
HAL Id: hal-04383086
https://hal.science/hal-04383086

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tables with Nulls and Functional Dependencies:
Explanation and Quality of Query Answers

Dominique Laurent, Nicolas Spyratos

To cite this version:
Dominique Laurent, Nicolas Spyratos. Tables with Nulls and Functional Dependencies: Explanation
and Quality of Query Answers. MEDES 2023 - The 15th Conference on Management of Digital
Ecosystems, May 2023, Heraklion, Greece. �hal-04383086�

https://hal.science/hal-04383086
https://hal.archives-ouvertes.fr

Tables with Nulls and Functional Dependencies:
Explanation and Quality of Query Answers?

Dominique Laurent1[0002−7264−9576] and Nicolas Spyratos2[0002−3432−8608]

1 ETIS Lab.-ENSEA, CY Cergy Paris Univ., CNRS, F-95000 Cergy-Pontoise, France
dominique.laurent@u-cergy.fr

2 LISN Lab.-University Paris-Saclay, CNRS, F-91405 Orsay, France
nicolas.spyratos@lri.fr

Abstract. Several applications today deal with tables that are the result
of merging other tables coming from different sources (as when record-
ing the results of collaborative work or when merging tables during data
staging in data warehouses). Such tables usually have missing values
(also called nulls) and/or contain data that do not respect given con-
straints(such as key constraints). In this paper we study the influence of
nulls and/or inconsistent data on the answers to queries to such tables by
(a) providing to the user explanations regarding the expected presence
(or absence) of certain tuples in the answer and (b) by defining measures
for assessing the quality of query answers.

Keywords: Inconsistent data · Query answering · Explanations · Data
quality.

1 Introduction

In a traditional relational database, each table is assumed to be consistent before
users can query it but, in several applications today, tables are the result of
merging two or more other tables coming from different sources. Such tables
usually have missing values (also called nulls) and/or contain data that do not
respect given constraints - such as key constraints. This is especially true when
a user collects data coming from web sources and merges them in a single table
T . In such a setting, it is difficult if not impossible for the user to know the
constraints imposed on data in each source. Given a set FD of constraints over
T , extracting from T data that are consistent with FD is then achieved using
some query tool. In this paper we propose such a tool.

Three main issues (among others) arising when querying such tables are how
to extract consistent answers addressed to possibly inconsistent tables; how to
help users explain the expected presence or absence of certain tuples in the
consistent answer to a query; and how to give users a measure of the quality
of a query answer. We describe below briefly these issues, placing them in the
context of related work.
? Work conducted while the second author was visiting at FORTH Institute of Com-
puter Science, Crete, Greece (https://www.ics.forth.gr/)

D. Laurent and N. Spyratos

Consistent query answering. Consider the table T = {es, es′d, e′s′} over
universe U = {Emp, Sal,Dept}, and the functional dependency Emp → Sal
stating that an employee cannot have more than one salary. T is inconsistent as
tuples 1 and 2 violate the dependency Emp→ Sal. However, if we ask the SQL
query Q : select Emp, Sal from T , it makes sense to return the set {e′s′} as the
answer. Indeed, there is no reason to reject this answer as it is a consistent answer
because it satisfies the dependency Emp→ Sal. In other words, an inconsistent
table may contain consistent parts (i.e. some useful information) which can be
extracted through queries.

This kind of query answering, known as consistent query answering, has at-
tracted a lot of attention since the 1990s and continues to be an important
subject of research today ([2, 3, 14, 20]). It is thus not possible to review all re-
lated approaches here, and we refer to [5] for a detailed survey covering the
topic. We emphasize that two main approaches to consistent query answering
have emerged: the approach by ‘table repairs’ [2, 20], for tables with functional
dependencies but without nulls, and more recently a more general approach
without table repairs for tables with functional dependencies and nulls [12, 13].

Explanation of query answers. With the growing popularity of big data,
many users with a variety of backgrounds seek to extract high level information
from data-sets. A major challenge is then to develop tools to assist users in
explaining observed query outputs.

In this paper we study explanations related to the presence of inconsis-
tent tuples in the computation of a query answer. For instance, in our previ-
ous example of employees, salaries and departments, if we ask the SQL query
Q : select Sal from T the answer will be empty. Given that the consistent query
answer over employee and salary contains the tuple e′s′, the user may wonder
why the answer over salary is empty. The explanation is that, although e′s′ is
consistent (that is e′ is assigned the only salary s′), s′ is also involved in an
inconsistent tuple (namely es′ as e is assigned two salaries).

Related work in this domain was initiated by Halpern and Pearl in [9, 10],
where basic motivation and formal definitions of causality are presented and dis-
cussed in detail. In particular, in [10], an explanation of ϕ is defined as a minimal
elaboration of events that suffice to cause ϕ even in the face of uncertainty about
the actual situation. This generic definition corresponds in our work to explain-
ing why a tuple t is or not in the consistent answer to a given query Q, in the
simple case where there is no uncertainty about the actual situation. Our way of
explaining the answers to queries is also related to data lineage [15]. According to
this work, ‘explaining’ query answers is achieved based on the database content
and on the expression of the query. However, in this work the authors do not
consider inconsistent databases as we do. Dealing with causality and explana-
tion in the presence of inconsistent data has been presented in [6], relying on the
notion of database repairs, which we do not use in our work.

We also note that another typical scenario is when a user integrates data
sets, computes some statistics, and then seeks an explanation why certain values

Explanation and Quality of Query Answers

are or are not outliers ([16, 17]). Such kind of explanations lies however out of
the scope of the present paper.

Quality of query answers. The answer to a query addressed to a consistent
table in a relational database, comes from tuples that are consistent and that are
assumed to be true (a basic assumption in relational databases). In contrast, the
answer to a query addressed to a possibly inconsistent table may be computed
from inconsistent tuples. For instance, in our previous example of employees,
salaries and departments, the answer comes from two inconsistent tuples (es
and es′d) and one consistent tuple (e′s′). In this paper, we introduce various
quality measures such as percentages of consistent or inconsistent tuples in the
table expressing the ‘influence’ of inconsistent data on the answers to queries.

Regarding related work, inconsistency measurement has been addressed in
[8], based on three-valued propositional logic. In this setting, the authors pro-
pose 10 distinct possible measures, and discuss their relevance in the context
of databases. Moreover, it is shown in [8] that, contrary to our approach, most
quality measures lead to non tractable computations. In [11], the authors address
the issue of ‘approximate inference of functional dependency’, and to do so they
define quality measures for assessing the ‘quality’ of functional dependencies in
a given table. Roughly, these measures are based on the number of conflicting
pairs of tuples of the form (xy, xy′), for a given functional dependency X → Y .
Contrary to the more generic case of [8], the authors of [11] argue that comput-
ing their measures is in O(N. log(N)) where N is the number of tuples in T ,
thus resulting in a tractable complexity. To compare this work with our work,
we notice that although the contexts are similar (namely a possibly inconsistent
table with functional dependencies), the goals of the two approaches are different
since ours considers the problem of consistent query answering and in [11], the
authors address the issue of functional dependency inference.

As will be seen later in the paper, relating explanations and data quality in
presence of inconsistent data is a relevant issue. This task, first identified in [4],
remains to be further investigated.

Summarizing the above discussion, we address the issues of query answer
explanation and quality measures for query answers in a table with nulls and
functional dependencies. In order to study these issues, we need to know which
tuples of the table are consistent or inconsistent, on the one hand, and which
tuples are false or true, on the other hand.

The reason why such knowledge is necessary is twofold. First, we want to
define the answer to a query to contain only tuples that are true and consistent
(as in relational databases); in this way if a user seeks an explanation such as why
certain tuples are (or are not) in an answer, we will be able to justify the presence
or absence of the tuples in question by telling the user that the tuples are false or
inconsistent. Second, we want to be able to provide measures for measuring the
quality of data in the table and in the query answers. As we saw in the previous
example of employees, salaries and departments, a consistent answer to a query
may contain tuples computed from inconsistent tuples. Therefore we want to
define measures of the ‘influence’ of such tuples on the data in the table and on

D. Laurent and N. Spyratos

the data of a query answer. For example, the higher the ratio of consistent to true
tuples in the table, the higher the quality of the data in the table; and similarly,
the higher the percentage of tuples in the answer computed from consistent
tuples in the table, the higher the ‘confidence’ in the query answer.

The remainder of this paper is organized as follows: in Sections 2 and 3,
we recall from [13] our definitions of m-Chase and of consistent query answer,
respectively; in Section 4 we present our approach to explanations of query
answers; in Section 5 we present our approach to quality measures for tables
with nulls and functional dependencies, as well as for consistent query answers.
In Section 6 we offer some concluding remarks and perspectives of our work.

2 The m-Chase Algorithm

2.1 Notation and Basic Definitions

As in the relational model, we consider a universe U = {A1, . . . , An} in which
every attribute Ai is associated with a set of atomic values called the domain
of Ai and denoted by dom(Ai). We call relation schema (or simply schema) any
nonempty sub-set of U and we denote it by the concatenation of its elements.

A tuple t over U is a partial function from U to
⋃
A∈U dom(A) such that,

if t is defined over A then t(A), also denoted t.A, belongs to dom(A). The
domain of definition of t is called the schema of t, denoted by sch(t). Tuples in
our approach satisfy the First Normal Form [19], in the sense that each tuple
component is an atomic value. A tuple t is denoted by the concatenation of its
values: t = ai1 . . . aik means that for every j = 1, . . . , k, t.Aij = aij , where aij
is in dom(Aij), and sch(t) = Ai1 . . . Aik . We define a table over U to be a finite
set of tuples over U (therefore duplicates are not allowed), and we note that as
tuples are partial functions, tables may contain nulls.

Given a table T , we denote by T the set of all tuples built up from values
in T . Queries are issued against T and consistent answers are obtained from T .
For every relation schema X, we denote by T (X) the set of all tuples in T with
schema X: T (X) = {t ∈ T | sch(t) = X}. For every A in U , the set of all
values from dom(A) occurring in T is called the active domain of A, denoted by
adom(A), and we let AD =

⋃
A∈U adom(A). In other words, AD is the set of all

values appearing in T .
Given a tuple t, for every nonempty sub-set S of sch(t) the restriction of

t to S, is denoted by t.S. In this work, tables over universe U are associated
with a fixed set of functional dependencies FD. A functional dependency is an
expression of the form X → A where X is a schema and A an attribute not in
X. A table T is said to satisfy X → A if for all t and t′ in T such that t.XA and
t′.XA contain no nulls, if t.X = t′.X then t.A = t′.A.

2.2 The m-Chase Algorithm

In order to characterize a tuple of a given table T as consistent/inconsistent
and as true/false, we define a modified version of the classical chase algorithm

Explanation and Quality of Query Answers

[7, 19]. We recall that, given a table T with nulls and a set FD of functional
dependencies, the chase algorithm constructs an ‘extended’ table denoted by
chase(T) as follows:
for all t and t′ such that there exists X → A in FD and t.X = t′X

if t.A and t′.A are distinct domain values, then fail
else if t.A = a and t′.A is null then assign a to t′.A

If the chase algorithm succeeds then all tuples in the resulting table chase(T),
are consistent and are assumed to be true (a basic assumption in relational
databases). However, if the chase algorithm fails then we do not know which
tuples are consistent and which are inconsistent.

To cope with this problem, a modified version of the chase algorithm was
introduced in [13], which allows to always know which tuples are consistent and
which are inconsistent. This algorithm, called m-Chase works as follows: distinct
values t.A and t′.A of the chase algorithm above do not provoke a failure; instead,
such values are accumulated in a set thus creating m-tuples (i.e., tuples in which
each component can be a set of values instead of a single value).

In our introductory example where T = {es, es′d, e′s′}, running the usual
chase algorithm with the functional dependency Emp → Sal would result in
failure since the tuples t = es and t′ = es′d violate the dependency Emp→ Sal.
In contrast, our algorithm, called m-Chase will put the two values t.Sal and
t′.Sal in a set to create what we call anm-tuple (e)(ss′)(d) (to be defined shortly),
where concatenation of values between parentheses denotes a set. For example,
(e) stands for {e}, (ss′) stands for {s, s′} and (d) stands for {d}. The idea is
to accumulate in a set all values of an attribute violating a dependency. As we
shall see shortly, based on the set of m-tuples returned by the m-Chase we can
compute the sets of true/false and consistent/inconsistent tuples in polynomial
time; and based on these sets we can give explanations of query answers and we
can also define quality measures as explained earlier.

We now recall from [13] the basic formalism on which algorithm m-Chase
relies. First the notion of multi-valued tuples, or m-tuples, extends that of tuples
in the sense that an m-tuple associates every attribute A with a possibly empty
sub-set of adom(A), instead of a single value from adom(A).

Definition 1. A multi-valued tuple σ over universe U , or m-tuple, is a func-
tion from U to the cross product XA∈UP(adom(A)), where P(adom(A)) is the
power set of adom(A). The set of all attributes A such that σ(A) 6= ∅, is called
the schema of σ, denoted by sch(σ). Given σ and a sub-set X of sch(σ), the re-
striction of σ to X, denoted σ(X), is the m-tuple defined by (σ(X))(A) = σ(A)
for every A in X and (σ(X))(A) = ∅ for any A not in X.

Given an m-tuple σ, the set tuples(σ) denotes the set of all tuples t such that
sch(t) = sch(σ) and for every A in sch(t), t.A belongs to σ(A). �

Given an m-tuple σ, the set σ(A) is denoted by the concatenation of its elements
between parentheses, and σ is denoted by the concatenation of all σ(A) such that
σ(A) 6= ∅. Moreover, σ v σ′ denotes the ‘component-wise inclusion’ of σ in σ′,
that is σ v σ′ holds if for every A ∈ sch(σ), σ(A) ⊆ σ′(A).

D. Laurent and N. Spyratos

Algorithm 1 The m-Chase Algorithm
Input: A table T over U and a set FD of functional dependencies over U .
Output: An m-table denoted by Σ∗.
1: Σ∗ := {σt | t ∈ T}// σt is the m-tuple such that σt(A) = {t.A} for A ∈ sch(t)
2: change := true
3: while change = true do
4: change := false
5: for all σ and σ′ in Σ∗ do
6: for all X → A in FD such that XA ⊆ sch(σ) and XA ⊆ sch(σ) do
7: if tuples(σ(X)) ∩ tuples(σ′(X)) 6= ∅ then
8: apply the m-Chase rule to σ and σ′

9: change := true
10: return Σ∗

We call m-table over U any finite set of m-tuples over U . For all σ and σ′

in an m-table Σ, and X → A such that XA ⊆ sch(σ) and XA ⊆ sch(σ′), the
following rule called m-Chase rule generalizes the chase rule.
• m-Chase rule: Let σ1 = σ ∪ σ′(A) and σ′1 = σ′ ∪ σ(A)

Case of σ1 v σ′1: replace σ with σ′1, and remove σ1
Case of σ′1 v σ1: replace σ′ with σ1, and remove σ′1
Otherwise: replace σ and σ′ with σ1 and σ′1, respectively.

As shown in Algorithm 1 our algorithm consists in applying the m-Chase rule
whenever tuples(σ(X)) ∩ tuples(σ′(X)) 6= ∅ until no further transformation is
possible. The output is an m-table Σ∗, and it has been shown in [13] that this
algorithm always terminates and that the partition semantics of tuples in T (as
introduced in [18] and extended in [12, 13]), is defined based on Σ∗ as follows.

Definition 2. For every t in T :

1. t is true if there exists σ in Σ∗ and q in tuples(σ) such that t is a sub-tuple
of q. The set of all true tuples is denoted by True(T).

2. t is false if t is not true. The set of all false tuples is denoted by False(T).
3. t is inconsistent if there exists σ in Σ∗ such that tuples(σ(sch(t))) = {t}.

The set of all inconsistent tuples is denoted by Inc(T).
4. t is consistent if t is true and not inconsistent. The set of all consistent

tuples is denoted by Cons(T). �

As shown in [13], the computation of Σ∗ is in O(|Σ∗|3.δ2), where δ is the max-
imal cardinality of the components of m-tuples in Σ∗, which is precisely the
maximum number of A-values associated with X-values when X → A is a func-
tional dependency in FD. As Algorithm 1 shows that |Σ∗| ≤ |T |, we state that
the computation of Σ∗ is in O(|T |3.δ2), i.e., polynomial in the size of T .

Example 1. In the context of our introductory example, where T = {es, es′d, e′s′}
is a table defined over U = {Emp, Sal, Dept} with the functional dependency
Emp→ Sal, Σ∗ is built up according to the following steps:

Explanation and Quality of Query Answers

Step 1: Σ∗ is first set to {(e)(s), (e)(s′)(d), (e′)(s′)}.
Step 2: Considering σ = (e)(s) and σ′ = (e)(s′)(d), the m-tuples σ1 = (e)(ss′)
and σ′1 = (e)(ss′)(d) are generated. Since σ1 v σ′1, Σ∗ = {(e)(ss′)(d), (e′)(s′)}.
Step 3: As a new execution of the while-loop line 3 does not change Σ∗, the
algorithm returns Σ∗ = {(e)(ss′)(d), (e′)(s′)}.

Therefore, True(T) contains esd, es′d, e′s′ and all their sub-tuples. Hence,
False(T) = {e′sd, e′s, e′d}. Moreover, Inc(T) = {esd, es′d, es, es′, sd, s′d, s, s′},
and thus Cons(T) = {ed, e′s′, e, e′, d}. �

It turns out from Definition 2 that a tuple t can be either true or false, and that
true tuples are either consistent or inconsistent. However, false tuples are neither
consistent nor inconsistent. Notice that, since we only focus on true tuples, the
consistency of false tuples is irrelevant in this work. Membership of t to True(T)
or False(T) on the one hand, and to Cons(T) or Inc(T) on the other hand, is
referred to as the status of t. Thus a tuple can have one of the following status:
true and consistent, true and inconsistent or false. Referring to Example 1, esd
is true and inconsistent, s′d is true and inconsistent and e′s is false.

3 Consistent Query Answering

3.1 Query Syntax

The queries Q that we consider in this work have the form of a usual SQL query:
Q : select X from T [where Γ]

in which the where clause specifies an optional selection condition Γ . The set of
all attributes occurring in Γ is called the schema of Γ , denoted by sch(Γ); and
the attribute set X ∪ sch(Γ) is called the schema of Q, denoted by sch(Q).

A selection condition Γ is a well-formed formula built up using connectors
¬, ∨, ∧ and atomic comparisons of the forms: Aθ a or AθA′, where θ is a
comparison predicate, A and A′ are attributes, and a is in dom(A). Given Γ ,
we denote by Sat(Γ) the set of all tuples in T (sch(Γ)) satisfying Γ , where the
notion of satisfaction follows the usual rules in FO logics. For example, the tuple
t = abcc over scheme ABCD is in Sat(Γ) for Γ = ((A = a′)∨(C = D))∧(B = b).

We emphasize that, contrary to most existing approaches to consistent query
answering [3, 14, 20], our approach is not restricted to deal with conjunctive
queries, since disjunctive selection conditions are allowed. The consistent answer
to a query Q in our approach relies on the notion of consistency with respect to
a selection condition as defined below.

Definition 3. Given a table T over U , and Γ a selection condition, a tuple t
such that sch(Γ) ⊆ sch(t) is said to be consistent with respect to Γ if there
exists σ in Σ∗ such that t is in tuples(σ) and tuples(σ(sch(Γ))) ⊆ Sat(Γ).

We denote by Cons(Γ, T) the set of all tuples consistent with respect to Γ . �

We illustrate this definition using Example 1. For the condition Γ = (Sal = s′)
we have Sat(Γ) = {s′}. Thus, es′d is not in Cons(Γ, T) because (e)(ss′)(d) is

D. Laurent and N. Spyratos

Algorithm 2 Consistent answer
Input: A query Q : select X from T [where Γ] and Σ∗

Output: C_ans(Q)
1: C_ans(Q) := ∅ ; ToRem_X := ∅
2: for all σ in Σ∗ such that X ⊆ sch(σ) do
3: if |tuples(σ(X))| > 1 then
4: ToRem_X := ToRem_X ∪ tuples(σ(X))
5: else
6: Let x denote the unique tuple in tuples(σ(X))
7: if sch(Γ) ⊆ sch(σ) and tuples(σ(sch(Γ))) ⊆ Sat(Γ) then
8: C_ans(Q) := C_ans(Q) ∪ {x}
9: C_ans(Q) := C_ans(Q) \ ToRem_X
10: return C_ans(Q)

in Σ∗ and (ss′) 6⊆ Sat(Γ). On the other hand, for Γ ′ = (Sal = s) ∨ (Sal = s′)
we have Sat(Γ ′) = {s, s′}. Since (ss′) ⊆ Sat(Γ ′), es′d is in Cons(Γ ′, T). As es′d
has been shown to be in Inc(T), this means that tuples in Cons(Γ ′, T) may be
inconsistent. As will be seen shortly, this implies that inconsistent tuples may
participate in the computation of consistent answers.

3.2 Consistent Answers

In what follows, given a schema X, we denote by True(X), Cons(X) and Inc(X)
the set of all true, consistent and inconsistent tuples of T (X), respectively. The
consistent answer to a query Q is defined as follows.

Definition 4. Let T be a table over universe U and FD the set of associated
functional dependencies. Given a query Q : select X from T [where Γ], the
consistent answer to Q, denoted C_ans(Q), is the set of tuples x such that
1. x is in Cons(X), and
2. there exists t such that sch(t) ⊆ sch(Q)), t.X = x and t is in Cons(Γ, T). �

We point out that when T is consistent, our m-Chase algorithm coincides with
the standard Chase algorithm. Thus, the m-tuples in Σ∗ are ‘isomorphic’ to
tuples in the chased table, which implies that C_ans(Q) is equal to the standard
answer as defined in [19].
Based on Definition 4, it can be shown that Algorithm 2 correctly computes the
consistent answer to a query Q. It is also easy to see that this algorithm is linear
in the number of m-tuples in Σ∗, that is linear in the number of tuples in T .

Example 2. We illustrate Definition 4 and Algorithm 2 in the context of Exam-
ple 1 where Σ∗ = {(e)(ss′)(d), (e′)(s′)}. Denoting (e)(ss′)(d) by σ1 and (e′)(s′)
by σ2, we have the following:
• For Q1 : select Sal from T , the expected answer is ∅ because σ1 implies that
s and s′ are inconsistent. Algorithm 2 runs as follows:
− With σ1, the test line 3 succeeds. Thus, ToRem_X is set to {s, s′} line 4,

Explanation and Quality of Query Answers

and so, C_ans(Q) remains empty.
− With σ2, the test line 3 fails and the test on line 7 succeeds (since the query
involves no selection condition). Thus, ToRem_X is not changed, and s′ is
inserted in C_ans(Q) line 8. Then, when processing line 9, C_ans(Q) is set to
({s′} \ {s, s′}), that is to ∅, as expected.
• For Q2 : select Emp, Sal from T , C_ans(Q2) = {e′s′} as e′s′ is the only
tuple in Cons(Emp Sal). Algorithm 2 runs as follows:
−With σ1, the test line 3 succeeds, and so es and es′ are inserted in ToRem_X
line 4, while C_ans(Q) remains empty.
− With σ2, the test line 3 fails and the test line 7 succeeds. Thus, ToRem_X
is not changed, and e′s′ is inserted in C_ans(Q) line 8. Since ToRem_X =
{es, es′}, C_ans(Q) is not changed on line 9, and we have: C_ans(Q2) = {e′s′}.
• For Q3 : select Emp from T where Sal = s′, we have Sat(Γ) = {s′} and so,
es′ is not in Cons(Γ, T). Thus, e is not in C_ans(Q3). Since e′ is in Cons(T) and
e′s′ is in Cons(Γ, T), C_ans(Q3) = {e′}. Algorithm 2 runs as follows:
−With σ1, the tests line 3 and line 7 fail (since Sat(Γ) = {s′} and {s, s′} 6⊆ {s′}).
Thus, ToRem_X and C_ans(Q) remain empty.
−With σ2, the test line 3 fails and the test on line 7 succeeds. Thus, ToRem_X
is not changed, and e′ is inserted in C_ans(Q) line 8. Since C_ans(Q) is not
changed line 9, we have: C_ans(Q3) = {e′}. �

4 Explanations

Explanations come in response to a user’s request either about the status of a
given tuple, or about the presence or the absence of a tuple in the consistent
answer to a query Q. Typically, these explanations come as a sentence referring
to Σ∗ possibly followed by tuples or m-tuples. Obviously, such explanations are
meaningful to the user, only if she/he has a clear understanding of how the status
of a tuple is obtained.

More precisely, we consider two scenarios: In the first, given a tuple t along
with its status, the user seeks for explanations about this status. In Example 1,
explaining why the tuple es′ is true can be done by displaying “es′ is true because
es′ occurs in Σ∗, in m-tuple (e)(ss′)(d)”; and explaining why es′ is inconsistent
can be done by displaying “es′ is inconsistent because es′ occurs in Σ∗ but
violates Emp→ Sal, as shown in (e)(ss′)(d).”

In the second scenario, given a query Q, the user seeks for explanations about
the presence or absence of a tuple in the answer. In Example 2, explaining why
e′ is in the answer to Q3 can be done by displaying: “e′ occurs in Σ∗ and violates
no functional dependencies” (to explain that e′ is consistent); and then “e′ occurs
in the m-tuple (e′)(s′)” of Σ∗ that satisfies the selection condition Sal = s′.

In order to provide users with intuitive explanations, we propose first the
following generic explanations that allow to deal with the first scenario and
based on which explanations in the second scenario are generated.
(A) To explain that t is in True(T), we display “t occurs in Σ∗”, followed by an
m-tuple σ such that t ∈ tuples(σ(sch(t))).

D. Laurent and N. Spyratos

(B) To explain that t is in False(T), we display “t does not occur in Σ∗” meaning
that for every σ in Σ∗, t 6∈ tuples(σ(sch(t))). Providing evidence of this statement
is impossible, unless displaying Σ∗, which is not a reasonable option.
(C) To explain that t is in Inc(T), we display “t occurs in Σ∗ but violates func-
tional dependencies”, followed by an m-tuple σ such that t ∈ tuples(σ(sch(t))),
|tuples(σ(sch(t)))| > 1 and (at least) one functional dependency X → A such
that XA ⊆ sch(σ), A ∈ sch(t) and |tuples(σ(A))| > 1.
(D) To explain that t is in Cons(T), we display “t occurs in Σ∗ and violates
no functional dependencies.” Providing evidence of this statement is impossible,
unless displaying all σ in Σ∗ such that t is a sub-tuple of a tuple q in tuples(σ)
to show that they all satisfy that tuples(σ(sch(t))) = {t}. This looks unrealistic
as this would generate an important number of m-tuples!
(E) Given a selection condition Γ , explaining that t is in Sat(Γ) is straight-
forwardly done by displaying “t satisfies the selection condition Γ .” To explain
that t is in Cons(Γ, T) we display “t occurs in an m-tuple in Σ∗ that satis-
fies the selection condition Γ ”, followed by a σ such that t ∈ tuples(σ(sch(t))),
sch(Γ) ⊆ sch(σ) and σ(sch(Γ))) ⊆ Sat(Γ).

Now, given Q : select X from T [where Γ], explaining the presence or the
absence of a given tuple x in the consistent answer to Q can be done as follows:

– The explanation of the presence of x in the consistent answer is provided by
the definition of the query, namely, x is in the answer because x is in Cons(T)
and x has a super-tuple t in Cons(Γ, T). Therefore, if Q involves no selection
condition, explanation (D) is displayed and, otherwise, explanations (D)
and (E) above are combined and displayed.

– The explanation of the absence of a tuple x from the answer is due to one
of the following three reasons:
(a) x is in False(T), in which case explanation (B) is displayed,
(b) x is in Inc(T), in which case explanation (C) is displayed,
(c) x is in Cons(T) but x has no super-tuple in Cons(Γ, T), in which case

explanation (D) is displayed followed by: “x has no super-tuple occurring
in an m-tuple of T satisfying the selection condition Γ .

Clearly, providing such explanations assumes that the m-Chase table Σ∗ has
been computed in advance. We also emphasize here that each of the above ex-
planations requires only a single scan of Σ∗.

Indeed, explanations (B) and (D) only require to know the status of a tuple
(which is computed through a scan of Σ∗), whereas explanations (A), (C) and
(E) display an m-tuple from Σ∗, as an evidence of the message. In any case, all
computations necessary for our explanations are polynomial in the size of T .

We note that explanations as defined above relate to the work of [16, 17],
in the sense that our explanations consist in displaying, whenever possible, tu-
ples responsible of the fact being explained. We are currently investigating how
our approach could be more formally defined as done in [16, 17], although their
approaches do not address explaining inconsistencies as we do.

Explanation and Quality of Query Answers

5 Quality Measures

When querying a possibly inconsistent table, it is important for users to have
an idea of the ‘amount’ of inconsistency in the table. In this section, we aim to
provide users with tools and measures that quantify inconsistencies in the table
and we do so based on the set of tuples that are true according to the semantics
introduced earlier. We require all measures µ to be such that 0 ≤ µ ≤ 1 and
µ = 1 when T is consistent, that is when Inc(T) = ∅.

We distinguish two cases here: (a) quality of data in a table and (b) quality
of data in a consistent query answer. In either case, in the definitions of our
measures, we assume that the m-chased table Σ∗ is available.

5.1 Quality of Data in a Table

Given a table T , we first define the quality of T , denoted by Qual(T), as the
ratio of the number of consistent tuples over the number of true tuples in T :

Qual(T) =
|Cons(T)|
|True(T)|

= 1− |Inc(T)|
|True(T)|

.

Notice that if T is consistent then Qual(T) = 1. Moreover, if True(T) = ∅,
then Σ∗ is empty, implying that T and Inc(T) are empty as well. Thus, we set
Qual(T) = 1 when True(T) = ∅.

However, computing Qual(T) based on Σ∗ and Definition 2 is not trivial
because each tuple should be counted only once. Since every sub-tuple of a
true tuple is also true and every sub-tuple of a consistent tuple is consistent,
the computation is not easy. To see this, consider the case of true tuples in
Σ∗ = {(a)(b), (a)(b′), (a′)(b)}. Here True(T) consists of ab, ab′, a′b, along with
all their sub-tuples. As a occurs in ab and in ab′, counting the sub-tuples of
each tuple occurring in Σ∗ may lead to an incorrect result. Indeed, we have
True(T) = {ab, ab′, a′b, a, a′, b, b′} but as a occurs in ab and in ab′, the count
in this example should be 7 (and not 12).

Counting the consistent tuples raises an additional difficulty, because in order
to conclude that a tuple t is consistent, every m-tuple σ in which t occurs must
be such that |tuples(σ(sch(t)))| = 1. This is why, to compute Qual(T), it is
better to count the inconsistent tuples, based on the facts that
(a) Cons(T) = True(T) \ Inc(T) and
(b) Cons(T) ∩ Inc(T) = ∅,

which imply that |Cons(T)|
|True(T)| = 1− |Inc(T)|

|True(T)| .

Example 3. In Example 1 where Σ∗ = {(e)(ss′)(d), (e′)(s′)}, we have seen that
Inc(T) = {esd, es′d, es, es′, sd, s′d, s, s′} and thus we have |Inc(T)| = 8 and
counting the tuples in True(T) amounts to counting the number of distinct sub-
tuples of esd, es′d and e′s′, which yields 13. Therefore, we have Qual(T) = 1− 8

13 ,
that is Qual(T) = 5/13. �

D. Laurent and N. Spyratos

It turns out that the computation of Qual(T) is polynomial in the number of
tuples in T (in fact a single scan of Σ∗ is sufficient in order to identify ‘maximal’
true tuples, based on which all tuples of interest are processed), but the compu-
tation of Qual(T) is exponential in the number of attributes in U (as the status
of every sub-tuple of a maximal tuple has to be determined and as every tuple
must be counted only once).

We are currently investigating how to efficiently compute this measure. It
seems that level-wise techniques borrowed from those in the well-known Apriori
algorithm [1] should be relevant in our context. Moreover, investigating how to
compute an approximate value for Qual(T) based on sampling is also an issue
that we are currently considering, inspired by the work in [11].

Another reliable but easier way of assessing the quality of T is to focus on
functional dependencies. To express such a measure, for each X → A in FD, let
Inc(X → A) be the set of all true tuples not satisfying X → A, i.e.,

Inc(X → A) = {x ∈ True(X) | (∃σ ∈ Σ∗)(XA ⊆ sch(σ) ∧
x ∈ tuples(σ(X)) ∧ |tuples(σ(A))| > 1)}.

If True(X) is nonempty, the associated measure is:

QualAX(T) = 1− |Inc(X → A)|
|True(X)|

.

Notice that the definition of QualAX(T) satisfies the property that if T satisfies
the functional dependency X → A, then QualAX(T) = 1, because in this case,
Inc(X → A) = ∅. Therefore, if T is consistent then QualAX(T) = 1.

We emphasize that |Inc(X → A)| and |True(X)| are computed through a
simple scan of Σ∗, which implies that QualAX(T) is computed efficiently. We
then define the following measure as the average of all QualAX(T):

QualFD(T) =

∑
X→A∈FD Qual

A
X(T)

|FD|
.

In Example 3, we have Inc(Emp→ Sal) = {e} and True(Emp) = {e, e′}. Hence,
|Inc(Emp → Sal)| = 1 and |True(Emp)| = 2, and so, QualSalEmp(T) = 0.5. As
|FD| = 1, we have QualFD(T) = 0.5.

We note that, if T is consistent then QualAX(T) = 1, for every X → A in FD,
and therefore QualFD(T) = 1. We also note that the knowledge of QualAX(T) for
every X → A in FD allows for the definition of additional aggregate measures
by replacing ‘average’ by for example ‘maximum’ or ‘minimum’.

Moreover, as in the work in [11] about approximate functional dependencies,
the use of a threshold ρ such that 0 < ρ ≤ 1, allows to define the measure:

QualρFD(T) =
|{X → A ∈ FD | QualAX(T) ≥ ρ}|

|FD|
.

Intuitively, ρ is a threshold below which a functional dependency is considered
not satisfied, and QualρFD returns the ratio of functional dependencies in FD

Explanation and Quality of Query Answers

that are ‘approximately satisfied’ with respect to ρ. In Example 3, for ρ = 0.33,
QualρFD = 1, because Emp→ Sal is considered ‘approximately satisfied’.

We point out that the knowledge of QualFD(T) and of every QualAX(T)
allow to put forward the inconsistencies in T . Indeed, if we use an appropriate
graphical interface to display all values of QualAX(T), for every X → A, then one
can easily identify the values of QualAX(T) considered too low; and then, for each
of the corresponding functional dependencies, one can justify the consistency or
inconsistency of tuples in T (XA) using explanations as seen in Section 4.

5.2 Quality of Data in a Consistent Answer

Given Q : select X from T [where Γ], we denote by Ans(Q) the set of all true
tuples x over X having a true super-tuple in Sat(Γ). Formally,
Ans(Q) = {x ∈ True(X) | (∃q ∈ True(sch(Q)))(q.X = x ∧ q.sch(Γ) ∈ Sat(Γ))}.
Notice that, if T is consistent, then Ans(Q) = C_ans(Q). However, if T is not
consistent, there may be tuples in Ans(Q) which are not in C_ans(Q).

In the context of Example 2, for the query Q3, we have C_ans(Q3) = {e′},
whereas Ans(Q3) = {e, e′} (because es′ and e′s′ are true and satisfy the condition
(Sal = s′)). However, in all cases, we have C_ans(Q) ⊆ Ans(Q).

We define the quality of the consistent answer to Q as the ratio between the
number of tuples in C_ans(Q) over the number of tuples in Ans(Q). Formally,
assuming that Ans(Q) is nonempty:

Qual(Q) =
|C_ans(Q)|
|Ans(Q)|

.

If Ans(Q) = ∅ then we set Qual(Q) = 1 because in this case C_ans(Q) is empty.
Clearly, if T is consistent then, as Ans(Q) = C_ans(Q), we have Qual(Q) = 1.
Notice also that if Q involves no selection condition then Qual(Q) = |Cons(X)|

|True(X)| .

To illustrate this quality measure, refer to Example 2, where the consistent
answers to Q1 and Q3 are respectively {ed} and {e′}. As we also have Ans(Q1) =
{ed} and Ans(Q3) = {e, e′}, we obtain Qual(Q1) = 1 and Qual(Q3) = 0.5.

It is important to note that, if the contents of query answers are displayed
together with their qualities, the user has the opportunity to ask for explanations
as described in the previous section. For instance, in our example above, a user
might wonder why the quality of the answer to query Q3 is 0.5. The explanation
to be provided in this case is that there exist tuples in Ans(Q3) which are not
in C_ans(Q3). The user can then continue the dialogue with the system, for
example by asking to see such tuples.

6 Conclusion

In this paper, we have addressed two issues regarding query processing in tables
with nulls and functional dependencies, namely explanation of a query answer

D. Laurent and N. Spyratos

and quality of data in a query answer. The starting point was our earlier work
on defining consistent answers to queries submitted to such tables [13]. Based
on that earlier work we have proposed an approach to explaining the content
of a consistent query answer and measuring its quality. We have shown that
explaining the contents consists mainly in determining why a given tuple is
consistent/inconsistent, or why it is or it is not in the consistent answer to a
query. We have also proposed measures for assessing the quality of the data in a
table and in a query answer, as well as algorithms for their computation. Finally,
we have seen how the simultaneous use of explanations and quality measures can
help users to better ‘understand’ inconsistencies in the input table.

We are currently pursuing three lines of research. First, we aim to improve the
algorithm for computing Qual(T), because even if the computation is polynomial
in the size of T , it is nevertheless exponential in the size of the universe. Second,
our approach to explanation needs to be further refined, probably along the
lines of [4, 6, 16, 17]; also, investigating interactions between explanations and
quality measures is a challenging issue. Third, we are exploring the possible use of
sampling techniques for providing approximate measures and further improving
performance. Indeed, as our approach is meant to apply to large tables resulting
from the integration of data from several sources, even a simple scan of the
m-table might prove expensive.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery
of association rules. In Advances in Knowledge Discovery and Data Mining, pages
309–328. AAAI-MIT Press, 1996.

2. Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query an-
swers in inconsistent databases. In Victor Vianu and Christos H. Papadimitriou,
editors, Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, Pennsylvania, USA, pages 68–79. ACM
Press, 1999.

3. Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Syn-
thesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

4. Leopoldo E. Bertossi. Specifying and computing causes for query answers in
databases via database repairs and repair-programs. Knowl. Inf. Syst., 63(1):199–
231, 2021.

5. Leopoldo E. Bertossi and Jan Chomicki. Query answering in inconsistent
databases. In Jan Chomicki, Ron van der Meyden, and Gunter Saake, editors,
Logics for Emerging Applications of Databases [outcome of a Dagstuhl seminar],
pages 43–83. Springer, 2003.

6. Leopoldo E. Bertossi and Babak Salimi. Unifying causality, diagnosis, repairs and
view-updates in databases. CoRR, abs/1405.4228, 2014.

7. Ronald Fagin, Alberto O. Mendelzon, and Jeffrey D. Ullman. A simplified universal
relation assumption and its properties. ACM Trans. Database Syst., 7(3):343–360,
1982.

8. John Grant. Measuring inconsistency in generalized propositional logic. Logica
Universalis, 14(3):331–356, 2020.

Explanation and Quality of Query Answers

9. Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach. part II: explanations. CoRR, cs.AI/0208034, 2002.

10. Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-model
approach — part 1: Causes. CoRR, abs/1301.2275, 2013.

11. Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependen-
cies from relations. Theor. Comput. Sci., 149(1):129–149, 1995.

12. Dominique Laurent and Nicolas Spyratos. Handling inconsistencies in tables with
nulls and functional dependencies. J. Intell. Inf. Syst., 59(2):285–317, 2022.

13. Dominique Laurent and Nicolas Spyratos. Consistent query answering without
repairs in tables with nulls and functional dependencies. CoRR, abs/2301.03668,
2023.

14. Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing optimal repairs for
functional dependencies. ACM Trans. Database Syst., 45(1):4:1–4:46, 2020.

15. Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern, Christoph Koch,
Katherine F. Moore, and Dan Suciu. Causality in databases. IEEE Data Eng.
Bull., 33(3):59–67, 2010.

16. Alexandra Meliou, Sudeepa Roy, and Dan Suciu. Causality and explanations in
databases. Proc. VLDB Endow., 7(13):1715–1716, 2014.

17. Sudeepa Roy and Dan Suciu. A formal approach to finding explanations for
database queries. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors,
International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014, pages 1579–1590. ACM, 2014.

18. Nicolas Spyratos. The partition model: A deductive database model. ACM Trans.
Database Syst., 12(1):1–37, 1987.

19. Jeffrey D. Ullman. Principles of Databases and Knowledge-Base Systems, volume
1-2. Computer Science Press, 1988.

20. Jef Wijsen. On the consistent rewriting of conjunctive queries under primary key
constraints. Inf. Syst., 34(7):578–601, 2009.

