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Abstract—This paper presents a method that enables arbitrary
end-to-end Learning-based image/video codecs to apply spatial
rate allocation. At the frame-level, the forward pass of the
underlying encoder network is followed by a latent refinement
step, in which a customized loss function is minimized. This loss
function takes as input an arbitrary pixel-wise map that defines
the interest of each pixel and computes a weighted distortion
with respect to the given interest map. Back-propagation of
the customized loss function using the gradient descent gives
a refined version of the frame latent in which the quality of
regions of interest (ROI) is improved at the cost of quality of
regions of disinterest. The proposed method is implemented on
top of an existing end-to-end LVC, called AIVC1, using salience-
based interest maps. Experiments show that the proposed method
can effectively improve the quality of regions of interest frames.
Notably, BD-BR performance using Weighted PSNR (WPSNR)
shows an improvement of up to 21% by the proposed method.

Index Terms—Video coding, Neural networks, Rate allocation

I. INTRODUCTION

Conventional video compression has been challenged by

Learning-based Video Coding (LVC) in the past few years [1]–

[5]. Despite challenges to address, this technology is rapidly

maturing, offering an alternative perspective to the digital

video communication systems. Several advantages could pos-

sibly be delivered by such learning-based system, compared to

existing ones, such as High Efficiency Video Coding (HEVC)

and Versatile Video Coding (VVC). First of all, the end-to-end

nature of the optimization in learning-based systems allows a

more global tuning of codec and avoid local and hand-made

parameter tuning, as is the case with current codecs. Moreover,

hardware implementation of an LVC system can possibly be

agnostic to the underlying hardware. This is advantageous

since updating a decoder would be as simple as updating the

network model weights, while in conventional codecs, same

update would require expensive chipset replacement.

LVC systems have currently several practical difficulties

to tackle. More known objectives in this regard are namely:

inexpensive hardware support especially at the receiver side to

enable real-time decoding, standardization in different levels

such as network abstraction, transport etc., and last but not

least, inflexibility at the encoding time by a learning-based

encoder. The problem that this paper attempts at tackling is

1https://github.com/Orange-OpenSource/AIVC

to enable spatial rate allocation at the encoding time. This

problem is important to address since state-of-the-art LVC

designs offer an encoding which is an unbending forward-pass

of the encoder network. This is in contrast with conventional

encoders, where arbitrary parameter exploration by the Rate-

Distortion Optimization (RDO) process is allowed at the

encoding time and user is free to choose an RDO strategy

that best fits its constraints and objectives.

The problem of encoding-time spatial rate allocation by

LVC has been sparsely studied in the literature [6]–[10].

RDOnet imitates the RDO process of the conventional codecs

in a generic manner which might possibly allow spatial rate

allocation. RDOnet deploys masking layers to zero-out certain

coefficients. By training models with such layers, unimportant

regions of the image are identified during inference and do

not have their information transmitted [11]–[13]. In [14], an

ROI-based multi-rate codec is proposed that can dynamically

control local and global rate allocation at the frame-level.

Moreover, PLONQ [15] presents a latent scaling based vari-

able bitrate solution that defines multiple quantization levels

with nested quantization grids and progressively coding of all

latents across different quantization levels.

This paper proposes an alternative solution by using a

frame-level latent fine-tuning that can virtually apply any

spatial rate allocation strategy in order to better preserve

quality of certain frame areas. This method is orthogonal to

the underlying encoder and can be used on any pre-trained

learning-based codec. The rest of this paper is organized

as follows. Section II formalizes a base encoder on top

of which the proposed method, described in Section III, is

implemented. Section IV presents the experiment results of the

implementations and finally, Section V concludes the paper.

II. BASE CODER

A pre-trained codec pair is given in the form of an encoder

and decoder models, respectively expressed as < E,D >,

whose parameters Θ =< Θe,Θd > are jointly optimized.

Using this Learned Video Codec (LVC), encoding a frame

x transforms it to a latent representation z in a latent space,

as:

z = E(x; Θe). (1)

Subsequently, decoding the latent representation z trans-

forms it back to a pixel-domain representation x̂:
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Fig. 1: A high-level view of the proposed frame-level latent

refinement for rate allocation. Modules E and D denote

performing the forward pass of the encoder and decoder

networks, respectively. za is the output latent of this process

whose decoding results is x̂a which better preserves regions

of interest.

x̂ = D(z; Θd). (2)

The above round-trip is typically monitored by the two

metrics of rate and distortion. Since the entropy coding op-

erates exclusively on discrete data, thus is non-differentiable.

Consequently, during the training process of an LVC, the rate

is typically estimated by an approximated Probability Distri-

bution Function (PDF) of the continuous uniform distribution

p, as:

r̃(z) = −log2pz(z). (3)

Moreover, the distortion metric d is computed as the

squared l2-norm of the compression loss error:

d(x, z) = ∥x− x̂∥22 = ∥x−D(z; Θd)∥
2
2. (4)

Given a Lagrangian multiplier λ, the training of the codec is

performed on a dataset of samples x = {xk|k = 0, 1, ..., |x| −
1}, by minimizing an estimation of its rate-distortion cost as

the loss function:

L(x; Θ) =
1

|x|

∑

xk∈x

d(xk, zk) + λr̃(zk). (5)

The optimization of the model parameters Θ to minimize

the loss function of Eq. 5 is typically carried out by iteratively

applying gradient descent with back-propagation of its error,

expressed as ∇ΘL(Θ) in Eq. 6. Each iteration j of this

algorithm back-propagates the error with a given learning rate

parameter, denoted as η.

Θ(j+1) = Θ(j) − η∇ΘL(x; Θ
(j)). (6)

In the proposed rate allocation method of this paper it

is assumed that an operational codec pair is provided as

< E,D >, whose optimal parameters Θ∗ are optimized by

using Eq. 6 on a dataset.

III. RATE ALLOCATION WITH LATENT REFINEMENT

A. Interest map and weighted distortion

It is assumed that regions of interest in each image are

provided as input and the way they are computed is out of

the scope the proposal of this paper. Therefore, a pixel-wise

map called the interest map is given for each image to code,

which quantifies the relevance of pixels and is interpreted as

the priority of preserving fidelity of each pixel.

Depending on the underlying problem, the interest map

is computed differently. One common strategy is to choose

regions of interest by taking into account the subjective

relevance of objects/regions of the image. Alternatively, in

video communication application, one might use the temporal

motion flow as an indicator of pixels’ objective relevance, to

identify pixels that are more likely to be used as reference in

motion compensation of next video frames. Either way, the

goal is to allocate more rate to regions of interest in order to

limit their decoded distortion.

Let MW×H = {mij | i=1,2,..,W, j=1,2,..,H} be the in-

terest map of current image of resolution W × H , where

0 ≤ mij ≤ 1 quantifies the interest in quality preservation

of pixel at position (i, j). A weighted distortion metric d
ω is

defined in Eq. 7 that takes into account the interest map M

using the element-wise product (noted as ⊙).

d
ω(x, x̂,M) = ∥M ⊙ (x− x̂)∥22 =

H
∑

j=1

W
∑

i=1

(mij(xij − x̂ij))
2,

(7)

B. Latent refinement

Fig. 1 shows a high-level view of the proposed spatial

rate allocation, given a interest map M. This algorithm is

implemented as a latent refinement process that is carried

out after the forward pass of the encoder network. Given an

initial latent of image x, calculated as z(0) = E(x; Θ∗

e), and

its associated interest map M, the latent refinement process

gives a new latent representation, expressed as:

za = Refine(z(0),M). (8)

Inside the Refine operation, an iterative process progres-

sively traverses the initial latent z(0) through N intermediate

latents z(t) to eventually reach a latent za, where the desired

rate defined by the interest map M is allocated. At each itera-

tion t, a weighted RD cost is calculated on z(t) by using Eq. 3

and Eq. 7 for the rate and distortion computation, respectively.

As the desired rate allocation scheme is already incorporated at

the pixel-level in Eq. 7, using the same Lagrangian multiplier

λ will result in the desired weighted rate-distortion trade-off.

The weighted RD cost is expressed as:

Lω(z(t),M; Θ∗) = d
ω(x, z(t),M) + λr̃(z(t)). (9)

Note that there are two main differences between the

refinement loss Lω (Eq. 9) and the training loss L (Eq. 5).

First, Lω is computed on a single sample, while L is computed
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Fig. 2: One iteration of the latent refinement, taking the input

latent z(t) to the refined latent z(t+1).

on a dataset x. Second, the uniform distortion d is replaced

by d
ω which applies the interest map M.

The gradient of the refinement loss with respect to the latent

z is expressed as ∇zL
ω . In contrast to ∇ΘL (Eq. 6) that

is computed with respect to model parameters Θ during the

training phase, the gradient used in the refinement is computed

with respect to the latent of the input signal. As a result, back-

propagation of this error updates only the latent and keeps Θ
unchanged:

z(t+1) = z(t) − η∇zL
ω(z(t),M; Θ∗), (10)

where η is the learning rate decay for an improved convergence

and computed with two parameters of initial learning rate η(0)

and decay rate β:

η(t) = η(0)/(1 + β.t) (11)

Fig. 2 visualizes one iteration of the above process. This

iteration starts with z(t) and ends with z(t+1), which could

then be used as the input to the next iteration. Once adequate

number of iterations of the above process are applied on the

initial latent z(0), the refined latent which applies the given

rate allocation strategy is produced as za.

IV. EXPERIMENTS

A. Anchor

The “base coder” with no spatial rate allocation strategy is

the main anchor of the experiments in this section. To this

end, an open-source LVC called AIVC which has shown a

competitive performance in the CLIC challenge of the past

few years, has been used [16].

One might accurately argue that latent refinement even

without rate allocation (i.e. with uniform rate allocation)

most likely improve the performance as well. Thus, as the

benchmark, the base coder integrated with latent refinement

using a uniform interest map, precisely with a constant interest

as mij = C for all values of i and j within the image. This

is also the equivalent of using Eq. 4 instead of Eq. 7, for

distortion computation of Eq. 9. This benchmark is called

“base refinement” in the rest of this section. Furthermore, only

All-Intra configuration is used in all experiments presented in

this paper.

B. Metrics

The main performance metric used in this paper is

Bjontegaard-Delta Bit-Rate (BD-BR) [17]. However, as spatial

rate allocation disrupts the usual trade-off of rate and quality,

it is expected that the overall performance of the codec –

which is computed unbeknownst of regions of interest –

will decrease. Therefore, to quantify the performance of the

proposed spatial rate allocation, the importance of regions is

incorporated in the quality metric to weight pixels according

to their interest WPSNR [18].

C. Interest map generation

A binary map B is first generated to identify the region(s)-

of-interest. To do so, a salience prediction algorithm presented

in [19] is used. Then, this binary map is translated into the

actual interest map M by:

mij =

{

Croi, if B(ij) = true

1− Croi, if B(ij) = false,
(12)

where 0.5 < Croi < 1 determines how much we prioritize

the quality preservation of the region(s)-of-interest during the

latent refinement iterations. In the experiments of this paper,

Croi = 0.6 has been chosen empirically. Moreover, in order

to guarantee that the spatial rate allocation would be aligned

with the predefined relative importance of the distortion with

respect to the rate, the interest map M is normalized such that
∑H

j=1

∑W

i=1 mi,j = W ×H .

As mentioned earlier, the performance and technical aspects

of the salience prediction algorithm is not important as long

as it outputs a reasonably relevant interest map. Fig. 3 shows

examples of the salience maps generated by the adopted

method on some of the test sequences of this paper.

D. Performance

Table I presents the BD-BR performance of the proposed

method as well as the “base refinement” benchmark, both

against the “base coder” anchor. Since both refinement meth-

ods are iterative, results are provided for different number

of iterations, namely one, five and twenty iterations. As can

be seen, the proposed method improves the base coder as

well as the base refine in all settings. Precisely, the proposed

latent refinement for rate allocation method improves the base

encoder by -3.6%, -11.4% and -21.2%, while the based latent

refinement improves the base encoder by -2.7%, -6.6% and

-11.5% for settings of 1-iter, 5-iter and 20-iter, respectively.
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Fig. 3: Examples of the adopted salient zone prediction applied on the first frame of the test sequences.

TABLE I: BD-BR performance (with WPSNR) of the pro-

posed rate latent refinement with salience-based rate allocation

(Proposed refine) versus the base refinement with no rate

allocation.

Class

1-iter 5-iter 20-iter

Base Proposed Base Proposed Base Proposed

refine refine refine refine refine refine

A1 -2.3% -3.8% -6.7% -10.3% -12.1% -21.1%

A2 -3.0% -3.9% -6.6% -11.5% -11.6% -21.3%

B -3.0% -4.0% -7.2% -11.4% -11.5% -20.6%

C -2.7% -3.5% -6.3% -11.4% -11.6% -21.4%

D -2.3% -3.7% -6.8% -12.1% -10.9% -22.1%

E -3.1% -2.9% -5.9% -11.5% -11.3% -20.7%

All -2.7% -3.6% -6.6% -11.4% -11.5% -21.2%

It is important to note that the number of iterations is

an important parameter that determines the trade-off at the

encoder side between the compression efficiency performance

and the encoding time, which typically varies in different use

cases such as live and Video-on-Demand (VoD) streaming.

To put the used values in perspective, our experiments show

that on average, 130%, 220% and 410% encoder complexity

in terms of run-time have been imposed for 1-iter, 5-iter and

20-iter settings, respectively.

Fig. 4 presents a visual assessment of the proposed method.

In this example, the two faces in the KristenAndSara sequence

are treated as the ROI in the proposed method. Three settings

are evaluated, namely 1) Base coder i.e. no refinement, 2) Base

refinement i.e. no rate allocation and 3) proposed refinement

with rate allocation. In all settings the bitrates of the image are

kept almost the same and the only difference is in their quality.

When comparing the base coder and the base refinement, it

can be seen that on avareage, the PSNR of the ROI regions is

increased about 0.47 dB. It is important to note that the PSNR

increase of regions outside the ROI is also in the same range as

the they were treated in a similar way by the base refinement.

However, when comparing the proposed refinement with the

base coder, on average, the PSNR increase of the ROI is

around 1.1 dB, while the PSNR of the regions outside the

ROI is either unchanged or slightly deteriorated.

V. CONCLUSION

This paper presents a method that enables learning-based

image/video encoders apply spatial rate allocation with arbi-

trary interest map. To do so, a post-encoding latent refinement

process is integrated at the frame level in the encoder in

Original Base coder Base refine Proposed refine

PSNR 37.46 dB PSNR 37.92 dB PSNR 38.51 dB

PSNR 34.91 dB PSNR 35.39 dB PSNR 36.07 dB

Fig. 4: Visual performance assessment on the first frame of

the KristenAndSara sequence, where the two faces are used

as the region-of-interest.

order to find an alternative latent representation of the frame

which better preserves pixels of interest. As this method is

agnostic to the underlying encoder as well as the algorithm that

determines the regions of interest, it can be arbitrary used for

different purposes. Performance evaluation on top an existing

LVC shows the proposed method is able to save bitrate at

the same level of the weighted PSNR, which is aligned with

the pixel interest map. As next step, one can integrate the

same method in an actual video coding setting. That is to say

refining all types of frames (i.e. I, P and B) in different Group

of Picture (GOP) structure. Moreover, it is also possible to

conduct formal subjective quality assessment tests to validate

how much the proposed rate allocation method improves the

subjective quality perception.
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optimized learning-based image compression using an adaptive hier-
achical autoencoder with conditional hyperprior,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 1885–1889.

[12] Fabian Brand, Kristian Fischer, Alexander Kopte, Marc Windsheimer,
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