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Several applications today deal with tables that are the result of merging other tables coming from different sources (as when recording the results of collaborative work or when merging tables during data staging in data warehouses). Such tables usually have missing values (also called nulls) and/or contain data that do not respect given constraints(such as key constraints). In this paper we study the influence of nulls and/or inconsistent data on the answers to queries to such tables by (a) providing to the user explanations regarding the expected presence (or absence) of certain tuples in the answer and (b) by defining measures for assessing the quality of query answers.

Introduction

In a traditional relational database, each table is assumed to be consistent before users can query it but, in several applications today, tables are the result of merging two or more other tables coming from different sources. Such tables usually have missing values (also called nulls) and/or contain data that do not respect given constraints -such as key constraints. This is especially true when a user collects data coming from web sources and merges them in a single table T . In such a setting, it is difficult if not impossible for the user to know the constraints imposed on data in each source. Given a set F D of constraints over T , extracting from T data that are consistent with F D is then achieved using some query tool. In this paper we propose such a tool.

Three main issues (among others) arising when querying such tables are how to extract consistent answers addressed to possibly inconsistent tables; how to help users explain the expected presence or absence of certain tuples in the consistent answer to a query; and how to give users a measure of the quality of a query answer. We describe below briefly these issues, placing them in the context of related work.

Consistent query answering. Consider the table T = {es, es d, e s } over universe U = {Emp, Sal, Dept}, and the functional dependency Emp → Sal stating that an employee cannot have more than one salary. T is inconsistent as tuples 1 and 2 violate the dependency Emp → Sal. However, if we ask the SQL query Q : select Emp, Sal from T , it makes sense to return the set {e s } as the answer. Indeed, there is no reason to reject this answer as it is a consistent answer because it satisfies the dependency Emp → Sal. In other words, an inconsistent table may contain consistent parts (i.e. some useful information) which can be extracted through queries. This kind of query answering, known as consistent query answering, has attracted a lot of attention since the 1990s and continues to be an important subject of research today ( [START_REF] Arenas | Consistent query answers in inconsistent databases[END_REF][START_REF] Bertossi | Database Repairing and Consistent Query Answering[END_REF][START_REF] Livshits | Computing optimal repairs for functional dependencies[END_REF][START_REF] Wijsen | On the consistent rewriting of conjunctive queries under primary key constraints[END_REF]). It is thus not possible to review all related approaches here, and we refer to [START_REF] Bertossi | Query answering in inconsistent databases[END_REF] for a detailed survey covering the topic. We emphasize that two main approaches to consistent query answering have emerged: the approach by 'table repairs' [START_REF] Arenas | Consistent query answers in inconsistent databases[END_REF][START_REF] Wijsen | On the consistent rewriting of conjunctive queries under primary key constraints[END_REF], for tables with functional dependencies but without nulls, and more recently a more general approach without table repairs for tables with functional dependencies and nulls [START_REF] Laurent | Handling inconsistencies in tables with nulls and functional dependencies[END_REF][START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF].

Explanation of query answers. With the growing popularity of big data, many users with a variety of backgrounds seek to extract high level information from data-sets. A major challenge is then to develop tools to assist users in explaining observed query outputs.

In this paper we study explanations related to the presence of inconsistent tuples in the computation of a query answer. For instance, in our previous example of employees, salaries and departments, if we ask the SQL query Q : select Sal from T the answer will be empty. Given that the consistent query answer over employee and salary contains the tuple e s , the user may wonder why the answer over salary is empty. The explanation is that, although e s is consistent (that is e is assigned the only salary s ), s is also involved in an inconsistent tuple (namely es as e is assigned two salaries). Related work in this domain was initiated by Halpern and Pearl in [START_REF] Halpern | Causes and explanations: A structural-model approach. part II: explanations[END_REF][START_REF] Halpern | Causes and explanations: A structural-model approach -part 1: Causes[END_REF], where basic motivation and formal definitions of causality are presented and discussed in detail. In particular, in [START_REF] Halpern | Causes and explanations: A structural-model approach -part 1: Causes[END_REF], an explanation of ϕ is defined as a minimal elaboration of events that suffice to cause ϕ even in the face of uncertainty about the actual situation. This generic definition corresponds in our work to explaining why a tuple t is or not in the consistent answer to a given query Q, in the simple case where there is no uncertainty about the actual situation. Our way of explaining the answers to queries is also related to data lineage [START_REF] Meliou | Causality in databases[END_REF]. According to this work, 'explaining' query answers is achieved based on the database content and on the expression of the query. However, in this work the authors do not consider inconsistent databases as we do. Dealing with causality and explanation in the presence of inconsistent data has been presented in [START_REF] Bertossi | Unifying causality, diagnosis, repairs and view-updates in databases[END_REF], relying on the notion of database repairs, which we do not use in our work.

We also note that another typical scenario is when a user integrates data sets, computes some statistics, and then seeks an explanation why certain values are or are not outliers ( [START_REF] Meliou | Causality and explanations in databases[END_REF][START_REF] Roy | A formal approach to finding explanations for database queries[END_REF]). Such kind of explanations lies however out of the scope of the present paper.

Quality of query answers. The answer to a query addressed to a consistent table in a relational database, comes from tuples that are consistent and that are assumed to be true (a basic assumption in relational databases). In contrast, the answer to a query addressed to a possibly inconsistent table may be computed from inconsistent tuples. For instance, in our previous example of employees, salaries and departments, the answer comes from two inconsistent tuples (es and es d) and one consistent tuple (e s ). In this paper, we introduce various quality measures such as percentages of consistent or inconsistent tuples in the table expressing the 'influence' of inconsistent data on the answers to queries.

Regarding related work, inconsistency measurement has been addressed in [START_REF] Grant | Measuring inconsistency in generalized propositional logic[END_REF], based on three-valued propositional logic. In this setting, the authors propose 10 distinct possible measures, and discuss their relevance in the context of databases. Moreover, it is shown in [START_REF] Grant | Measuring inconsistency in generalized propositional logic[END_REF] that, contrary to our approach, most quality measures lead to non tractable computations. In [START_REF] Kivinen | Approximate inference of functional dependencies from relations[END_REF], the authors address the issue of 'approximate inference of functional dependency', and to do so they define quality measures for assessing the 'quality' of functional dependencies in a given table. Roughly, these measures are based on the number of conflicting pairs of tuples of the form (xy, xy ), for a given functional dependency X → Y . Contrary to the more generic case of [START_REF] Grant | Measuring inconsistency in generalized propositional logic[END_REF], the authors of [START_REF] Kivinen | Approximate inference of functional dependencies from relations[END_REF] argue that computing their measures is in O(N. log(N )) where N is the number of tuples in T , thus resulting in a tractable complexity. To compare this work with our work, we notice that although the contexts are similar (namely a possibly inconsistent table with functional dependencies), the goals of the two approaches are different since ours considers the problem of consistent query answering and in [START_REF] Kivinen | Approximate inference of functional dependencies from relations[END_REF], the authors address the issue of functional dependency inference.

As will be seen later in the paper, relating explanations and data quality in presence of inconsistent data is a relevant issue. This task, first identified in [START_REF] Bertossi | Specifying and computing causes for query answers in databases via database repairs and repair-programs[END_REF], remains to be further investigated.

Summarizing the above discussion, we address the issues of query answer explanation and quality measures for query answers in a table with nulls and functional dependencies. In order to study these issues, we need to know which tuples of the table are consistent or inconsistent, on the one hand, and which tuples are false or true, on the other hand.

The reason why such knowledge is necessary is twofold. First, we want to define the answer to a query to contain only tuples that are true and consistent (as in relational databases); in this way if a user seeks an explanation such as why certain tuples are (or are not) in an answer, we will be able to justify the presence or absence of the tuples in question by telling the user that the tuples are false or inconsistent. Second, we want to be able to provide measures for measuring the quality of data in the table and in the query answers. As we saw in the previous example of employees, salaries and departments, a consistent answer to a query may contain tuples computed from inconsistent tuples. Therefore we want to define measures of the 'influence' of such tuples on the data in the table and on the data of a query answer. For example, the higher the ratio of consistent to true tuples in the table, the higher the quality of the data in the table; and similarly, the higher the percentage of tuples in the answer computed from consistent tuples in the table, the higher the 'confidence' in the query answer.

The remainder of this paper is organized as follows: in Sections 2 and 3, we recall from [START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF] our definitions of m-Chase and of consistent query answer, respectively; in Section 4 we present our approach to explanations of query answers; in Section 5 we present our approach to quality measures for tables with nulls and functional dependencies, as well as for consistent query answers. In Section 6 we offer some concluding remarks and perspectives of our work.

2 The m-Chase Algorithm

Notation and Basic Definitions

As in the relational model, we consider a universe U = {A 1 , . . . , A n } in which every attribute A i is associated with a set of atomic values called the domain of A i and denoted by dom(A i ). We call relation schema (or simply schema) any nonempty sub-set of U and we denote it by the concatenation of its elements.

A tuple t over U is a partial function from U to A∈U dom(A) such that, if t is defined over A then t(A), also denoted t.A, belongs to dom(A). The domain of definition of t is called the schema of t, denoted by sch(t). Tuples in our approach satisfy the First Normal Form [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF], in the sense that each tuple component is an atomic value. A tuple t is denoted by the concatenation of its values: t = a i1 . . . a i k means that for every j = 1, . . . , k, t.A ij = a ij , where a ij is in dom(A ij ), and sch(t) = A i1 . . . A i k . We define a table over U to be a finite set of tuples over U (therefore duplicates are not allowed), and we note that as tuples are partial functions, tables may contain nulls.

Given a table T , we denote by T the set of all tuples built up from values in T . Queries are issued against T and consistent answers are obtained from T . For every relation schema X, we denote by T (X) the set of all tuples in T with schema X: T (X) = {t ∈ T | sch(t) = X}. For every A in U , the set of all values from dom(A) occurring in T is called the active domain of A, denoted by adom(A), and we let AD = A∈U adom(A). In other words, AD is the set of all values appearing in T .

Given a tuple t, for every nonempty sub-set S of sch(t) the restriction of t to S, is denoted by t.S. In this work, tables over universe U are associated with a fixed set of functional dependencies F D. A functional dependency is an expression of the form X → A where X is a schema and A an attribute not in X. A table T is said to satisfy X → A if for all t and t in T such that t.XA and t .XA contain no nulls, if t.X = t .X then t.A = t .A.

The m-Chase Algorithm

In order to characterize a tuple of a given table T as consistent/inconsistent and as true/false, we define a modified version of the classical chase algorithm [START_REF] Fagin | A simplified universal relation assumption and its properties[END_REF][START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF]. We recall that, given a table T with nulls and a set F D of functional dependencies, the chase algorithm constructs an 'extended' table denoted by chase(T ) as follows: for all t and t such that there exists X → A in F D and t.X = t X if t.A and t .A are distinct domain values, then fail else if t.A = a and t .A is null then assign a to t .A

If the chase algorithm succeeds then all tuples in the resulting table chase(T ), are consistent and are assumed to be true (a basic assumption in relational databases). However, if the chase algorithm fails then we do not know which tuples are consistent and which are inconsistent.

To cope with this problem, a modified version of the chase algorithm was introduced in [START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF], which allows to always know which tuples are consistent and which are inconsistent. This algorithm, called m-Chase works as follows: distinct values t.A and t .A of the chase algorithm above do not provoke a failure; instead, such values are accumulated in a set thus creating m-tuples (i.e., tuples in which each component can be a set of values instead of a single value).

In our introductory example where T = {es, es d, e s }, running the usual chase algorithm with the functional dependency Emp → Sal would result in failure since the tuples t = es and t = es d violate the dependency Emp → Sal. In contrast, our algorithm, called m-Chase will put the two values t.Sal and t .Sal in a set to create what we call an m-tuple (e)(ss )(d) (to be defined shortly), where concatenation of values between parentheses denotes a set. For example, (e) stands for {e}, (ss ) stands for {s, s } and (d) stands for {d}. The idea is to accumulate in a set all values of an attribute violating a dependency. As we shall see shortly, based on the set of m-tuples returned by the m-Chase we can compute the sets of true/false and consistent/inconsistent tuples in polynomial time; and based on these sets we can give explanations of query answers and we can also define quality measures as explained earlier.

We now recall from [START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF] the basic formalism on which algorithm m-Chase relies. First the notion of multi-valued tuples, or m-tuples, extends that of tuples in the sense that an m-tuple associates every attribute A with a possibly empty sub-set of adom(A), instead of a single value from adom(A). Definition 1. A multi-valued tuple σ over universe U , or m-tuple, is a function from U to the cross product X A∈U P(adom(A)), where P(adom(A)) is the power set of adom(A). The set of all attributes A such that σ(A) = ∅, is called the schema of σ, denoted by sch(σ). Given σ and a sub-set X of sch(σ), the restriction of σ to X, denoted σ(X), is the m-tuple defined by (σ(X))(A) = σ(A) for every A in X and (σ(X))(A) = ∅ for any A not in X.

Given an m-tuple σ, the set tuples(σ) denotes the set of all tuples t such that sch(t) = sch(σ) and for every A in sch(t), t.A belongs to σ(A).

Given an m-tuple σ, the set σ(A) is denoted by the concatenation of its elements between parentheses, and σ is denoted by the concatenation of all σ(A) such that σ(A) = ∅. Moreover, σ σ denotes the 'component-wise inclusion' of σ in σ , that is σ σ holds if for every A ∈ sch(σ), σ(A) ⊆ σ (A).

Algorithm 1 The m-Chase Algorithm

Input: A table T over U and a set F D of functional dependencies over U . Output: An m-table denoted by Σ * .

1: for all σ and σ in Σ * do 6:

Σ * := {σt | t ∈ T }//
for all X → A in F D such that XA ⊆ sch(σ) and XA ⊆ sch(σ) do 7:

if tuples(σ(X)) ∩ tuples(σ (X)) = ∅ then 8:

apply the m-Chase rule to σ and σ 9:

change := true 10: return Σ *

We call m-table over U any finite set of m-tuples over U . For all σ and σ in an m-table Σ, and X → A such that XA ⊆ sch(σ) and XA ⊆ sch(σ ), the following rule called m-Chase rule generalizes the chase rule.

• m-Chase rule: Let σ 1 = σ ∪ σ (A) and σ 1 = σ ∪ σ(A)
Case of σ 1 σ 1 : replace σ with σ 1 , and remove σ 1 Case of σ 1 σ 1 : replace σ with σ 1 , and remove σ 1 Otherwise: replace σ and σ with σ 1 and σ 1 , respectively.

As shown in Algorithm 1 our algorithm consists in applying the m-Chase rule whenever tuples(σ(X)) ∩ tuples(σ (X)) = ∅ until no further transformation is possible. The output is an m-table Σ * , and it has been shown in [START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF] that this algorithm always terminates and that the partition semantics of tuples in T (as introduced in [START_REF] Spyratos | The partition model: A deductive database model[END_REF] and extended in [START_REF] Laurent | Handling inconsistencies in tables with nulls and functional dependencies[END_REF][START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF]), is defined based on Σ * as follows.

Definition 2. For every t in T :

1. t is true if there exists σ in Σ * and q in tuples(σ) such that t is a sub-tuple of q. The set of all true tuples is denoted by True(T ). 2. t is false if t is not true. The set of all false tuples is denoted by False(T ).

3. t is inconsistent if there exists σ in Σ * such that tuples(σ(sch(t))) = {t}.
The set of all inconsistent tuples is denoted by Inc(T ). 4. t is consistent if t is true and not inconsistent. The set of all consistent tuples is denoted by Cons(T ).

As shown in [START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF], the computation of It turns out from Definition 2 that a tuple t can be either true or false, and that true tuples are either consistent or inconsistent. However, false tuples are neither consistent nor inconsistent. Notice that, since we only focus on true tuples, the consistency of false tuples is irrelevant in this work. Membership of t to True(T ) or False(T ) on the one hand, and to Cons(T ) or Inc(T ) on the other hand, is referred to as the status of t. Thus a tuple can have one of the following status: true and consistent, true and inconsistent or false. Referring to Example 1, esd is true and inconsistent, s d is true and inconsistent and e s is false.

Σ * is in O(|Σ * | 3 .δ 2 ),
3 Consistent Query Answering

Query Syntax

The queries Q that we consider in this work have the form of a usual SQL query:

Q : select X from T [where Γ ]
in which the where clause specifies an optional selection condition Γ . The set of all attributes occurring in Γ is called the schema of Γ , denoted by sch(Γ ); and the attribute set X ∪ sch(Γ ) is called the schema of Q, denoted by sch(Q).

A selection condition Γ is a well-formed formula built up using connectors ¬, ∨, ∧ and atomic comparisons of the forms: A θ a or A θ A , where θ is a comparison predicate, A and A are attributes, and a is in dom(A). Given Γ , we denote by Sat(Γ ) the set of all tuples in T (sch(Γ )) satisfying Γ , where the notion of satisfaction follows the usual rules in FO logics. For example, the tuple t = abcc over scheme ABCD is in Sat(Γ

) for Γ = ((A = a )∨(C = D))∧(B = b).
We emphasize that, contrary to most existing approaches to consistent query answering [START_REF] Bertossi | Database Repairing and Consistent Query Answering[END_REF][START_REF] Livshits | Computing optimal repairs for functional dependencies[END_REF][START_REF] Wijsen | On the consistent rewriting of conjunctive queries under primary key constraints[END_REF], our approach is not restricted to deal with conjunctive queries, since disjunctive selection conditions are allowed. The consistent answer to a query Q in our approach relies on the notion of consistency with respect to a selection condition as defined below. Definition 3. Given a table T over U , and Γ a selection condition, a tuple t such that sch(Γ ) ⊆ sch(t) is said to be consistent with respect to Γ if there exists σ in Σ * such that t is in tuples(σ) and tuples(σ(sch(Γ ))) ⊆ Sat(Γ ).

We denote by Cons(Γ, T ) the set of all tuples consistent with respect to Γ .

We illustrate this definition using Example 1. For the condition Γ = (Sal = s ) we have Sat(Γ ) = {s }. Thus, es d is not in Cons(Γ, T ) because (e)(ss )(d) is

Algorithm 2 Consistent answer

Input: A query Q : select X from T [where Γ ] and Σ * Output: C_ans(Q) 1: C_ans(Q) := ∅ ; T oRem_X := ∅ 2: for all σ in Σ * such that X ⊆ sch(σ) do 3: if |tuples(σ(X))| > 1 then 4:
T oRem_X := T oRem_X ∪ tuples(σ(X)) 5: else 6:

Let x denote the unique tuple in tuples(σ(X)) 7:

if sch(Γ ) ⊆ sch(σ) and tuples(σ(sch(Γ ))) ⊆ Sat(Γ ) then 8:

C_ans(Q) := C_ans(Q) ∪ {x} 9: C_ans(Q) := C_ans(Q) \ T oRem_X 10: return C_ans(Q)
in Σ * and (ss ) ⊆ Sat(Γ ). On the other hand, for Γ = (Sal = s) ∨ (Sal = s ) we have Sat(Γ ) = {s, s }. Since (ss ) ⊆ Sat(Γ ), es d is in Cons(Γ , T ). As es d has been shown to be in Inc(T ), this means that tuples in Cons(Γ , T ) may be inconsistent. As will be seen shortly, this implies that inconsistent tuples may participate in the computation of consistent answers.

Consistent Answers

In what follows, given a schema X, we denote by True(X), Cons(X) and Inc(X) the set of all true, consistent and inconsistent tuples of T (X), respectively. The consistent answer to a query Q is defined as follows.

Definition 4. Let T be a table over universe U and F D the set of associated functional dependencies. Given a query Q : select X from T [where Γ ], the consistent answer to Q, denoted C_ans(Q), is the set of tuples x such that 1. x is in Cons(X), and 2. there exists t such that sch(t) ⊆ sch(Q)), t.X = x and t is in Cons(Γ, T ).

We point out that when T is consistent, our m-Chase algorithm coincides with the standard Chase algorithm. Thus, the m-tuples in Σ * are 'isomorphic' to tuples in the chased table, which implies that C_ans(Q) is equal to the standard answer as defined in [START_REF] Ullman | Principles of Databases and Knowledge-Base Systems[END_REF]. Based on Definition 4, it can be shown that Algorithm 2 correctly computes the consistent answer to a query Q. It is also easy to see that this algorithm is linear in the number of m-tuples in Σ * , that is linear in the number of tuples in T . • For Q 1 : select Sal from T , the expected answer is ∅ because σ 1 implies that s and s are inconsistent. Algorithm 2 runs as follows:

-With σ 1 , the test line 3 succeeds. Thus, T oRem_X is set to {s, s } line 4, and so, C_ans(Q) remains empty.

-With σ 2 , the test line 3 fails and the test on line 7 succeeds (since the query involves no selection condition). Thus, T oRem_X is not changed, and s is inserted in C_ans(Q) line 8. Then, when processing line 9, C_ans(Q) is set to ({s } \ {s, s }), that is to ∅, as expected.

• For Q 2 : select Emp, Sal from T , C_ans(Q 2 ) = {e s } as e s is the only tuple in Cons(Emp Sal). Algorithm 2 runs as follows:

-With σ 1 , the test line 3 succeeds, and so es and es are inserted in T oRem_X line 4, while C_ans(Q) remains empty.

-With σ 2 , the test line 3 fails and the test line 7 succeeds. Thus, T oRem_X is not changed, and e s is inserted in C_ans(Q) line 8. Since T oRem_X = {es, es }, C_ans(Q) is not changed on line 9, and we have:

C_ans(Q 2 ) = {e s }.
• For Q 3 : select Emp from T where Sal = s , we have Sat(Γ ) = {s } and so, es is not in Cons(Γ, T ). Thus, e is not in C_ans(Q 3 ). Since e is in Cons(T ) and e s is in Cons(Γ, T ), C_ans(Q 3 ) = {e }. Algorithm 2 runs as follows:

-With σ 1 , the tests line 3 and line 7 fail (since Sat(Γ ) = {s } and {s, s } ⊆ {s }). Thus, T oRem_X and C_ans(Q) remain empty.

-With σ 2 , the test line 3 fails and the test on line 7 succeeds. Thus, T oRem_X is not changed, and e is inserted in C_ans(Q) line 8. Since C_ans(Q) is not changed line 9, we have:

C_ans(Q 3 ) = {e }.

Explanations

Explanations come in response to a user's request either about the status of a given tuple, or about the presence or the absence of a tuple in the consistent answer to a query Q. Typically, these explanations come as a sentence referring to Σ * possibly followed by tuples or m-tuples. Obviously, such explanations are meaningful to the user, only if she/he has a clear understanding of how the status of a tuple is obtained.

More precisely, we consider two scenarios: In the first, given a tuple t along with its status, the user seeks for explanations about this status. In Example 1, explaining why the tuple es is true can be done by displaying "es is true because es occurs in Σ * , in m-tuple (e)(ss )(d)"; and explaining why es is inconsistent can be done by displaying "es is inconsistent because es occurs in Σ * but violates Emp → Sal, as shown in (e)(ss )(d)."

In the second scenario, given a query Q, the user seeks for explanations about the presence or absence of a tuple in the answer. In Example 2, explaining why e is in the answer to Q 3 can be done by displaying: "e occurs in Σ * and violates no functional dependencies" (to explain that e is consistent); and then "e occurs in the m-tuple (e )(s )" of Σ * that satisfies the selection condition Sal = s .

In order to provide users with intuitive explanations, we propose first the following generic explanations that allow to deal with the first scenario and based on which explanations in the second scenario are generated. (A) To explain that t is in True(T ), we display "t occurs in Σ * ", followed by an m-tuple σ such that t ∈ tuples(σ(sch(t))).

(B) To explain that t is in False(T ), we display "t does not occur in Σ * " meaning that for every σ in Σ * , t ∈ tuples(σ(sch(t))). Providing evidence of this statement is impossible, unless displaying Σ * , which is not a reasonable option.

(C) To explain that t is in Inc(T ), we display "t occurs in Σ * but violates functional dependencies", followed by an m-tuple σ such that t ∈ tuples(σ(sch(t))), |tuples(σ(sch(t)))| > 1 and (at least) one functional dependency X → A such that XA ⊆ sch(σ), A ∈ sch(t) and |tuples(σ(A))| > 1.

(D) To explain that t is in Cons(T ), we display "t occurs in Σ * and violates no functional dependencies." Providing evidence of this statement is impossible, unless displaying all σ in Σ * such that t is a sub-tuple of a tuple q in tuples(σ) to show that they all satisfy that tuples(σ(sch(t))) = {t}. This looks unrealistic as this would generate an important number of m-tuples! (E) Given a selection condition Γ , explaining that t is in Sat(Γ ) is straightforwardly done by displaying "t satisfies the selection condition Γ ." To explain that t is in Cons(Γ, T ) we display "t occurs in an m-tuple in Σ * that satisfies the selection condition Γ ", followed by a σ such that t ∈ tuples(σ(sch(t))), sch(Γ ) ⊆ sch(σ) and σ(sch(Γ ))) ⊆ Sat(Γ ). Now, given Q : select X from T [where Γ ], explaining the presence or the absence of a given tuple x in the consistent answer to Q can be done as follows:

-The explanation of the presence of x in the consistent answer is provided by the definition of the query, namely, x is in the answer because x is in Cons(T ) and x has a super-tuple t in Cons(Γ, T ). Therefore, if Q involves no selection condition, explanation (D) is displayed and, otherwise, explanations (D) and (E) above are combined and displayed. -The explanation of the absence of a tuple x from the answer is due to one of the following three reasons: (a) x is in False(T ), in which case explanation (B) is displayed, (b) x is in Inc(T ), in which case explanation (C) is displayed, (c) x is in Cons(T ) but x has no super-tuple in Cons(Γ, T ), in which case explanation (D) is displayed followed by: "x has no super-tuple occurring in an m-tuple of T satisfying the selection condition Γ .

Clearly, providing such explanations assumes that the m-Chase table Σ * has been computed in advance. We also emphasize here that each of the above explanations requires only a single scan of Σ * . Indeed, explanations (B) and (D) only require to know the status of a tuple (which is computed through a scan of Σ * ), whereas explanations (A), (C) and (E) display an m-tuple from Σ * , as an evidence of the message. In any case, all computations necessary for our explanations are polynomial in the size of T .

We note that explanations as defined above relate to the work of [START_REF] Meliou | Causality and explanations in databases[END_REF][START_REF] Roy | A formal approach to finding explanations for database queries[END_REF], in the sense that our explanations consist in displaying, whenever possible, tuples responsible of the fact being explained. We are currently investigating how our approach could be more formally defined as done in [START_REF] Meliou | Causality and explanations in databases[END_REF][START_REF] Roy | A formal approach to finding explanations for database queries[END_REF], although their approaches do not address explaining inconsistencies as we do.

When querying a possibly inconsistent table, it is important for users to have an idea of the 'amount' of inconsistency in the table. In this section, we aim to provide users with tools and measures that quantify inconsistencies in the table and we do so based on the set of tuples that are true according to the semantics introduced earlier. We require all measures µ to be such that 0 ≤ µ ≤ 1 and µ = 1 when T is consistent, that is when Inc(T ) = ∅.

We distinguish two cases here: (a) quality of data in a table and (b) quality of data in a consistent query answer. In either case, in the definitions of our measures, we assume that the m-chased table Σ * is available.

Quality of Data in a Table

Given a table T , we first define the quality of T , denoted by Qual(T ), as the ratio of the number of consistent tuples over the number of true tuples in T :

Qual(T ) = |Cons(T )| |True(T )| = 1 - |Inc(T )| |True(T )| .
Notice that if T is consistent then Qual(T ) = 1. Moreover, if True(T ) = ∅, then Σ * is empty, implying that T and Inc(T ) are empty as well. Thus, we set Qual(T ) = 1 when True(T ) = ∅. However, computing Qual(T ) based on Σ * and Definition 2 is not trivial because each tuple should be counted only once. Since every sub-tuple of a true tuple is also true and every sub-tuple of a consistent tuple is consistent, the computation is not easy. To see this, consider the case of true tuples in Σ * = {(a)(b), (a)(b ), (a )(b)}. Here True(T ) consists of ab, ab , a b, along with all their sub-tuples. As a occurs in ab and in ab , counting the sub-tuples of each tuple occurring in Σ * may lead to an incorrect result. Indeed, we have True(T ) = {ab, ab , a b, a, a , b, b } but as a occurs in ab and in ab , the count in this example should be 7 (and not 12).

Counting the consistent tuples raises an additional difficulty, because in order to conclude that a tuple t is consistent, every m-tuple σ in which t occurs must be such that |tuples(σ(sch(t)))| = 1. This is why, to compute Qual(T ), it is better to count the inconsistent tuples, based on the facts that It turns out that the computation of Qual(T ) is polynomial in the number of tuples in T (in fact a single scan of Σ * is sufficient in order to identify 'maximal' true tuples, based on which all tuples of interest are processed), but the computation of Qual(T ) is exponential in the number of attributes in U (as the status of every sub-tuple of a maximal tuple has to be determined and as every tuple must be counted only once).

We are currently investigating how to efficiently compute this measure. It seems that level-wise techniques borrowed from those in the well-known Apriori algorithm [START_REF] Agrawal | Fast discovery of association rules[END_REF] should be relevant in our context. Moreover, investigating how to compute an approximate value for Qual(T ) based on sampling is also an issue that we are currently considering, inspired by the work in [START_REF] Kivinen | Approximate inference of functional dependencies from relations[END_REF].

Another reliable but easier way of assessing the quality of T is to focus on functional dependencies. To express such a measure, for each X → A in F D, let Inc(X → A) be the set of all true tuples not satisfying X → A, i.e.,

Inc(X

→ A) = {x ∈ True(X) | (∃σ ∈ Σ * )(XA ⊆ sch(σ) ∧ x ∈ tuples(σ(X)) ∧ |tuples(σ(A))| > 1)}.
If True(X) is nonempty, the associated measure is:

Qual A X (T ) = 1 - |Inc(X → A)| |True(X)| .
Notice that the definition of Qual A X (T ) satisfies the property that if T satisfies the functional dependency X → A, then Qual A X (T ) = 1, because in this case, Inc(X → A) = ∅. Therefore, if T is consistent then Qual A X (T ) = 1. We emphasize that |Inc(X → A)| and |True(X)| are computed through a simple scan of Σ * , which implies that Qual A X (T ) is computed efficiently. We then define the following measure as the average of all Qual A X (T ): We note that, if T is consistent then Qual A X (T ) = 1, for every X → A in F D, and therefore Qual F D (T ) = 1. We also note that the knowledge of Qual A X (T ) for every X → A in F D allows for the definition of additional aggregate measures by replacing 'average' by for example 'maximum' or 'minimum'.

Qual F D (T ) = X→A∈F D Qual A X ( 
Moreover, as in the work in [START_REF] Kivinen | Approximate inference of functional dependencies from relations[END_REF] about approximate functional dependencies, the use of a threshold ρ such that 0 < ρ ≤ 1, allows to define the measure:

Qual ρ F D (T ) = |{X → A ∈ F D | Qual A X (T ) ≥ ρ}| |F D| .
Intuitively, ρ is a threshold below which a functional dependency is considered not satisfied, and Qual ρ F D returns the ratio of functional dependencies in F D that are 'approximately satisfied' with respect to ρ. In Example 3, for ρ = 0.33, Qual ρ F D = 1, because Emp → Sal is considered 'approximately satisfied'. We point out that the knowledge of Qual F D (T ) and of every Qual A X (T ) allow to put forward the inconsistencies in T . Indeed, if we use an appropriate graphical interface to display all values of Qual A X (T ), for every X → A, then one can easily identify the values of Qual A X (T ) considered too low; and then, for each of the corresponding functional dependencies, one can justify the consistency or inconsistency of tuples in T (XA) using explanations as seen in Section 4.

Quality of Data in a Consistent Answer

Given Q : select X from T [where Γ ], we denote by Ans(Q) the set of all true tuples x over X having a true super-tuple in Sat(Γ ). Formally,

Ans(Q) = {x ∈ True(X) | (∃q ∈ True(sch(Q)))(q.X = x ∧ q.sch(Γ ) ∈ Sat(Γ ))}. Notice that, if T is consistent, then Ans(Q) = C_ans(Q).
However, if T is not consistent, there may be tuples in Ans(Q) which are not in C_ans(Q).

In the context of Example 2, for the query Q 3 , we have C_ans(Q 3 ) = {e }, whereas Ans(Q 3 ) = {e, e } (because es and e s are true and satisfy the condition (Sal = s )). However, in all cases, we have C_ans(Q) ⊆ Ans(Q).

We define the quality of the consistent answer to Q as the ratio between the number of tuples in C_ans(Q) over the number of tuples in Ans(Q). Formally, assuming that Ans(Q) is nonempty:

Qual(Q) = |C_ans(Q)| |Ans(Q)| .
If Ans(Q) = ∅ then we set Qual(Q) = 1 because in this case C_ans(Q) is empty.

Clearly, if T is consistent then, as Ans(Q) = C_ans(Q), we have Qual(Q) = 1.

Notice also that if Q involves no selection condition then Qual(Q) = |Cons(X)| |True(X)| . To illustrate this quality measure, refer to Example 2, where the consistent answers to Q 1 and Q 3 are respectively {ed} and {e }. As we also have Ans(Q 1 ) = {ed} and Ans(Q 3 ) = {e, e }, we obtain Qual(Q 1 ) = 1 and Qual(Q 3 ) = 0.5.

It is important to note that, if the contents of query answers are displayed together with their qualities, the user has the opportunity to ask for explanations as described in the previous section. For instance, in our example above, a user might wonder why the quality of the answer to query Q 3 is 0.5. The explanation to be provided in this case is that there exist tuples in Ans(Q 3 ) which are not in C_ans(Q 3 ). The user can then continue the dialogue with the system, for example by asking to see such tuples.

Conclusion

In this paper, we have addressed two issues regarding query processing in tables with nulls and functional dependencies, namely explanation of a query answer and quality of data in a query answer. The starting point was our earlier work on defining consistent answers to queries submitted to such tables [START_REF] Laurent | Consistent query answering without repairs in tables with nulls and functional dependencies[END_REF]. Based on that earlier work we have proposed an approach to explaining the content of a consistent query answer and measuring its quality. We have shown that explaining the contents consists mainly in determining why a given tuple is consistent/inconsistent, or why it is or it is not in the consistent answer to a query. We have also proposed measures for assessing the quality of the data in a table and in a query answer, as well as algorithms for their computation. Finally, we have seen how the simultaneous use of explanations and quality measures can help users to better 'understand' inconsistencies in the input table.

We are currently pursuing three lines of research. First, we aim to improve the algorithm for computing Qual(T ), because even if the computation is polynomial in the size of T , it is nevertheless exponential in the size of the universe. Second, our approach to explanation needs to be further refined, probably along the lines of [START_REF] Bertossi | Specifying and computing causes for query answers in databases via database repairs and repair-programs[END_REF][START_REF] Bertossi | Unifying causality, diagnosis, repairs and view-updates in databases[END_REF][START_REF] Meliou | Causality and explanations in databases[END_REF][START_REF] Roy | A formal approach to finding explanations for database queries[END_REF]; also, investigating interactions between explanations and quality measures is a challenging issue. Third, we are exploring the possible use of sampling techniques for providing approximate measures and further improving performance. Indeed, as our approach is meant to apply to large tables resulting from the integration of data from several sources, even a simple scan of the m-table might prove expensive.

  σt is the m-tuple such that σt(A) = {t.A} for A ∈ sch(t) 2: change := true 3: while change = true do 4: change := f alse 5:
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 1 where δ is the maximal cardinality of the components of m-tuples in Σ * , which is precisely the maximum number of A-values associated with X-values when X → A is a functional dependency in F D. As Algorithm 1 shows that |Σ * | ≤ |T |, we state that the computation of Σ * is in O(|T | 3 .δ 2 ), i.e., polynomial in the size of T . In the context of our introductory example, where T = {es, es d, e s } is a table defined over U = {Emp, Sal, Dept} with the functional dependency Emp → Sal, Σ * is built up according to the following steps:Step 1: Σ * is first set to {(e)(s), (e)(s )(d), (e )(s )}.Step 2: Considering σ = (e)(s) and σ = (e)(s )(d), the m-tuples σ 1 = (e)(ss ) and σ 1 = (e)(ss )(d) are generated. Since σ 1 σ 1 , Σ * = {(e)(ss )(d), (e )(s )}.Step 3: As a new execution of the while-loop line 3 does not change Σ * , the algorithm returns Σ * = {(e)(ss )(d), (e )(s )}.Therefore, True(T ) contains esd, es d, e s and all their sub-tuples. Hence, False(T ) = {e sd, e s, e d}. Moreover, Inc(T ) = {esd, es d, es, es , sd, s d, s, s }, and thus Cons(T ) = {ed, e s , e, e , d}.
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 2 We illustrate Definition 4 and Algorithm 2 in the context of Example 1 where Σ * = {(e)(ss )(d), (e )(s )}. Denoting (e)(ss )(d) by σ 1 and (e )(s ) by σ 2 , we have the following:

Example 3 .

 3 (a) Cons(T ) = True(T ) \ Inc(T ) and (b) Cons(T ) ∩ Inc(T ) = ∅, which imply that |Cons(T )| |True(T )| = 1 -|Inc(T )| |True(T )| . In Example 1 where Σ * = {(e)(ss )(d), (e )(s )}, we have seen that Inc(T ) = {esd, es d, es, es , sd, s d, s, s } and thus we have |Inc(T )| = 8 and counting the tuples in True(T ) amounts to counting the number of distinct subtuples of esd, es d and e s , which yields 13. Therefore, we have Qual(T ) = 1-8 13 , that is Qual(T ) = 5/13.

  T ) |F D| . In Example 3, we have Inc(Emp → Sal) = {e} and True(Emp) = {e, e }. Hence, |Inc(Emp → Sal)| = 1 and |True(Emp)| = 2, and so, Qual Sal Emp (T ) = 0.5. As |F D| = 1, we have Qual F D (T ) = 0.5.