
HAL Id: hal-04382869
https://hal.science/hal-04382869v1

Preprint submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On hyperbolic dimension gap for entire functions
Volker Mayer, Mariusz Urbański

To cite this version:
Volker Mayer, Mariusz Urbański. On hyperbolic dimension gap for entire functions. 2024. �hal-
04382869�

https://hal.science/hal-04382869v1
https://hal.archives-ouvertes.fr


ar
X

iv
:2

30
6.

02
62

7v
2 

 [
m

at
h.

D
S]

  2
1 

Ju
l 2

02
3

ON HYPERBOLIC DIMENSION GAP FOR ENTIRE

FUNCTIONS

VOLKER MAYER AND MARIUSZ URBAŃSKI

Abstract. Polynomials and entire functions whose hyperbolic dimension is
strictly smaller than the Hausdorff dimension of their Julia set are known to
exist but in all these examples the latter dimension is maximal, i.e. equal
to two. In this paper we show that there exist hyperbolic entire functions
f having Hausdorff dimension of the Julia set HDpJf q ă 2 and hyperbolic
dimension HypDimpfq ă HDpJf q.

1. Introduction

In this paper we consider some relations between the Hausdorff dimension
HDpJfq and the hyperbolic dimension HypDimpfq of the Julia set Jf of an
entire function f : C Ñ C, where C, as usually, denotes the complex plane.
More precisely, we show the following.

Theorem 1.1. There exist hyperbolic entire functions f in the Eremenko–

Lyubich class B such that

HypDimpfq ă HDpJfq ă 2.

The concept HypDimpfq of hyperbolic dimension has been introduced by
Shishikura in [17]. Given an entire function f : C Ñ C it is defined to be the
supremum of Hausdorff dimensions of all hyperbolic sets of f . We recall that a
set X Ă C is hyperbolic if it is compact, forward–invariant under f and if there
exist c ą 0 and κ ą 1 such that

|pfnq1pzq| ě cκn for every z P X and all n ě 1.

It is immediate from this definition that X Ă Jf . For hyperbolic polynomials
the whole Julia set is a hyperbolic set, whence there is no difference between the
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hyperbolic dimension and the Hausdorff dimension of the Julia set. In general,
since hyperbolic sets of f are subsets of the Julia set of f , we have that

(1.1) HypDimpfq ď HDpJfq.
Examples of entire functions with strict inequality are known ([19], [21]). Quite
recently Avila-Lyubich [1, 2] showed that there exist Feigenbaum polynomials
having this property. But in all known examples with strict inequality in (1.1)
the Hausdorff dimension of the Julia set is maximal, i.e. equal to two and Avila-
Lyubich mention that for arbitrary polynomials f with HDpJfq ă 2 one should
have equality. Here we show that this is not the case for entire functions even
inside the Eremenko-Lyubich class B consisting of all entire functions having a
bounded set of finite singularities.

In order to prove Theorem 1.1 we first need good candidates of entire func-
tions whose Julia sets have Hausdorff dimension less than two. The first such
examples where provided by Gwyneth Stallard during 1990’s. The interested
reader can find an overview in her survey in [16]. These examples are entire
functions having one single logarithmic tract over infinity; see Section 2.1 for
the definition of the singularities of entire functions, in particular of logarithmic
tract. As nowadays it is well known, the geometry of such a tract or the growth
of the function in the tract influences the size of the Julia set. Particularly in-
teresting for the present work is her family of intermediate growth in [18]. The
growth does depend on a parameter p ą 0 and these functions are defined by
the formula

(1.2) Epzq :“ 1

2iπ

ż

L

exp
`
eplog ξq1`pq

˘

ξ ´ z
dξ ,

where L is the boundary of the region

(1.3) G “
"
x ` iy P C : |y| ă πx

p1 ` pqplog xqp , x ą 3

*
,

oriented in the clockwise direction, for z P CzG and by analytic continuation
for z P G. Appropriate details of such analytic extension are given in Section
2.2.. The reader should have in mind that this function is close to

(1.4) fpzq “ exp
`
eplog zq1`p˘

for z P G

and is bounded elsewhere. Here plog zq1`p is defined so that it gives real values
for real z ą e.

Consider then the family
`
El : C Ñ C

˘
lPC

defined by the formula

Elpzq :“ Epz ´ lq.
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Shifting in this way the function E by a large l ą 0 makes the logarithmic tract
is backward invariant and yields JEl

Ă G. Consequently, only the dynamics of
El in G, the domain on which El is close to the function fl, given by the formula

flpzq :“ fpz ´ lq,
is relevant for our purposes. The details of this and the definition of the Julia
set in the present setting are given in Section 2.1.

Fact 1.2 (Stallard [20]). Let p ą 0. All the functions El, l P C, belong to the

Eremenko–Lyubich class B and there exists a constant Cp ą 0 such that for all

real l ą Cp we have that

HDpJEl
q “ 1 ` 1

1 ` p
ă 2 .

In the present note we analyze the hyperbolic dimension of these functions.
In fact, we first work with the functions fl and then transfer the results to the
globally defined entire functions El.

The key point is to employ the thermodynamic formalism of [11] and, in
particular, the Bowen’s Formula from this paper that determines hyperbolic
dimension. We will see that limlÑ8 HypDimpElq “ 1 which clearly implies that
HypDimpElq ă HDpJEl

q provided that l ą Cp is large enough.

Acknowledgement: We would like to thank the referee for excellent refereeing,
comments, and suggestions which improved the final exposition of our results.

1.1. Notation. We use standard notation such as Dpz, rq for the open disk in
C with center z P C and radius r ą 0. When the center is the origin, we also
use the simplified notation

Dr :“ Dp0, rq.
The complement of its closure will be denoted by

D
˚
r :“ CzDr.

Frequently we deal with half–spaces. Let

Hs :“
 
z P C : ℜz ą s

(
, s ě 0 .

When s “ 0, then we also write H for H0.
Many constants, especially those in Fact 2.3, depend on the parameter p of

the definitions of the functions E and f . However, this will be fixed throughout
the whole paper and we may ignore it.

We say that

A ĺ B
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for non–negative real expressions A and B if and only if there exists a positive
constant C independent of variable parameters involved in A and B such that
A ď CB. We then say that A ľ B if and only if B ĺ A. Finally, A — B if and
only if A ĺ B and B ĺ A.

2. Singularities, models and approximating entire functions

2.1. General definitions. Iversen’s classification of singularities is explained
in length in [9], see also [4]. An entire function g : C Ñ C can have only two

types of singular values. Firstly, a point b P Ĉ is a critical value of g if and only
if b “ gpcq for some c P C with g1pcq “ 0. Secondly, a complex number b P Ĉ

is an asymptotical value of g if and only if there exists a continuous function
γ : r0,`8q Ñ C such that

lim
tÑ`8

γptq “ 8 and lim
tÑ`8

fpγptqq “ b.

In this latter case for every r ą 0 there exists an unbounded connected compo-
nent Ωr of g´1pDpb, rqq such that

Ωr1 Ă Ωr

whenever r1 ă r and č

rą0

Ωr “ H.

Such a choice of components is called an asymptotic tract over b and it is called
logarithmic tract in the case when the map g : Ωr Ñ Dpb, rqztbu is a universal
covering for some r ą 0. The set of singular values of f is proved to consist of
all critical and asymptotic values of f . Its intersection with C will be denoted
by Spgq.

We consider functions belonging to the Eremenko–Lyubich class B that con-
sists of all entire functions g for which Spgq is a bounded set. These functions
are also called of bounded type. If g P B, then there exists r ą 0 such that
Spgq Ă Dr. Then g´1pD˚

r q consists of mutually disjoint unbounded Jordan do-
mains Ωr with real analytic boundaries such that g : Ω Ñ D

˚
r is a covering map

(see [8]). Thus, an entire function g in class B has only logarithmic singularities
over infinity. As we already mentioned it, the connected components of g´1pD˚

r q
are called tracts or, more precisely, logarithmic tracts. Then there exist all holo-
morphic branches of the logarithm of g restricted to Ωr. Fix one of them and
denote it by τ . So,

(2.1) g|Ωr
“ exp ˝τ,

where
ϕ “ τ´1 : Hlog r Ñ Ωr
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is a conformal homeomorphism. In addition, ϕ extends continuously to 8 and
ϕp8q “ 8.

Keeping this notation, if we restrict g to the tracts over infinity then it is now
standard, especially since the appearance of the papers [5, 6] by Chris Bishop,
to call the map

g|g´1pD˚
r q : g

´1pD˚
r q Ñ D

˚
r

a model function. We will see that the functions considered in our current
paper have only one single tract over infinity. This is the reason why we use the
following simplified definition of a model function. This is in the spirit of the
definition in [14], see [5, 6] for the general one.

Definition 2.1. A model is any holomorphic map

g “ eτ : Ωr Ñ D
˚
r ,

where

(1) r P r1,`8q,
(2) Ωr is a simply connected unbounded domain in C, called a tract, such

that BΩr is a connected subset of C

and

(3) τ : Ωr Ñ Hlog r is a conformal homeomorphism fixing infinity; the latter

more precisely meaning that

τpzq Ñ 8 as z Ñ 8.

The tract Ωr may or may not intersect the disk Dr. The later case has
important dynamical consequences.

Definition 2.2. If f is a model or an entire function of bounded type and if

there exists r ą 0 such that

(2.2) Spfq Ă Dr and f´1pD˚
r q Ă D

˚
r ,

then f is called of disjoint type.

If f is such a disjoint type model or entire function, then the Julia set of f
is defined to be

Jf :“
 
z P D

˚
r : fnpzq P D

˚
r for all n ě 1

(
.

For disjoint type entire functions this definition coincides with the usual one,
see Proposition 2.2 in [15].
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2.2. Elementary properties of the functions E and f . We now discuss
some elementary properties of the functions introduced in the introduction and
we examine how they behave with respect to the above definitions.

To start with, we recall that these functions have been introduced and studied
by Stallard and her paper [18, Section 3] lists elementary properties of E and
f . We recall now some necessary facts from this paper.

Let’s denote:

Gx0,κ :“
"
z “ x ` iy P C : x ą x0 and |y| ă κ

πx

p1 ` pqplog xqp
*

and abbreviate Gx0
“ Gx0,1 so that the set G of (1.3) is G3 “ G3,1. For

any integer n ě 3 let σn`1 be the boundary of the open set GzGn`1. The
orientation of σn`1 and of all following boundary curves are always understood
in the clockwise direction. Cauchy’s Integral Formula shows that

1

2iπ

ż

σn`1

fpξq
ξ ´ z

dξ “ 0 for every z R G.

Therefore, still for z R G,

Epzq “ 1

2iπ

ż

BG

fpξq
ξ ´ z

dξ “ 1

2iπ

ż

BGn`1

fpξq
ξ ´ z

dξ .

It thus follows that the right hand side integral gives the holomorphic extension
of E to the domain CzGn`1.

Consider now an arbitrary point z P GzGn`1. Then, Cauchy’s Residue The-
orem shows that

Epzq “ 1

2iπ

ż

BGn`1

fpξq
ξ ´ z

dξ

“ ´ 1

2iπ

ż

BpGnzGn`1q

fpξq
ξ ´ z

dξ ` 1

2iπ

ż

BGn

fpξq
ξ ´ z

dξ

“ fpzq ` 1

2iπ

ż

BGn

fpξq
ξ ´ z

dξ.

Starting with this observation, one can get the following fact which is con-
tained in Lemma 3.1 in [18] along with its proof.

Fact 2.3. Let qL, pL be the boundary of GD`1, 5
6

, GD´1, 7
6

respectively. Then there

exist constants C,D ą 3 such that the following hold.

(1) If z R GD then

|Epzq| ď C

and
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if z P GD then

|Epzq ´ fpzq| ď C as well as |E 1pzq ´ f 1pzq| ď C.

(2)

Epzq “ 1

2πi

ż

qL

fptq
t ´ z

dt for z R GD

and

Epzq “ fpzq ` 1

2πi

ż

pL

fptq
t ´ z

dt for z P GD.

(3) If z P GD, 7
6

zIntpGD, 5
6

q then

|fpzq| ď exp
´

´ 1

2
e

1

2
plogℜzq1`p

¯
.

Item (1) from this Fact 2.3 shows that f´1pD˚
r q Ă GD for every r ą 2C. Ele-

mentary estimates, based on the explicit representation of f , show that f´1pD˚
r q

is a simply connected unbounded domain in C. It turns out that the same is true
for the approximating entire function E; details can be found in Proposition 2.2
of [14]. Thus, we have the following.

Fact 2.4. Let C be given by Fact 2.3. Then, there exists r0 ą 4C such that

SpEq Ă Dr0{2

and for every r ě r0{2, both sets E´1pD˚
r q and f´1pD˚

r q are simply connected

unbounded domains in C contained in GD. They will be respectively denoted by

ΩE,r :“ E´1pD˚
r q and Ωf,r :“ f´1pD˚

r q .

From now on fix any

(2.3) r ě r0{2,
where r0 comes from Fact 2.4. Then the map f : Ωf,r Ñ D˚

r is of the form
fpzq “ eτpzq with τ : Ωf,r Ñ Hlog r given by

τpzq :“ exppplog zq1`pq.
We have to know what the inverse conformal homeomorphism ϕ “ τ´1 :
Hlog r Ñ Ωf,r looks like. Indeed, a straightforward calculation gives

(2.4) ϕpξq “ exp
´

plog ξq 1

1`p

¯
,

where log is the principal branch of logarithm again, i.e. determined by the
requirement that log 1 “ 0.

In conclusion,

(2.5) f|Ωf,r
“ eτ : Ωf,r Ñ D

˚
r
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is a model as defined in Definition 2.1; fact 2.3 explains how the entire function
E approximates this model.

Lemma 2.5. There exists a constant K ě 1 such that

1

K
ď |ϕ1pξ ` iyq|

|ϕ1pξq| ď K

for every ξ with ℜpξq ě log r0 and every 0 ď y ď 2π.

Proof. The statement follows from Koebe’s Distortion Theorem since the con-
formal map ϕ “ Hlog r0 Ñ Ωf,r0 is in fact defined on the half space Hlogpr0{2q. �

2.3. Disjoint Type Versions of El and fl. Given any l P C, the functions
fl “ f ˝ Tl and El “ E ˝ Tl, where Tl is the translation z ÞÑ z ´ l, have been
defined in the introduction. We have that El P B since it is known, see [20],
that E P B.

Obviously,

(2.6) Ωfl,r :“ f´1
l pD˚

r q “ f´1pD˚
r q ` l “ Ωf,r ` l,

and also

(2.7) ΩEl,r “ E´1
l pD˚

r q “ E´1pD˚
r q ` l.

By Fact 2.4, for all r ě r0{2 and l P r0,`8q, all these tracts are contained in
respective sets GD ` l. So, setting

(2.8) lr :“ maxt0, r ´ Du ,
we have that

(2.9) Ωfl,r , ΩEl,r Ă D
˚
r

for all r ě r0{2 and all l ě lr. Consequently, all the functions fl,El, l ě lr, are
of disjoint type and for their Julia sets we have that

(2.10) Jfl
,JEl

Ă D
˚
r

for all r ě r0{2 and all l ě lr.
Recall that for the model f we have the expression (2.5). The analogous

expression for fl is

(2.11) fl|Ωfl,r
“ eτl : Ωfl,r Ñ D

˚
r

where τlpzq “ τpz ´ lq so that the inverse of τl is

(2.12) ϕl “ ϕ ` l : Hlog r Ñ Ωfl,r

where ϕ is still the conformal map defined by (2.4)
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3. Thermodynamical formalism

Our ultimate goal is to determine the hyperbolic dimension of the functions
El which, under certain conditions, can be done by employing the methods of
thermodynamic formalism. The hyperbolic dimension is then given by the zero
of the topological pressure, the fact that goes back to Bowen [7]. In the present
context, namely for disjoint type models and entire functions of bounded type,
such a theory has been developed in [11].

Let CbpD˚
r q be the vector space of all complex–valued bounded continuous

functions defined on D˚
r . Endowed with the supremum norm, it becomes a

Banach space.
Let g :“ fl or g :“ El. Given t ą 0, the transfer operator for the map g and

for the parameter t, acting on a function h P CbpD˚
r q, is defined by the formula

(3.1) Lg,thpwq :“
ÿ

gpzq“w

|g1pzq|´t
1 hpzq for every w P D

˚
r ,

where

|g1pzq|1 :“
|g1pzq|
|gpzq| |z|

is the logarithmic derivative of g evaluated at the point z.
We are to find out for which parameters t ą 0 the following two crucial

properties hold:

(3.2) }Lg,t11}8 ă `8 and lim
wÑ8

Lg,t11pwq “ 0.

Indeed, since our map g is of disjoint type, once (3.2) is verified then, following
[11, Section 8], we deduce that the whole thermodynamic formalism, along with
all its applications obtained in [11], holds. Especially Bowen’s Formula does.
This formula involves topological pressure which for the disjoint type map g is
given at a parameter t P p0,`8q by the formula

(3.3) Ppg, tq “ lim
nÑ8

1

n
logLn

g,t11pwq,

where w P D˚
r is any arbitrarily chosen point. The limit exists and is independent

of w because of Theorem 8.1 in [11] which ultimately goes back to Lemma 5.8
and Corollary 5.18 in [10].

3.1. Estimates for the Transfer operators of the Model Functions fl.

Proposition 3.1. Let Lfl,t be the transfer operator of fl, l ě 0, with a parameter

t ą 0. Fix r ě r0. Let w0 P D˚
r . Then

Lfl,t11pw0q ă 8 if and only if t ą 1 .
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Moreover, if t ą 1 then (3.2) holds for g “ fl.

Proof. Having w0 P D
˚
r and t ą 0, let us start exactly as in the proof of The-

orem 4.1 in [11]. If zl P f´1
l pw0q then, using (2.11), the logarithmic derivative

can be expressed as follows:

|f 1
l pzlq|1 “ |τ 1

l pzlqzl| “ |ϕlpξq|
|ϕ1

lpξq| “ |plogϕlq1pξq|´1

where ξ “ τlpzlq and where ϕl “ ϕ`l is the map of (2.12). Notice that ξ “ u`iv

does not depend on l, where u “ log |w0|. From this, together with Lemma 2.5,
we get that

Lfl,t11pw0q “
ÿ

exppξq“w0

|plogϕlq1pξq|t —
ż

R

|plogϕlq1plog |w0| ` ivq|tdv .

Now, since ϕl “ ϕ ` l and since we have the explicit expression (2.4) for ϕ, we
can calculate as follows:

|plogϕlq1pξq| “
ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌ 1

1 ` p

1

|ξ|| log ξ|
p

1`p

—
ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌ 1

|ξ|plog |ξ|q
p

1`p

.

since argpξq P p´π{2, π{2q. Therefore,

(3.4) Lfl,t11pw0q —
ż

R

ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌
t

1

|ξ|tplog |ξ|q
tp

1`p

dv.

Since lim|v|Ñ`8 ϕplog |w0| ` ivq “ 8, we have that

2

3
ď
ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌ ď 2

whenever |v| “ |ℑpξq| is sufficiently large. Thus we get from (3.4) that Lfl,t11pw0q
is finite if and only if t ą 1.

The uniform bound of }Lfl,t}8 ă 8 also follows from (3.4). Indeed, let
w “ eξ P D

˚
r . Then z “ ϕpξq P GD, whence x “ ℜpzq ą 0. Thus,

(3.5)

ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌
2

“ x2 ` y2

px ` lq2 ` y2
ď 1.

It follows from this that

Lfl,t11pwq ĺ

ż

R

1

|ξ|tplog |ξ|q
tp

1`p

dv “ 1

2

ż

R

1

pu2 ` v2q t
2 plogpu2 ` v2qq

tp

1`p

dv.



ON HYPERBOLIC DIMENSION GAP FOR ENTIRE FUNCTIONS 11

Since for every for w P D˚
r we have u ě ur “ log r it follows that

(3.6) sup
wPD˚

r

Lfl,t11pwq ĺ C :“
ż

R

1

pu2
r ` v2q t

2 plogpu2
r ` v2qq

tp
1`p

dv ă `8.

Finally, if t ą 1 then δ “ pt ´ 1q{2 ą 0, whence

(3.7) Lfl,t11pwq ĺ
1

uδ

ż

R

1

|ur ` iv|1`δ
dv ĺ

1

plog |w|qδ .

This shows that limwÑ8 Lfl,t11pwq “ 0. �

The next result gives an estimate for the topological pressure. More precisely,
it shows that for a given t ą 1 the pressure Ppfl, tq ă 0 for all sufficiently large
values of l.

Proposition 3.2. Let t ą 1. Fix r ě r0. Then, for every ε ą 0 there exists

lε,r,t ě lr such that

Lfl,t11pwq ď ε for every l ě lε,r,t and every w P D
˚
r .

Proof. Let t ą 1 and ε ą 0. We are in the same situation as in the proof of
Proposition 3.1. The first benefit we take out of this proof is that the conver-
gence limwÑ8 Lfl,t11pwq “ 0 is uniform in l ě 0; see (3.7). Therefore, there
exists rε ě r such that

Lfl,t11pwq ă ε whenever |w| ě rε and l ě 0.

Moreover, this proof shows that the integralż

R

1

|ξ|tplog |ξ|q
tp

1`p

dv ξ “ u ` iv ,

converges uniformly for u ě ur “ log r. Therefore, there exists V “ Vε,t such
that ż

|v|ěV

1

|ξ|tplog |ξ|qtp{1`p
dv ď ε

2
for every u ě ur.

So, by invoking now (3.4) and (3.5), we conclude that it remains to estimate
the integral ż

|v|ăV

ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌
t

1

|ξ|tplog |ξ|q
tp

1`p

dv

from above by ε{2 for all l ě 0 large enough and all w P D˚
rzD˚

rε
. Here we used

again the notation ξ “ u ` iv, u “ log |w|. Notice that all points ξ that appear
in this integral belong to the compact set

K “ tξ “ u ` iv : log r ď u ď log rε and |v| ď V u.
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Since M :“ supξPKt|ϕpξq|u ă `8, we have that
ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌ ď M

l ´ M
,

for every l ą M and all ξ P K. Thus,
ż

|v|ăV

ˇ̌
ˇ̌ ϕpξq
ϕpξq ` l

ˇ̌
ˇ̌
t

1

|ξ|tplog |ξ|q
tp

1`p

dv ď C
M

l ´ M
ď ε

2
,

where C P p0,`8q is the constant coming from (3.6) and the last inequality
was written assuming that l is large enough. �

3.2. Behavior of the Transfer Operators for Entire functions El. We
now have sufficiently strong estimates for the transfer operators of the models
fl. Since ultimately we are after the entire functions El, we have to carry over
these estimates to the transfer operators of these functions El. Since the entire
functions approximate the models, i.e. since we have Fact 2.3, we are in a similar
situation as in [12] where also the operators of some models and approximating
entire functions have been compared. Following the approach of that paper we
will prove the following.

Proposition 3.3. There exist constants K P r1,`8q and r1 ě r0 such that for

every t ą 1, all l P C, and all r ě r1, we have that

1

Kt
ď LEl,t11pwq

Lfl,t11pwq ď Kt for all w P D
˚
r .

In our proof of Proposition 3.3 we adapt here the approach of [12], particularly
Section 7 of that paper. We will show that [12, Lemma 7.3] holds in the present
setting if r ě r0 is large enough. This will suffice. We first shall prove the
following.

Fact 3.4. For all sufficiently large r ě r0, say r ě r1 ě r0, we have that

1

2
ď |Elpzq|

|flpzq| ď 2 and
1

2
ď |E1

lpzq|
|f 1
l pzq| ď 2

for all l P C and all z P Ωfl,r.

Proof. The first inequality is a direct consequence of item (1) in Fact 2.3 com-
bined with the inequality r ě r0 ą 4C established in Fact 2.4.

In order to proof the second inequality we also start with item (1) in Fact
2.3. It gives ˇ̌

ˇ̌ |E
1pzq|

|f 1pzq| ´ 1

ˇ̌
ˇ̌ ď C

|f 1pzq| for all z P Ωf,r Ă GD.
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This time we have to estimate |f 1pzq| and to show that there exists some r ě r0
such that

(3.8)
C

|f 1pzq| ď 1

2
for all z P Ωf,r.

Remember that fpzq “ eτpzq “ eϕ
´1pzq for every z P Ωf,r. Thus,

f 1pzq “ fpzq
ϕ1pξq where ξ “ ϕ´1pzq P Hlog r.

Obviously |fpzq| ą r but what about |ϕ1pξq|? From the formula (2.4) we get

ϕ1pξq “ 1

1 ` p
exppplog ξq 1

1`p q 1

plog ξq
p

1`p ξ
.

If v :“ log ξ then

(3.9) |ϕ1pξq| ď
ˇ̌
ˇ̌
ˇ
exppv 1

1`p q
v

p

1`p ev

ˇ̌
ˇ̌
ˇ “

exp
´
ℜ
`
v

1

1`p ´ v
˘¯

|v|
p

1`p

.

Since ξ P Hlog r, ℜv ą log log r, and |ℑv| ă π{2, so if we write v “ seiα, then

s ą log log r and |α| ă π{2
log log r

.

Thus,

ℜ
`
v

1

1`p ´ v
˘

“ ´s

ˆ
cosα ´ s´ p

1`p cos
´ α

1 ` p

¯˙
ď ´s

2
ď ´ log log r

2

provided r is sufficiently large. In this case we get from (3.9) that

|ϕ1pξq| ď 1
?
log rplog log rq

p

1`p

.

This shows that (3.8) holds for all r ě r0 sufficiently large. Thus, 3.4 holds for
f and E, i.e. if l “ 0. It then holds for all l P C because of (2.6).

�

Having established Fact 3.4, the proof of Proposition 7.4 in [12] applies word
by word and shows that the required inequality in Proposition 3.3 holds.
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4. Proof of Theorem 1.1

As it was explained in the Introduction, it suffices to show that

(4.1) lim
lÑ8

HypDimpElq “ 1.

In order to do this fix t ą 1. Fix also any r ě r1, for example r “ r1. By virtue
of Proposition 3.2, we have that

Lfl,t11pwq ď K´t

for all l ě lK´t,r,t and all w P D˚
r . So, by Proposition 3.3,

LEl,t11pwq ď 1

for all l ě lK´t,r,t and all w P D˚
r . In conjunction with (3.3), this gives that

PpEl, tq ď 0

for all l ě lK´t,r,t. So, if X Ă JEl
is an arbitrary hyperbolic set for El, then

PpEl|X , tq ď 0.

The supremum over all hyperbolic sets of the left hand side of this inequality is
the hyperbolic pressure PhyppEl, tq of El evaluated at t. So, we have that

(4.2) PhyppEl, tq “ suptPpEl|X , tq : X is a hyperbolic set for Elu ď 0.

Now, we want to use the Bowen’s Formula of [3]. Theorem B of this paper
applies to the functions El and states that the hyperbolic dimension of the set
El is equal to

HypDimpElq “ infts ą 0 : PhyppEl, sq ď 0u.
Combined with (4.2), we thus get that

HypDimpElq ď t

for all l ě lK´t,r,t. So, the formula (4.1) is established and the proof of Theorem
1.1 is complete.
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