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APPROXIMATION DIFFUSION FOR THE NONLINEAR SCHRODINGER
EQUATION WITH A RANDOM POTENTIAL

GREGOIRE BARRUE!, ARNAUD DEBUSSCHE!:2, AND MAXIME TUSSEAU?!

! Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France;

2 Institut Universitaire de France (IUF);

Abstract: We prove that the stochastic Nonlinear Schrodinger (NLS) equation is the limit of
NLS equation with random potential with vanishing correlation length. We generalize the perturbed
test function method to the context of dispersive equations. Apart from the difficulty of working

in infinite dimension, we treat the case of random perturbations which are not assumed uniformly
bounded.

1. INTRODUCTION AND MAIN RESULT

We study in this work the limit of Non-Linear Schrédinger Equation with randomness. More
precisely, we consider the following problem

(1.1) G0, X5 (1) = —AXE(t) + A X(£)[27 X=(t) + éXE(t)m(t/sz),

on the domain R?, with regular initial data. Such an equation occurs in many situations, for instance
in optical fibers dynamics (see [18], [25]). More generally, the Nonlinear Schrodinger equation is an
equation describing wave propagation in a nonhomogeneous dispersive medium and random effects
often enter the description via a potential. Here we consider such a random potential which depends
on time t > 0 and space x € R? with a scaling of the form %m(s%, x).

Under such a scaling, we are in the situation of approximation-diffusion. The random term
formally converges to a spatially dependent white noise in time and we expect to obtain a white noise
driven stochastic partial differential equation at the limit. Such stochastic non-linear Schrodinger
equations are used in the physics literature and have been mathematically studied, for example
in a conservative version by Debussche and de Bouard ( [7], [8], [9] ...). Barbu, Rockner and
Zhang proved in [1] well posedness results in both conservative and nonconservative cases thanks
to rescaling transformations, while Brzezniak and Millet studied in [4] the stochastic Nonlinear
Schrodinger equation on a two-dimensional manifold. We can also cite [20] and [21] where the
authors study the one dimensional L2-critical and supercritical cases for Nonlinear Schrédinger
equation with spatially correlated noise and space time white noise. We believe that it is important
to prove that these equations are limits of equations with realistic noises such as (1.1).

Our basic tool is the Perturbed Test Function method. This method provides an elegant way for
approximation-diffusion problems; it was first introduced by Papanicolaou, Stroock and Varadhan
[22] in a finite dimensional case, and one can find many applications in the book of Fouque, Garnier,
Papanicolaou and Solna [17]. Generalizations in infinite dimension have been recently developped,

This work was conducted within the the France 2030 framework porgramme, Centre Henri Lebesgue ANR-11-
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2 G. BARRUE, A. DEBUSSCHE, AND M. TUSSEAU

for instance in [10], [11] or [14]. Our aim is to develop this method in the context of the Nonlinear
Schrédinger equation with a random potential. The difficulty is that the fundamental object for
this method is the infinitesimal generator of the Markov process associated to (1.1), which is a
complicated object since we work in infinite dimension. Besides the Perturbed Test Function
method is based on compactness arguments which are not trivial in the case of (1.1) whose space
variable lives in the full space R¢. We overcome this latter problem by working in a weighted space.

In [1], the main tool to study the stochastic Nonlinear Schrodinger equation is the rescaling
transform. This changes the stochastic equation containing a spatially dependent white noise into
a Nonlinear Schrédinger with continuous in time random terms. The counterpart is that the Laplace
operator is replaced by a linear differential operator with varying coefficient. It is not clear how to
use the scaling transform for our study since these linear operators would depend on . Moreover,
the rescaling transform is useful only for purely multiplicative noise. Our arguments immediately
extend to more general equations, for instance if X (t)m(Z%) is replaced by TA(X(t))m(%) for a
Nonlinear operator of Nemitsky type A with sublinear growth such that A(z)z is real valued. For
the sake of clarity we decided to restrict to the case A(z) = z.

The driving noise m is an ergodic Markov process with values in a Sobolev space to be described
below. In all the articles mentioned above on approximation-diffusion problem for partial differential
equations, this noise is assumed to be uniformly bounded. This is important to get a priori estimates.
In this article, we introduce a new argument which allows to replace this assumption by a much
more satisfactory one: we only assume that m has sufficiently many finite moments. This introduces
several difficulties. In particular the correctors cannot be bounded uniformly in €. We use a stopping
time argument which, together with a control of the growth of stationary process, allows to obtain
a bound on the correctors. Another difficulty is to obtain bounds on the solutions of (1.1) uniform
in €. In particular, the control of the energy is very delicate. Our idea has been used and improved
in a recent work on approximation diffusion for kinetic equations (see [24]).

We work with solutions in the Sobolev space H!(R?) and assume that the non linear term is
subcritical:

(1.2) 0< ,d>3o0r0<o,d=1,2.

0<7d72

Moreover, we work with global solutions and, when A\ < 0, we need a further assumption. Namely,
we assume

2
(1.3) U<E’ it A <0.

Our main result can be stated informally as follows. Precise assumptions are given below.

Theorem 1.1. For allT > 0 and 0 < ¢ < 1, assume that X§ converges in law to Xo in the space
¢, see (2.1), then for all s € [0,1) the C([0,T]; H*(R%))-valued process X<, solution of (1.1) with
initial data X§ converges in law in C([0,T], H*(R?)) to X solution of

(L4) idX = (= AX + AX[X %FX>dt +XQY2aw

with initial data Xy, where F,Q are defined respectively by (2.26) and (2.36) below, and W is a
cylindrical Wiener process on L?(R?).

The last two terms in (1.4) actually correspond to the Stratonovitch noise X o Q%dW. The
covariance operator @ is described below and is explicit in terms of the correlation of m, see (2.24)
and (2.36) below. As mentioned above, we could consider a more general noise. Let A : C — C
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be a map with sublinear growth such that A(z)zZ € R for all z € C. If in (1.1), the random term
LX(t)ym(%) is replaced by TA(X(t))m(%), the limit equation would be the stochastic Nonlinear
Schrodinger with the Stratonovitch noise A(X) o dW.

The article is organized as follows. We first introduce the notations and state preliminary
results on the Schriodinger equation and on the driving process m. In Section 3, we adapt Kato’s
method (see [5]) to get global existence of the process X¢. The estimates are obtained by classical
manipulations of the equation and blow up when ¢ — 0. To avoid this we adapt the perturbed
test function method to our problem in Section 4 and 6.1. This enables us to get both tightness of
the process and the expression of the infinitesimal generator of the limit. In Section 5 we use all
the results proved in Section 3 and Skorohod Theorem (see [2]) to prove the weak convergence of
X¢ to X. Finally, Appendix A is devoted to details about an example of process m that can be
considered in (1.1) and to proofs of technical estimates.

In this article C, C' or ¢ denote constants whose value may change from one line to the other and
which unless explicitely stated are independent of € or of the smoothing parameter § introduced
below. They may eventually depend on other parameters such as T',d, o, R or 7 and if needed we
may precise the dependences by denoting for example Cr.

2. PRELIMINARIES AND MAIN RESULT

2.1. Notations. Throughout this paper, for p > 1, we denote by LP(R?, ; C) the Lebesgue space of
p integrable C-valued functions on R?, endowed with the usual norm. For p = 2, (-,-) is the inner
product of L2(R%; C) given by

(f,9) = Re /Rd f(z)g(z)d.

For s € R, we use the usual Sobolev space H® := H*(R%; C) of tempered distributions u € S'(R¢)
such that (¢)*a(¢) € L2(R™;C), where (£) = /1 + |¢|?, endowed with the usual norm

[ull gre = IKE)* @& 2,

where @ denotes the Fourier transform.

For m € N and p > 1, we also use the standard Sobolev spaces W™P (Rd;(C) consisting of
functions which are in LP(R?;C) as well as their derivatives up to order m. It is classical that
H™[RY,C) = Wm2(R4; C).

We also consider the same spaces for R-valued functions, they are denoted by the same symbols
with C replaced by R. When there is no ambiguity, we omit R? and C or R. For instance, we
simply write H! for H'(R?; C).

In this article, the following weighted Sobolev spaces are particularly useful. We define for
0<¢<1,

(2.1) ¢ = {ue H'(R%C); (z)u € L?}

endowed with the norm |Jullgc = [|ull ;2 + || <x)<u||L2. Such weighted spaces are commonly used in
the theory of the deterministic Schrodinger equation. The group S(t) introduced below has some
smoothing effect in these spaces for instance ([5], section 2.5). They are also useful to study finite
time blow-up ([5], section 6.5).

Given a Banach space E, C(E) (resp. C*(E)) denotes the space of real valued continuous (resp.
C*) functions on E. And Cy(E) (resp. CF(E)) is the space of bounded continuous functions (resp.



4 G. BARRUE, A. DEBUSSCHE, AND M. TUSSEAU

C* bounded as well as their derivatives up to order k). Finally Cp(E) is the subset of C(E) of
functions with polynomial growth:

(2.2) Cp={¢€C(E),36>0,p=0:Yn e E,[{(n)] <x(l+|nlp)F},

When H, K are Hilbert spaces, we denote by £L(H, K) the space of linear operators from H to
K. If H = K, we simply write £(H). We also denote by Lo(H, K) the space of Hilbert-Schmidt
operators from H to K.

Given a Hilbert space H endowed with a scalar product (-, -) and a Banach space E continuously
embedded in H, we use the common abuse of notations for the duality between E and E’:

(l,x)p g = (l,z), LEFE', z€E.

We denote by S(t) the group associated to the linear homogeneous equation and defined by
S(t) = e*A. The solution of (1.1) is taken in the mild sense.

As already mentioned we assume that (1.2), (1.3) hold so that we are able to prove global well
posedness of (1.1) in H*(R%;C) (see [5] and Proposition 3.1 below).

The energy of u € H'(R%; C) is denoted by H(u) and is given by

20+2
[l 720+ -

(2.3) Hw) = 3 IVuls + 5
By Sobolev embeddings, we know that H'(R%C) C LP(R%C) for p € [2,2%] when d > 3,
p € [2,00) when d = 2 and p € [2,00] when d = 1. Thus, by (1.2), this is a well defined quantity
for u € HY(R4; C).

In order to justify the computations when getting energy estimates, we may need a regularization
procedure, so we choose p a mollifier, namely a function which satisfies

(2.4) p € C®RIR), p>0, / p(x)dxz =1 and suppp C B(0,1).
Rd

Finally for § > 0, we define ps(z) = sp (%) and u*v stands for the convolution of u and v, when

it makes sense.

2.2. The random process m. We assume that m is a centered, cadlag, stochastically continuous,
stationary E = H*(R? R)-valued process, for so > 4 + 3 so that E — W3*°(R% R) and E is
an algebra, on a probability space (2, F,P) adapted to a filtration (F;):er (see [23] for the basic
theory of Hilbert space valued Markov processes). In particular that m(t, x) is real valued. We also
define the rescaled process

(2.5) me(t) = m(t/e?), t >0,

which is centered stationary £ = H*®-valued process (Fj );er-adapted, where Fy = F/.2.

Note that, as it is often the case in the study of partial differential equations, functions depending
on space and time are seen as functions depending on time with values in a space of spatially
dependent functions. That is, in the case of the process m, we use the identification m(t,z) =
m(t)(x). With this in mind, the rescaling above may be writen:

me(t,x) = m(t/e?, x), t >0, z € RY.

The process m is supposed to be an homogeneous Markov process. We denote by (P;);>¢ the
transition semigroup associated to m, M its infinitesimal generator. For simplicity, we assume that



APPROXIMATION DIFFUSION FOR NLS WITH RANDOM POTENTIAL 5

there exists a Markov process (m(t,n))i>0nee on (2, F,P) adapted to the filtration (F;)er such
that m(t,m(0)) = m(t) and, for bounded borelian function ¢ on E, P;p(n) = E(p(m(t,n))), t > 0.1

Recall that a borelian function ¢ on F is in the domain of the infinitesimal generator M if for
nek

(0t n)) — / Mep(in(s,n))ds

is an integrable martingale. It is in general difficult to describe completely the domain of an
infinitesimal generator. Here we only require that sufficiently many function are in the range of the
generator. More precisely, we assume that there exist sets Pyq and Dy included in Cp(FE) such
that Dy included in the domain of M and Pu is included in the range of M. For ¢ € Py, we
assume that there exists M~y € Dpy such that for n € E

(2.6) MY (it n)) — / (s, n))ds

is an integrable martingale. In other words, M ™14 is in the domain of M and MM ™14 = 1. This
is an ergodicity assumption on m. Below we require that some specific functions are in P

We assume that m has a unique invariant measure v, which is the invariant law of m. Clearly,
our setting requires that

(27) Bldl = [ dmdu(n) =0, b€ Pa
We need that P, contains sufficiently many functions. Let us define for u, v € H':
(2.8) U (n) = (un,v).
We assume that for each u, v € H!, U1 € Py and there exist Ly : E — E continuous such that
(2.9) MUY (n) = (uly(n),v).
Informally, this says:
(2.10) Li(n) = M 'n.
Then we define for u, v € H':
(2.11) U3 (n) = (unLi(n),v) — E,(unLi(n),v),
(2.12) U5 (n) = (uVn,vVLi(n)) — E,(uVn,vVL;(n)),

and assume that for each u, v € H', i = 2,3, ¥{"" € Pp and there exist Ly : F — FE and
Ls: E — H*! continuous such that

(2.13) MU (n) = (uLli(n),v).

Again, informally this may be written as:

(2.14) La(n) = M~ (nLi(n) — E,(nLi(n)) = M~ (nM™tn —E,(nM"n))
and

(2.15) L3(n) =M"YVn -VLi(n)—E,(Vn-VLi(n)))
: =M Vn -VM™In—-E,(Vn-VM1n))
'We do not really need this and could require the existence of 7 such that m(t, m(0)) = m(t) only in distribution.

We think that this slightly stronger assumption allows to lighten the definitions and proofs below. Note that, with
this assumption, we have a process (m(t,n));>¢ for all n € E, even if m does not visit the whole space E.
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We need to invert a further function of n. For u, v € H', we define
(2.16) B (n) = (un, v)(uLa (1), v) — By (un, v) (uLs (1), v)
and assume that for each u, v € H, ¥}'Y € Pj; and there exists Ly : E — L>®(R?xR?) continuous
such that
(2.17) M) = Re [ [ ul@yul) L) )0()o(w)dedy.

Re JR

Informally:
(218)  La(n)(z,y) = M~ (n(z)L1(n)(y) — Evn(e)L1(n)(y)) and La(n)(z) = La(n)(z, ).

In previous articles on approximation-diffusion for PDEs, the process is assumed to be almost
surely bounded: |m(t)||g < K for all ¢ > 0, P a.s. for some deterministic constant K. This
boundedness assumption is replaced here by the weaker assumption that there exist v > 6 and a
constant C such that the following estimate holds

(2.19) E ( sup ||m(t)||}f;> < C.

t€(0,1]

By stationarity of m, this implies that for all k£ € N:

(2.20) E( sup m(t)||7E> <C.
telk,k+1]
Note that this implies:
/ n||Ldv < oo
E

and

sup |[|m(t)|p < oo, a.s.,

t€[0,T)

for any 7" > 0.

We need some control on the growth of the functions L; introduced above. We assume that there
exist 7 < /2 —1 and p € N such that:

TAGIE < +|nlp)"ne B i=12,
(2.21) L)l <e(+lnlg)n e B,

[La(n)|| oo rexrey < c(1+4[nf|g)?, n € E.
In many situations, M%) is given by:
M) = [ Py,
0

and, in particular, for each n € E, Piy(n) is an integrable function: ¢ — P;f(n) € L'(0,00). Here
we do not need this but we simply use the assumption that there exists A € L*(0,00) such that:

(2.22) [E(i(t,n) |z < AB)( + [In)lz)
and that L is given by

(2.23) (w, Li(n)) = — /000 E[(w,m(t,n))]dt, we E".
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We also use the following object in next section. Note that assumptions (2.19) and (2.22) imply
that, for z,y € R?, ¢+ E(m(0)(z)m(t)(y)) is integrable over [0, 00), so that we can define:

(2.24) k(z,y) = / E(m(0)(x)m(t)(y) +m(t)(z)m(0)(y))dt for z,y € R,
0

It is not difficult to check that k € W3 (R? x R?) N H'(R? x RY). We assume that

(2.25) k() : x e k(z,z) € WHLU(RY),  Ak(-,:): x— Ajk(z,2) € LY(RY),

where A; denotes the Laplace operator with respect to the first variable of k.
We use the notation

(2.26) F(z) = k(z,x).

Thanks to (2.22), it can be seen that F € E.
We end this section with the following Lemma. It is similar to [6, Lemma 15.4.4] and is funda-
mental to avoid the uniform boundedness assumption on the process m.

Lemma 2.1. For allT >0, and € > 0, and a > %

P ( sup [|m* (1) 5 > 6“) -0,

t€[0,T]
when € goes to 0.

Proof. For k € N, denote by 7, the random variable

M= sup |lm(t)lg,
telk,k+1]

then by the Markov inequality and (2.20) we have for all § and &
v
E (n;) < i
ko ko’

P(nk > k%) <
and choosing ¢ such that v > 1, we have
> P > k) < o,

k>0

so we get by the Borel-Cantelli lemma that for P almost every w € €, there exists kqo(w) such that
e < kO for k > ko(w). It follows that, for t > ko(w), ||m(t)||z < t° and

P —a.s.,Vt € RT ||m(t)| 5 < Z1 +|t)°,

with the random variable Z; defined by Z1(w) = sup¢(o ko (w)] [|m(s] £- Finally, since

T 5
{ sup |[|m®(t)[|p > E_Q} - {21 + > E_a}
te[0,T]

€2
and the probability of the right-hand side event goes to 0, when ¢ — 0, under the condition a > 24,
this ends the proof. O

We naturally define the (F7)-stopping time 7¢ by
(2.27) ¢ =inf{t € [0, T, |m°(t)||p > e},

with the convention that 7 = T when this set is empty.
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Note it is possible that 7° is equal to 0, this is the case when [|m*(0)| ; > ¢~*. Otherwise, when
7¢ > 0, we have sup,c(g <) [m°(t)[| g < 7.

We will use many times that P(7° < T') < P(supsejo ry [|m*(t)[|z > €7¢), which together with
Lemma 2.1 yields
(2.28) P(7° <T) —:20 0.

2.3. An example. An example of assumptions on the process m that can be checked in practice
and are sufficient to satisfy all the above hypotheses is the following:

(1) For every n € E, (m(t,n))i>0 is a stochastically continuous Markov process associated to
the semigroup (P;)¢>o.

(2) (Pt)iso is Feller.

(3) For every k € Nand n € E, E[||m(t, n)||};3] is finite and there exist Cj > 0,¢;, € N such that
for every ¢ € [0, T

(2.29) E[[m(t,n)l|5] < Cx(1+ [nllg)™,  neE.

(4) There exist k > 0,7 > 0, ko € N such that for any ny,ns € E we can construct a coupling
(m!(t),m2(t)) of (m(t,n1),m(t,n2))t>0 such that

(2.30) P (m'(t) #m?*(t)) < k(1 + [[nll g + [na2ll )™ e

By coupling, we mean that the law of (mq(¢))¢>0 (resp. (ma(t))i>o is the same as (m(t, n1))i>0
(vesp. (m(t,n2))i>0). It follows classically from this last assumption that (P;)¢>o has a unique
invariant measure v which is exponentially mixing. We finally need

(5) v is centered: / nv(dn) = 0, and for any k € N
B

(2.31) /E e, v(dn) < oo.

We then take m as a stationary process with law v such that m(t, m(0)) = m(¢).
Define

Pat={w e ), [ v = o}

For 9 € Ppq, we may define
(2.32) M(n) = —/ Pyap(n)dt.
0

Our assumptions imply that M~1¢ € Cp(E) and that (2.6) is an integrable martingale. We define
Dy = {M ", € Ppq}

Clearly for any M~ € Dpq, we may take MM =) =4 and Ly,---, Ly can be constructed
and follow our assumptions.

Let us now construct a process satisfying 1 to 5. We consider the following stochastic equation
in a Hilbert space H: for t > 0,z € H

{ dX, = (AX, + G(X,))dt + odW,,

(2.33) X -
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where A is an unbounded operator on D(A) dense in H, invertible with a compact inverse, which

generates an analytic semigroup (etA)@o and such that
2
(2.34) (Az,z) < =X ||z]| % » x € D(A),
and
”etAHL(H) < Me ™, t>0,

for some k > 0, M > 0,7 > 0. Assume moreover that, for all ¢ > 0, e/ is Hilbert-Schmidt on H
and
tA -
e Hc2(H) < L, t>0,

with L > 0,7 € [0, 3).

Remark that if H = L2(R?), A = —(—A + |z|?)" where —A is the Laplace operator, then A
satisfies our assumptions provided that r > d.

The nonlinear term G can be chosen in various ways, for simplicity we assume that it is Lipschitz
bounded. The covariance of the noise o is an invertible operator on H. It has been proved in [12]

that (2.33) defines a Markov process in H. We consider a continuous linear invertible operator
A : H — FE and take

(2.35) mt,n) =A(X(tL,A " 'n+2)—2),

where T = / zv(dx), v being the invariant measure of X;, and, for x € H, X(¢,x) being the

unique soluti(il of (2.33).

When H = L*(R?) and A = —(—A +|z|?)", one may consider A = (—A + |z|?)?. Then, A maps
H into E and (2.25) is satisfied for v > d + 1. At the end of section 2.4, we introduce a further
assumption which is satisfied for v > 2d. More generally, A can be the solution map associated to
an elliptic equation of sufficiently high order and containing a confining potential.

The conditions (1), (2) and (4) follow from corresponding properties on X; proved in [12].
Concerning (3) and (5), they may be proved by classical computations based on the change of
unknown

t
Y(t)=X(t) — / A=) g dW,

0
in (2.33) and energy estimates. In Appendix A we give details and prove that the process m(t,n)
satisfies conditions 1 to 5 and that these conditions are indeed sufficient to construct Lq,--- , L4 as
above.

Remark 2.1. We could also build an example based on a Markov chain in E as in [13].

2.4. The covariance operator. Let @ be the linear operator defined by
(2.36) Qf(y) = Re/ k(x,y)f(x)dx for f € HE.
Rd
Since k € H'(R? x R?), Q maps H{} into itself.
The following lemma, whose proof can be found in [15], is useful to prove that Q is non-negative.

Lemma 2.2 (Wiener-Kintchine). Let (z(t)) rer e a real-valued stationary and centered process,
we set C(t) = E(z(t)x(0)) and assume C is integrable on R. Defining

T
() = / 2(t)e— "t

-T
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we have

xT(y)‘z

, 1
C(r)e'™dr = lim —E
/]R (r)e'™dr im o

T—+o00
We now use the last assumptions on m and Ppq to show the following properties:

Proposition 2.1. The operator Q has finite trace on L2, is self-adjoint and non-negative: (Qf, f) >
0 for all f € L?. Moreover the following identities hold

(2.37) k(ey) = /R E(m(t) (2)m(0) (y))dt,

(2.38) /0 E(m(t)(z)m(0)(y))dt = —/En(y)h(n)(ﬂ?)dl/(n%
where v is the law of m(0).

Proof. We have assumed that k(-,-) € L'(R?) so Tr(Q) < oo, and k is obviously symmetric.
Moreover the stationarity of m yields

| E(m@mm)d = [ E(mn@mno))d
0
— [ B(mo@mo)w)d

and we easily get (2.37). Let us now prove the positivity of Q. We define z(t) = (m(t), f), which
is centered stationary process, and denote by C(t) = E(z(t)x(0)) its correlation function. Then
definitions (2.36) and (2.37) of k¥ and @ and Lemma 2.2 yield
1
(QF. f) = / C(r)dr = lim —E|i1(0)
R

T—4oc0

2
\zo.

Finally, we write thanks to (2.23) with w = §, € E":
- /E n(y) L (n) (@)dv(n) = —E(m(0)(y) L1(m(0))(x))
—E(mO) [ E(atmO)@)F0) )

_ / T Em(®)@mO) ),
this proves (2.38) -

Thanks to Proposition 2.1, we may define the operator Q'/2 which is Hilbert-Schmidt on L2.
Let us denote by ¢ its kernel. Then, we have:

ba) = | ol 2)a )i
We need a little more smoothness on this operator. We have seen that F' € E| therefore
(2.39) Fewttnwhe,
with F defined in (2.26). We also know that Q'/? is Hilbert-Schmidt from L? to H' since:

1921 0 < | bloo) + ek, )
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We assume that it is also vy-radonifying (see [3] or [7] for the definition) from L?(R?) to W1P(R?)
for any p > 2. It is shown in [3] that this amounts to assume that ¢ € WP(R%; L2(R%)). This is
true for instance if z — Alk(z,2) € LY(R?) for 8 > d as can be seen from Sobolev embeddings
since Q'/? is y-radonifying from L?(R?) to W'P(R?) for any p > 2 when it is Hilbert-Schmidt from
L?(R%) to H¥2(RY).

Under these properties on Q/? and F, it is shown in [8] that (1.4) has a unique global solution
in HL.

2.5. Main result. We state here our main result, where we recall all the assumptions needed on
the process m.

Theorem 2.1. Letde N, Ae R, 0<s< 1, and let ¢ € R such that

and
<2 if A <0
g E'L .

Consider the randomly perturbed Nonlinear Schrédinger equation
1
10, XE(t) = —AXE(t) + N X ()|*7 X(t) + ng(t)m(t/€2)7

where m is a centered (F;)-adapted, stationary E = H*(RY)-valued homogeneous Markov process
for which there exist v > 6 and C' > 0 such that

sup [|lm(t)][
t€(0,1]

E < C.

Assume furthermore that (2.21),(2.22), (2.23) and (2.25) are satisfied. Finally, consider F and Q
respectively defined in (2.26), (2.36), with k defined in (2.24) which can be written as

) = [ ae 2otz

where q is the kernel of the operator Q%. Assume that q € Whr(R L2(RY)) for any p > 1. Then
for all T > 0 and 0 < ¢ < 1, assuming that X§ converges in law to Xo in X6 defined in (2.1),
the C([0,T), H?)-valued process X€ solution of the above Schridinger equation with initial data X§
converges in law in C([0,T], H*(R%)) to X solution of

X, = ( = AX; + A XX — %FXt)dt — X,Q'2dW,

with initial condition Xo and where Wy is a cylindrical Wiener process on L?(R).

The proof of this theorem is detailed in section 5. We first study equation (1.1) and the generator
of the couple (X<, m®). This allows to introduce the perturbed test function method which is the
key tool to obtain tightness and prove the main result.
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3. THE EQUATION

3.1. The Cauchy problem. This subsection is devoted to prove the following proposition. It
states the existence of X¢ and provides a bound in H'. This bound is obtained by standard
arguments but is not uniform in €. A uniform bound is obtained with more sophisticated tools
below.

Proposition 3.1. Given X§ € H', then almost surely, there exists a unique mild solution X¢ of
(1.1) with initial data X§ which lies in C([0,T], HX(R?) N L" (0, T; WL20+2(R4)), r = %, for
any T. Moreover, we have Cr, Cr e such that P —a.s. for 0 <t < T':

X2 = [1X5 22 »
(3.1)

s€[0,t]

IVXE(t)]| 2 < Crer <H(XS) + sup [|m®(s)l| |1 X572 + CAIIXSIIZE‘%> )

with pg = (20 + 2 — ad)ﬁ and ¢y = A™ is the negative part of A\: cx = —Nif A< 0 and cy =0

for X > 0. Finally if X§ is Fo-measurable then the process X¢ is (Ff)-adapted.

Proof. We solve (1.1) pathwise and consider the equation
; € £ €|20, € 1 € €
i0yu® = —Au® + Mu®|“7u® + —m® (¢, w)u’.
€

We use here Kato’s method (see [5, Theorem 4.4.1]) to get existence and uniqueness of X¢(w) = u®

for a small enough Ty. We recall that X¢ is the fixed-point of ¢ defined for u € Ep by:

t - t
(32)  sw)t) = S()XE(wW) — i / (¢~ s)lu(s) 7 u(s)ds — - / S(t — s)u(s)yme(s)ds
0 0
in the space
Er ={u € L®([0, To}; H' (R)) N L7 (0, To; W27 F2(R7));
[ull oo (0,y; 11 metyy < M llull 1o, w2002 mayy < M}

endowed with the distance

d(u,v) = [lu — ”“Loo(o,To;m(Rd)) + [Ju— UHLT(O,TU;LZU+2(R‘1)) :

Kato’s method proves that ¢ is a contraction for well chosen M, Ty, and allows to get the continuity
in time of the solution.

Since ¢ given by (3.2) maps (Fy)-adapted processes onto (F7)-adapted processes, and that X©
is obtained by iterating ¢, this gives that X* is (Ff)-adapted.

Moreover, it is easy to verify that || X(t,w)|| ;2 = [|X§||,2. To prove the bound on the gradient,
we use the energy H defined in (2.3) and a regularization is necessary to justify the computations.
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We denote now by X§ = ps x X¢(w) € H* for all k € N. And we compute H(ps x X¢(t)):
dH (ps x X°(t))
dt

= Re (/ (—AXS + )\|X§|2“X§)8tX§dx>
Rd

= H'(X5(t)-(ps x 9 X°)

= Re ([ (~AXE 4 AXE X5 (10T + idgi » (XPTXE + s » (Ko |
Rd

= Re (/ —AX§(iAps * (| X2 XE) + épg * (Xems))dx>
Rd

+ Re </ A X527 X5 (—iAXE + idps « (| X°|?7Xe) + gpg * (Xfma))dx> .
]Rd
Since VX¢© € L*(0,Tp; L?) N L"(0,To; L*°+2)) we get that VX§ — VX¢ in L"(0,Tp; L?°*2) and
similarly ps (| X[22X¢) converges to | X2 X< in L™ (0, Tp; Wlﬁ) as d goes to 0. The other
terms are treated similarly and after integration in time, and § — 0 we obtain
I —
H(XE(t)) =H(X§) — g/ Im | VX(s).Vm®(s,w)Xe(s)ds
0 Rd
which leads to, using the Cauchy-Schwarz and Young inequalities
I 2 2 2
(3.3) H(X5 (1) < H(XG) + 2;/() [m* ()l 1 X611z + [IVXE(s)[IZ- ds.

This implies (3.1) when A > 0. For A < 0, we use the Gagliardo-Nirenberg and Young inequalities
and have for u € H! and ¢ < 2/d

1 _ 1
(3.4) 7o Il < CllulfE™ 7 IVul 7 < 7 I1Vulfe +C ulfs

Thus condition (1.3) implies that the energy provides a control on the L? norm of the gradient. In
fact, the energy bound (3.3), the Gronwall lemma and the conservation of the L? norm yield the
result. Global existence follows from (3.1) and the conservation of the L? norm.

|

3.2. Persistence in the spaces X¢. The result given in this subsection is a modification of [5,
Theorem 6.5.1].

Proposition 3.2. Assume X§ € 3¢ for some 0 < { < 1 then X¢ € C([0,T],%°) almost surely for
any T > 0. More precisely there exists CT > 0 a deterministic constant such that

(3.5) e 0@e I < e (X0 + [ 19X OIEas).

Remark 3.1. Since the constant Cr does not depend on €, this result shows that if we are able to
prove a bound on the H' norm of the solution uniform in €, a uniform bound in € on the weighted
norm follows immediately.

Proof. Recall that we denote by (x) = /1 + |z|2. Given § € (0,1), denote by ¢s the function
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Note that:
(X=(t), =i X“(H)PX=(t)) = Re (/ —iXE(t)|XE(t)2XE(t)dm) =0,
Rd
and similarly, since m® is real valued, (X¢(t), —im®(¢t)X<(¢)) = 0. It follows:

L s (XE(1)) = 2(X7(8), X7 (8) ()20

dt
= 2(X (), IAXE(t) () e

—2Im ( | XOvXe).v (<m>2<e_5<7”>> dm) +2Im ( /R ) VXE(t).an(t)<x>2<e—5<w>dx) .

Note that the last term vanishes. Since X°¢ is sufficiently smooth, no regularization argument in

the computation above is needed.
We have V((x)2¢e=%®)) = (2¢(x)%¢72 — §{z)?*1)e %@z and since |z| < (z):

‘V(<x>2C6*5<z>)| < (2(<x>2C*1 +6<x>2()676(z>.
It follows:
©s(X°(1)) = s (ug)
m t S (). V262 51201 —8(@) -
+ oI (/0 [ XOVXQ) (2¢te) 5(z)2-1) ))d

< s (ug)
2

(L.

Since (2Ct¢™1 +6t¢)e 2t <2(1+e V) for ( <1,t 21,6 <1, and ps(uf) < HU0<I>C||2L2 we deduce

+ XE () {a) e 3

VX (0)] (26 (a)¢ " + 5<x><)e—g<m>> "

t
2
s (X°(1) < [Juofe)®[| 2 +C/O IVX=(3)ll 2 Vps(X=(s))ds
which, thanks to the Young inequality and the Gronwall lemma, leads to
t
g 2 (>
esC05(0) < Cr (luofe) [ + [ 19X s)
Finally, by Fatou’s lemma, letting ¢ | 0:
t
2 2
X0 < Cr (Jlunte) I + [ 1932135 )

which is exactly (3.5). Then by (3.1), we see that the right-hand side of (3.5) is bounded, which
implies X¢ € L>([0,T],%¢). Since we already know that it is continuous with values in H?!, we

deduce X¢ € O, ([0,T],X¢), where the subscript w indicates weak continuity in time. Letting § | 0
in the first part of (3.6) we see that

HXE(t)@:)CHiQ _ H“0<$>C’|i2 +4§]m/0 ( » Xs(s)<x>2<—2VX€(s).mdx> ds

and since the right-hand side is continuous, we get the strong continuity: X¢ € C([0, 7], X¢) O
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3.3. Generator of (X¢,m?). In order to determine the law of the limiting process X, we need to
identify the generator of X¢. Clearly, X¢ is not a Markov process, because its increments depend
on me, but the couple (X¢,m®) is a Markov process, since m is.

We compute now the generator £° of the process (X¢,m®). We are able to compute this generator
acting on functions such as in the next definition. There are many such functions. In particular, we
can choose functions independent on n: (u, h)f for ¢ =1,2, h € H' which allow to characterize the
dynamic or a diffusion process. When we apply the generator to these functions, other functions
of the form (uL;(n),h), i = 1,2 are needed, the correctors, and thanks to the assumptions on L;
these also are good test function in the sense of the definition below. We also use the energy H and
associated correctors to obtain H' bounds independent on &.

We consider functions depending on (u,n) € Hé x E, for such function ¢ we denote by D its
differential with respect to the variable w.

Definition 3.1 (Good test function). We say that ¥ : H: x E — R, (u,n) — ¥(u,n) is a good
test function if the following holds:

o U is continuously differentiable with respect to u, the differential is denoted by DW.
o U is subpolynomial in v and n; 3Cy,Ip; € N, Iy, < v,V(u,n) € H' x E,

W (u,n)| < Co(1+ Jlullz) (1 + [InllE).
(u,n) — DV (u,n) is continuous from H* x E to L(H};C).
DV (u,n) is continuous with respect to the H=* norm and satisfies the following subpolyno-
mial bound in u: ICy,Ips € N,Iyo < v —1,V(u,h,n) € H' x H-! x E,

[DP (u,n).(h)] < Cy (1 + Jlull )7 (1 + [0l 5) [ oll -1 -
Vu € H¢, U(u,.) € Dy
MUV is continuous and subpolynomial inu andn; 3Cy,Ipz € N, 33 < 7,V(u,n) € H' X E,
M (u,n)| < Co(1+[|ullfr) 1+ Inl[F).

With these good test functions, we may identify the generator £ of the Markov process (X¢, m?).
For the definition of the predictable quadratic variation of a martingale, we refer to [19] and recall
that it coincides with the quadratic variation when the martingale is continuous.

Proposition 3.3. For a good test function o , the infinitesimal generator L of (X, m®) is given
by the formula:

1
£p(u,m) = Mip(u,)
1
+ LD, ) (~ium))
+ Do(u,n).(iAu — iX|u* )
foru e H{, n € E. More precisely, if E || X§|/%, < oo for all p:
t
My (t) = o(X°(t), m*(t)) — (X5, m"(0)) — /0 LEp(X*(s),m(s))ds

is a cadlag and integrable (F7) zero-mean martingale. If furthermore v1, v2 + 1, v3 < v/2 and >
is also a good test function, its continuous quadratic variation is given by:

(3.7) (M, M), = / (L% — 2pL50) (X5 (s), m* (s))ds.
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Proof. Let t > s > 0and s =ty < ... < t,, = t be a subdivision of [s,t] with sup;|t; 1 — t;| = 0.
Given g a F;-measurable and bounded function, we have

E [(0(X* (), m* (1)) — (X, m°(0))) ¢] = E [( / t m(xs(a),ms(a))da) g} LI

where
I= Z E[( “(tigr), m(tiv1)) — (X (t:), m* (tiy1))
- / DX (), m(9)-GAX(5) — X ()7 X (s) — LX(s)m*(5))ds ) ]
=E [(/0 i(;(s)ds) g}
with
. n71 1> £ £ 1> dXE
i5(5) = = 3 o) (5) (DX (5),m (11.1)) — Dep(X*(s),m (). o (5),
1=0
and

11 = Y R0, m7(11)) — 90X (1), m (1)
1 tiy1

1

([ o)

To treat i5, we write %( ) = iAXS(s) — i|X®)(s)|27 X%(s) — i X°(s)m(s) and since Dy is
regularizing and subpolynomial, we have

g

Xem*®

38) D‘”(XE(S)’mE(S”'(M* “’)’g@,@mnxa( VELY (L + e ()2 ).

Also, since o < %7 we know that H'! is continuously embedded in L2°%2 and by duality LE5 s
continuously embedded in H~*. We deduce:
[Do(X%,m) - (IXPIX) | < Copp(1+ X5 ()15 + [ (IR [1X427 X7 gt
< Cep (L4 [ X2 () |77) (1 + [Im= () 1) X217

which gives, thanks to (3.1) and (2 19), the uniform (in (s,w)) integrability of i3 Moreover, since X
is almost surely continuous and m*® is stochastically continous, Do (X*®(s), m®(t;41))— Dgp(XE( ), m=(s))
converges to 0 when § — 0 in probability, so I converges to 0, as ¢ tends to 0.

We claim that

§5(5) = 25 D Vsl (MP(X(12),m7(5)) — Mip(X(5), m(5))).
=0
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Indeed, for u € H!, p(u,-) € Dpq (see Definition 3.1) and
t
1

M= (u,t) = @(u, m"()) = ¢(u, m(0)) - | 2

Mo(u,m®(s))ds

is a (F7)-martingale. As X°(t;) and g are F} -measurable, we get

E ([(X7 (). m* (1))~ (X7 (8:),m7(8:))] 9)

Since M satisfies the polynomial bound in Definition 3.1 we get the uniform integrability of ii;.
The convergence in probability to 0 comes from the continuity of M.

The quadratic variation (M, M) is characterized by the property that M?(t) — f(f(M, M) (s)ds
is a martingale. Let s < t and (#;); be a subdivision of [s,#] with sup, |t;+1 — t;] = 0. Recall the
following sequence of identity:

E(M2(t) — M(s) - / (L% — 2pL50) (X*(5),m* (s))ds

Bo) = EOR(n) - M) - [ (L5 - 2pL7) (X5 mE(9)ds

ti

ti

= S B((M(tiaa) = MR = [ (£ = 20L%0) (X (), m (5))ds,

where the last equality follows from
E((M(tig1) = M (t:))?) = B(M?(tit1) — 2M (ti1) M (t;) + M2(t;))
and
E(M (tie1) M (t:)) = E(E(M (tie1) M (8)|F,)) = E(M?(t:)).

Hence, it suffices to show that the right hand side of (3.9) goes to zero as 6 — 0.
Let us write:

(M(tig1) — M(t;))* = <g0(X€(ti+1),m€(t,-+1)) — p(XE(ts), m"(t;))

[ o), mE(o))da)Q

=0*(X®(tig1), m" (tis1))
— 20( X (tig1), m (tig1)) (X5 (t:), m* (t:)) + ©*(X=(t;), m" (t:))

tit1

= 2(p(X*(tig1), m* (ti1)) — w(XE(ti)vms(ti)))/ Lop(X5(0),m"(0))do

ti
tit1 2
+ (/ EELP(XE(U),mE(U))dJ> .
t;
Applying the above to »? implies that the process

M(t) = @*(X5 (1), m"(1)) — 9*(X°(0),m"(0)) 7/0 L2 (X*(0),m*(0))do
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is a martingale for the filtration generated by m®. We can now write

ST (M(tin) — M(#)? = 3 M(ten) — (1) + | e o)
=0 i=0 12

= 2p(X7 (1) m (1)) (0 (X (ti2). m" (ti12)) — (X7 (1), (1))

2 p(XE (i) mE (1) — (X7 (1), m (1)) / " Lo p(X5 (o), mE (0))do

7

+(f ﬁso(XE(o),mE(a))da)Q

and
tit1

D E((M (1) — M(t:))* — / (L2 = 20L%0)(X(5),m"(s))ds

t;

=2 E (/ L (X (s),mF (s))ds — p(X*(t;), m* (t,))

t;

X (0 (X (tig1), mE(tig1)) — (X (t:), m*(t;)))

R <“0(X (1) m" (bi41) — (X5 (t:), m (1)) /tt ﬁaso(X%),mE(a))da)
i . ) :
+ZE ((/t EEQD(XE(J),mE(U))do> ) :

Again, the inequalities (2.19) and (3.1) and uniform integrability can be used to prove that the
three terms of the right hand side go to zero under the extra assumption that v1, v2 + 1, v3 < v/2.
|

Remark 3.2. This proof is not completely rigourous. Indeed, we have differentiated o(X°(t)) with
respect to t but we do not know whether X¢ is C' with values in H'. This is easily overcome by a
regularization argument as in the proof of Proposition 3.1: we replace ¢ by w5 = @(ps * -) and let
0 — 0 at the end of the proof.

4. THE PERTURBED TEST FUNCTION METHOD

4.1. Correctors. From the expression of Lfp(u,n), we see that negative powers of ¢ are present.
The term of order -2 cancels if ¢ does not depend on n. Since we are interested only in the behaviour
of X¢ when ¢ — 0, it is natural to consider such functions. To treat the -1 order term we need to
add correctors to ¢. Assuming @1, o are good test functions we have

1
L5 + 1 + £2) (usm) = s Mip(u)

+ é (Dp(u).(—iun) + Mo (u,n))

+ Mo (u,n) + Doy (u,n).(—iun) + Do(u).(iAu — i\|u|*7u)
+ & (Dea(u).(—iun) + Dy (u, n).(iAu — iX|ul*7u))

+ 2Dy (u,n).(iAu — i\|[u* u).
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Recall that the notation Dy denotes the differential of ¢ with respect to u. Let us compute formally
the correctors. As already mentionned, the —2 order term vanishes because we chose a function ¢
depending only on u. The first corrector is chosen so that the —1 order term cancels. It is formally
given by:

p1(u,n) = M D () - (iun) = Dip(u) - (uM ™) = Dgp(u) - (uLa(n)),
with Ly defined in (2.8), (2.9), (2.10).

The second corrector enables to identify the limit generator. The average with respect ot v of
the third line is given by

Lo(u) = (u) (zAu — Z)\|u|2‘7 )
(4.1) (D —iun, iuM ™ n) + Do(u) - (un/\/lfln))
' —Dg@(u) (zAu—z)\|u|2‘7 )
(D2 —iun,iuli(n)) + Dp(u) - (unLl(n)))

and we choose @9 such that:
Mes(u,n) + Dy (u,n).(—iun) + Do(u).(iAu — i\|[u[* u) — Lo(u) = 0.

In this way, we formally get £°(p + o1 + €2p2)(u,n) — Lp(u) and we indeed identify the limit
generator.

We do not need to justify rigorously the above computation for many functions. As we shall
see below, for our purpose, it is sufficient to consider test functions of the form: o(u) = (u, h)* for
he H', ¢ =1,2. It is clearly a good test function and satisfies all assumptions of Proposition 3.3.

Proposition 4.1 (First corrector). Let p(u) = (u, h)* with h € H', £ = 1,2. Then there exists ¢,
a good test function such that:

Do(u).(—iun) + Mpi(u,n) =0 Yu,n € H x E.
Moreover, p1 = £(u, h)*"1(iuLy(n),h) and satisfies all assumptions of Proposition 3.3.
Proof of Proposition 4.1. For any k € H', Dp(u) - k = £(u, h)*~*(k, h). Therefore:

/ Do(u).(—iun)dv(n) =0(u, h)* ! / (—tun, h)dv(n) = {(u, h)zfl(—iu/ ndv(n), h)
» E E
where v is the law of m(t), which is centered. Thanks to our assumptions, (; is given by
©1(u,n) = L(u, h) " L(iuLy(n), h).
By (2.21), we easily see that this is a good test function and Proposition 3.3 applies. (]
Note that thanks to (2.21), we have:
|1 (u, )| < C(L+ [Inll g)" |l |21 7o
Moreover, for k € H',
Dy (u,n) -k = L(u, h) " (ikLy(n), h) 4+ (¢ — 1)(k, h)(iuLy(n), h).
We now compute the second corrector. For the test function ¢(u) = (u, h)*, we have
Lo(u) =L(u, h) " (iAu — iXu|*u, h)
E, (¢(¢ — 1)(—iun, h)(iuLi(n), k) + €(u, R) Y (unLi(n), h)) .
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The equation for ¢, then writes:

(4.2) Mepa(u,n) = £ —1)(iun, h)(iuLi(n), h) + £(u, h)* " (unLy(n), h))
’ +E, (£(¢ — 1)(—iun, h)(iuLy(n), h) + £(u, h)* " (unLi(n),h)) .
The following proposition is again a straigthforward application of our assumptions.

Proposition 4.2 (Second corrector). Let o(u) = (u, h)® with h € H', ¢ = 1,2. Then there exists
w2 a good test function such that:

Mo (u,n) = (0 — 1) (iun, h)(iuLy (n), h) + €(u, h)* "L (unLi(n), h))
+E, (£(¢ — 1)(—iun, h)(iuLy(n), h) + £(u, R)Y(unLy(n), h)).
Moreover, 3 is also a good test function.

Proof. Let £ = 1, then the right hand side of (4.2) is of the form (2.11). It follows that oo exists
and by (2.13), (2.14) is given by:

pa(u,n) = —(ula(n), h).

Similarly, for £ = 2, the right hand side of (4.2) is of the form (2.16) and by (2.17), (2.18) is given
by:

potum) = =2 [ | uCwyulu) La(m) o) ooy = 2. h) (o). 1)
Thanks to (2.21), we have in both cases:
|2 (u, )| < C(L+ [|nl| )" el [1Bll
It follows that o and (3 are good test functions. O

Proposition 4.3 (Perturbed test-function method). Let p(u) = (u, h)’, where h € H', { = 1,2,
and @1, o2 given by Propostions 4.1 and 4.2. For ¢ € (0,1), we define o° = o + ep1 + £2py. Then
©° verifies foru € H*, n € E:

(1)
% (un) = p(w)] < Cel|ull ||l (1 + || )"
(2)
(4.3) |£50% (u,n) = Lop(w)] < Ce(L+ [ul )[Rl (1 + Inlle)"".

(8) The process
t

Mee(t) = ¢ (X5 (1), m"(#)) — (X5, m"(0)) —/0 Lop7(X(5),m(s))ds

is a cadlag and integrable (F;) zero-mean martingale.

Proof of Proposition 4.3. We treat the case £ = 1. The case £ = 2 is similar but lengthier. The first
assertion clearly follows from the bound we have written above on ¢; and s.
By definition of Ly and ¢°:

L4 (u,n) — Lo(u) = (D1 (u,n).(iAu — iX|u|*u) + eDps(u,n).(—iun))
+ 2Dy (u,n). (1A — iXul*7u).
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Recalling the expressions of ¢1, 2, we have

‘Dgﬁl(u, n).(iAu — i\|u|*?u) + eDys(u, n)(fzun)’
< Clhlm (IL1(n)|ellidu — iXul* ull -1 + elul i [nL2(n)]| )

and
‘Dgag(u, n).(iAu — iX|u|? )
< Clh|gr|La(n)|g||iAu — iX|u*Tul| g1
We have seen in the proof of Proposition 3.3 that
[iAu = iAu|*7ul -1 < C(1+ [Julg1)>7

The estimate of the second assertion follows easily. By Proposition 4.1, Proposition 4.2 we know
that ¢° is a good test function. Therefore Proposition 3.3 applies and the third point is also
clear. 0

4.2. Tightness of the process X°. In this subsection, we aim to obtain tightness of the family
of stopped processes (X7 ), where X=7 (t) = X°(t A 7¢). The definition (2.27) of 7° depends on
a. We choose o < 2/ such that a(n+1) < 1.

The crucial ingredient used in previous works on diffusion-approximation in infinite dimension
is an assumption on uniform boundedness of the driving process in the adequate functional space,
which would be L*(0,T; E) in our case, w.r.t. ¢ (see [14] and [10]). Under our weaker assumptions,
the result remains true provided we use the stopping time 7¢. We will see that this is sufficient to
conclude.

Proposition 4.4. Assuming X§ — Xo,P —a.s. in the space X6 for some 0 < ¢ < 1 then the family
of process (X7 )eso is tight in C([0,T], H®) for s < 1.

This result strongly relies on the following a priori estimate.

Lemma 4.1. Let p > 1. Assume that sup.s,E (|| X§|l ;2 + H(XE§))” < Cp, and let X© be the
solution of (1.1) with initial data X§ and 7¢ the stopping time introduced in (2.27). Then for any
stopping time T < T, there exists a constant C,(T) depending on T and p but not on € such that
forte[0,T]:

(4.4) E[[|x=m ()

3 | <c,m).

H1

The proofs of Lemma 4.1 and Proposition 4.4 are technical and are postponed to section 6.
We remark that this lemma, together with (3.5) and assuming E HXS <$><Hiz < C show that the
following inequality holds

p

(4.5) E (HXT ()

) < Cy(T).

<

5. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is divided into 3 steps. First we identify the SPDE associated to
L, then we prove the weak convergence of X¢ to X solution of (1.4), linked to £, and finally we
conclude using the uniqueness of the solution.
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Proof of Theorem 1.1. Step 1: Identification of the limiting generator
For h € H?* with s < 1, we use the functionals p(u) = (u,h) and ¢? which are clearly good
test functions. We now compute Lo and L2,

Lo(u) = Dp(u).(iAu — iXu[*u) + E, | D*o(—iun, iuLi(n)) +De(u).(unLi(n))

0

= (iAu — i\|u[**u + E,unL;(n), h)
= (iAu —iMul*7u — %uF, h> ,
where F is given by (2.26) (see (2.38)). In the case of ©?, we again have
D¢? (u).(iAu — iX|[u[*7u) + E, (Dg*(u).(unM™"n)) = Dp*(u).(iAu — iX|u|*"u — %uF)
but now the term E, D?¢(—iun,iuM~1n) does not vanish,

E, D?@?(—iun,iul(n)) —2/( iun, h)(iuLi(n), h)dv(n)

-2 [ / D) Reliua)a)) (| mlt) (o)) ReCiuty) ) dedy)

since m(t) is real-valued
/ / (z,y)Re(iu(z)h(x))Re(iu(y)h(y))dzdy.
R JRA
Let us denote now by ¢ the kernel of Q'/? where @ is given by (2.36), we have
o) = | ol alz)iz

and

E, D?p?(—iun, iuLi(n
/Rd / / (2, 2)a(=. y) Re(iu(x)h(z)) Re(iu(y)h(y))d=dzdy
= /Rd (iug(., 2), h) (iug(., z), h)dz

1
= fTr(D2<p2.(iuQ1/2, iqu/Q)).

2
Finally, we have
(5.1) Lo(u) = Dp(u).(iAu — iXu|* u — %uF)
and
(5.2) Lp*(u) = D (u).(iAu — i |ul*7u — %UF) + %TT(chpZ.(iqu/Q, uQ'?)).

Step 2: Convergence
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Given 0 < ¢ < 1, by Propostion 4.4, we have a subsequence of (XE’TE)DO, still denoted by
(X=7°), of law P? and a probability measure P on C([0,T], H*) such that

P¢ — P weakly on C([0,T],H?).

Since [0,7T] is compact and H*® is separable, C([0 H?) is also separable, and by Skohorod

T},
theorem (see [2]) there exist a probability space (Q, F,P) and random variables X¢, X on © with
values in C([0,T], H®) such that

X = X inC([0,T),H®), Pas. ase—0
and £(X¢) = P® and £L(X) = P. For h € H?>*, we use the test function ¢(u) = (u,h) and

©1, @2 the correctors given by Propositions 4.1 and 4.2. We define ¢p° = ¢ + e + €299, then by
Proposition 4.3, the process

M(t) = ¢= (X5 (), m"(#)) — " (X7(0), m*( / Lop7(X(5),m(s))ds

is a martingale for the filtration (Ff);, and the stopped process M (¢ A7) is also a martingale, that
isforall0<s1<...<s, <s<tand g€ Cb((HS)")

E( (¢ (X5 (AT, me(EA 7)) = (X (s A7), m* (s A 7))

tATE

- / L5065 (XE(s).m"()ds" ) g(X7 (31 A7), X (s A7) ) =0
SATE

Moreover, we easily have

/ i L% (X5(s"),m*(s")ds") (X5 (s1 AT%), .oos XE (50 A TF))

ATE

tATE
_ / L£267(X57 ('), mEN (5))ds ) g (X5 (51), oo, X5 (50)).

Then we get:
E((@(X”E(t)) (X5 ( /ﬁ(p (X5 ())ds')g (XE’TE(sl),...,XE’TE(sn)))
= E|((— e(pu(X27 (@), m (A 7)) = o1 (X5 (), m* (s A 7))
— &2 (o (X7 (), mE (E A T9)) — @a( X5 (5),m= (s A 7°)))
/ A Lp(XET ())ds' - /t " Lp(XET (5))ds'

/MT L — Lo)(XE(s'),m*(s' ATE ))ds’)g(Xs’TE(sl),...,X‘S’Ts(sn))}

ATE

=E[Ty +Ts + T3 + Ty).
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We now use Proposition 4.3 and Lemma 4.1 and notice that 77 = T5 = 0 when 7 = 0 to get the
bound:

E[T: + T3] < CeE (175>0 sup HXE’TE(S’)
s'€[0,T]

n
[172]| 2 (1 + sup [Im(s’ ATE)”E) )
H? s'€[0,T)
< Cetmom,
Similarly:
E[Ty] < Cet=am+D),
By the embedding H' C L?°*2 (see (1.2)) and the Holder inequality, we have

. e e 20+1
Lo(X ()| IV [V )|+ Wl | X576
I E g 1Al 2 | X7 ()|,
<C||h||H1(1+HXE’T€(S/) H1)20+1.

Lemma 4.1 and Hélder inequality yield

[

S

Lo(X7())ds')g(X7 (1), -0, X7(50))

SATE
SATE
e,
[ as|rere),

<Cllplm (B [(s— s 76)2})1/2 =11 (e),

with r1(e) — 0 when £ — 0 by Lemma 2.1 and the uniform integrability. Similarly we have

)

)2a+1d8/]

<Cp)mE

" /t T Lo(XT(8)ds'g(X (1), s X*(50))| < 72(2),

with 72(g) — 0 when ¢ — 0.
Finally, we obtain

(5.3) [E((p(X57 (1) = 9(X7" () = J{ Lo(X= ()" g (X5 (51), 00, X7 (50))|
5.3

< Ce'=tDe L (€) + 1ry(e),

where C' does not depend on . Moreover, as X7 and X¢ have the same law, then (5.3) is also
true by replacing X7 by X¢, and P by P. Since ¢, Ly and g are continuous from H* to R
(the continuity of Ly requires the continuity of the nonlinearity which is given by the embedding
H* C L?**1) taking the limit ¢ — 0, we get

(5.4) B((p(2(0) ~ ¢(X() = [ LolX (NS )g(X(s2)s s K (s2))) = 0.
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is a martingale with respect to the filtration G, generated by X (s). Note that this martingale is
continuous.

Similarly, we can pass to the limit £ — 0 in the definition of the quadratic variation and obtain
that the quadratic variation of M is given by:

(NI, 1) (t) = / (L(0)? — 20L0) (X(s))ds.

Note that this step requires the use of the perturbed test function method applied to ©?(u) = (u, h)?.
From (5.1) and (5.2), we deduce

(L(0)* — 20L) (u) =2(u, h)(iAu — iXul**u — %uF B + Tr((uQ2, 1)?)

— 2(u, h) ((iAu - %UF, h))
:Tr((iuQ1/2,h)2)

The continuous H ~!'-valued martingale
M(t) = X (t) — X(0) — /Ot iAX (s) —i| X (s)]*7 X (s) —
has the quadratic variation
/Ot (iX ()02 (iX(s)Q1/2)*ds

then, using the martingale representation theorem (see [6]) and up to enlarging the probability
space, there exists a cylindrical Wiener process W such that:

M(t) = /0 iX(s)QY2dW (s).

Step 3: Uniqueness of the limit Note that X< also satisifies (4.4). Letting ¢ — 0, we deduce
that X € L°(0,T;LP(; H'(RY))) for any p > 1 is a martingale solution of (1.4). Using the
integral form of (1.4), we see that it has paths in L>°(0,T; H'(R?)). We know from [1] that under
our assumptions that (1.4) has a unique solution with paths in L>(0,T; H!(R?)). This implies
uniqueness in law for martingale solutions.

As P is the law of X, we deduce this is the law of the solution of (1.4). By uniqueness of the
limit, we conclude that the whole sequence (X E775) converges in law to X, in the space of probability
measure of C([0,T], H®).

Finally, we obviously have for § > 0,

{ sup HXE(t) - X“E(t)HHl > 5} c{rf<T),

0t<T

and together with Lemma 2.1 yields the convergence in probability of X€ — X7 to 0.
Using finally [2, Theorem 4.1], we obtain the weak convergence of X¢ to X in C([0,T], H?).
|
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6. TECHNICAL PROOFS

6.1. Proof of Lemma 4.1. As seen in Section 3, a straight application of standard energy ar-
guments gives a very bad dependance on €. The idea is to use the perturbed test function. This
mimics It6 formula which is used to get a priori estimates for the limit equation with white noise
(see [8)).

If one tries to use similar arguments to those of Proposition 4.3 with the functional H, defined
by (2.3), in place of linear or quadratic functional, this requires a lot of smoothness on H and the
useless assumption (o > 1/2). We proceed slightly differently. We first smooth the functional and
take advantage of the various cancelations before constructing the correctors.

Proof of Lemma 4.1. We give the proof only for p = 2. The general case is not more complicated
but is lengthier.

We consider the functional ¢s(u) = H(ps x u), where ps is the mollifier introduced at the end of
Section 2.1. We claim that it is a good test function. Indeed, we have for u,h € H!

(6.1) Dos(u) - h = (—=Aps xu+ A|ps *ul> (ps * u), ps * h)

and there is no difficulty to verify that (s satisfies the condition in Definition 3.1. By Proposition
3.3, we know that the process

ME(t) = a(X(1)) — s(X5) — / C55(X%(s),m* (5))ds,

is a martingale. It can be seen that os(u) — H(u) when § — 0 and u € H'. Moreover, we have
L5 (X5 (s), m"(s))
1
=2 (=25 X(5) + Mo X ()% (s % X°), ~ips x (X*(s)m (5))
T (= A5 x X5(5) + Mps % X5(5)[27 (p5 5 X°), ips # (AXE(5) — \IX“(5)7 X*(5)))

and we proved in Proposition 3.1 that the second term of the right-hand side converges to 0, when
0 — 0. Similarly we have when ¢ tends to 0

|ps * X=(5)[27 X2 (s) — | X°(s)[2 X% (s) in L1,
ps * XE(s)m®(s) — X°(s)m?(s) in L* T2,
so that
(Ips * X=(5) |27 X (s),ips x X=(s)m"(s)) — (|X°(5)|*7 X(s),iX°(s5)m"(s))

~ Re ( / z'|X5(s)|2"+2m5(s)dx> ~0,
Rd
since m is real valued. In the same way, we have
(—Aps *x X°(8),ips * X5 (s)m®(s)) = (VX?(5),iX°(s)Vm®(s)).
Finally, as ¢ converges to 0, M5 (t) converges almost surely to
¢
1
Me(t) = H(XE(t) — H(XG) — / R (VX4(5),iX°(s)Vm*(s))ds,
0

and since M;(t) is a (Ff)-martingale, from (3.1) and the dominated convergence theorem, we deduce
immediately that M¢(t) is also a (F§)-martingale.
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We define then the first corrector
(6.2) v1(u,n) = (Vu, —iuVLi(n)).

This is not a good test function. For § > 0, we set 1 5(u,n) = ¢1(ps * u,n). There is no difficulty
to see that ¢; ¢ is a good test function and then, we obtain by Proposition 3.3 that the process

M 5(t) :=p1,5(X5 (), m=(1)) — ¢1,6(X°(0),m"(0))

- [ et mioas,
is a martingale. After computations, we have

1
LEp15(u,n) =3 (Vps *u, —ips x uVn)

+ é [(Vps * (un), VLi(n)ps xu) — (Vps * u,nVLi(n)ps * u)]
+ 2 (Aps xu, VL1 (n)Vps xu) + (Aps * u, ps x uALq(n))
—2X (ps * ([u*u), Vs * uV L1 (n)) — A (ps * (|ul**u), ps * uALy(n)),
after integration by parts, we get
(Aps *u, ps *uALy(n)) = — (Vps xu, Vps xuALi(n)) — (Vps * u, psuV AL (n)),

(Aps xu, VL1 (n)Vps xu) = —% (Vps *u,Vps xuALi(n)),
and
(Vps * (|[ul*?w), ps x uVLi(n)) = — (ps * (|u|**u), Vps * uVLi(n) + ps x uAL1(n)) .
Finally, taking the limit 6 — 0 and using
(20 +2) (|ul*?u, VuVLyi(n)) = (V|u[*’ T, VLi(n)) = — ([u[* ", AL (n)),
we get that the process M<£(t) given by
ME(t) =1 (X2 (), mE(8)) — 1 (X°(0), m*(0))

- [ S (VX)X e ()9 (s)
0
- 2 [X(5) Ve (), X2V Ly (m(5)]
+2 (VXE(s)7 VXE(s)AL1 (m?(5))) + (VXE, XEVALy (mf(s)))

- (X5 (s)P77%, ALy (m*(5))) ds

is a martingale.
We finally consider the C'} test function

wa(u,n) := Mt (uVn,uVLi(n) —E, (uVn,uVL;(n)))) = (uLs(n),u),

where L3 was defined in (2.12), (2.13), (2.15). Again,thanks to (2.21) and the assumptions on Ls,
it is not difficult to check that ¢s is a good test function.
Using Proposition 3.3, we know that

(6.3) M3 (t) := (X5 (t), m*(t)) — p2(X(0), m*(0)) 7/0 Loy (X"(s), m*(s))ds
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is a (Ff)-martingale. After computation we obtain £°ps:

L5 (u, ) :slz (w(VnV Ly (n) — By VnV Ly (n), u)
—2(iVu.VLz(n),u)

(6.4)

where we strongly used that n is real-valued.
Consequently, we know that the following process M*(t) is a martingale, with respect to the
filtration (FF).

M= (t) :=M*(t) + e M5 (t) + e M5 (t)
=H(X()) = H(XG) + & (r (X5(2), m* (1)) — ¢1(XG,m"(0)))
+ €2 (p2(X(t), m*(1)) — p2(X5,m(0)))

_ /O (X*(s)(By VY L1 (mF (s)), X°(5))
b2 (VX(5), VX ()AL (m () + £ (VXE, XV AL (m(s)))
Ao

oc+1

— 262 (iVXE(s)VLz(m*(s), X°(s)) ds.

e (X9 (5) 72, ALy (m (5))

Hence, since 7¢, given by (2.27), is a bounded (Ff)-stopping time, the process M(t A 7¢) is a
martingale. From the identity above, the L? conservation, (6.2) and (6.4) we have

E[H(X (1)) < E [[HXE)| + Celreso [ L1mO)l 155 ([VX7" @), + 19 X512

+CLreso | La(m) | o 1G5 1 72 + M(EATE)

tATE o2 | . ot 20+1
+c/0 E, [VnVLi(n)] | X§]2 +¢ || L' (m )HEHX’ (s)

L20+2

£ 2 € £
ettty (o @l + foxer o], e o)

2 .
L2> HXE’T (S)Hm ds} '

:)

+¢? (Ls(mg)ﬁ{ﬁ + HVXE’TE(S)‘
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We recall that || X®(t)||;. = ||X§]l,- and that, when 75 > 0, |m°(t A7°)||p < e~ @ according to
Lemma 2.1. Hence using (2.21), (3.4),

2
)

. 2
<2E ['H(Xsn + CE (XS 2 IV XS 2+ VX2 @), + 15 1E2)

£ Jvxo|

. 2
FeXollzs + 20 || x|

2

)
SJas).

tATS
e [ B (VAVL ) IXG s + G + [vxeT )
0

€ 2 €
+etmen((|VXET )|+ IXEIE) + 2+ IXG I + ||V XS (s)]

then for € small enough we get

65 E [Hvxsf ] < XG55 ) + et | Tk [Hvxeﬂs)HZ] ds.
L 0 L

The Gronwall Lemma and the conservation of the L? norm give us that for any ¢ € [0, T

(6.6) E {HXT (t)H;

| <em

Then, taking 7 a stopping time such that 7 < T', we can do the same computations as before and
get a similar bound as (6.5):
TATE
/

T 2
<o e+ [ B |[vxe ) ] a

E [HVX“E (T)HQLJ <C(T, X554, [H(X5)]) +Ce R

‘VXE’TS (.S)Hi2 ds]

L

and using the bound (6.6) we are able to conclude. O

6.2. Proof of Proposition 4.4. To prove the tightness of the sequence (XE’TE)SHO in the space
C([0,T); H*(R%)), we use Aldous criterion, which can be found in [2, Theorem 16.10] in the finite
dimensional case. In the case of an infinite dimensional separable space H, the hypothesis (16.22)
in [2] has to be replaced. Let us state the criterion we use.

Proposition 6.1. Let H be a complete separable space, and (u).>o be a sequence of process on
[0,T] such that, for any t € [0,T], u¢(t) is H valued. Assume that

(1)
For every n > 0, for everyt > 0 there exists a compact set I'y ; C H, such that

(6.7) inf P(u”(t) € Tye) > 11,
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(2)
For every A\, > 0, there exist dy, g such that for 6 < dy, and e < eqg, if T
(6.8) 18 a stopping time then
P(u*(r +6) —uw(T)lg > A) <n.
Then the sequence (uf)eso s tight in C([0,T], H).
We can prove this result using the same proof as for [2, Theorem 16.10], but instead of hypothesis

(16.22) we assume (a) in [16, Theorem 7.9].

Proof of Proposition 4.4. Lemma 4.1 and Proposition 3.2 ensure that (X7 ).~ satisfies (6.7) for
H = H*(R%), 0 < s < 1. Indeed, according to these two lemmas, we have

e, 7%
E [HX (t)Hzc} <),
with C(T') independent on ¢.
Thus for any n > 0 and ¢ € [0,T):
. o(T)
er <2<
IP(HX (t)‘zc >R) < T <

for R large enough independent on e. Thus X=7 (t) lives in a bounded set of ¥¢ with probability
larger than 1 — 7. It remains to prove that the embedding ¥¢ < H*(R?) is compact. Let (uy)nen
be a bounded sequence in £¢. Then by compact embedding and diagonal extraction, there exists a
subsequence (uy, )reny Which converges to u € L*(B(0, R)) for every R > 0. Now we compute:

2 2
o, =y < e~ oy + [ o)~ )Pl

< wny, — “|‘i2(3(o,3)) +(1+ R)_C/ (@) (Jtn, (@) + |u(@)]?) da
B(0,R)¢
for any R > 0, thus (u,, )ken converges to u in L2(R?), and is bounded in H'(R?), so that by
interpolation the subsequence also converges to u in H*(R%),0 < s < 1.
We also need to prove that X= 7 satisfies the second condition of Proposition 6.1. We first prove
that (6.8) holds with H replaced by H~z(R? C). For this we use the Perturbed Test Function
method, and the equality:

[u(T +6) = u(7) = lulr + 85,3 = luln)ll}, -y = 2(ulr +6) —u(r),u(r)),, -

[ -3 -3
H 2 H™ 2 H™ 2

First we apply the Perturbed Test Function method to ¢(u) = Hu||2_% We compute LE¢:

[\]

(1= A3 X7, ixXTm(5)).

LE0(X%) =2((1 — A)"2 X% iAX® — i\ X°|*X°) — =

€
We choose the first corrector o1 in order to cancel the term of negative order in e, and recalling
that Ly (n) = M™n we get

(6.9) p1(u,n) = 2((1 = A)~2u,iuly (n)),

on which we have a bound using hypothesis (2.21):

2
(6.10) lpr(u )| < 2wl g [Jull g2 ILa ()]l 5 < 2lullZa [[La ()]l -
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Now we apply the infinitesimal generator £° to ¢ + ep1:
LF(p+epr) (XE,m®) =2((1 — A)’%XE,ZAXE — M\ XE 27 X¢)
+2((1 = A)"2X%, X me Ly (m°))
+2((1 = A)72 (XTm) , XLy (m#))
+ eDy 1 (IAXE — N X727 X7).

Thus, treating the operator (1 — A)~2 as a kernel operator with kernel ka, we set

w2(u,n) =Re /RQR w(x)ka(z, y)u(y)La(n)(y, z)dzdy

—2((1 — A) Fu,uly(n)),

(6.11)
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where we recall that formally La(n) = M™!(nLi(n) —E,[nLi(n)]). Finally, defining ¢° = ¢ +

ep1 + €2y, we obtain that:
L5 (XE,m®) =2((1 — A) "2 X% iAX® —iA|X°[*7 X°)

+2((1 = A)"2X°, X°E, [nL;(n)))

(6.12) _9E, [<(1 ~A)"F (X*n) 7X8L1(n)>}
+ & (Dup1 (IAX® — iA|[X5*7 X)) 4+ Dypa(—iX*m))
+ &% Dypa (IAXE — iN| X°|?7 X°).

First we get an estimate of o (u,n) in (6.11). We have

(1= A) 2w, ulo(n) < lull s [lull 2 [ L2(n)]| oo

and for the other term in the right-hand side of (6.11) we use the assumptions made on Ly to get

the bound:
Re /Rzn u(@)ka(z, y)u(y) La(n)(y, v)dedy < |ull g [[ull 2 ([ La(n)]] oo (ra ey -
Finally we obtain the following bound on ¢,:
P2 (u, n)| L2 lull g1 [[ull 2 ([L2(P)]| oo + [1La()]] oo (ma xray)
<2 lullZe (L2l oo + 1L4(0) | oo gy
with Ly and L4 defined in (2.11), (2.13) ,(2.14) , (2.16), (2.17), (2.18).

(6.13)

Now we work on the different terms of the expression of £5¢° in (6.12). First we deal with the

terms of order 0 in . Using integrations by parts and (3.4) we get
i . - 2
6.14) (1= ) Fuidu— A7) < lull g g+ e (5 + )
Then we have
(1= A)"2u,uE, [nLy (n)))
= —Re/ (1 —A)_%u(x)a(x)ﬂi/ m(0,2)m(s, z)dsdx
Rd 0

1

1 _1 _
= §Re /Rd(l — A)"2u(z)u(x)k(z, x)dxdydz,
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where k € W3 (R? x RY) N HY(R? x RY) is defined in (2.24). We get:
1
(6.15) (1= 2)"2u,uB, [nLy (n)]) < 1K) 7o axcray lul72
We get the same estimate for the last term of order 0:
_1
(6.16) E, [((1 = 8)7 4 (wn), uly ()] < 112 s gyl
Now we focus on the terms of order 1 in ¢ in (6.12). We recall the expression of the first corrector
©1(u,n) =2((1 — A)~"2u, iuLy(n)). Thus
D1 (iAu — iXul*7u) =2((1 — A)*%u, (Mu|?*u — Au)Lyi(n))
+2((1 = A)" 2 (Au — Aul*?w), uL; (n)).
We use integrations by parts to deal with the terms involving Au and we get that
(1= A)7 2w, Aul(n) +{(1 = A)7* Au, uLy(n)) < Cull sl [12(2) -

For the other terms, we use (3.4) to get

(1= )%, [ul* 7wl () +((1 = A) 7 (jul*"w), uLa (n))

2
< Nl g (Il + el ) L2 ()l e -
Finally
(6.17) |Dupr(idu — iXul* w)] < C'llull g [lull o 12 ()| g + Nl e (1ull7s + il o) 12 ()] e -
It remains to control the terms coming from the introduction of the second corrector o written in

(6.11). We have

S Duwpa(h) = — (1= A) 3 b uls(n) — (1 = A) b, ha(n))
(6.18)

=Re [ Bk 9)a) (La()(.9) + Lan) o, 2)) dody

where ka denotes the kernel of the operator (1 — A)2 and Ly(n) is defined in (2.18). We start by
the estimate of D, p2(—iX*m*®). We can easily bound the terms involving Lo (n):

(1= A)"2(6X5m®), uLa(m®))+((1 — A) "2 X iX“m® Ly(m*))
2
S ClIXE| 72 Im®]l oo [ L2(m)[l o -
For the other term, compute:

Re /R2n h(x)ka(z,y)u(y)(La(n)(z,y)+La(n)(y, z))dzdy

<2l g2 lull g 1 La ()]l oo (o xcmay -

(6.19)
We can use this bound to control the terms which do not involve La(m?) in D, @(—iXm*):
Re [ X (e (0)ka ()X 0) (Lalm?) o,y) + La(m) 3. ) dody
R n

< 2| La (%) | oo ) Re / (1= A) X (@) X ()m (@)d

2
< 2| La(m) || oo (mascrey 1 X5 L2 M) e »
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Finally we have
620)  |Dupa(—iXm)| < CIXNG ¥l e (12207 | e + 1 Ea0m | e i) ) -

It remains to control D, 2 (iAX—i\|X¢|?? X¢). We use the same computations as for D, o1 (1A X®—
iA\|X?|?? X¢) and the bounds (3.4) and (6.19) to get:

. . - 2
[ Dupa(iAXE = IAX 27X <C X 12 1La(m®) - (IX 28 + X713
(6.21) + CIIX g 11X g 1 L2 ()
FCNEa(m) | e sy (1K e 1XE N+ 10X (IXEIS + 1XE050 ) ) -

Finally, estimates (6.13), (6.17), (6.20), (6.21) coupled with Lemma 2.1, conservation of the
L?-norm and Lemma 4.1 give us for 7¢ the stopping time defined in (2.27):

E [1Ts>o|<p(X”5) - sOs(Xs’TE,mE’TE)\] < C(T)(e' 7 4272,
E (Lm0l £56° (X5, me )| < OT)(1+ 77 4 272),

where X7°,m”" denote the stopped process X7 (t) = X (t A 7%),m" (t) = m(t A 7°).
We use this last estimate and the fact that

t
X (1) = (X (0) = [ (e )
is a martingale to compute for any stopping time 7:

E[IX((r+0) ATy = IX5( AT 2y |
= E[p(X((r+06) A7) = p(X*(r A 7°))]
SE[¢(X¥((r +8) A79)) = ¢ (X°(r A79)] 4 Cl =2 4 Ce27%0

<E

(t+0)AT . .
< / Lo (X5 (5),m™ " (5))ds | + Ce'=® 4 Ce22e

NTE

SC(T)5 (1+e' 4272 + Cel 4 Ce® 2.
Finally, for § and € small enough we get:
2 2
(6.22) E [IX5((r + ) A )2y = IXE(r A2y ] <

Then we apply the Pertubed Test Function method on ¢(u) = (u,h) _1 for a fixed function

h € L?*(R%). Computations lead us to choose two correctors:

o1 (u,n) =(iuM "n, (1 — A)"2h)
=(iuLy(n), (1 — A)~2h),

2 (1, n) =M™ (B, [nLy (n)] — nLi(n)), (1 — A)~2h)
=(uLy(n), (1 — A)"2h),
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and the infinitesimal generator applied to ° = ¢ + cp1 + 2y is
L5667 (XF,mf) = (IAXT — X[ X) + (XEy [1La(n)] (1~ A)7#h)
(6.23) e (XX = AX) L (me), (1= A)75R) = (X me La(m?), (1 - A) "))
e2((IAXT — i X2 X)Lo(m?, (1 — A) "2 h).

Here again there are several quantities which need to be bounded. We use similar computations as
previously done for ||u||§r 3 and we obtain:

E [Lesolp(XE) - o8 (X7 me )| < O 4 2720,
B [1res0] 705 (X7, m® ™) ||  C(T)(1+ 2170 46272,

where C(T') also depends on the L?-norm of h. Now taking 7 a stopping time and h = X¢(7 A 7¢),
knowing that conditioning by Fra.-

t
My i (X7 (1) = 7 (Xo) — | 5% (X (s))ds
0
is a martingale, we obtain

E[(XE((r +8) A7%) = X*(r A7), XE(r A7),y |

(
=Ep(X((T+ ) A7) = p(XE(T AT))]
SE[pf(X5((r +0) AT9)) — 9 (X*(r A 79))] + Ce'=0 4 Ce22
SE[E[p*(X<((r+8) A 7)) = g5 (X=(r A7) | Fonrel] + Ce1 4 G220
(T4+0)AT
<E|E / L5 (X5(8), )ds | Fonre

+E []E []\/[(‘1'-"-6)/\7'5 — Mpre ‘ ]:7'/\7'5]] + CEI?O& + 0527201
SO 4670 4e272)5 4 Celm 4 0?72,

Thus for ¢, small enough, we have

(6.24) E [<X€((T FO)AT) = X ATE), XE(T A Tf)>H,%} <.

Finally, gathering (6.22),(6.24) and using the Markov inequality, we get that for any stopping time
7 and R,n > 0, for £,§ small enough:

(6.25) i (HXT (r+0)— X5 (T)HH% > R) <.

We then use an interpolation inequality to write for s € [0,1):

2(1—s)/3 H (1425)/3

BT ES S O] I St ED St i b Sa R ES Gl

H1



APPROXIMATION DIFFUSION FOR NLS WITH RANDOM POTENTIAL 35

It follows for any M > 0:
P(|xm(r+0) - x7(n)| > R)

’ > (Re)?20-9) M—<1+2s>/z<1—s>)
H 2

-
<P(|xem(r+8) - x=7(7)

+P (HXT (r+06)— X5 (T)HHl > M) .

Thanks to Lemma 4.1 we can choose M such that the last term is smaller than 7/2. Then, using
(6.25), we can choose R such that the first term of the right hand is less than n/2. Thus Aldous
criterion is satisfied, the process (X*7°). is tight in C([0, T], H*(R%)).

([

APPENDIX A. DETAILS ABOUT THE EXAMPLE IN SECTION 2.3
Consider X, solution of (2.33):
dXt = (AXt + G(Xt))dt + O'th
(A1) )
X() =T
where ¢t > 0, and x € H with H a Hilbert space. Then we define
m(t,n) =A(X(t,A"'n+2) —2),

with A : H — E a continuous invertible operator and & = [, zv(dx) where v is the invariant
measure of X;. In order to show that m satisfies the assumptions in F, it is sufficient to show that
these assumptions are satisfied by X in H. It is straightforward that X; is stochastically continuous,
and it is proved in [12] that X satisfies the coupling assumption 4. We first prove that the moment
of order 2 of X; is bounded. Let us define

t
(A.2) Zy = / A=) g dWy, Y, =X, — Z;, t>0.
0

Thanks to the assumptions made on A and ¢ we know that there exists ag > 0 such that for any
keN,

(A.3) E | sup ||Zt||11€)((_A)ao <G,

te[0,T)

where D((—A)%) is the domain of the operator (—A)*. Besides Y; is solution of

0 x
Lemma A.1. Let x € H, and X the solution of equation (2.33) with initial data x. Then for any
k € N there exists a constant Cy, depending on T and x such that

k
E| sup || Xl | < Ch.

t€[0,T]

Proof. The proof is based on a classical energy estimate. We start from the equation satisfied by
Y::
0Y, =AY, + G(Ys + Zy),
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and take the scalar product with Y;. We use the assumptions on A and the boundedness of G to
obtain the inequality

*at Y27 + 1Yzl < M |[Yill

D((~A)Z)
which, using (2.34) for the rlght—hand side of the inequality, gives:

1 2 M2

where A is the first eigenvalue of —A. Finally using (2.34) again:
M2
O Il + A Vil < -

Now multiply this inequality by ||Yt\|];{_2 for k € N:
2 k k k—2
20 Vel + M lYelly < © ||Yt|\

<Ot ||YtHH
A Gronwall argument allows to conclude that
k k ,mt
(A.6) 1Yillyy < Ok + llzlle "

Then, coming back to the process X;, we get

E l sup X% | < CLE < Ck(w),

tel0,T

k k
i (1l + 1)

because of the bound that we just proved for ||| 77 and because all moments of Z; are bounded. [J

Now we can start to prove that X, satisfies the different assumptions 1 to 5. The following
lemma ensures that X; verifies 2.

Lemma A.2. Let X; the process which is solution of (2.33), and denote by P; its transition
semigroup. Then (Py)i>o is Feller.

Proof. Let x,y € H, denote by X7 and X/ the solutions of (2.33) with initial data = and y. Then
we have

d(Xy = X{) = (AX] - X{) + G(XT) - G(XY)) dt.
By classical energy estimate, using the assumptions on A and the Lipschitz assumption on G, we
get by a Gronwall argument that

1X7 = Xy < Ce Nz =yl -

Thus for any x € H, for any ¢ > 0, the process X converges almost surely to X¥ if y converges to
z. Now let ¢ € C(H) with polynomial growth, and (z,)nen & sequence in H which converges to
x € H as n goes to +00. The almost sure convergence proved above implies that o(X;™) — p(X})
converges almost surely to 0 in H as n goes to +00, and Lemma A.1l ensures uniform integrability,
so that finally

lim [|Prp(zn) = Pop(@)l 5 = 0.

n—-4
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Now we are interested in the existence and uniqueness of an invariant measure for the process
X;.

Lemma A.3. Let x € H. Then P, the transition semigroup of the process X; solution of (2.33)
with initial data x has a unique tnvariant measure denoted by v.

Proof. The existence of an invariant measure is based on the Krylov-Bogoliubov theorem. Here
again we use the processes Y; and Z; defined in (A.2), and start from equation (A.5):

2 M?

1 2 1 Y
—0 ||Y; + = S o
5Vt | tHH 9 | t”D((—A)%) 21

If we integrate this inequality we get for ¢t > O:
1 2 1 [ 2 1 2
7 - Y 1. .ds < C+ = || Yol
tH el + t/o | |‘D((7A);) s T3 Yol

so that, using (A.3) there exists a random variable x with all moments finite such that
1 [t
T ACRRR AP

If we denote by py = 1 fot L(X;)ds with L£(X) the law of X solution of (A.1), we have

i (Boayen) (0.1)) < %-

Thus the sequence (p¢)r>o is tight and by Krylov-Bogoliubov theorem there exists an invariant
measure V.

Now we prove the uniqueness of this invariant measure. It results from the coupling assumption
4 proved in [12] which gives for ¢ a continuous bounded function and z,y € H:

[Prp(z) — Pep(y) = [E [p(X{)] — E [o(X{)] |
(A7) = |E [(o(XF) = o(XI) Lxr2xy]
< 2|lello (1 + llelly + lyllz)e ™,

where we used the Cauchy-Schwarz inequality in the last step of the computation and denoted by
ll¢lly the supremum of . Let vy, v2 be two invariant measures. Let A C H and ¢ = 1 4np,,(0,r)
for R > 0. The fact that 11 and v, are both invariant measures gives:

(11 (AN Bu (0, R)) —v2(AN B (0, R))| = | / Prp(x)v (dr) — / Prp(y)va(dy)|
H H
and according to the inequality coming from the coupling assumption we get:
(AN By (0,R)) —v2(AN By (0,R))| < 2(1+ R*)e™ "

which goes to 0 as ¢t goes to +00. However the left-hand side of this inequality does not depend on
t, thus it is equal to 0, for any R > 0. Finally we get that for any A C H, v1(4) = 1»(A). a

It remains to prove that X; satisfies assumptions 3 and 5. In this aim we decompose X; and,
using (A.6), we have for any € > 0

k k k k k ko kM
1Xell 5y < (1 Zell g + 11Yell )" < Cre 1 Zelly + (L +€) [1Yellzr < Cre(|Zelliy +1) + (A +e) [zl e 7"

which gives us that assumption (3) is satisfied. Indeed, all the moments of Z; are bounded.
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Given t > ty > 0, this inequality generalizes into:
k —ﬁt k
E [IXl 1Fia] < €+ (14 e)e™ T |1 X0, 1 -
kX
Choosing € > 0 such that o = (1 + E)e_Tl < 1, we obtain, for n € N,

k C n
E[I1Xall} ] < 7= +a”llal"

Under our assumptions, we know that the left hand side converges to [}, ||x||];I v(dz). We deduce:

/ z]|%, v(dz) < oo.
H

Finally we proved that X; satisfies assumptions (1) to (5) (except the zero-mean property), and so
does m(t,n) according to its definition in (2.35).

Now we can work on the construction of the functionals Lq,---,Ls. We state the following
result, which ensures the existence of L.

Lemma A.4. Let u,v € H'(R?), and define ¢*¥(n) = (un,v). Then if we define

Mg () = — / Pio™" (n)dt
0
there exists L1 : E — E such that
Mo " (n) = (uLy(n),v), and |Li(n)|5 < C(1+|nllg)>.

Proof. The process ™" (n) is centered, thus we can write

P ()] = | Prp™( / Prp™® (m)(dn)|

< /E |Pug™ (1) — P ()| (di)

because v is the invariant measure. Thus denoting by (m,, ,,m?. ;) a coupling of (m(t,n), m(t,n))

satisfying (2.30), we have e
P / IE [0 (m(t, n)) — " (m(t, )] |v(d)
/ E [( (m a (1)) — @™ (m2 1(1))) Lyt pune] |(d1)

Denote by E’ the dual space of E, then:

Pl <l [ (& [t 2] + 2 [ime.ai] )

2 _2\1 2 _
< L+ [Inlp + [1alp)2 e v(dn).
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Besides we have
2 _ o2
E [||m(t,n)||E] =E [HAX(t,A n+z)— SCHE}
<c(1+E[IxtA n+a)}])
<C(1+|np)°
according to assumption 3. Finally we get
|Pep? ()] < C lluv]| g (1+ || 5)%e 3"
Thus M~1p®?(n) is well-defined and
(A.8) ML (n)] < Clluvll g (14 In)l5)*.

We want now to show that we may choose MM ~1p%V = p%?. In other words we want
t
M"Y (m(t,n)) — / " (m(s,n))ds
0
to be a martingale with respect to the filtration (F%)¢>0. Let 7 < ¢. On the one hand:

E [_ /O " Prg(n(t, m))dr /O (s, s | 7 ]

= E / E " (m(t + 7,n)) | Fil dr + /Otsou’v<m<s7n>>ds|fr}

= /0°° (pu’”(m(t+7,n))d7+/0t @ (m(s,n))ds | f”]

=1/ " v (m(s, m))ds | fr] .

On the other hand we use the fact that [ ¢"*(m(s,n))ds € F, to compute
M (o)) = [ s, m))ds
0
=-E [/ e“(m(r +1,n))dr —|—/ Y (m(s,n))ds | Fr
0 0

—a[ [T et mas| ).

thus the martingale property is satisfied.
Finally, for every n € E we have constructed a linear form on E': uv — M™1p%?(n). It is
continuous:

M ()] < C(1L+ [Inllp)? luvllg -
Thus, since E is a reflexive space, there exists L1(n) € F such that
M7l (n) = (Li(n),wv) = (uL1(n),v) and [Li(n)|p < C(L+ [Inllp)*.
O

So far we have proved that it is possible to construct Lj(n) which satisfies our assumptions. Let
us now construct the other functionals.
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Lemma A.5. Let u,v € HY(R?), and define p*¥(n) = (u(nLy(n) — E, [nL1(n)]),v). Then if we
define
M) = = [ Rty
there exists Lo : E — E such that ’
M7 (n) = (uLla(n),v) and ||La(n)llp < CA+ |Inllp)°.
Proof. We proceed as above and get
|Prp™ " (n)]

<C|uv]| /EE ([t m)La(m(t,n)) = B I ][] (L4 |l + ] 3) B 3"

+E [Hm(t, n)Li(m(t, 7)) — E,[nL'(n)] HZ} @+ nl? + Ial%) 2 e 3t (dn).
We use the fact that F is an algebra to estimate
E [[|m(t,m) Ly (m(t,m) = Byl ][] <€ (1+E [lm(t.m)][3 122 (m(t, )3 )

<C1+|nfg".
Finally we get
P (n)] < C uv]| g (1+ [|n]| 5)° e 3,
and we can continue the proof exactly as for the construction on Lj(n). Thus for any n € E there
exists La(n) € E such that

MTHp"?(n) = (uLla(n),v) and  ||Lz(n)llp < C(1+ |l p)°.

We have the same result for Lj.

Lemma A.6. Let u,v € H'(R?Y), and define p*(n) = (u(VnVLy(n) —E, [VaVLi(n)]),v). Then
if we set

M) == [ Pty
0
there ezists Ls : E — H*~1 such that
Mo (n) = (uLs(n),v) and ||L3(n)|| .1 < C(1+ [nll)*.

Proof. We follow the same steps as for the two previous proofs, except that when we bound ¢*"
we have

" ()] < [luoll gr—s VAV Ly (n) =By [VoN Ly ()]l o1
and we use the fact that H°~!(R?) is an algebra because s > 2 + 3 to write
" ()] < Cluv]l ga-s (0l g [ L2 ()] g + C) -
Thus the proof gives us for any n € E the existence of L3(n) € H*~! such that
Ml (n) = (uLs(n),v) and  [[Ls(n)ll-n < C(1+ 0] p)°
]

Finally, we need to construct a last functional Ly, which is slightly different to the previous ones.
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Lemma A.7. Let w € L}(R? x RY), and define

P = [ 0o (@ 0)0) ~ By o) s (0) 1)) dody.
Then if we set
M1 () = —/ P (n)dt
0
there exists Ly : E — L¥(R? x R?) such that

Mflww(n):/ w(z,y)La(n)(z,y)dzdy  and ||La(n)l| o oy < C(1+[Inllg)*.

R2n
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Proof. The proof of this lemma is very similar to the proofs of the previous lemmas, but this time

0" ()] < [lwll L1 (g gy I7(2)La () (y) — By [n(2) Ly (0) )| g
because E < L>°(R?). Thus we get

w 3 X
[Pep® ()] < Cllwll 1 gaxray (1 + [Inllg)” e 2,

and using the same procedure as for the previous proofs for any n € E there exists Ly4(n) €

L>(R? x RY) such that

M_lsow(n)=/ w(z,y)La(n)(z,y)dzdy and  [|Ls(n)l| po gaypay < C(1+ [Inllg)*.

R2n

O

We have constructed the last functional in a slightly different way than in (2.18), but taking

w(z,y) = u(z)u(y)v(x)v(y) we recover the same expression for M~1p®(n).
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