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Abstract: We introduce Conic Linear Unit (CoLU), a natural generalization of commonly used activation functions
in neural networks. The common pointwise ReLU activation is a projection onto the positive cone and is
permutation symmetric. We propose a nonlinearity that goes beyond this symmetry: CoLU is a skew projection
onto a hypercone towards the cone’s axis. Due to the nature of this projection, CoLU enforces symmetry in a
neural network with width C from the finite-order permutation group S(C) to the infinite-order rotation/reflection
group O(C− 1), thus producing deep features that are motivated by the HSV color representation. Recent
results on merging independent neural networks via permutation modulus can be relaxed and generalized to
soft alignment modulo an optimal transport plan (Singh and Jaggi, 2020), which is useful in aligning models
of different widths. CoLU aims to further alleviate the apparent deficiency of soft alignment. Our simulation
indicates that CoLU outperforms existing generative models including Autoencoder and Latent Diffusion Model
on small or large-scale image datasets. Additionally, CoLU does not increase the number of parameters and
requires negligible additional computation overhead. The CoLU concept is quite general and can be plugged
into various neural network architectures. Ablation studies on extensions to soft projections, general Lp cones,
and the non-convex double-cone cases are briefly discussed.

1 INTRODUCTION

Scaling up neural networks is one thing, while reduc-
ing their redundancies is quite another. Aligning/Fus-
ing different models into a canonical form (Ashmore
and Gashler, 2015) is a useful way to simplify the
model structure and reduce its redundancy. In the
mean time, practically speaking, alignment enables
different models to collaborate with each other. The
term alignment in this context refers to fixing a base
model and transforming any alternative ones so that
the alternative model is very similar, if not equivalent,
to the base model. This similarity, in our setting, is
defined as the fact that both models can be linearly
interpolated without losing much performance. In the
generative model case, the effect of alignment is illus-
trated in figure 1, showing that the weights of aligned
models can be linearly interpolated to obtain a model
which performs well. In other words, the symmetry
of the model’s function space (visualized by the sym-
metry of the triangle in figure 1) is represented by
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Figure 1: Model Fusion. Fixing a base generative model
GM0, alternative models GM1, GM2 at different local min-
ima on the loss landscape are aligned as GM1’=Align(GM1),
GM2’=Align(GM2). Before the alignment, the linear inter-
polation between GM0 and GM1/GM2 has increased loss,
whereas after the alignment, this increase is reduced.

symmetry group P (permutations), and we aim to let
the quotient space (defined in section 2) modulo P be
regular, in the sense that we hope the aligned models to
be close to the base model, so that they can be merged
via linear interpolation.



However, existing alignment methods are often
rough due to the narrow function space of the net-
work’s nonlinearities. For example, for the widely-
used pointwise activation functions, the equivariance
is associated with permutations. We propose a better
design which enables smoother fusion. Meanwhile, it
is intriguing that the new structure outperforms exist-
ing ones under certain validation criteria for various
generative tasks.

1.1 Model Fusion

First of all, why do we need model fusion? We list
several aspects from both applied and theoretical per-
spectives.

Practical Uses First, in the federated learning set-
ting when the training task is distributed to local agents,
fusion is a way to aggregate the parallelized training
subtasks and synchronize the local models to obtain
a global result (Wang et al., 2020a). Second, in the
knowledge distillation setting when there is no ac-
cess to training data such as for safety reasons, fusion
makes it possible to directly ensemble models from
multiple teacher models as an alternative to aggregat-
ing the training data. Third, in the transfer learn-
ing setting, the expensive computation overhead of
re-training from scratch is saved by utilizing the infor-
mation in multiple pre-trained models.

Theoretical Benefits First, geometry: associated
with the correspondence between the aligned models
is the symmetry of the network architecture’s func-
tion space: the intuitive exchangeability of the hidden
feature maps is algebraically characterized by the per-
mutation modulus. In other words, CNN is equivariant
under channel permutation group. Different forms of
group equivariance has led to network designs with bet-
ter efficiency and generalization ability. Second, opti-
mization: learning the parameters of a neural network
is a non-convex optimization problem. Alignment re-
shapes the loss landscape and largely convexifies it.
Consequently, the training process largely converges
to a minimum which is unique up to a transforma-
tion group. Third, probability: a fully-connected (or
convolutional) layer is a linear ensembling among neu-
rons (or feature maps) of previous layers. Fixing a
certain set of trained neurons as the key’s dictionary,
alignment is used to de-anonymize an arbitrary set of
neurons so that the activating behavior of an individ-
ual neuron at the same index follows the same pattern.
The de-anonymization is deterministic, meaning each
neuron is assigned an unrepeated key with probability
1.

1.2 Probabilistic Fusion

Then a natural question arises: what if the widths of
the models to be aligned differ from each other? It’s
evident that deterministic assignment is not feasible
when fusing models of varying width. In this unbal-
anced case, the assignment constraint can be relaxed
by optimal transport. In a probabilistic sense, each key
(channel index) is not deterministically assigned to a
neuron, but instead a fuzzy mixture of neurons, whose
probability values sum up to 1 (Singh and Jaggi, 2020).
However, the model formed by the new set of neurons,
each as a multi-identity mixture, does not behave the
same way as in the unaligned model, since activating
each individual neuron is no longer feasible. To re-
solve this apparent deficiency naturally caused by the
relaxation, re-designing a more symmetric function is
a must.

Figure 2: Conic Linear Unit (three-channel case). Left:
ReLU. Middle: equivalent projective illustration of ReLU.
Right: projective illustration of CoLU. With axes denoted
as R,G,B, a 3D vector inside the positive cone represents a
RGB color, and is visualized in the 3D space. Any points
outside the cone is not visualized since the vector does not
represent a color. The arrows point from the input to the
output of the activation function.

Conic Linear Unit: From RGB to HSV The pro-
posed activation is termed as Conic Rectified Linear
Unit (abbreviated as CoReLU or CoLU for short),
named after Rectified Linear Unit (ReLU). The point-
wise ReLU is generalized to pixel-wise CoLU in the
following way.

In the special case of three channels, CoLU is nat-
urally motivated by switching from Red-Green-Blue
(RGB) to the Hue-Saturation-Value (HSV) color repre-
sentation, visualized in figure 2. ReLU is attending to
perceptible color defined by the positive octant, where
color components which are too dark (negative-valued)
are not perceivable (mapped to zero). Instead of ReLU
which preserves positive values, CoLU preserves low
values on saturation, which means saturation values
larger than a threshold value (proportional to the lumi-
nosity value) are mapped to the maximal threshold.

In high dimensions as is shown in figure 3, where
the token space does not represent a color, migration
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Figure 3: Conic Linear Units, from 3 channels to many
channels. Top: cartesian axes of positive cones of ReLU
and CoLU in three dimensions. Bottom: generalizations to
high-dimensional space.

from the positive hypercone to the round hypercone
motivates CoLU in hidden layers. Closed-form for-
mula of CoLU is detailed in section 3.

Contributions We propose CoLU, a class of acti-
vation functions which present convolutional neural
networks with rotational symmetry in the channel di-
mension. In principle, CoLU achieves improved soft
alignment using optimal transport which is useful in
federated learning. Intriguingly, CoLU outperforms
baseline generative models on several tasks.

Organization of Sections After introducing prelimi-
naries in section 2, we define CoLU in section 3, and
describe the fusion algorithm in section 4. Quantitative
improvements of conic activation and high-resolution
generation results are presented in section 5.1. Then,
weight alignment for both recognition and generative
models are experimented in section 5.2. Related works
are discussed in section 6 and the paper is concluded
in section 7.

2 PRELIMINARIES

Consider a neural network learned on paired data
(x0,y), where the input and output are sampled from
random variables following some data distribution
(x0,y)∼ µ. The network is parameterized with weight
W = {Wℓ}T

ℓ=1 trained from initialization W∼ π, and

the layer outputs are a sequence of hidden states
{x(ℓ)}T

ℓ=0, with terminal layers being the input x(0) =
x0 and output x(T ) = y respectively.
Definition 1 (Equivariance). A group P’s action on
a space M is defined by P×M → M, (P,x) 7→ Px,
∀P ∈ P,x ∈M. A function f : M→M is said to admit
the group P, or being equivariant under group action
P if and only if the function commutes with the left
multiplication as f ◦ P = P ◦ f ,∀P ∈ P. Here P is
called an alignment.
Definition 2 (Hidden State Alignment). Two hid-
den states x(0)(ℓ) and x(1)(ℓ) are equivalent up to
an alignment if and only if there exists an alignment
P such that x(1)(ℓ) = Px(0)(ℓ), denoted as a relation
x(0)(ℓ) ∼P x(1)(ℓ). Two neural networks are equiv-
alent if and only if all hidden states are equivalent,
that is ∀ℓ = 1, . . . ,T − 1, x(0)(ℓ) ∼P x(1)(ℓ), denoted
as x(0) ∼P x(1).
Example 1 (CNN with Pointwise Activation). The
CNN’s symmetry group P is channel permutations. A
CNN (without skip connections) is defined by

x(ℓ+1) = Wℓ ⋆λ(x(ℓ)) (1)
where λ is a pointwise activation such as
ReLU, and the convolution is defined as
(w ⋆ x)(σ,ω1,ω2) = ∑

C′
σ′=1 ∑(ω′1,ω

′
2)∈Ω′ x(σ

′,ω1 +

ω′1,ω2 + ω′2)w(σ,σ
′,ω′1,ω

′
2) where Ω′ is a small

convolution window. The channel permutation
group is defined as P = S(C) := {Pℓ ∈ RC×C :
∃ permutation σ,(Pℓ)i j = 1{ j=σ(i)}∀i = 1, . . . ,C}.

Proof. Pointwise activation function commutes with
permutation as Pλ(x) = λ(Px), and since the align-
ment is along the channel axis, by exchanging the
order of multiplication and sum in the definition of
convolution, we obtain (PW)⋆ x = W⋆ (Px). There-
fore x 7→Wℓ ⋆λ(x) and P commutes.

Theorem 1 (Weight Alignment). The CNN’s hid-
den state alignment is equivalent to weight align-
ment. The weight alignment is defined as W(1)

ℓ =

PℓW
(0)
ℓ P−1

ℓ−1,∀ℓ = 1, . . . ,T − 1, and denoted as

W(0)
ℓ ∼P W(1)

ℓ .

Proof. Fix a base neural network with states x(0)(ℓ)
and parameters W(0)

ℓ . By definition of hidden state

alignment, equation 1 is written as P−1
ℓ x(1)(ℓ)=W(0)

ℓ ⋆

λ(P−1
ℓ−1x(0)(ℓ− 1)) where P is a group element and

hence invertible. Since pointwise activation is equiv-
ariant under permutation, this is equivalent to x(1)(ℓ) =
Pℓ−1W(0)

ℓ ⋆
(
P−1
ℓ−1λ(x(0)(ℓ−1))

)
Finally by equivari-

ance of convolution under channel permutation we
obtain x(1)(ℓ) =

(
PℓW

(0)
ℓ P−1

ℓ−1

)
⋆λ(x(0)(ℓ−1)).



Definition 3 (Quotient Space). The set of equivalent
classes is defined as [x] = {y∈M : x∼ y} where x∈M
is called a representative. Given a relation ∼P on a
space M, the quotient space denoted by M/ ∼P or
simply M/P is defined as the set of equivalent classes
M/∼P:= {[x] : x ∈M} ⊂ 2M .
Conjecture 1 (Fusion by Linear Interpolation). Two
neural network weights W(0)

ℓ and W(1)
ℓ with the

same structure (probably with different channel sizes),
which are obtained by different data and initializa-
tion (π(0),µ(0)) and (π(1),µ(1)) respectively, have rep-
resentatives which can be interpolated so that the loss
function remains low on the interpolated weight.
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Figure 4: Model Fusion. Top: different models (indepen-
dently trained on different datasets or initializations) coin-
cides in the same loss basin by means of weight alignment.
Bottom: diagram of the per-layer channel alignment Pℓ.

The alignment is illustrated in figure 4. To fa-
cilitate our conjecture of model fusion, a new class
of activation functions is designed so that it admits a
larger (infinite-order) alignment group namely (C−1)-
channel rotations around the first axis P := {Pℓ ∈
RC×C : Pℓ[2, . . . ,C;2, . . . ,C]∈O(C−1)}, where O(C)
is the set of C-dimensional orthogonal matrices.

3 CONIC LINEAR UNITS

Projective Form Let x = (x1, . . . ,xC) be the input of
the activation function where C is the network width.
Inspired by ReLU

ReLU(x) = ProjV+(x) = x+ (2)

whose projected cone V+=RC
≥0 = {x∈RC : xi≥ 0, i=

1, . . . ,C} is the positive cone, CoLU is defined as
CoLU(x) = ProjV∩H(x)(x) = argmin

y∈V
(y−x)⊥e

∥y− x∥2, (3)

where the hypercone is V = {x ∈ RC : ∥x⊥e ∥2 ≤ tx · e}
with e being the unit vector in the axis direction,

x = x · e+ x⊥e , meaning xe is parallel to e and x⊥e is
perpendicular to e, and the cone’s cross-section hyper-
plane is H(x) = {y ∈ RC : y · e = x · e} whose normal
vector is e. t > 0 is the tangent value of the opening an-
gle of the cone. We set t = 1 and e = e1 = (1,0, . . . ,0)
without loss of generality.

In comparison of pointwise activations, CoLU is
attending to the round hypercone instead. The two
dimensional case is illustrated in figure 5.

input

ReLU

CoLU

Figure 5: ReLU and CoLU’s projective cone in 2D.

Closed Form CoLU is closed-form and auto-
differentiable activation as a drop-in replacement of
pointwise activations.

CoLU(x)i = x1V +(x1+e1 +
x1

∥x−1∥
x−1)1V c

=

{
clamp(x1

/
∥x−1∥,0,1)xi, i = 2, . . . ,C

max{x1,0}, i = 1

(4)

where x−1 = (0,x2, . . . ,xC), clamp(x,a,b) =
min{max{x,a},b}, V c is the complement set of
V ⊆ RC, and ∥ · ∥ is the L2 norm. In practice, ∥x−1∥ is
replaced with (∥x−1∥+ ε) where ε is a small constant,
for numerical stability.

Extensions of Conic Linear Unit

Soft Projection Inspired by Sigmoid-Weighted Lin-
ear Units (SiLU) SiLU(x) = xsigmoid(x), CoLU can
be relaxed as a soft projection.

CoSiLU(x)i =

{
sigmoid(x1

/
∥x−1∥−0.5)xi, i≥ 2

max{x1,0}, i = 1
(5)

Lp-Cones CoLU can also be extended to the case of
Lp cones where p ∈ R+∪{∞}.

CoReLUp(x)i =

{
clamp(x1

/
∥x−1∥p,0,1)xi, i≥ 2

max{x1,0}, i = 1
(6)



Non-convex Double-Cones Replacing the cone with
a signed cone,

CoReLU±(x)i =

{
clamp(x1

/
∥x−1∥,−1,1)xi, i≥ 2

x1, i = 1
(7)

4 MODEL FUSION

4.1 Model Alignment

With proper permutations, the aligned weights
P⊤ℓ−1W(1)

ℓ Pℓ live in the same basin with the reference
model relatively. More precisely, define interpolated
weight as

W(λ)
ℓ = (1−λ)W(0)

ℓ +λPℓW
(1)
ℓ P⊤ℓ−1,λ ∈ [0,1], (8)

then the loss barrier L(W(λ)) as a function over λ is a
concave function for Pℓ = I,∀ℓ= 1, . . . ,T , and this bar-
rier is largely flattened after the alignment, illustrated
in figure 8 in the experiment session.

Algorithm 1: Soft Alignment via Optimal Transport

Data: W(0),W(1) ; // Base and
Alternative Models

Result: P =
argmax
Pℓ∈Π(1,1)

∑
T
ℓ=1⟨W

(0)
ℓ ,PℓW

(1)
ℓ P⊤ℓ−1⟩F

Pℓ← ICℓ
; // Initialization

ε ; // Small Constant
S,Sprev←−∞ ;
repeat

Sprev← S ;
for ℓ← RandPerm({1, . . . ,T −1}) do

Pℓ←
argmax

Pℓ1=1,Pℓ
⊤1=1
⟨W(0)

ℓ ,PℓW
(1)
ℓ P⊤ℓ−1⟩F +

⟨W(0)
ℓ+1,Pℓ+1W(1)

ℓ+1P⊤ℓ ⟩F ;
end
S← ∑

T
ℓ=1⟨W

(0)
ℓ ,PℓW

(1)
ℓ P⊤ℓ−1⟩F ;

until S≤ Sprev + ε;

4.2 Optimal Alignment

The algorithm to find the optimal permutation is maxi-
mizing the Frobenius product between the reference
model and the aligned model, by using either the
weights or activations. Both cases are referred to as

Figure 6: Geometry of point-wise activations (L0) versus
CoLU (L2) and their closeness to OT space.

weight matching and activation matching respec-
tively, and we focus on the first method which doesn’t
require training data. It reduces to a Sum of Bilinear
Assignment Problem (SOBAP), and is approximated
by solving the Linear Assignment Problem sequen-
tially in a greedy manner, whose convergence is ana-
lyzed in (Ainsworth et al., 2023).

Each permutation Pℓ for ℓ= 1, . . . ,T −1 takes the
form of a permutation matrix P ∈ S(Cℓ). The linear
assignment problem is stated as

max
Pℓ∈S(Cℓ)

⟨W(0)
ℓ ,PℓW

(1)
ℓ P⊤ℓ−1⟩F + ⟨W(0)

ℓ+1,Pℓ+1W(1)
ℓ+1P⊤ℓ ⟩F

(9)
where the input and output channel spaces are fixed
and not aligned, meaning P0 = IC0 ,PT = ICT . Equiva-
lently, the linear optimization objective in equation 9
can be written as ∑

C
i, j=1 Ci jPi j.

4.3 Algorithm: Optimal Transport

The constraint of permutation matrices Pℓ ∈ S(Cℓ) can
be relaxed to probabilistic assignment matrices whose
marginals are ones in both dimensions Π(1,1) = {P ∈
RC×C : ∑i Pi j = ∑ j Pi j = 1,∀i, j}, also known as bi-
stochastic matrices. This is useful especially in the
more general case when the layer width Cℓ differs
between the two models, and it can be solved with op-
timal transport. Using entropic regularization and the
Sinkhorn’s algorithm, the time complexity can be ac-
celerated from O(C2) by Linear Programming to O(C)
by fixed-point method. The Kantorovich relaxation of
optimal transport problem is stated as:

min
P1=1,P⊤1=1

C

∑
i, j=1

Ci jPi j + εH(P) (10)

where the cost matrix C is given in equation 9, and
H(P) = −Pi j(logPi j − 1) is an entropic regulariza-
tion term scaled by ε > 0. However, the relaxation of
Optimal Transport breaks the model, since a neural
network is permutation equivariant, but not channel-
wise interpolation equivariant. Figure 6 explains the
reason why CoLU leads to seamless fusion, which



is the fact that the distance between interpolation (L1

level set) and rotation (L2 level set) spaces are closer
than the one between interpolation and permutation.
Note that the CoLU symmetry is on RC−1 excluding
the first dimension, and Π(1,1) is a relaxed constraint
and works empirically.

5 EXPERIMENTS

5.1 Generative Performance of CoLU

Performance SiLU CoSiLU

Symmetry Group S(C) O(C−1)
# Symmetries CT ∞

Time Complexity O(C) O(C)

PSNR / dB (↑) 24.53±2.54 25.83±2.52
IS (↑) 7.23±0.08 8.04±0.94
KID / ×10−3 (↓) 6.35±0.77 2.71±0.50
SSIM / ×10−1 (↑) 8.61±0.55 8.93±0.44

Table 1: Performance of point-wise activation (SiLU) versus
CoSiLU (Ours).

Figure 7: Generation results of CoLU-LDM on FFHQ.

Two tasks are experimented: image reconstruction
task with autoencoder with regularization of Genera-
tive Adversarial Networks (GAN), and in image gen-
eration with Diffusion Models (DM).

Image Reconstruction We follow the autoencoder
architecture in (Rombach et al., 2022) to build a vari-

ational autoencoders enhanced with GAN and per-
ceptual loss regularizations, and replace the Sigmoid
Linear Unit (SiLU) activation with CoSiLU in equa-
tion 5 The model is trained on the CIFAR10 dataset
(Krizhevsky and Hinton, ).The models are trained us-
ing 8×NVIDIA A100 GPUs until convergence, which
typically occurs around 200 ∼ 300 epochs. The hy-
perparameters involve a base learning rate of 10−7,
a batch size of 64, and other parameters as stated in
LDM. Multiple evaluation measures are validated in-
cluding peak signal-to-noise ratio (PSNR), Inception
Score (IS) (Salimans et al., 2016), Kernel Inception
Distance (KID) (Bińkowski et al., 2018), and Struc-
tural Similarity Index Measure (SSIM) (Wang et al.,
2004). The results are shown in table 1, where CoSiLU
is found to outperform baseline (SiLU) under these
criteria.

High-resolusion Image Generation Then we vali-
date CoSiLU on FFHQ (Karras et al., 2019) and AFHQ
(Choi et al., 2018) datasets. It is shown that on both
datasets, CoSiLU-based diffusion models produces
sharp results and work on par with SiLU activation.
Generated high-resolution images trained on FFHQ
are shown in figure 7.

5.2 Model Fusion
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Figure 8: Seamless Model Fusion. Loss function along
the linear interpolation between two models independently
trained from different initializations of fully-connected mod-
els on MNIST dataset. The blue line is naı̈ve interpolation,
and the red line is interpolation after alignment. Left: ReLU
network with permutation alignment. Right: CoLU network
with soft alignment. Both alignments successfully align al-
ternative models towards the base one.

Fusing Recognition Models Alignment of MNIST
recognition models are performed on the same network
as above with three fully-connected layers and two
nonlinearities. As is shown in figure 8, both CoLU
and ReLU aligns models with permutation modulus
or optimal transport, which applies to networks with
varying width.

Fusing Generative Models CoLU was designed
aiming at a goal of merging generative models. Figure
9 shows partial milestone towards this goal, namely
it’s possible to align two super-resolution model so



Before

After

Figure 9: Fusing generative models. Outputs of models whose parameters are interpolated between two super-resolution
models trained from different initializations. Top row: no alignment. Bottom row: the second model is aligned towards the first
model, where intermediate outputs are brighter.

that their interpolation path is closer to the ground-
truth of the output. Here it shows a lightening of the
output. The super resolution model follows ESPCN
(Shi et al., 2016), where all settings follow the original
work. We observe an alleviation of the darkening effect
after alignment. The base model and the alternative
model are initialized with independent and identically
distributed weights.

Figure 10 is another result showing that diffusion
model might be a more suitable choice than single-
pass generative models for fusion via interpolation.
The interpolating effect between two dependent dif-
fusion models. Instead of aligning, the right image
is output by a model fine-tuned from the model on
the left, using three images shown on the right. The
generated images are of resolution 256x256 without
perceptible degradation of quality. The smooth inter-
polation and sharp outcome presents the feasibility of
merging dependent models by linear interpolation.

6 RELATED WORKS

Equivariant Network Convolutional weight shar-
ing (LeCun et al., 1989) is a successful example of
imposing spatial homogeneity on the 2D image canvas
as a successful a priori assumption upon the network
architecture. The introduction of CoLU considers new
homogeneity on the channel dimension. More gen-
erally, (Weiler and Cesa, 2019) conducts a review on
equivariant nonlinearities in neural networks and stud-
ies certain special forms of nonlinear functions, such
as point-wise activations, individual subspace (pixel-
wise) activations, norm nonlinearities, etc., which do
not cover the case of CoLU.

Disentangling the Channel Dimension Related to
the permutation equivariance is the homogeneity of
the channel indice’s space. It is a crucial subject in
convolutional neural networks since it has been proven

that local spatial correlation can be sufficiently char-
acterized with deterministic wavelet filters (Bruna and
Mallat, 2013). Combined with learned pixel-wise
linear transform, or 1-by-1 convolution, invariant scat-
tering networks are sufficient to achieve high perfor-
mance in recognition tasks. Therefore, disentangling
the channel dimension is the missing ingredient in
simplifying neural networks, where various assump-
tions can be imposed. For instance, sparsity as strong
as block-diagonal in the channel dimension results in
group convolution. Orthogonality results in spectrum-
preserving weights. In the case of convolutional neural
networks, the authors of (Wang et al., 2020b) propose
an orthogonality-inducing regularization term to en-
sure that the convolutional weights are empirically
orthogonal. The link to CoLU is close since the sym-
metric property of CoLU is exactly pixel-wise rota-
tion/reflection equivariance, which bridges the gap of
the symmetry bottleneck caused by the permutation-
restrictive point-wise activations.

Model Alignment Merging trained models by ex-
ploiting permutation symmetry of pointwise activa-
tions has led to a fruitful line of research (Ashmore
and Gashler, 2015; Wang et al., 2020a). Recently
in (Ainsworth et al., 2023), deep recognition models
like ResNet-50 are also align-able by deterministically
matching weights. We continue on this path and fur-
ther explore the merit of a more symmetric activation
function to improve the merging effect, on both recog-
nition and generative models.

7 CONCLUSION

We have introduced a new class of activation functions
called Conic Linear Units. Our contribution allows
neural networks to possess infinite-order group sym-
metry beyond channel permutations, which was pre-
viously unattainable. This novel design addresses the



Figure 10: Fusing fine-tuned models. Outputs of interpolated models between a Diffusion Model with parameters W0 and a
Diffusion Model with parameters W1 fine-tuned from the previous model on the dataset of three cat images on the right. More
precisely, the 6 left images represent the outputs from a diffusion model whose parameters are W = (1−λ)W0 +λW1 where
λ = 0, 1

5 ,
2
5 ,

3
5 ,

4
5 ,1. λ = 0 corresponds to no fine-tuning and λ = 1 corresponds to the fine-tuned model.

apparent deficiency by incorporating soft-alignment
through optimal transport in scenarios like federated
learning. Moreover, it outperforms baseline results in
terms of image generation quality.
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