∈ H1(Rd), and define φu,v(n) = (un, v). Then if we define

M−1φu,v(n) = −
∫ ∞

0

Ptφ
u,v(n)dt

there exists L1 : E → E such that

M−1φu,v(n) = (uL1(n), v), and ∥L1(n)∥E ⩽ C(1 + ∥n∥E)
2.

Proof. The process φu,v(n) is centered, thus we can write

|Ptφu,v(n)| = |Ptφu,v(n)−
∫
E

Ptφ
u,v(n̄)ν(dn̄)|

⩽
∫
E

|Ptφu,v(n)− Ptφ
u,v(n̄)|ν(dn̄)

because ν is the invariant measure. Thus denoting by (m1
n,n̄,m

2
n,n̄) a coupling of (m(t, n),m(t, n̄))

satisfying (2.30), we have

|Ptφu,v(n)| ⩽
∫
E

|E [φu,v(m(t, n))− φu,v(m(t, n̄))] |ν(dn̄)

⩽
∫
E

|E
[(
φu,v(m1

n,n̄(t))− φu,v(m2
n,n̄(t))

)
1m1 ̸=m2

]
|ν(dn̄)

⩽
∫
E

E
[
φu,v(m1

n,n̄(t))
2 + φu,v(m2

n,n̄(t))
2
] 1

2 P(m1
n,n̄ ̸= m2

n,n̄)
1
2 ν(dn̄).

Denote by E′ the dual space of E, then:

|Ptφu,v(n)| ⩽ C ∥uv∥E′

∫
E

(
E
[
∥m(t, n)∥2E

] 1
2

+ E
[
∥m(t, n̄∥2E

] 1
2

)
× (1 + ∥n∥2E + ∥n̄∥2E)

1
2 e−

γ
2 tν(dn̄).



APPROXIMATION DIFFUSION FOR NLS WITH RANDOM POTENTIAL 39

Besides we have

E
[
∥m(t, n)∥2E

]
= E

[∥∥ΛX(t,Λ−1n+ x̄)− x̄
∥∥2
E

]
⩽ C

(
1 + E

[∥∥X(t,Λ−1n+ x̄)
∥∥2
H

])
⩽ C (1 + ∥n∥E)

2

according to assumption 3. Finally we get

|Ptφu,v(n)| ⩽ C ∥uv∥E′ (1 + ∥n∥E)
2e−

γ
2 t.

Thus M−1φu,v(n) is well-defined and

(A.8) |M−1φu,v(n)| ⩽ C ∥uv∥E′ (1 + ∥n∥E)
2.

We want now to show that we may choose MM−1φu,v = φu,v. In other words we want

M−1φu,v(m(t, n))−
∫ t

0

φu,v(m(s, n))ds

to be a martingale with respect to the filtration (Ft)t⩾0. Let r ⩽ t. On the one hand:

E
[
−
∫ ∞

0

Pτφ
u,v(m(t, n))dτ −

∫ t

0

φu,v(m(s, n))ds | Fr
]

= −E
[∫ ∞

0

E [φu,v(m(t+ τ, n)) | Ft] dτ +
∫ t

0

φu,v(m(s, n))ds | Fr
]

= −E
[∫ ∞

0

φu,v(m(t+ τ, n))dτ +

∫ t

0

φu,v(m(s, n))ds | Fr
]

= −E
[∫ ∞

0

φu,v(m(s, n))ds | Fr
]
.

On the other hand we use the fact that
∫ r
0
φu,v(m(s, n))ds ∈ Fr to compute

M−1φu,v(m(r, n))−
∫ r

0

φu,v(m(s, n))ds

= −E
[∫ ∞

0

φu,v(m(r + τ, n))dτ +

∫ r

0

φu,v(m(s, n))ds | Fr
]

= −E
[∫ ∞

0

φu,v(m(s, n))ds | Fr
]
,

thus the martingale property is satisfied.
Finally, for every n ∈ E we have constructed a linear form on E′: uv 7→ M−1φu,v(n). It is

continuous:

|M−1φu,v(n)| ⩽ C(1 + ∥n∥E)
2 ∥uv∥E′ .

Thus, since E is a reflexive space, there exists L1(n) ∈ E such that

M−1φu,v(n) = (L1(n), uv) = (uL1(n), v) and ∥L1(n)∥E ⩽ C(1 + ∥n∥E)
2.

□

So far we have proved that it is possible to construct L1(n) which satisfies our assumptions. Let
us now construct the other functionals.
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Lemma A.5. Let u, v ∈ H1(Rd), and define φu,v(n) = (u(nL1(n) − Eν [nL1(n)]), v). Then if we
define

M−1φu,v(n) = −
∫ ∞

0

Ptφ
u,v(n)dt

there exists L2 : E → E such that

M−1φu,v(n) = (uL2(n), v) and ∥L2(n)∥E ⩽ C(1 + ∥n∥E)
3.

Proof. We proceed as above and get

|Ptφu,v(n)|

⩽C ∥uv∥E′

∫
E

E
[∥∥m(t, n)L1(m(t, n))− Eν [nL1(n)]

∥∥2
E

] 1
2

(1 + ∥n∥2 + ∥n̄∥2E)
1
2 e−

γ
2 t

+ E
[∥∥m(t, n̄)L1(m(t, n̄))− Eν [nL1(n)]

∥∥2
E

] 1
2

(1 + ∥n∥2 + ∥n̄∥2E)
1
2 e−

γ
2 tν(dn̄).

We use the fact that E is an algebra to estimate

E
[∥∥m(t, n)L1(m(t, n))− Eν [nL1(n)]

∥∥2
E

]
⩽ C

(
1 + E

[
∥m(t, n)∥2E ∥L1(m(t, n))∥2E

])
⩽ C (1 + ∥n∥E)

4
.

Finally we get

|Ptφu,v(n)| ⩽ C ∥uv∥E′ (1 + ∥n∥E)
3
e−

γ
2 t,

and we can continue the proof exactly as for the construction on L1(n). Thus for any n ∈ E there
exists L2(n) ∈ E such that

M−1φu,v(n) = (uL2(n), v) and ∥L2(n)∥E ⩽ C(1 + ∥n∥E)
3.

□

We have the same result for L3.

Lemma A.6. Let u, v ∈ H1(Rd), and define φu,v(n) = (u(∇n∇L1(n)−Eν [∇n∇L1(n)]), v). Then
if we set

M−1φu,v(n) = −
∫ ∞

0

Ptφ
u,v(n)dt

there exists L3 : E → Hs−1 such that

M−1φu,v(n) = (uL3(n), v) and ∥L3(n)∥Hs−1 ⩽ C(1 + ∥n∥E)
3.

Proof. We follow the same steps as for the two previous proofs, except that when we bound φu,v

we have

|φu,v(n)| ⩽ ∥uv∥H1−s ∥∇n∇L1(n)− Eν [∇n∇L1(n)]∥Hs−1 ,

and we use the fact that Hs−1(Rd) is an algebra because s > d
2 + 3 to write

|φu,v(n)| ⩽ C ∥uv∥H1−s (∥n∥E ∥L1(n)∥E + C) .

Thus the proof gives us for any n ∈ E the existence of L3(n) ∈ Hs−1 such that

M−1φu,v(n) = (uL3(n), v) and ∥L3(n)∥Hs−1 ⩽ C(1 + ∥n∥E)
3.

□

Finally, we need to construct a last functional L4, which is slightly different to the previous ones.
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Lemma A.7. Let w ∈ L1(Rd × Rd), and define

φw(n) =

∫
R2n

w(x, y) (n(x)L1(n)(y)− Eν [n(x)L1(n)(y)]) dxdy.

Then if we set

M−1φw(n) = −
∫ ∞

0

Ptφ
w(n)dt

there exists L4 : E → L∞(Rd × Rd) such that

M−1φw(n) =

∫
R2n

w(x, y)L4(n)(x, y)dxdy and ∥L4(n)∥L∞(Rd×Rd) ⩽ C(1 + ∥n∥E)
3.

Proof. The proof of this lemma is very similar to the proofs of the previous lemmas, but this time

|φw(n)| ⩽ ∥w∥L1(Rd×Rd) ∥n(x)L1(n)(y)− Eν [n(x)L1(n)(y)]∥E×E

because E ↪→ L∞(Rd). Thus we get

|Ptφw(n)| ⩽ C ∥w∥L1(Rd×Rd) (1 + ∥n∥E)
3
e−

γ
2 t,

and using the same procedure as for the previous proofs for any n ∈ E there exists L4(n) ∈
L∞(Rd × Rd) such that

M−1φw(n) =

∫
R2n

w(x, y)L4(n)(x, y)dxdy and ∥L4(n)∥L∞(Rd×Rd) ⩽ C(1 + ∥n∥E)
3.

□

We have constructed the last functional in a slightly different way than in (2.18), but taking
w(x, y) = u(x)u(y)v̄(x)v̄(y) we recover the same expression for M−1φw(n).
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