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Abstract

This study presents the implementation and validation of a second-order accurate
solver for the 4-equation multi-fluid method in a cell-vertex context, to handle
aeronautical air-assisted liquid sheet configurations. Validations include Laplace
tests, droplets oscillations, and a two-dimensional configuration reminiscent of
an aeronautical airblast injector. Promising results are obtained in the last case,
especially when the pressure is increased, as relevant for aeronautical applications.
Being fully compatible of the reactive flow formulation of the cell-vertex solver
AVBP, this study paves the way to future monolithic simulations of airblast
injectors for aeronautical combustion chambers, including both the multi-phase
and the reactive regions.

Keywords: Two-phase flow, airblast, diffuse interface, hyperbolic systems

1. Introduction

Liquid injection and atomization are complex processes which are at the
heart of many industrial systems. In the context of combustion, these phenom-
ena play a key role as they drive the fuel vapour distribution in a combustion
chamber [1, 2], and therefore have a major impact on the flame regime and5

burner efficiency, as well as pollutant emissions [3]. In addition, fuels are blends
of numerous molecules, their exact composition being usually unknown. For
example Shastry et al. [4] highlighted the preferential evaporation effect on
the structure and propagation speed of spray flames. For these complicated
problems numerical simulation represents a convincing approach to supplement10
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experiments. However, atomization is numerically challenging due to the large
range of physical scales involved in this multi-physics problem, from the sur-
rounding gas flow to the molecular scale at the interface between liquid and gas
phases, considered as a discontinuity for viscosity and density, and consequently
requiring specific numerical treatment.15

For this reason, a strategy often used in complex industrial systems is
to directly inject a train with prescribed droplet velocities and diameter size
distribution [5, 6]. Such spray injection models have allowed successful spray
flame simulations in both academic and realistic combustion chambers [7–10].
However, they require input parameters which are not always known and they20

suffer from a lack of physics of atomization, which prevent the spray formation
to adapt to the flow.

Several approaches have been proposed in the literature to numerically predict
the primary atomization of liquid jets or sheets by modelling the interface between
liquid and gaseous phases, which can be split into two main categories: sharp and25

diffuse interface methods. Sharp interface methods consider the interface between
the phases as a discontinuity in a way that flow variables experience a jump in
their values. The material interface is tracked by the Front-Tracking methods
[11–13] or captured using methods such as the Volume-Of-Fluid (VOF) method
[14], or the Level-Set method [15]. These approaches are able to finely predict30

the evolution of the interface topology and its primary breakup [16–19]. However
they require significant mesh resolution in the interface vicinity [20] which makes
them unsuitable for prediction in complex industrial systems. In addition they
are usually restricted to incompressible flows, i.e., not directly applicable to
combustion. Diffuse interface methods (DIM) do alleviate these issues, with35

considering the interface as a transition region between the phases instead of a
discontinuity, thus relaxing the mesh resolution constraints. To do so, they rely
on unified equations of state describing both phases. Two sub-groups of DIM arise
from the literature: the Phase-Field (PF) and the Multi-Fluid (MF) methods.
PF methods are based on the early works of Van der Waals [21], Korteweg40

[22] and Cahn and Hilliard [23] to describe the Gibbs potential in the diffuse
interface region. The concept is to track the phases with a dedicated field
function and to solve each phase independently. Numerous Lattice-Boltzmann
numerical formulations rely on this approach, allowing interesting applications
for atomization in a incompressible context [24–27]. For compressible finite-45

volume or finite-element approaches, the second gradient theory [28] recently
allowed to handle high density ratio in academic configurations [29]. MF methods
rather consider the interface region as a mixture of phases, obeying a single
set of equations. Several equilibrium hypotheses have been proposed to reduce
the number of equations, from the general 7-equation formulation of Baer and50

Nunziato [30], to a reduced 5-equation formulation assuming pressure equilibrium
[31–34], and down to a so-called homogeneous 4-equation formulation, assuming
the mechanical and thermal equilibrium between phases [35]. Because they
involve a only set of conservative equations to describe both phases, without
tracking the interface, DIM relax the resolution constraint of sharp methods.55

Convex thermodynamic models [36] are used to close the equation set, such
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as the Stiffened-Gas [37] or cubic equations of state, as recently proposed in
several works [38]. Multi-Fluid methods allow the simulation of compressible,
high density ratio industrial configurations at a reasonable computational cost.
They were used in liquid rocket engine applications [39] using cubic [38, 40–42]60

or Stiffened-Gas equations of state [35, 43–45], or in Diesel injection setups with
interesting results [46–48]. Contrary to PF approach, existing MF works have
mainly neglected surface tension forces, which play a key role in atomization
[49]. Primary and secondary atomization and directly the droplets distribution
in the combustion chamber are a consequence of the surface tension forces.65

The present work intends to assess the accuracy and robustness of the homo-
geneous model (four-equation model [35]) to predict liquid-gas flow dynamics. A
Noble-Abel Stiffened-Gas (NASG) equation of state is used to close the system
and the Continuum Surface Force formalism [50] extended to a compressible
formulation [51] is considered to account for surface tension forces. As recom-70

mended in [52], the vertex-centered HLLC-MUSCL Riemann solver [53] is used
for a robust and accurate prediction of the high density ratio faced in the targeted
applications. Finally, characteristic boundary conditions which are required for
compressible flows, are adapted to NASG thermodynamics. The model is first
validated on a series of academic test cases, and finally applied to liquid film75

dynamics in an airblast atomizer. A series of pressurized tests are conducted
on the last application. It is to the authors knowledge the first time that such
airblast applications are conducted with a diffuse interface method, and that
pressure effects on the liquid-gas interface dynamics can be investigated under a
compressible, eventually reactive formalism.80

The paper is structured as follows. The transport equations and closure
models are presented in Sec. 2, then the numerical scheme is described in
Sec. 3. Validations for the characteristic boundary conditions, and the surface
tension implementation are proposed in Sec. 4. Finally, the results for the target
application are application are presented in Sec. 5. Average and instantaneous85

results are compared to existing correlations, and the effect of pressure injection
is investigated.

2. Model description

2.1. The 4-equation model
Initially proposed to simulate evaporating, cavitating and boiling flows [35, 54–90

56], the homogeneous 4-equation model assumes a mechanical and thermal
equilibrium between the phases. Mechanical and thermal equilibriums are always
true in pure phase media. In a multi-phase mixture, they mean that no slip
velocity exists between phases, both phases have the same temperature. This
implies that the region where both phases coexist is small. Species composing95

the mixture occupy their own volume and share the same pressure whether
they are in liquid or gas phase which is similar to Dalton’s law [43]. With this
hypotheses, the 4-equation model considers a mono-component liquid (k = 1)
and a multi-component gas mixture (k = [2, . . . , N ]), distinguishing the liquid
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species and its vapour as two different species. The equilibrium leads to the100

following variable definitions




T = Tk, ∀k,
P = Pk, ∀k,
v = 1/ρ =

∑N
k=1 Ykvk,

e =
∑N

k=1 Ykek.

(1)

The resulting 4 equations write

∂ρ

∂t
+∇·(ρu) = 0, (2a)

∂ρu

∂t
+∇·(ρu⊗ u+ P I) = 0, (2b)

∂ρE

∂t
+∇·((ρE + P )u) = 0, (2c)

∂ρYk

∂t
+∇·(ρYku) = 0, (2d)

where Yk represents the mass fraction of species k, ρ, u, P and E respectively
denote the mixture density, the velocity, the pressure and the total mixture
energy (E = e + u2/2). The internal energy writes e. As the 4-equation
model governed by Sys. (2) does not contain any non-conservative term, it is105

fully conservative. This model is classified under the category of Multi-Fluid
methods, which distinguishes from Phase-Field methods by its approach to
interface thickness control. Unlike Phase-Field methods, the simulation does not
actively manipulate the interface thickness. This deliberate choice is motivated
by the specific applications targeted by the model, where the flow dynamics are110

sufficiently fast to prevent excessive diffusion of the interface, and by the fact
that Sys. (2) corresponds to the usual set of equations solved in combustion
solvers [57].

2.2. Thermodynamic closure
A consistent Equation of State (EoS) must be used to correctly relate den-115

sity, temperature and pressure of liquid and gas phases. This EoS should be
able to reproduce the thermodynamic behaviour of species on a large range of
temperatures and pressures.

As suggested by Le Métayer et al. [37], in the context of the 4-equation
model using a convex EoS for each phase allows to preserve the hyperbolicity of120

the Sys. (2) which simplifies its resolution. The liquid and its vapour are thus
transported through two distinct equations [35] and mass-transfer between phases
occurs assuming an instantaneous local thermodynamic equilibrium. When the
conditions are far from the saturation, no phase change occurs and the local
thermodynamic equilibrium can be neglected. This is the case in this work, i.e.,125

no evaporation/condensation are considered.
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2.2.1. The Noble-Abel Stiffened-Gas equation of state
Cubic equations of state [58, 59] are good candidates to describe both phases

but they loose convexity in the spinodal region of the Clapeyron diagram. The
Noble-Abel Stiffened-Gas (NASG) equation of state [60] extends the popular130

Stiffened-Gas formulation which considers covolumes and expresses as for a given
constituent k = [1, . . . , N ] as

Pk =
ρk(γk − 1)Cv,kTk

1− ρkbk
− P∞,k, (3)

where ρk, γk, Cv,k, bk and P∞,k are respectively the density, the Laplace co-
efficient, the isovolume specific heat capacity, the covolume and the constant
representing attractive effects in liquid phase: the gaseous phase relaxes to the135

ideal gas EoS with P∞,k = 0 and bk = 0.
Internal energy, enthalpy, entropy and the speed of sound read

ek =
Pk + γkP∞,k

Pk + P∞,k
Cv,kTk + qk, (4)

hk = γkCv,kTk + bkPk + qk, (5)

sk = Cv,k ln

(
T γk

k

(Pk + P∞,k)
γk−1

)
+ q′k, (6)

c2k =
γk(Pk + P∞,k)

ρk(1− ρkbk)
, (7)

where the two added constants qk and q′k respectively represent the reference
energy and entropy of species k. The NASG EoS parameters are determined
according the methodology proposed in Boivin et al. [61]. In order to avoid small
time-steps induced by the CFL constraint in the liquid phase, these parameters140

are derived assuming a modified sound speed in the liquid phase, equal to the
one of the gaseous phase [62].

2.2.2. Extension of NASG equation of state to multi-component gas mixtures
Extension of Sys. (1) to multi components gas has been proposed in Chi-

apolino et al. [43], and is reminded here for clarity. Writing Eq. (3) for each145

species with ρk = 1/vk, the mixture temperature is easily retrieved

T (v, P, Yk) =
v −∑N

k=1 Ykbk∑N
k=1 Yk

(γk−1)Cv,k

P+P∞,k

. (8)

The mixture pressure is then obtained by rewriting Eq. (8), yielding a quadratic
form

P =
b+

√
b2 + 4ac

2a
, (9)

with 



a = v − Y1b1,

b =
∑N

k=1 Yk(γk − 1)Cv,kT − P∞,1(v − Y1b1),

c =
∑N

k>1 Yk(γk − 1)Cv,kP∞,1T.

(10)
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Note that a proof of the pressure positivity was presented by Chiapolino et al.150

[43], and that the formula is only valid if a single liquid component is present
(here, k = 1).

Finally density and internal energy are computed through Eqs. (3) and (4)
according to Sys. (1)

1

ρ
=

N∑

k=1

Yk

(
(γk − 1)Cv,kT

P + P∞,k
+ bk

)
, (11)

e =

N∑

k=1

Yk

(
P + γkP∞,k

P + P∞,k
Cv,kT + qk

)
. (12)

2.3. Jacobian flux matrix & boundary conditions
Characteristic boundary conditions [63] are required in a compressible context

to be consistent with the system of waves travelling inside the computational
domain. The Locally One-Dimensional Inviscid flow (LODI) hypothesis intro-
duced by Thompson [64] is considered. Following Okong'o and Bellan [65],
characteristic formulations must be adapted when using non-perfect equation
of state. Pelletier et al. [38] have derived the characteristic formulation for a
4-equation model, closed with a cubic equation of state. A similar exercise is
conducted here, for the NASG equation of state. The computation of coefficients
Λ and Γ involved in the Jacobian fluxes matrix as well as the speed of sound are
detailed in Appendix A,

Λ =
∂P

∂ρe

∣∣∣∣
ρYk

=
1

ρC̄pβ
α − αT

, (13)

Γ =
∂ρe

∂ρYk

∣∣∣∣
P,Yi̸=k

= hk − ρC̄p

αρk
, (14)

with α and β respectively the isobaric dilatation and isotherm compressibility
coefficients. The mean isobaric heat capacity is defined as C̄p =

∑
k YkCpk

.155

2.4. Additional terms: surface tension & viscous term
Surface tension is accounted for following the methodology proposed by

Brackbill et al. [50], taking the liquid volume fraction αl as the continuous color
function. The resulting force Fσ yields

Fσ = σκ∇αl, (15)

with σ the surface tension coefficient and κ the local curvature defined as160

κ = −∇·
(

∇αl

|∇αl|

)
. (16)

This formulation of the surface tension force enables a fast and computationally
efficient integration of capillary effects into the system of equations. In addition to
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extending the method to compressible cases, Perigaud and Saurel [51] formulated
the equation system in conservative form, offering improved accuracy in capturing
capillary phenomena. However, the implementation of this formulation poses165

certain challenges, as outlined below:

(i) Modification of the energy equation. A surface tension potential energy
Eσ is added to the conservative energy variable E. This potential energy
term is defined as

ρEσ = σ∥∇αl∥. (17)

The energy equation then reads,

∂(E + σ∥∇αl∥)
∂t

+∇·
(
(E + σ∥∇αl∥+ P )u−

σ

(
∥∇αl∥ I−

∇αl ⊗∇αl

∥∇αl∥

))
. (18)

(ii) Impact on flux formulation and solver: the conservative momentum and170

energy formulations lead to modifications in the flux formulation, requiring
adjustments in the Riemann solver and the Jacobian flux matrix.

Considering that the AVBP solver [66, 67] is primarily used for single-phase
gas applications, where the focus is mainly on simplicity and flexibility of
implementation, the non-conservative form of the equations is preferred. This175

choice enables easier integration of the code with the desired level of simplicity
and flexibility, aligning with the solver’s primary application requirements. The
surface tension effects are incorporated into the numerical simulations using a
non-conservative formulation. This approach, despite its departure from a fully
conservative framework, yields satisfactory results in validation test cases. The180

implementation of the non-conservative formulation within the AVBP solver has
proven to be straightforward and efficient. By adopting this approach, the AVBP
solver, which primarily focuses on single-phase gaseous applications, benefits
from the simplicity and flexibility offered by the non-conservative treatment
of surface tension effects. It allows to successfully incorporate surface tension185

modeling, enabling the accurate representation of interfacial phenomena and
enhancing the reliability of simulations in complex fluid dynamics scenarios.
Although a fully conservative formulation is expected to give a more precise
prediction of the capillary effects, the results presented later show that this
simpler formulation yields reasonable results due to the diffuse nature of the190

interface.
The viscous stress tensor and the energy flux read

τ = −2

3
∇· (u)I+ 2S, (19)

q = −λ∇T, (20)

with S = 1
2 (∇u+∇ut). The mixture dynamic viscosity µ and the thermal diffu-

sion coefficient λ are defined as in Deng and Boivin [45]. Using this formulation,
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coefficients continuity is conserved across the interface,

µ = αlµl + αvµv, (21)
λ = αlλl + αvλv, (22)

where µl and λl are the dynamic viscosity coefficient and the thermal diffusion
coefficient of the liquid phase and µg and λg are the ones of vapour phase. The
volume fractions are defined as αk = ρYk/ρk. In this study since only one
liquid species and a multicomponent gas mixture are considered, αl = α1 and195

αg =
∑N

k=2 αk. In Eqs. (21) and (22), µl and λl are assumed constant and
independent on temperature. The gaseous viscosity µg depends on temperature
and its behaviour is modelled with Sutherland’s law [68]. The thermal diffusion
coefficient of gaseous phase is computed through the Prandtl number Pr, µg

and the mean gaseous mass specific calorific capacity C̄p,g,200

λg =
µgC̄p,g

Pr
, (23)

with

C̄p,g =

∑N
k=2 YkCp,k∑N

k=2 Yk

. (24)

The complete system of equations with non-Euler terms, taking the surface
tension force following [51], reads

∂ρ

∂t
+∇·(ρu) = 0, (25a)

∂ρu

∂t
+∇·(ρu⊗ u+ P I) = Fσ +∇·(µτ), (25b)

∂ρE

∂t
+∇·((ρE + P )u) = u · Fσ +∇·(µτ · u)−∇·q, (25c)

∂ρYk

∂t
+∇·(ρYku) = 0. (25d)

3. Numerical scheme

A vertex-centered Riemann solver scheme has been developed at CERFACS
[53], and added in the compressible, massively parallel and unstructured Large-
Eddy-Simulation (LES) solver AVBP [66, 67], to numerically handle with ro-205

bustness high density gradients. Initially intended for plasma applications, it
is adapted here to solve the Sys. (2), in conjunction with the NASG equation
of state. Appendix B presents the numerical solver HLLC [69] along with the
second order MUSCL reconstruction. The Sweeby [70] slope limiter is used for
the MUSCL procedure. The temporal integration is performed with a three-step210

Runge-Kutta (RK) algorithm, as in [71]. The non-Euler terms from Sys. (25)
are computed with specific methodologies. In the capillary term the divergence
is computed with a 4∆ methodology presented in [71, 72]. The viscous terms

8



are computed with a Finite Element 2∆ operator [71, 72] to dissipate small
wavelength diagonal modes that could appear. The validation of the Eulerian215

part of Sys. (2) is presented in appendix Appendix B.3.

4. Canonical validations

In the following, we successively validate:

• the surface tension implementation,

• boundary conditions.220

4.1. Surface tension validation
4.1.1. Laplace law

Surface tension, taken into account thanks to Eq. (15), is validated in this
subsection thanks to several test cases. The Laplace law is first assessed, con-
sidering a H2O liquid droplet of radius 5 mm, in an atmosphere of a gaseous
O2−N2 mixture. The initial species profiles are set with a hyperbolic tangent
function, Φ, defined as,

Φ(ϕ(x, y)) =
1

2

(
1 + tanh

(
2ϕ(x, y)

ε

))
, (26)

ρ(x, y) = Φ(x, y) ρl + (1− Φ(x, y)) ρg, (27)

YH2O
l(x, y) =

Φ(x, y) ρl
ρ(x, y)

, (28)

YN2
(x, y) =

1− YH2O
l(x, y)

F + 1
, (29)

YO2
(x, y) = F YN2

(x, y), (30)

(31)

where ϕ(x, y) reads

ϕ(x, y) = r −
√

(x− xc)2 + (y − yc)2, (32)

with r the droplet radius, ε the interface width, (xc, yc) the droplet center
coordinates, and F the ratio between O2 and N2 in pure air. The densities ρl225

and ρg of pure liquid and pure gas, respectively, are determined with the NASG
equation of state. The domain is a square of 50 mm side. The mesh consists in a
500× 500 grid cells, and the surface tension coefficient is σ = 73× 10−3 N.m−1.
The theoretical pressure drop across the interface predicted by the Laplace law is

Pl − Pv = ∆P =
σ

r
= 14.6 Pa. (33)

The results of the simulation is plotted against the theoretical profile obtained230

with Eq. (33) in Fig. 1a, leading to a relative error of 0.5 %. The method
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Figure 1: (a) Pressure difference profiles for simulation (red dashed line) and Laplace (black
solid line). (b) Error on the Laplace pressure jump for different mesh resolutions. The liquid-
gas interface width and the droplet radius are kept constant at ε = 0.4 mm and r = 5 mm
respectively.

employed to compute the error is based on the one adopted by [73], where it is
computed in the all domain.

EP =

∑

i

∣∣∣∣P (i)− Φ
(
r −

√
(xi − xc)2 + (yi − yc)2

) σ

r

∣∣∣∣Vi

∑

i

Φ
(
r −

√
(xi − xc)2 + (yi − yc)2

) σ

r
Vi

, (34)

where P (i) is the pressure at node i, Φ(x, y) is the initial hyperbolic tangent,
(xi, yi) are the coordinates of node i and Vi is the nodal volume. A mesh235

convergence study is conducted in Fig. 1b. The droplet radius r is kept at 5 mm
and the initial interface width is kept constant at ϵ = 0.4 mm, representing 4
cells in the interface width for the case depicted by Fig. 1a (i.e. the cell size is
∆x = 0.1 mm). The numerical grid has been coarsen and refined to target 1 to
8 cells in the interface width ϵ, by keeping it constant.240

The performed simulations have demonstrated a clear relationship between
mesh refinement and error reduction. As shown in Fig. 1b, the error level
decreases linearly with finer mesh resolutions, indicating a first order convergent
behavior.

4.1.2. Oscillating droplet test case245

The oscillation of an elliptic viscous droplet is then considered, as shown
in Fig. 2. An elliptic shape droplet of radius a = 1.7 mm and b = 1 mm is
initialized in a 10×10 mm domain of air (O2−N2) at rest. Simulations have been
performed on a 750× 750 cells grid. The thermodynamic coefficients are given
in Tab. 1. Thermodynamic features are P = 1 bar, T = 293 K and the surface250

tension coefficient is σ = 73 × 10−3 N.m−1. The liquid and gaseous dynamic
viscosities are respectively µl = 0.854 × 10−3 Pa.s and µg = 1.72 × 10−5 Pa.s.
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Table 1: NASG thermodynamic coefficients for H2O (liquid), O2, N2 species. Determined
with NIST reference [74] with Boivin et al. [61] methodology.

Coefficients H2O (liquid) O2 N2
Cp,k [J.kg−1.K−1] 4185 919 1045
Cv,k [J.kg−1.K−1] 4180 650 742
P∞,k [Pa] 1.026 × 107 0 0
qk [J.kg−1] −7.8998 × 105 −2.104 × 103 −2.355 × 103

bk [m3.kg−1] 9.2 × 10−4 0 0

2a

2b

L = 10 mm

Figure 2: Oscillating droplet test case initialization. Dimensions 2a and 2b are respectively
equal to 1.7 mm and 1 mm.

The initial species profiles are the same as in Sec. 4.1.1 but the ϕ function is
here replaced by

ϕ(x, y) = 1− x2

a2
− y2

b2
(35)

where 2a and 2b are respectively the ellipse width and height, and ϵ is the255

interface width.
The evolution of kinetic energy in the domain is shown in Fig. 3, evidencing

its periodic evolution, damped by viscous forces. The normalized time t⋆ is
defined as

t⋆ =
t√
ρlr3eq
σ

. (36)

Theoretical studies have been proposed to predict the expected frequency of260

a 2D oscillating droplet. The work by Rayleigh [75], extended by Fyfe et al. [76]
to account for surface tension predicts a pulsation

ω2 = (n3 − n)
σ

(ρl + ρg)r3eq
, (37)
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Figure 3: Time evolution of the kinetic energy in the domain and the corresponding droplet
shapes from the simulation (density field).

where n = 2 is the most unstable mode. The frequency reads

f =
ω

2π
, (38)

where req is the equilibrium droplet radius. The numerical frequency is 73.03 Hz
while the theoretical one computed with Eq. (38) is 71.61 Hz, resulting in 2 %265

relative error and falls in the range of previously reported simulations [51, 77].

4.2. Boundary conditions validation
The Navier-Stokes Characteristic Boundary Condition (NSCBC) formalism

for this two-phase framework is first assessed on the evacuation of an acoustic
wave, superimposed to an H2O−O2 mixture at rest, with YH2O

l = 1−YO2
= 0.98,270

which results in a liquid volume fraction αl = 7.55 %. Thermodynamic conditions
are P0 = 1 atm and T0 = 300 K, and no artificial stabilization is applied.
Gaussian forward and backward acoustic waves are superimposed. The left and
right boundary conditions are outlet non-reflecting characteristic conditions [63].
Both HLLC-MUSCL [53] and a Two-step Taylor Galerkin (TTGC) scheme [78] are275

applied with CFL number 0.7. The use of the TTGC scheme is another validation
as its formulation includes the Jacobian matrix and thus the thermodynamic
specific terms, see Appendix A. Results are shown in Fig. 4, and evidence the
fact that characteristic boundary conditions are able to properly handle acoustics
without any reflection in this two-phase context.280

The evacuation of a purely gaseous bubble from a pure liquid domain is also
considered. This corresponds to the exit of an entropic wave. The test case
consists in a pure N2−O2 bubble, initialized in a pure H2O

l domain of 1 m long,
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Figure 5: Air bubble in a liquid H2O environment transport to the outlet boundary condition.

discretized by 100 mesh nodes, with an initial velocity u0 = 10 m.s−1. The
thermodynamic conditions are P0 = 1 atm, T0 = 300 K. The initial profile285

of species across the interface follows Eqs. (27) to (30) but the Φ function is
modified and reads

Φ(x) =
1

2

1 + tanh
(√

6(x+ 0.3)
)

4∆x
− 1

2

1 + tanh
(√

6(x+ 0.1)
)

4∆x
, (39)

where ∆x is the cell size.
As shown in Fig. 5, the considered characteristic boundary condition allows to
correctly evacuate the gaseous bubble from the liquid domain without reflecting290

waves.

4.2.1. Water droplet advection to non-reflecting boundary condition
This section focuses on the convection of a two-dimensional droplet and

aims to investigate the interaction between a curved interface and the outlet
boundary condition. A pure liquid H2O droplet, initially traveling at a velocity295

of u0 = 10 m.s−1, is placed in a pure N2−O2 domain, with thermodynamic
conditions set to P0 = 1 bar and T0 = 293 K. The surface tension coefficient for
this system is σ = 73 × 10−3 N.m−1. The domain is a square of 50 mm side.
The mesh consists in a 1000× 1000 grid cells.
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The results presented in Fig. 6 demonstrate that the droplet is evacuated without300

producing any reflecting waves.

5. Application: 2D Airblast liquid sheet

The intent of this section is to assess the implemented methodology on a
practical configuration of interest for aircraft engines. Airblast atomization
consists in a low-velocity liquid jet sheared by a faster gaseous co-flow. Such305

a configuration leads to the development of liquid ligaments which break into
droplets [79]. It is of particular interest since liquid atomization is a key parameter
for combustion quality in aeronautical or automotive applications. For this study,
a configuration experimentally studied at the LEGI lab [80–85] is considered,
where a liquid film injected at low velocity along a horizontal wall is sheared by310

a high-speed air stream.
Experimental and theoretical works [80–83] have shown that a primary

instability develops due to a Kelvin-Helmholtz instability between the liquid and
the gas, while a transverse Rayleigh-Taylor instability leads to the development
of liquid ligaments. A linear stability analysis allows to predict the dominant315

axial wavelength λaxi for the primary instability [79, 80, 82, 83] as

λaxi = Caxi

√
ρl
ρg

δg, (40)

where Caxi is a constant, ρl and ρg are respectively liquid and gas densities.
The gas vorticity thickness δg is computed using the experimental correlation
established in [83]

δg =
6Hg√
Reg

, (41)

where Reg is the gaseous flow Reynolds number defined as320

Reg =
ρgUgHg

µg
. (42)

The velocity of the axial instability can be computed thanks to the Dimotakis
velocity Uc [86] which has shown to be in very good agreement with measured
wave velocities [80, 82]

Uc =

√
ρgUg +

√
ρlUl√

ρg +
√
ρl

, (43)

and finally the dominant axial frequency is

faxi =
Uc

λaxi
. (44)

Several numerical studies have investigated this experimental configuration,325

relying on incompressible VOF methods in 2D [87–91] and in 3D [92]. Transversal
instabilities are not taken into account in 2D simulations, but results showed a
good quantitative agreement with experiments.
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Figure 7: 2D Airblast configuration.
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The computational domain considered in the present study consists in a
20Hl × 10Hl rectangular box, sketched in Fig. 7a. The numerical domain is330

discretized with a cell size equal to δg/n (with n = 2, 4 and 8) near the injection
and shear zone (13Hl × 6Hl), and the mesh is stretched in both vertical and
axial directions outside of these regions. The geometric parameters considered in
our numerical simulation are the same as in the numerical work of Fuster et al.
[88], i.e., liquid and gas enter in the domain from left with heights respectively335

equal to Hl = 6.4 mm and Hg = 10 mm, as shown in Fig. 7a. The considered
species are liquid water H2O

l for liquid flow and respectively 22 % and 78 %
in mass of oxygen O v

2 and nitrogen N v
2 for the gaseous flow, and the surface

tension coefficient is σ = 69× 10−3 N.m−1. Following Bozonnet et al. [91], no
splitter separating plate is considered and continuous profiles are imposed at the340

inlet, as illustrated in Fig. 7b. The inlet velocity profile is given by Eqs. (45)
to (47):

u(y) =

[
Ulerf

(
Hl − y

δl

)
+ Ui

(
1 + erf

(
y −Hl

δl

))]
× erf

(
y

δl

)
, (45)

for y ≤ Hl.

u(y) =

[
Ugerf

(
y −Hl

δg

)
+ Ui

(
1− erf

(
y −Hl

δl

))]

× erf

(
Hg +Hl − y

δg

)
+ Usm

(
1 + erf

(
y − (Hg +Hl)

δg

))
,

(46)

for Hl < y ≤ Hg +Hl.

u(y) = Usm

(
1− erf

(
y − (Hg +Hl)

δg

))
+ Ucferf

(
y − (Hg +Hl)

δg

)
, (47)

for y > Hg +Hl,345

where δg is the gas vorticity thickness, δl the liquid vorticity thickness, Ui =
δl (Ugµg/δg + Ulµl/δl)/(µl + µg) is the interfacial velocity defined in [93], Ucf =
0.2Ug is the co-flow velocity and Usm = (Ucf +Ug)/2 is the gaseous phase mixing
layer velocity. Liquid and gaseous dynamic viscosities are respectively denoted
µl and µg.350

At the initial state the domain is at rest with temperature T = 300 K. The
air flow is fixed at Ug = 20 m.s−1 and liquid velocity is computed to reach a
dynamic pressure ratio M = (ρgU

2
g )/(ρlU

2
l ) = 16 resulting in Ul = 0.1735 m.s−1

at P = 1 bar. The simulation parameters are given in Tab. 2, and species
properties are the ones considered in the validation test-cases Tab. 1, for which355

the liquid water species has a modified sound speed, resulting in a slightly
modified density (ρl = 939 kg.m−3 at 1 bar). Imposed inlet velocity values are
kept constant in the study. An air co-flow is added on top of the high-speed air
stream similarly as [92], to limit gaseous recirculations in this region. Inlet and
outlet boundary conditions are characteristic non-reflecting boundary conditions,360

validated above in Sec. 4.2 for the current framework.
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Table 2: Simulation parameters: U is the velocity, µ is the dynamic viscosity and σ is the
surface tension coefficient.

Phase U [m.s−1] µ [Pa.s] σ [N.m−1]
Liquid 0.1735 1 × 10−3 69 × 10−3

Gas 20 1.8 × 10−5 –

An instantaneous density field is shown in Fig. 8a, evidencing the development
of liquid ligaments. In order to quantitatively assess the results, the liquid core
length predicted by the correlation of Raynal [80] is reported with a thick orange
line. This correlation provides the intact liquid core length L thanks to Eq. (48),365

L =
12Hl√

M
, (48)

and is retrieved from previous numerical works relying on sharp interface methods
[77, 89, 90]. Mean profiles of liquid volume fraction αl = 0.1, 0.5 and 0.9 are
given in Fig. 8b for the three mesh resolutions (n = 2, 4 and 8). The intact
liquid core more likely corresponds to the iso-contour αl = 0.9, and Fig. 8b
shows that increasing mesh resolution allows to obtain a fair agreement with370

the experimental correlation of Raynal Eq. (48). Figure 8c shows the αl = 0.5
isocontour evolution for the resolution n = 8 during 400 ms, corresponding to
the passage of approximately 10 waves. The liquid sheet oscillates above the
experimental correlation of Raynal [80] and the film height decreases following
the slope of Eq. (48) given by the thick black line. The accurate prediction of375

this liquid core length shows the ability of the diffuse interface method to predict
the liquid entrainment within the two-phase mixing layer.

The normalized amplitude spectrograms (A∗) of the interface height for
P = 1 bar with different mesh resolutions are given in Fig. 9a (∆x = δg/n with
n given on Fig. 9a), at position x = 2Hl. These spectra have been obtained380

with the Welch method [94] to extract the most amplified frequency. The signal
is divided into ten segments with a 60 % overlap as in Bozonnet et al. [91], and
the liquid volume fraction is integrated across vertical lines to determine the
liquid height. This process is repeated for multiple axial positions ranging from
0 to 13 times the liquid injection height Hl. Afterwards, the signals undergo385

Fast Fourier Transform (FFT), and the results are averaged. Despite an increase
of numerical noise the main frequency remains the same for the three meshes,
meaning that independence from mesh resolution is reached. The signal is
processed for a time t so that the number of generated waves is larger than 30
(τ = f∆t). Bozonnet et al. [91] showed that even τ ≈ 10 is enough to obtain a390

good estimate of the frequency. The value found is f = 24 Hz which is equivalent
to a Strouhal number St = fδg/Ug = 6.5 × 10−4. The value is compared in
Tab. 3 with previous studies at the same operating point and falls in the range
of reported Strouhal numbers meaning that the essential instability mechanisms
are captured by the method.395

The resolution n = 2 is adopted for the rest of the study to keep reasonable
computational costs. Further simulations are finally conducted to investigate new
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Table 3: Comparison of previous experimental and numerical values of Strouhal numbers with
the present study for the case M = 16 and P = 1 bar.

Strouhal (×10−4)
Raynal [80] (exp.) 6
Marmottant and Villermaux [79] (exp.) 7.5
Ben Rayana [82] (exp.) 7.6
Matas et al. [83] (exp.) 5
Fuster et al. [88] (VOF simulation – exp.) 8 – 5
Agbaglah et al. [89] (VOF simulation) 5.3
Present study 6.5
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Table 4: Liquid and vapour densities for each pressure and the associated momentum ratio M .

Pressure [bar] 3 4 5 6 7 8
Liquid density ρl [kg.m−3] 941.6 942.8 943.9 945.1 946.2 947.3
Vapour density ρg [kg.m−3] 3.4 4.5 5.7 6.8 7.9 9.1
Momentum ratio M [−] 48 64 80 95 111 127

operating ranges, hardly reachable with both experiments and incompressible
solvers. Simulations are performed with various density ratios by adapting the
pressure imposed at the outlet. The densities for each pressure are given in Tab. 4.400

The gas vorticity thickness δg is adapted to the operating points in Eqs. (46)
and (47) according to Eq. (41). Simulation parameters in Tab. 2 are kept
constant. Results for the main frequency at various pressures are given in Fig. 9b
and are compared to the one obtained from correlation Eq. (44) (black solid line)
where a prefactor Caxi = 3.2 is considered. The same methodology as in Fig. 9a405

has been used, however for P = 7 and 8 bar raw FFT are considered because
of a gas recirculation at the end of the liquid cone length. This phenomenon
has also been experimentally observed by Raynal [80], Ben Rayana [82] for large
momentum ratios, typically M > 100. Note that several values for Caxi can be
found in literature. Raynal [80] proposed Caxi = 4, Ben Rayana [82] proposed410

Caxi = 1.5 to 1.8. It has been shown that the different methodologies considered
to experimentally measure the frequency can be a reason for these different
values of Caxi [83]. Despite this uncertainty, linear stability analysis [80] predicts
a linear relation between f and Uc

√
ρg/ρl/δg, that is perfectly found in our

simulations as pressure increases (Fig. 9b). It is to the authors’ knowledge a415

rare confirmation of this theoretical prediction on a practical case.
Normalized amplitude spectrograms over a distance x/Hl = 8 are given

in Fig. 10. For each operating pressure point the main axial frequency is
clearly visible near the injection. The frequency decreases downstream of a
length approximately equal to the intact liquid cone length given by Eq. (48)420

highlighted with a solid black line in Fig. 10.
This finally shows that the sheared liquid-gas interface dynamics is well repro-

duced by the present method. The intact liquid core length is correctly retrieved,
and the frequency evolution with pressure theoretically predicted by linear sta-
bility analysis is confirmed by our numerical approach. This methodology can425

therefore be considered with confidence for pressurized airblast configurations in
future studies.

6. Conclusions

This paper presents first a validation of implemented methods for handling
two-phase flow configurations in a fully compressible vertex-centered framework,430

utilizing a diffuse-interface Multi-Fluid method and a 4-equation model closed
with a Noble-Abel Stiffened-Gas equation of state.
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The vertex-centered HLLC-MUSCL numerical scheme has been implemented
and validated on a number of academic test cases, demonstrating its ability to
properly handle contact lines, shocks, and rarefaction waves. Additionally, the435

method effectively handles acoustics in the context of two-phase flow. Jacobian
fluxes have been properly derived to allow the use of non-reflecting characteristic
boundary conditions in conjunction with the NASG EoS. The non-reflectivity is
assessed for both 1D and 2D two-phase test-cases. Capillary terms associated
with the liquid-gas interface have been validated on simple configurations, with440

satisfactory results.
The methodology is then assessed on an air-assisted atomization configuration,

for which experimental, theoretical, and numerical results can be found in the
literature. Our results show the ability of the diffuse interface method to predict
the intact liquid core length, as well as the interface dynamics. Furthermore,445

the methodology allows to investigate new operating ranges, and the effect of
pressure increase on the primary interfacial wave frequency is studied. Our
results show a very good agreement with the theoretical prediction of Raynal
[80].

This allows to bridge the gap between usually incompressible methods consid-450

ered for primary atomization, and compressible methods considered for prediction
of combustion. Future work will be devoted to the development of a phase-change
methodology, along with temperature-variable heat capacities, to properly handle
reactive conditions. In addition, a coupling with a disperse spray Lagrangian
model will be investigated, to allow a proper spray prediction in a realistic455

pressurized and reactive environment.
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Appendix A. Characteristic boundary conditions

Well applied boundary conditions are of major interest in compressible flows in
order to avoid for example pressure drift and acoustic waves in the computational
domain. A proper derivation of the coefficients from the Jacobian matrix is
essential as is the speed of sound.765

One can recall the one-dimensional 4-equation model

∂U

∂t
+

∂F(U)

∂x
= 0, (A.1)

where U = [ρ, ρu, ρE, ρYk]
t and F = [ρu, ρu⊗ u+ P, (ρE + P )u, ρYku]

t.
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Jacobian matrix reads

Ax(U) =
∂F(U)

∂U
=




0 1 0 0 · · · 0
−u2 u(2− Λ) Λ −Λ(Γ1 − ec) · · · −Λ(ΓN − ec)
−uH H − Λu2 u(1 + Λ) −uΛ(Γ1 − ec) · · · −uΛ(ΓN − ec)
−uY1 Y1 0 u · · · 0

...
...

...
...

. . .
...

−uYN YN 0 0 · · · u



, (A.2)

with H = E + P/ρ, Λ = ∂P
∂ρe

∣∣∣
ρYk

and Γ = ∂ρe
∂ρYk

∣∣∣
P,ρYi̸=k

.

Appendix A.1. Jacobian terms
This section proposes the derivation of the Γ and Λ coefficient involved in770

the jacobian matrix (Eq. (A.2)).
From the mixture laws one can write

e =

N∑

k=1

Ykek, (A.3)

v =

N∑

k=1

Ykvk. (A.4)

Derivatives of previous expressions read

de =

N∑

k=1

Ykdek +

N∑

k=1

ekdYk, (A.5)

dv =

N∑

k=1

Ykdvk +

N∑

k=1

vkdYk. (A.6)

Species energy and volume derivatives can be written as

dek =
∂ek
∂P

∣∣∣∣
T

dP +
∂ek
∂T

∣∣∣∣
P

dT,

=
Pβ − Tα

ρ
dP +

(
C̄p −

Pα

ρ

)
dT, (A.7)

dvk =
∂vk
∂P

∣∣∣∣
T

dP +
∂vk
∂T

∣∣∣∣
P

dT,

= −vβdP + vαdT, (A.8)

where α and β are defined in appendix Appendix A.2.
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So Eqs. (A.5) and (A.6) can be rewritten as

de =

N∑

k=1

Yk

(
Pβ − Tα

ρ
dP +

(
C̄p −

Pα

ρ

)
dT

)
+

N∑

k=1

ekdYk, (A.9)

dv =

N∑

k=1

Yk (−vβdP + vαdT ) +

N∑

k=1

vkdYk. (A.10)

With Eq. (A.10) one can write

dT = − 1

ρα
dρ+

β

α
dP − ρ

α

N∑

k=1

vkdYk. (A.11)

So Eq. (A.5) becomes

de =
1

ρ

(
ρC̄pβ

α
− αT

)
dP +

1

ρ2

(
P − ρC̄p

α

)
dρ

− ρC̄p

α

N∑

k=1

vkdYk +

N∑

k=1

hkdYk.

(A.12)

Knowing that d(ρe) = ρde+ edρ,775

d(ρe) =

(
ρC̄pβ

α
− αT

)
dP +

N∑

k=1

(
hk − ρC̄p

αρk

)
d(ρYk). (A.13)

Finally one can write

Λ =
∂P

∂ρe

∣∣∣∣
ρYk

=
1

ρC̄pβ
α − αT

, (A.14)

Γ =
∂ρe

∂ρYk

∣∣∣∣
P,Yi̸=k

= hk − ρC̄p

αρk
. (A.15)

Appendix A.2. Isobaric dilatation and isotherm compressibility coefficients
The Isobaric dilatation α and isothermal compressibility β coefficients re-

spectively read

α =
1

v

∂v

∂T

∣∣∣∣
P,Y

=− 1

ρ

∂ρ

∂T

∣∣∣∣
P,Y

, (A.16)

β = −1

v

∂v

∂P

∣∣∣∣
T,Y

=
1

ρ

∂ρ

∂P

∣∣∣∣
T,Y

. (A.17)

In a multicomponent NASG framework the mass-specific volume reads

v(T, P, Yk) =

N∑

k=1

Yk

(
(γk − 1)Cv,kT

P + P∞,k
+ bk

)
, (A.18)
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so that the mixture mass-specific volume derivative at constant composition
reads

dv =

N∑

k=1

Yk

(
(γk − 1)Cv,k(P + P∞,k)dT − (γk − 1)Cv,kTdP

(P + P∞,k)2

)
. (A.19)

The mass volume is related to density through780

ρ =
1

v
, and dρ = −ρ2dv. (A.20)

So the density derivative reads

dρ = −ρ2

N∑

k=1

(
(γk − 1)Cv,k(P + P∞,k)(YkdT + TdYk)− Yk(γk − 1)Cv,kTdP

(P + P∞,k)2

)
. (A.21)

Finally one can write

α = ρ

N∑

k=1

Yk

(
(γk − 1)Cv,k

P + P∞,k

)
, (A.22)

β = ρ

N∑

k=1

Yk

(
(γk − 1)Cv,kT

(P + P∞,k)2

)
. (A.23)

Appendix A.3. Speed of sound
The hyperbolic sound speed reads

c2 =
∂P

∂ρ

∣∣∣∣
s,Y

, (A.24)

with composition Y = [Y1, . . . , YN ]t.
The differential of the mixture mass-specific volume at constant composition

can be written as785

dv =
∂v

∂T

∣∣∣∣
P,Y

dT +
∂v

∂P

∣∣∣∣
T,Y

dP,

= vαdT − vβdP,

(A.25)

so that
dT = − 1

ρα
dρ+

β

α
dP. (A.26)

The mixture mass specific entropy reads

s(P, T, Yk) =

N∑

k=1

Yksk(P, T ),

=

N∑

k=1

Yk

(
Cv,k ln

(
T γk

(P + P∞,k)γk−1

)
+ s0k

)
,

(A.27)
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where Cv,k, s0k, P∞,k are specific constants of the NASG thermodynamics frame-
work. The mixture mass specific entropy differential at constant composition
reads790

ds =
∂s

∂T

∣∣∣∣
P,Y

dT +
∂s

∂P

∣∣∣∣
T,Y

dP,

=
C̄p

T
dT − α

ρ
dP.

(A.28)

Casting Eq. (A.26) into Eq. (A.28) yields

ds = − 1

ρα

C̄p

T
dρ+

(
−α

ρ
+

C̄p

T

β

α

)
dP. (A.29)

Finally, the hyperbolic 4-equation system sound speed reads

c2 =
C̄p

ρβC̄p − α2T
, (A.30)

with C̄p =
∑N

k=1 YkCp,k.

Appendix B. A Vertex-centered HLLC-MUSCL scheme

Appendix B.1. Scheme implementation in a Vertex-Centered framework795

Godunov numerical schemes [95] are usually implemented using a cell-centered
framework. Fluxes are estimated on cell faces and conservative variables stored
at the cell centre. The AVBP solver features a cell-vertex architecture, which
offers an efficient way of handling numerical schemes like Lax-Wendroff or Taylor-
Galerkin schemes [78, 96]. The Godunov scheme implemented in this work relies800

therefore on a node-centered formalism.
It considers the integral form of the transport equations, written in the

compact form as
∂

∂t

∫

V

U dV +

∮

∂V

F · n dS = 0. (B.1)

The integration is made on the nodal volume Vi associated to node i, illustrated
by the grey area in Fig. B.11. Fluxes are computed at all nodal volume faces,805

determined from the intersection of Vi surface with all cells τ containing the
node i, and noted E(i)

∂

∂t
Ui +

∑

τ∈E(i)

∑

f∈Vi∩τ

∫

f

F · n dS = 0. (B.2)

In Eq. (B.2), the first sum corresponds to a loop over all cells containing a given
node, while the second sum corresponds to a loop over the faces of the nodal
volume Vi.810

Surfaces integrals are computed by projecting the flux into the local basis
of the edge as it is less computationally expensive than splitting the flux in 3
components in a fixed basis dimension and solving 3 Riemann problems ([97],
Ch. 16).
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Figure B.11: Discretization at all the cell nodes. The grey area represents the nodal volume
Vi. The hatched area is the intersection of a cell τ containing node i with the nodal volume Vi.
The edges of Vi (f) are defined from the center of cell τ and the middle of its edges with node
i (j and h). The virtual nodes k and l are used for the MUSCL procedure.

Appendix B.2. MUSCL reconstruction procedure815

A HLLC Riemann solver [69] is considered in this work with a MUSCL
reconstruction of variables to compute fluxes at edges. This procedure uses
piecewise linear functions to ensure second order accuracy. Cell boundary values
are computed as UL

i = Un
i −∆Un

i /2 and UR
i = Un

i +∆Un
i /2 respectively on

the left and on the right sides of node i along a given direction. For stability820

∆Un
i is computed with the limited approach of Sweby [70]:

∆Un
i =





max
[
0,min

(
β∆Un

i−1/2,∆Un
i+1/2

)
,

min
(
∆Un

i−1/2, β∆Un
i+1/2

)]
,

if ∆Un
i+1/2 > 0,

min
[
0,max

(
β∆Un

i−1/2,∆Un
i+1/2

)
,

max
(
∆Un

i−1/2, β∆Un
i+1/2

)]
,

if ∆Un
i+1/2 < 0,

(B.3)

where β ∈ [1, 2] is a limiter parameter.
The ∆Un

i−1/2 and ∆Un
i+1/2 values correspond respectively to ∆ki and ∆ij

for the node i and ∆ij and ∆jl for the node j as shown in Fig. B.11. In the case
of irregular meshes in Fig. B.11 virtual nodes are retrieved (dash-dotted circles):825

k and l are respectively at a distance ij of i and j.

Appendix B.3. Hyperbolic solver validation
Appendix B.3.1. One dimensional shock-tube

The solver is first validated on a two-phase shock tube configuration without
surface tension (Sys. (2)). The present study considers a shock tube that is830

1 m long and comprised of two chambers, which are separated by an interface
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Table B.5: SG thermodynamic coefficients for H2O (liquid) and Air species.

Coefficients H2O (liquid) Air
Cp,k [J.kg−1.K−1] 4400 1001
Cv,k [J.kg−1.K−1] 1000 715
P∞,k [Pa] 6 × 108 0
qk [J.kg−1] 0 0
bk [m3.kg−1] 0 0

located at x = 0.7 m. The left side is filled with liquid water at P = 1 GPa
and ρ = 1000 kg.m−3. The right side is composed of air at P = 1× 105 Pa and
ρ = 10 kg.m−3. The left chamber contains a small amount of air Yair = 10−8.
The right chamber has a reversed composition. Thermodynamic properties are835

displayed in Tab. B.5. The covolume for species H2O is zero to retrieve the
Stiffened-Gas (SG) EoS. The 1D computational domain is divided into 2000
uniform elements.

Results are shown in Fig. B.12, where plots of pressure, density, velocity and
liquid volume fraction are depicted at t = 220 µs, and compared to the exact840

solution. Agreement is seen to be excellent. Consistently with the literature
[34, 98], no overshoot is obtained, and Hugoniot relationships are satisfied.

Appendix B.3.2. Two dimensional Riemann test case
Two dimensional Riemann ideal gas test-cases are then considered. The

geometry is a [−0.5,−0.5]× [0.5, 0.5] meter square with a 600× 600 regular grid.845

Specific calorific capacities ratio is constant and equal to γ = 1.4. The initial
condition consists in four quadrants with different initial conditions [99]:

(ρ0,u0,v0, P0) =





(3.0, 0.75, 0.5, 1.0) x ≤ 0, y ≥ 0,
(1.0,−0.75, 0.5, 1.0) x ≤ 0, y ≤ 0,
(1.0, 0.75,−0.5, 1.0) x ≥ 0, y ≥ 0,
(2.0,−0.75,−0.5, 1.0) x ≥ 0, y ≤ 0.

(B.4)

Results obtained at CFL = 0.7 and for a β-Sweeby parameter equal to 1.5
are shown in Fig. B.13a. It evidences the fact that the numerical solver is able
to capture and transport stiff gradients with robustness and accuracy.850

Other test-cases from Lax and Liu [99], Kurganov and Tadmor [100] are
conducted, introducing rarefaction and shock waves in addition to the contact
discontinuity. The initial states are defined thanks to Eqs. (B.5) and (B.6), and
results are presented in Figs. B.13b and B.13c. Results are again very satisfying.

(ρ0,u0,v0, P0) =





(3.0 ,−0.6259, 0.1 , 1.0) x ≤ 0, y ≥ 0,
(0.8 , 0.1 , 0.1 , 1.0) x ≤ 0, y ≤ 0,
(0.5197, 0.1 , 0.1 , 0.4) x ≥ 0, y ≥ 0,
(1.0 , 0.1 ,−0.6259, 1.0) x ≥ 0, y ≤ 0.

(B.5)
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Figure B.12: Liquid–gas shock tube results at t = 220 µs at CFL = 0.5.

(a) Configuration of Eq. (B.4). (b) Configuration of Eq. (B.5). (c) Configuration of Eq. (B.6).

Figure B.13: Density isocontours (60 lines) on a 600× 600 grid at (a) t = 0.3 s, (b) t = 0.25 s,
(c) t = 0.2 s. The numerical scheme is HLLC-M RK3 with CFL = 0.7. The wave configurations
are the following: (a) 4 contact discontinuities, (b) 2 contact discontinuities, 2 rarefaction
waves, (c) 1 shock wave, 1 rarefaction wave, 2 contact discontinuities.
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855

(ρ0,u0,v0, P0) =





(1.0 ,−0.6179, 0.1 , 1.0) x ≤ 0, y ≥ 0,
(0.8 , 0.1 , 0.1 , 0.4) x ≤ 0, y ≤ 0,
(0.5313, 0.1 , 0.1 , 1.0) x ≥ 0, y ≥ 0,
(1.0 , 0.1 , 0.8276, 1.0) x ≥ 0, y ≤ 0.

(B.6)

Appendix B.3.3. Order of accuracy
The order of accuracy of the scheme is next assessed thanks to the convection

of an isentropic Gaussian vortex, defined with the following functions

v′r = 0, v′θ =
Γr

R2
c

exp

(
− r2

2R2
c

)
, (B.7)

while the temperature writes

T ′ = − Γ2

2CpR2
c

exp

(
− r2

R2
c

)
, (B.8)

where r =
√
x2 + y2. The pressure finally results from860

P = P∞

(
T

T∞

) γ
γ−1

. (B.9)

Tests are conducted on a [0, 0]× [0.1, 0.1] meter square domain, filled with
air, with periodic boundary conditions. Pressure and temperature are set to
101 325 Pa and 300 K. The mean velocity is 100 m.s−1 while the vortex is
characterized by a Rc = 1 cm radius and a Γ = 1 m2.s−1 strength.

The different profiles of density after one convective time depending on the865

limiter parameter β are shown in Fig. B.14. The MUSCL reconstruction allows
to recover a correct solution without excessive diffusion.

A mesh convergence study is conducted to assess the spatial order accuracy
of the scheme from 32× 32 to 2048× 2048 cells grids. L2-error for the density,
where the L2-error is defined as870

L2(ερ) =

√∑
i Vi(ρ̃i − ρi)2∑

i Vi
, (B.10)

with ρ̃ the exact solution and Vi the node volumes, is shown in Fig. B.15 at
CFL = 0.7 for HLLC-MUSCL. A second-order accuracy is recovered, with the
slope limiter parameter β having an influence only for coarse meshes.
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Figure B.14: Comparison of the schemes after one convective time with 256× 256 resolution.

100 1000
10−6

10−5

10−4

10−3

10−2

2

N

L2
(ε

ρ
)

HLLC-M β = 1.0
HLLC-M β = 1.3
HLLC-M β = 1.7

Figure B.15: Order of the schemes on the vortex test case after one convective time.
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