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COMPUTING 2-ISOGENIES BETWEEN KUMMER LINES

DAMIEN ROBERT AND NICOLAS SARKIS

Abstract. We use theta groups to study 2-isogenies between Kummer lines, with a particular
focus on the Montgomery model. This allows us to recover known formula, along with more
efficient forms for translated isogenies, which require only 2S+2m0 for evaluation. We leverage
these translated isogenies to build a hybrid ladder for scalar multiplication on Montgomery
curves with rational 2-torsion which cost 3M+6S+2m0 by bits, compared to 5M+4S+1m0
for the standard Montgomery ladder.

1. Introdution

1.1. Motivation. Elliptic curves cryptography is widely used in the TLS layer, and its speed is
determined by the scalar product. Its efficiency relies on the chosen model. On a Montgomery
model, Montgomery [Mon87] provided an efficient algorithm known as Montgomery ladder to
compute x(n ·P ) with only the datum of x(P ). This allows protocols like the Diffie-Hellman key
exchange protocol to only send the coordinate x(n · P ), thus gaining in bandwidth.

Furthermore, the equation of the elliptic curve helps to recover y(n ·P ) from x(n ·P ), up to a
sign. The sign can also be determined with x((n + 1) ·P ), which is also computed by the ladder,
at a negligible cost. To sum up, one efficient way to do a scalar product on an elliptic curve is
to do it only with the x-coordinate, and recover the y one at the end.

The mathematical object on which we only keep the x-coordinate is a Kummer line, which is
described by a morphism (x(P ), y(P )) 7→ x(P ) from the elliptic curve to the projective line. It
is a degree 2 map and its ramification points are the four 2-torsion points. An interesting fact
about Kummer lines is that they are entirely described by this ramification, made of 4 points.
This gives a very convenient and flexible approach to build model of Kummer lines as we will
see throughout the paper. Apart from scalar multiplication, Kummer lines are also used a lot
for isogeny based cryptography, as in [FJP14; CLN16].

The main goal of this paper is to provide a general method to study 2-isogenies between
different models of Kummer lines, and to find old and new formula for these isogenies, and
notably to also study translated isogenies. Our main objective was to better understand the
isogeny formulas from isogeny based cryptography, and in particular why the Montgomery model
has fast 2-isogenies, in the hope to extend these formulas to higher dimension. For dimension 1,
as we will see in Appendix C, although our translated 2-isogeny formula is faster than the usual
one, in practice, as shown in [CH17], it is faster to decompose a 2n-isogeny as a product of
4-isogenies rather than a product of n 2-isogenies.

Our second application is to speed up the multiplication law on the Kummer line of an elliptic
curve. Indeed, composing a 2-isogeny with its dual gives the multiplication by 2 map. This
approach, pioneered by [DIK06], allows to write the doubling as a composition of two polynomials
of degree two rather than a polynomial of degree four. Such a decomposition is already used in
the fast doubling formula of the Montgomery model [Mon87] or the theta model [GL09].
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1.2. Results. On the Montgomery model with full rational 2-torsion, we can evaluate a 2-
isogeny, translated by a suitable point of 2-torsion in 2S + 1m0, compared to 2M + 1m0 for
the non translated image. Composing with the translated dual isogeny, we obtain a translated
doubling formula in 4S + 2m0, compared to 2M + 2S + 1m0 for a standard doubling.

Using the translated doubling in the Montgomery ladder, and keeping track of the translation
by the point of 2-torsion, we obtain a hybrid ladder arithmetic which costs 3M + 6S + 2m0 by
bits, compared to 5M + 4S + 1m0 for the standard ladder for the Montgomery model. Thus,
if m0 is sufficiently small, we obtain a more efficient scalar multiplication (while retaining the
standard side channel protection of the Montgomery ladder). We remark also that the ladder for
the theta model costs 3M + 6S + 3m0, hence our hybrid ladder is always faster than the theta
ladder.

1.3. Method. We proceed to a systematic study of 2-isogenies between Kummer lines by com-
bining two tools:

(1) First, we use that a Kummer model is completely determined by its four ramification
points. Keeping track of the ramification along the isogeny allows us to keep track of
the model, without resorting to formal groups as in Vélu’s formula;

(2) Secondly we make a systematic use of theta groups and their action on sections to find
invariant sections.

As explained in Remark 2.5, the usual Vélu formulas [Vél71] can be seen as a special case
of the above strategy, applied to the theta group of a divisor D invariant by translation and
where the canonical action by the symmetric elements is trivial. In this paper we rather use the
action of the theta group G(2(OE1)) associated to the divisor 2(OE1), which is not invariant by
translation, hence whose associated action is not trivial.

This will allow us in future work to extend this strategy to higher dimension. Notably, we will
explain in an upcoming article how to study differential additions on Kummer lines, using the fact
that differential additions can be described by a 2-isogeny in dimension two, on a product of two
Kummer lines. Extending our framework to a systematic study of 2-isogenies formulas between
arbitrary models of Kummer surfaces is more challenging though, because the combinatorial
description of the Kummer surface is given by a (16, 6, 2)-design in P3 rather than by simply 4
points in P1, so is harder to keep track off.

Our paper is exhaustive as we can apply this algorithm to several known models such as Le-
gendre curves, Montgomery curves, but also theta functions of level 2. We give several examples,
along with examples when we start from one type of model and obtain a new type of model
for the codomain. This allows us to recover the efficient 2-isogenies formulas already in the
literature in a unified manner, showing the flexibility of the framework. A particularity of our
framework is that we do not impose the neutral point OE1 to be the point at infinity∞ = (1 : 0)
on the Kummer line. This extra flexibility allows us to naturally find new efficient formulas for
translated isogeny images.

In particular, we study the Montgomery models of Kummer lines in more detail. Such a
model exists whenever there is a point T ′

1 of 4-torsion which is rational on the Kummer model
(so the set {T ′

1,−T ′
1} is rational on the elliptic curve). Let R1 be a point of 2-torsion, and E2

the codomain of the isogeny with kernel R1. The curve E2 admits a Montgomery model if R1
is distinct from 2 · T ′

1, or when T1 = R1 and there exists a point of 8-torsion T̃1 on E above
T ′

1. We give explicit formula via our framework for these isogenies and their duals in both cases,
recovering well known formulas in the literature [FJP14; CH17; Ren18]. We also obtain the
efficient translated isogeny formula on a Montgomery model mentioned above.

We mainly focus in this paper to the study of 2-isogenies between models of Kummer lines
which have a specific Galois action on their 2n-torsion (like the Legendre model, the Montgomery
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model and the theta model). This is indeed the most interesting situation: the isogeny interact
with the Galois action. So either we lose some of the Galois information on the codomain,
which means that we can only describe another type of model on the codomain (like Theta to
Montgomery, Montgomery to Legendre, or Legendre to Montgomery), or we need to assume that
we are given a supplementary input. For instance, for a 2-isogeny from theta to theta, we need
a point of 8-torsion above the kernel to find a theta model of the codomain.

By contrast, a model requiring, say, a rational point of 3-torsion T would not have this problem
with a 2-isogeny formula, since the image of T by the isogeny would immediately give a model of
the codomain. In a similar vein, handling the case of odd degree isogenies in the models mentioned
above (Montgomery, Legendre, Theta), is in some sense easier since the Galois structure on the
2n-torsion is respected through the isogeny, see Appendix E for formulas.

1.4. Notations. We work with elliptic curves and Kummer lines defined over a field of charac-
teristic different from 2, and with separable isogenies. When the kernel of an isogeny between
elliptic has order n, we call it an n-isogeny. An n-isogeny between Kummer lines is then the
projection of a n-isogeny between elliptic curves.

We will use the following complexity notations throughout the article:
• M is a generic multiplication,
• S is a generic squaring,
• m0 is a multiplication by a curve constant,
• c is a multiplication by a small constant (i.e. less than a computer word),
• a is an addition / subtraction.

1.5. Similar work. In [Mor+22], the authors introduce the generalized Montgomery coordinate
h on an elliptic curve E1, which can be seen as the composition h = x◦f of an isogeny f : E1 → E2
to an elliptic curve in Montgomery form, with the x-coordinate on E2 [Mor+22, Thm. 13]. They
then give formulas for isogenies and scalar multiplication in generalized Montgomery coordinate.

Our work is in an orthogonal direction. If the isogeny f is of degree n, a generalized Mont-
gomery coordinate h = x ◦ f is a section of a divisor of degree 2n on E1. The work of [Mor+22]
may thus be seen as specifying a special model associated to a section of 2n(OE1) and developing
the arithmetic and isogenies on this model.

By contrast, we focus only on sections of 2(OE1) to describe models of Kummer line, but
we don’t impose conditions on the model; our framework allows us to derive efficient isogeny
formulas between different Kummer models, including models where the neutral point is not at
infinity.

1.6. Roadmap. In Section 2 we recall Kummer models and the theory of theta groups and their
action on sections, which allow us to develop our isogeny framework. We apply it in Section 3 to
study 2-isogenies between Montgomery models. We present the hybrid ladder in Section 4. We
briefly discuss applications to fast evaluations of 2n-isogenies in Appendix C. In Appendix B,
we provide more examples of our technique with different ramification structure to show its
flexibility. Finally in Appendix E, we explain how to deal with odd degree isogenies.

2. 2-isogenies between Kummer lines

In this whole article, k is a perfect field of characteristic different from 2.

2.1. Kummer lines. Let E be an elliptic curve defined over k.
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Definition 2.1. A Kummer line is the datum of a degree 2 covering of P1 by E with 4 distinct
ramification points, one of which is rational and marked:

π : E → P1 and ∃O ∈ E(k),∃T, R, S ∈ E with #π−1(π(P )) =
{

1 if P ∈ {O, T, R, S}
2 otherwise

.

A way to reinterpret this is that the involution quotient E → E/{±1} ≃ P1 is a degree 2 cover
ramified at 4 points. Conversely, for such a degree 2 cover of P1, the curve on the domain is of
genus 1 by the Riemann-Hurwitz formula, and marking an explicit rational point makes it an
elliptic curve E. The cover gives an embedding k(P1)→ k(E), hence a Galois involution, which
on the level of E has to be given by P 7→ −P because the neutral point is one of the ramified
point of this involution. In particular, the fibres are π−1(π(P )) = {−P, P}. We will give more
details in a future work on the geometry of Kummer lines.

Example 2.2. The marked point is denoted with a ∗. If the ramification on the Kummer line
is given by

(1) (1 : 0)∗ (α1 : 1) (α2 : 1) (α3 : 1),

(with the αi potentially define over an extension of k) then the corresponding elliptic curve has
equation, with some β ∈ k:

(2) E : βy2 = (x− α1)(x− α2)(x− α3).

Conversely, starting from Eq. (2), if the point at infinity is denoted O, then the following map
is a degree 2-covering with 4 ramification points which correspond to the 2-torsion:

E
π−→ P1

(x, y) 7→ (x : 1)
O 7→ (1 : 0).

We remark that a Kummer line cannot distinguish between an elliptic curve E and its quadratic
twists E′ (which amount in the previous example to a choice of β ∈ k∗/k∗,2. If π(P ) is a rational
point on the Kummer line of order n > 2, there is a unique quadratic twist E′ such that π(P )
comes from a rational point P ∈ E′(k). Thus pushing P along a 2-isogeny allows to keep track
of the twist on the codomain even while working on the Kummer lines.

We will extensively describe Kummer lines only via their ramification, like in Eq. (1), and
denote them by K, where K ≃ P1. We will also forget about the π notation when it is not
ambiguous and write [P ] = π(P ).

The addition law is not well-defined any more on the Kummer line π, as if one knows π(P ) and
π(Q), one retrieves ±P and ±Q on the elliptic curve and won’t be able to distinguish π(P + Q)
from π(P − Q). However, with the knowledge of π(P ), π(Q) and π(P − Q), it is possible to
reconstruct π(P + Q), this is differential addition and is enough to build a scalar multiplication
on the Kummer line, see for instance Montgomery arithmetic in Appendix A.

Consider a Kummer line π, and since we are interested in 2-isogenies, assume there is a rational
2-torsion point T ∈ E(k). This is a particular case of where we can define the translation by T
on the line, as T = −T , so π(P − T ) = π(P + T ).

Main Example 1. By taking an automorphism of P1, i.e a homography, we can always send
T to the point (0 : 1) and the marked point to (1 : 0). This amounts to working on the following
curve, according to Eq. (2):

E : βy2 = x(x2 +Ax + γ).
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The complete ramification on the Kummer line K associated to E is then

O = (1 : 0)∗
T = (0 : 1) R = (α : 1) S = (γ : α) = R + T,

where α ∈ k and satisfies the equation A = −α− γ
α , with A, γ ∈ k.

2.2. Theta group and isogenies. The theta group is introduced by Mumford in [Mum66] to
describe isogenies between abelian varieties. In this section, we specialize to the very special case
of elliptic curves first, and then to 2-isogenies between Kummer lines.

Let D2 = 2(OE), this is a symmetric divisor of degree 2, its global sections Γ(D) is a vector
space of dimension 2 generated by the two global sections: 1, x, which gives coordinates on the
Kummer line KE associated to E.

It will be convenient, to describe the embedding KE → P1, to work with the associated
line bundle LD2 . The line bundle L(OE) has (up to a constant) one global section Z0, and
LD2 = L2

(OE) has for global sections (X, Z), with Z = Z2
0 , and x = X/Z.

Let D be a divisor of degree deg(D) = n. Then D is algebraically equivalent to the divisor
Dn = n(OE). The line bundle LD induces a polarisation ΦD : E → Ê via P 7→ t∗

P D −D. Since
algebraically equivalent divisor differ by a degree zero divisor, the map ΦD does not depend on
the algebraic class of D and we may take D = Dn, so ΦD(P ) = n(P ) − n(OE). The kernel of
ΦD is E[n], since a divisor n(P )− n(OE) is linearly equivalent to zero if and only if n ·P = OE .

The theta group G(D) associated to the divisor D is the group of functions gP on k(E) such
that P ∈ E[n] = ker(ΦD), and div gP = t∗

P D −D. The Weil pairing on E[n] is induced by the
commutator pairing on G(D). The addition law is given by (gP · gQ)(R) = gP (R)gQ(R − P ),
it is a function with divisor t∗

P +QD −D. We have a canonical faithful action of G(D) on Γ(D)
given by (gP · s)(R) = gP (R)s(R− P ).

If D = Dn, then since Dn is symmetric, we also have an involution δ−1 on G(Dn) given by
(δ−1gP )(R) = gP (−R); this is a function with divisor n(−P )− n(0E). A function gP is said to
be symmetric if δ−1gP = g−1

P .

Theorem 2.3 (Mumford). Let D be a symmetric divisor on E, and K a finite étale subgroup.
There is a bijection between descents of the divisor D to a divisor D′ on E′ = E/K and lifts K̃

of K ⊂ ker ΦD to the theta group G(D). Furthermore, D′ is symmetric if and only if K̃ consists
of symmetric elements. Finally, there is a canonical isomorphism between Γ(D′) and Γ(D)K̃ .

We will focus on 2-isogenies. Let E1 be an elliptic curve, K = {O1, T1} be a kernel generated
by a 2-torsion point T1 ∈ E1[2](k), and f : E1 → E2 = E1/K be the corresponding isogeny.
Neutral elements on E1 and E2 are denoted O1 and O2 respectively. We want to construct a
Kummer model on E2, hence sections of a degree 2 divisor D′ on E2. The pullback f∗D′ is of
degree 4 on E1, hence is algebraically equivalent to D4 = 4(O1). So we look at descents of D4
to E2.

First we look at descent of D2 to E2, this amount to finding an element gT1 ∈ G(D2) above
T1 of order 2. Since T1 is of 2-torsion, we have δ−1gT1 = e∗(T1)gT1 = gT1 by [Mum66]. So gT1 is
symmetric if and only if gT1 is of order 2, and we see that lifts K̃ of K to G(D2) corresponds to
a symmetric lift gT1 above T1.

Take an arbitrary lift gT1 , then since 2 · T1 = O1, we have g2
T1

= λT1 for some λT1 ∈ k∗. The
symmetric elements above T1 are then ± gT1√

λT1
, which live possibly over a degree 2 extension of k.

Since taking another lift gT1 changes λT1 by a square, we see that λT1 is well defined in k∗/k∗,2.
It is not hard to show that it is given by the self Tate pairing eT,2(T1, T1) but we won’t need this
fact in this article.
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Definition 2.4. The element [λT1 ] ∈ k∗/k∗,2 defined above is the type of T1. We say that T1 is
of Montgomery type if λT1 is already a square over k.

At the level of divisors, the situation is as follows: the divisor D2 = 2(O1) is not invariant by
translation by T1, so does not directly descend to E2. We first need to find a linear equivalence
D2 ≃ D′

2 with D′
2 invariant by T1, so of the form f∗D′ for a divisor D′ on E2; the element gT1

provides such a linear equivalence. Namely, if αT1 is the function with divisor D′
2 −D2 realising

the equivalence D′
2 ≃ D2, then it satisfies the equation αT1(P )/αT1(P − T1) = gT1(P ).

First we remark that D′ = f∗O2 = (T1) + (O1) is not linearly equivalent to D2, so D2 cannot
directly descend to (O2). The other symmetric degree 1 divisor on D′ are given by (T2), (R2),
(S2) where T2, R2, S2 are the three Weierstrass points on E2. Set R1 and S1 to be the other
Weierstrass points of E1 in addition to T1, we may assume that f(R1) = f(S1) = T2. We let
T ′

1 be a 4-torsion point above T1, and T ′′
1 = T ′

1 + R1. We may assume that f(T ′
1) = R2 and

f(T ′′
1 ) = S2. So f∗T2 = (R1) + (S1), f∗R2 = (T ′

1) + (T ′
1 + T1), f∗S2 = (T ′′

1 ) + (T ′′
1 + T1). Only

the last two are linearly equivalent to D2, they give the two possible symmetric descent of D2 to
E2.

We remark that they are rational if and only if {T ′
1, T ′

1 + T1 = −T ′
1} is invariant, if and only if

the cyclic degree 4 subgroup generated by T ′
1 is rational. This explains why in general a symmetric

lift gT1 only lives in a degree two extension, and explain the terminology of Montgomery type: T1
is of Montgomery type if and only if T1 can be sent to the point (0, 0) on a Montgomery model.
In particular, there can be an asymmetry: D2 may descend to a symmetric divisor on E2 via f ,
while D′

2 may not descend to a symmetric divisor on E1 via the dual isogeny f̃ .
The situation becomes much simpler when looking at the possible descents of D4 to a degree 2

divisor on E2, which is all we need to construct a Kummer model for E2. The tensor product
gives a morphism G(D2)⊗G(D2)→ G(D4), and if g̃T1 = ± gT1√

λT1
, its tensor squared g̃⊗2

T1
= ±

g⊗2
T1

λT1

is symmetric in G(D4) and always rational.
Since 2(R2) ≃ 2(S2) ≃ 2(O2), this symmetric element encodes the descent of D4 = 4(O1) to

D′
2 = 2(O2), we remark that f∗(2(O2)) = 2(T1) + 2(O1) ≃ 4(O1). The other symmetric descent

of D4 is induced by −g̃⊗2
T1

, which gives the descent of D4 to (T2) + (O2). (An important remark
is that while the symmetric divisor ±g̃T1 above T1 in G(D2) is only defined up to a sign, there
is a canonical symmetric divisor in G(D4) given by g̃⊗2

T1
, which does not depend on this sign.)

By Theorem 2.3, we get that the global sections Γ(D′
2) are precisely the global sections in

Γ(D4) invariant under the action by g̃⊗2
T1

. We explain how to find them.
The multiplication map Γ(Dn)⊗ Γ(Dm)→ Γ(Dn+m) is surjective when n, m ≥ 2, n + m ≥ 5,

but Γ(D2) ⊗ Γ(D2) → Γ(D4) only surjects onto even global sections (all global sections of D2
are even, so their product has to be even).

On the other hand the sections s we want to construct on E2 are sections of D′
2, so are even,

and their pullback f∗s are even. Hence, it is enough to look at even sections Γ+(D4), which as
we have seen are generated by products of sections in Γ(D2).

We can now sketch our algorithm to compute 2-isogenies between Kummer lines:
(1) Compute the action of the symmetric element g̃⊗2

T1
on X2, XZ, Z2

(2) Find a basis X ′, Z ′ of invariant functions
(3) Recover the Kummer model of E′ embedded by X ′, Z ′.

We detail these steps in the next sections.

Remark 2.5 (Vélu’s formula). The pullback of D′
2 = 2(O2) by the isogeny f is the divisor

D′ = 2(T1) + 2(O1). The usual strategy to construct isogenies on elliptic curves is to use Vélu’s
formula, which provide (via a trace) sections of D′ invariant under translation by T1. Notably,
the affine sections of D2 are 1, x, and 1 is already invariant. In Vélu’s formula, we compute the
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trace x′(P ) = x(P ) + x(P + T1), the function x′ has poles of order 2 at T1 and O1 hence is a
section of D′, and is invariant by translation by T1 by construction.

The link with the theta group is as follows: since D′ is invariant by translation by T1, the
constant function 1 provide a canonical symmetric element g̃T1 above T1 in G(D′). Sections of
D′ invariant by T1 thus corresponds by Theorem 2.3 to sections of the divisor on E2 induced by
the descent of D′ given by g̃T1 , which is 2(O2). So Vélu’s formula can be seen as a special case
of the more general framework of descending sections and divisors through theta groups actions.
We will see below in Main Example 3 that it gives the same invariant sections, as expected.

The reason we work directly with theta groups is that it provides a more flexible framework to
study isogenies. In particular, it is slightly more convenient to work with the divisor D2 = 2(O1)
than D′.

More importantly, in higher dimensions, we don’t have analogues of Vélu’s formula for an
ℓ-isogeny. Namely, if we start with an ample divisor Θ of degree 1 associated to a principal
polarisation, then the traces of Θ under the points of K, a maximal isotropic subgroup of A[ℓ]
will be an invariant divisor of degree ℓg2 , hence descends to a divisor on B = A/K of degree
ℓg(g−1), so is associated to a principal polarisation if and only if g = 1. So taking traces of
principal polarisation does not work to build invariant divisors of the correct degree on A, and
we need the full power of the theta group framework as developed by Mumford.

In this paper, we study 2-isogenies between Kummer lines, from which we can deduce doubling
formulas (by composing with the dual isogeny). In a sequel to this paper we will extend this
to differential addition formulas. This amount to studying the dimension 2 isogeny given by
E × E → E × E, (P, Q) 7→ (P + Q, P − Q). The action of the theta group G(D2) on the
global sections (X, Z) we study in this paper will be crucial to extend the doubling formulas to
differential additions.

2.3. Computing 2-isogenies. We reuse the notations from the preceding section, we want to
compute a 2-isogeny generated by a 2-torsion point T . We will describe in this section how to
build degree 2 maps which are invariant under a translation by T on Kummer lines, and how to
recover 2-isogenies from that.

Remark 2.6. The automorphism τT : P 7→ P + T on the elliptic curve can be pushed to P1 via
π because T is of 2-torsion. It is an involutive map, therefore it is an automorphism of P1, i.e.
it is a homography.

First, consider the matrix [MT ] ∈ PGL2(k) associated to the homography τT .

Main Example 2. In Main Example 1, with T = (0 : 1), the homography τT is given by
τT (O) = T , τT (T ) = O and τT (R) = S. If τT (X : Z) = (aX + bZ : cX + dZ), we then have:

• τT (1 : 0) = (a : c) = (0 : 1), i.e. a = 0.
• τT (0 : 1) = (b : d) = (1 : 0), i.e. d = 0.
• τT (α : 1) = (b : cα) = (γ : α), i.e. b = cγ.

So τT (X : Z) = (bZ : cX) = (γZ : X) and the associated matrix in PGL2(k) is:

[MT ] =
[(

a b
c d

)]
=

[(
0 γ
1 0

)]
.

Lift this matrix to MT ∈ GL2(k), by definition, since T is a point of 2-torsion, [M2
T ] = [I2],

so M2
T = λT I2. This lift is associated to an explicit element gT in the theta group G(D2).

Indeed, we have a projective action of E[2] on Γ(D2) ≃ k2 given by translation by a point of
2-torsion on projective coordinate. The canonical action defined in Section 2.2 lifts this to an
affine group action of G(D2) on Γ(D2). Since this group action is faithful, we can represent an
element g ∈ G(D2) by the corresponding action matrix. In particular, the element λT associated
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to MT is the same as the one we associated to gT in Section 2.2. As mentionned there, because
of the lift, λT is well-defined up to a square. In particular:

Lemma 2.7. [λT ] ∈ k∗/k∗,2 is the type of T , as defined in Definition 2.4.

λT depends on the chosen lift MT , however 1√
λT

MT does not (up to a sign). This is the
invariant matrix of interest, corresponding to the action of a symmetric lift g̃T of Section 2.2.

We want to build quadratic forms in (X, Z) invariant by 1√
λ

MT , which will be said to be
T -invariants. (Note that 1√

λ
MT is canonical and does not depend on the sign.) We will look at

the action of this matrix on X2, Z2 and XZ.

Remark 2.8. If q is a quadratic form and M =
(

a b
c d

)
, the action of M over q is given by:

M · q(X, Z) = q(aX + bZ, cX + dZ).

Here,
√

λT may be in some quadratic extension of k, but we can work around that, if MT =
(

a b
c d

)
:(

1√
λT

MT

)
· q(X, Z) = q

(
aX + bZ√

λT

,
cX + dZ√

λT

)
= 1

λT
(MT · q(X, Z)) .

Main Example 3. Following up with Main Example 2, we choose MT =
( 0 γ

1 0
)
, then M2

T = γI2
so the type of T is [γ]. We then compute the action of MT on X2, Z2 and XZ, and then divide
by γ:

1
γ

(
MT ·X2)

= γZ2; 1
γ

(
MT · Z2)

= 1
γ

X2; 1
γ

(MT ·XZ) = XZ.

We notice that XZ is already invariant, to build another one we can consider a trace for the
matrix action on quadratic forms, for instance:

q1 = X2 + 1
γ

(
MT ·X2)

= X2 + γZ2, then 1
γ

(MT · q1) = q1.

We retrieve the same invariant projective sections using Vélu’s formula. By Remark 2.5,
Vélu’s formula build the invariant affine section:

x′(P ) = x(P ) + x(P + T ) = x(P ) + γ

x(P ) = X(P )
Z(P ) + γZ(P )

X(P ) = X2(P ) + γZ2(P )
X(P )Z(P ) .

The numerator and denominators of this function are precisely the above invariant sections.

Say we have two linearly independent quadratic forms q and q′ which are T1-invariant where
T1 is a 2-torsion point on the Kummer line K1, and consider a basis u, v ∈ Span(q, q′). Set
MT1 =

(
a b
c d

)
the matrix of τT1 and [λT1 ] the type of T1.

τT1 : K1 → K1

P 7→ P + T1.

Set the following degree 2 map, which is well-defined by the properties of quadratic forms:

f : K1 → K2

(x : z) 7→ (u(x, z) : v(x, z)).

Since u and v are T1-invariant, we get f(P + T1) = f(τT1(P )) = f(P ). What remains to do is
determining the codomain K2 using the extra 2-torsion points we have.

Main Example 4. We add a 1 in index of notations from Main Example 1. We found earlier
in Main Example 3 that q(X, Z) = X2 + γZ2 and q′(X, Z) = XZ are T1-invariant. Consider
u = q and v = q + q′, then f : (X : Z) 7→ (X2 + γZ2 : X2 + XZ + γZ2) can be computed in
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1M + 2S + 1m0. We have by construction of f that f(O1) = f(T1), and since S1 = R1 + T1, we
also have f(R1) = f(S1). A quick computation yields:

f(O1) = (1 : 1) and f(R1) = (α2 + γ : α2 + α + γ).
We are trying to build an isogeny with kernel T1, so f(O1) is sent to O2, and f(R1) is a

2-torsion point on K2.

Lemma 2.9. f(R1) is rational.

Proof. Let σ be a Galois element on the field k. If R1 is invariant by σ, so is S1 (because
S1 = R1 + T1) and the image by f is obviously invariant by σ too. However, if R1 is not
invariant by σ, then σ(R1) ̸= R1, so we must have σ(R1) = S1 because T1 is rational. But then,
since σ commutes with f :

σ(f(R1)) = f(σ(R1)) = f(S1) = f(R1).
□

To grab the final information of 2-torsion, consider a 4-torsion point T ′
1 above T1 which may

not be rational. Such a point can be found by solving T ′
1+T1 = T ′

1 on the Kummer line (remember
that −T ′

1 = T ′
1 in this situation). If T ′

1 = (X : Z), using the translation τT1 , this leads to:

(γZ : X) = (X : Z) i.e. X

Z
= ±√γ.

Then T ′
1 = (√γ : 1) and T ′′

1 = (−√γ : 1) are the 4-torsion points above T1, and f(T ′
1), f(T ′′

1 )
are the remaining 2-torsion points on K2.

An optional step is to put K2 in a nice shape by a homography, but this is not mandatory and
can gain some operations. We will give more details in the next section.

3. 2-isogenies on Montgomery curves

We will focus on Montgomery curves in this section, which corresponds to the case γ = 1 in
Main Example 1. Recall from Definition 2.4:

Definition 3.1. A 2-torsion point T is said to be of Montgomery type if its type λT is a square.
Sending T to (0, 0) and O to infinity, we thus obtain a Montgomery model βy2 = x(x2 +A1x+1).

The Montgomery Kummer line is denoted K1 over k with constant A1 ∈ k.
The ramification of our Kummer line is then:

O1 = (1 : 0)∗
T1 = (0 : 1) R1 = (A1 : B1) S1 = (B1 : A1) = R1 + T1.

Thus A1 = − (A1−B1)2

A1B1
and:

(3) d1 = A1 + 2
4 = −(A1 −B1)2

4A1B1
= (A1 −B1)2

(A1 −B1)2 − (A1 + B1)2 .

We computed in Main Example 3 the type of T1 which is 1 up to a square (T1 is then of
Montgomery type), and two T1-invariant quadratic forms:

q1(X, Z) = X2 + Z2 q2(X, Z) = XZ.

We also have the translation by T1 denoted τT1 : K1 → K1 computed in Main Example 2:
(4) τT1 : (X : Z) 7→ (Z : X).
We will need the translation by R1 later too, which is given by:

τR1 : (X : Z) 7→ (A1X −B1Z : B1X −A1Z).(5)
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Remark 3.2. When the curve E is fixed (as for scalar multiplication), we will count multipli-
cation by d or (A1 : B1) as one m0 (since we can assume that B1 = 1). For the computation
of a 2n-isogeny chain, they will be given as quotients, in which case we will count them as two
multiplications, either small or generic depending on the context. See Section 4 and Appendix C.

Remark 3.3. The ramification of the Montgomery Kummer line is invariant under the involu-
tion (X : Z) 7→ (Z : X), corresponding to translation by T1. If we apply the Hadamard transform
H(X : Z) = (X + Z : X − Z) = (X ′ : Z ′), we obtain a new model HK1 where the ramification
becomes

(1 : 1) (−1 : 1) (A1 + B1 : A1 −B1) (A1 + B1 : B1 −A1)

which is invariant by the involution (X ′ : Z ′) 7→ (−X ′ : Z ′).
The quadratic forms invariant by the canonical affine lift of this involution are q′

1 = X ′2 and
q′

2 = Z ′2. On K1, these quadratic forms corresponds to (X + Z)2 and (X − Z)2, which indeed
span the same vector spaces as q1, q2 above.

3.1. Isogeny with kernel T1. Assume in this section that A1
B1
∈ k, so we have the full 2-torsion

on our curve. Recall we have these independent 4-torsion points above T1:

T ′
1 = (1 : 1) T ′′

1 = (−1 : 1) = T ′
1 + R1.

We will use the following invariant quadratic forms from Remark 3.3, using the notations of Main
Example 3:

u(X, Z) = (X + Z)2 = q1(X, Z) + 2q2(X, Z) v(X, Z) = (X − Z)2
.

Set f0 : (X : Z) 7→ ((X + Z)2 : (X − Z)2). By construction, f0(P + T1) = f0(P ). Set
A2 = A1 + B1 and B2 = A1 −B1, the image of the ramification is the following:

f0(O1) = (1 : 1)∗ = f0(T1) f0(R1) = (A2
2 : B2

2) = f0(S1)
f0(T ′

1) = (1 : 0) f0(T ′′
1 ) = (0 : 1).

To get a Montgomery shaped ramification, we will multiply by C : (X : Z) 7→ (B2X : A2Z), set
f = C ◦ f0, then:

O2 = f(T ′
1) = (1 : 0) T2 = f(T ′′

1 ) = (0 : 1)
R2 = f(R1) = (A2 : B2) S2 = f(O1) = (B2 : A2)∗

.

Up to a translation by S2 we recover the 2-isogeny with kernel T1 and the image is Montgomery
shaped.

Theorem 3.4 (Translated 2-isogeny with kernel T1). Let g : K1 → K2 be the 2-isogeny with
kernel T1 on the Montgomery Kummer line K1 with extra 2-torsion (A1 : B1), and assume
A1
B1
∈ k. Set (A2 : B2) = (A1 + B1 : A1 −B1), then g = f + S2 where:

f : (X : Z) 7→
(

B2(X + Z)2 : A2(X − Z)2
)

.

f can be computed in 2S + 1m0 + 2a, the codomain K2 is a Montgomery Kummer line and the
curve constant d2 can be computed in 2S + 1a with:

d2 = B2
1

B2
1 −A2

1
.
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Proof. The fact that g is the 2-isogeny with kernel T1 and that the image is a Montgomery
Kummer line is straight-forward from the reasoning above. The curve constant d2 comes from
the computation in Eq. (3) and that (A2 : B2) = (A1 + B1 : A1 −B1):

d2 = (A2 −B2)2

(A2 −B2)2 − (A2 + B2)2 = B2
1

B2
1 −A2

1
.

□

Proposition 3.5 (Translated dual isogeny). Using notation of Theorem 3.4, the dual isogeny of
g is given by ĝ = f̂ + S1 where:

f̂ : (X : Z) 7→
(

B1(X + Z)2 : A1(X − Z)2
)

.

Then f̂ ◦ f(P ) = 2 ·P + R1 where P ∈ K1 can be computed in 4S + 2m0 + 4a as in Algorithm 1.

Proof. Because the Hadamard transform is an involution, the codomain of f̂ is K1. We can then
set g0 = f̂ + S1, which is the 2-isogeny with kernel T2 thanks to Theorem 3.4. Let’s check that
g0 ◦ g = [2], the multiplication by 2, on the Kummer line. We will use the following formula:

g0(g(P )) = g0(f(P ) + S2)
= g0(f(P )) + g0(S2)

= f̂(f(P )) + f̂(S2) + 2 · S1

g0(g(P )) + R1 = f̂(f(P )).
We then study g0 ◦ g on the 2-torsion:

g0(g(O1)) = O1 g0(g(T1)) = f̂(S2) + R1 = 2 ·R1 = O1

g0(g(R1)) = f̂(R2) + R1 = O1 g0(g(S1)) = f̂(R2) + R1 = O1.

g0 ◦ g ̸= [0] (for instance, g0(g(T ′
1)) = T1), so we must have g0 ◦ g = [2]. Similarly, we prove

g ◦ g0 = [2]. By uniqueness, g0 = ĝ. The first formula then yields f̂(f(P )) = 2 · P + R1. □

Algorithm 1: Doubling in Montgomery coordinates up to a 2-torsion point
Input: [P ] = (X1 : Z1)
Output: [2 · P + R1] = (X : Z)
Data: On K1 with extra 2-torsion [R1] = (A1 : B1), (A2 : B2) = (A1 + B1 : A1 −B1)

1 Function DoublingTranslation([P ]):
2 u← (X1 + Z1)2;
3 v ← A2

B2
(X1 − Z1)2;

4 X ← (u + v)2;
5 Z ← A1

B1
(u− v)2;

6 return (X : Z);

We will be using the translated doubling of Proposition 3.5 in Section 4 to build a “hybrid
ladder”.

Remark 3.6. In ECC, if one always works on the same curve, it is possible to control the
associated constants and make them small. That way, a multiplication by a curve constant costs
way less than a multiplication by a generic number. The hybrid ladder will rely on this fact a lot.
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Because the translated point is S2 and not T2 in Theorem 3.4, it is not convenient to use these
formulas to chain isogenies.

3.2. Isogeny with kernel R1. Assume once again that A1
B1
∈ k, so we have full 2-torsion on

our curve. Recall that we have the following ramification on our Kummer line:

O1 = (1 : 0)∗
T1 = (0 : 1) R1 = (A1 : B1) S1 = (B1 : A1) = R1 + T1.

In this section, we further assume that there is a 4-torsion point R′
1 = (a′

1 : b′
1) above R1.

Another independent 4-torsion point above R1 is then R′′
1 = R′

1 + T1 which can be computed
easily as R′′

1 = (b′
1 : a′

1) thanks to Eq. (4). Finally, set (a1 : b1) = (a′
1 + b′

1 : a′
1 − b′

1). A useful
relation that we will be using is the following:

(A1 : B1) = (a2
1 + b2

1 : a2
1 − b2

1) ⇐⇒ (A1 + B1 : A1 −B1) = (a2
1 : b2

1).

This comes for instance from the doubling formula in Proposition 3.5, because 2 ·R′
1 + R1 = O1:

(A1 −B1)a2
1 − (A1 + B1)b2

1 = 0 ⇐⇒ (A1 + B1 : A1 −B1) = (a2
1 : b2

1).

We will now apply the algorithm to find invariant maps by R1. A matrix associated to τR1 is:

MR1 =
(

A1 −B1
B1 −A1

)
.

Since M2
R1

= (A2
1 − B2

1)I2, the type is λR1 = A2
1 − B2

1 = 4a2
1b2

1. This is a square, so R1 is of
Montgomery type.

Set M = MR1√
λR1

, we will be looking at the action of M on the following basis of quadratic

forms: (X + Z)2, (X − Z)2 and (X − Z)(X + Z):

M · (X + Z)2 = a2
1

b2
1

(X − Z)2
M · (X − Z)2 = b2

1
a2

1
(X + Z)2

.

M · (X − Z)(X + Z) = (X − Z)(X + Z).
The invariant quadratic forms we will be using are then:

(6) q1(X, Z) = b2
1(X + Z)2 + a2

1(X − Z)2
q2(X, Z) = a1b1(X + Z)(X − Z).

By doing linear combination of q1 and q2, we end up with the following formulas:

Theorem 3.7 (Translated 2-isogeny with kernel R1). Let g : K1 → K2 be the 2-isogeny with
kernel R1 on the Montgomery Kummer line K1 with extra 2-torsion R1 = (A1 : B1). Assume
there is a 4-torsion point R′

1 = (a′
1 : b′

1) above R1. Set (a1 : b1) = (a′
1 + b′

1 : a′
1− b′

1), we have the
relation (A1 : B1) = (a2

1 + b2
1 : a2

1 − b2
1). Finally, set f to be the following map:

f : (X : Z) 7→
(

(b1(X + Z) + a1(X − Z))2 : (b1(X + Z)− a1(X − Z))2
)

.

Then the ramification on the image of f is:

O2 = (1 : 0) T2 = (0 : 1) R2 = (a′2
1 : b′2

1 )∗
S2 = (a′2

1 : b′2
1 ) = R2 + T2.

We have g = f + R2, f can be computed in 2S + 1m0 + 4a, the codomain K2 is a Montgomery
Kummer line and the curve constant d2 can be computed in 2S + 1a with:

d2 = B2
1 −A2

1
B2

1
.
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Proof. We have f(X : Z) = (q1(X, Z) + 2q2(X, Z) : q1(X, Z) − 2q2(X, Z)) where q1 and q2 are
defined in Eq. (6) and are R1-invariant. So f(·+ R1) = f . It is straight-forward to compute:

f(O1) = (a′2
1 : b′2

1 )∗ = f(R1) f(T1) = (b′2
1 : a′2

1 ) = f(S1)
f(R′

1) = (1 : 0) f(R′′
1 ) = (0 : 1).

So the image is a Montgomery Kummer line and g = f + R2 with notations from the theorem.
The codomain is given by d2 using Eq. (3):

(7) d2 = (a′2
1 − b′2

1 )2

(a′2
1 − b′2

1 )2 − (a′2
1 + b′2

1 )2

Thanks to (A1 : B1) = (a2
1 + b2

1 : a2
1 − b2

1), we can simplify the expression of d2:(
(a′2

1 − b′2
1 )2 : (a′2

1 + b′2
1 )2

)
=

(
4a2

1b2
1 : (a2

1 + b2
1)2

)
= (A2

1 −B2
1 : A2

1).

□

If we compute g = f + R2 using the translation τR2 given in Eq. (4), we find back the
formulas for 2-isogenies given by Renes in [Ren18, Prop. 2]. We can also recover alternative
shifted doubling formulas instead of Algorithm 1, which only differ by the number of additions.

Remark 3.8. Unlike in Theorem 3.4, we have a translated isogeny by R2, and the kernel was
initially R1. We can therefore chain such isogenies to compute 2n-isogenies, more details are
given in Appendix C.

Since the computations only involves the 4-torsion point R′
1 above R1, one could keep track

only of the 4-torsion points. The codomain would then be given by Eq. (7), which costs 4S + 3a.

Proposition 3.9 (Dual isogeny). Using notation of Theorem 3.7, the dual isogeny of g is given
by ĝ where:

ĝ : (X : Z) 7→
(

B1(X + Z)2 : 4A1XZ
)

.

Then ĝ ◦ f(P ) = 2 · P + R1 where P ∈ K1 can be computed in 4S + 2m0 + 7a as in Algorithm 2
(using 4XZ = (X + Z)2 − (X − Z)2).

Proof. We know that the kernel of ĝ is g(K1[2]) = ⟨g(T1)⟩ = ⟨T2⟩. We also have computed two
T2-invariant quadratic forms earlier, set g0(X : Z) = ((X + Z)2 : XZ). Then g0(· + T2) = g0.
The output ramification is:

g0(O2) = (1 : 0)∗ = g0(T2) g0(R2) =
(

(a′2
1 + b′2

1 )2 : a′2
1 b′2

1

)
= g0(S2)

g0(T ′
2) = (4 : 1) g0(T ′′

2 ) = (0 : 1).

Thanks to computations already done while proving Theorem 3.7, we have g0(R2) = (4A2
1 : B2

1).
We then consider a homography h : (X : Z) 7→ (aX + bZ : cX + dZ), we want:
• h(1 : 0) = (1 : 0), then c = 0.
• h(0 : 1) = (0 : 1), then b = 0.
• h(4 : 1) = (B1 : A1), which sets (4a : d) = (B1 : A1).

Then, h(4A2
1 : B2

1) = (4aA2
1 : dB2

1) = (A1 : B1). Finally, the map h ◦ g0 is the 2-isogeny with
kernel T2 and codomain K1, hence ĝ = h ◦ g0.

Since, ĝ(g(P )) = 2 ·P = ĝ(f(P ))+ ĝ(R2), we get the alternative formula from ĝ(R2) = R1. □
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Algorithm 2: Alternative doubling in Montgomery coordinates up to a 2-torsion point
Input: [P ] = (X1 : Z1)
Output: [2 · P + R1] = (X : Z)
Data: On K1 with extra 2-torsion [R1] = (A1 : B1) and [R′

1] = (a′
1 : b′

1) of 4-torsion
above [R1], (a1 : b1) = (a′

1 + b′
1 : a′

1 − b′
1)

1 Function DoublingTranslation([P ]):
2 u← (X1 + Z1);
3 v ← a1

b1
(X1 − Z1);

4 w ← (u + v)2;
5 t← (u− v)2;
6 u← (w + t)2;
7 v ← (w − t)2;
8 X ← u;
9 Z ← A1

B1
(u− v);

10 return (X : Z);

3.3. Additional 8-torsion: another formula for the isogeny with kernel T1. In this last
section, we assume A1

B1
/∈ k, so we don’t know about the full 2-torsion, but we add a hypothesis

about a 8-torsion point T̃1 = (r : s) above T ′
1 = (1 : 1) (which itself is above T1 = (0 : 1)). That

way, we ensure that there will still be a rational 4-torsion point on the Kummer line, so it will
be Montgomery shaped.

We set (γ : δ) = (4rs : (r − s)2), and because 2 · T̃1 = T ′
1 = (1 : 1), using Algorithm 5:

((γ + δ)δ : γ(δ + d1γ)) = (1 : 1) ⇐⇒ d1 = δ2

γ2 .

But we have another expression for d1 given in Eq. (3), therefore:

(δ2 : γ2) = (−(A1 −B1)2 : 4A1B1).

We are looking for a 2-isogeny with kernel T1 without the knowledge of A1
B1

. The result will
be in a similar shape to the one in Proposition 3.9. As before, we start by computing invariants
by the matrix M = ( 0 1

1 0 ), which we already did in Main Example 3. We will consider:

M · (X − Z)2 = (X − Z)2
M ·XZ = XZ.

If f0 : (X : Z) 7→ ((X − Z)2 : XZ), then f0(·+ T1) = f0. The codomain ramification is:

f0(O1) = (1 : 0)∗ = f0(T1) f(R1) = ((A1 −B1)2 : A1B1) = (−4δ2 : γ2) = f(S1)
f(T ′

1) = (0 : 1) f(T ′′
1 ) = (−4 : 1).

To put it in a convenient shape, we consider a homography h : (X : Z) 7→ (aX + bZ : cX + dZ).
We want h(1 : 0) = (1 : 0) and h(0 : 1) = (0 : 1), which forces b = 0 and c = 0. Then, we
naturally want to send f0(T̃1) = ((r − s)2 : rs) onto (1 : 1):

h((r − s)2 : rs) = (1 : 1) ⇐⇒ (a : d) = (γ : 4δ).
That way, we get:

h(−4δ2 : γ2) = (−4γδ2 : 4δγ2) = (−δ : γ) h(−4 : 1) = (−γ : δ).
We then set f = h ◦ f0, we recover formulas already known in [FJP14, Eq. (19)]:
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Theorem 3.10 (2-isogeny with kernel T1). Let g : K1 → K2 be the 2-isogeny with kernel T1 on
the Montgomery Kummer line K1. Assume we know about a 8-torsion point T̃1 = (r : s) above
T ′

1 = (1 : 1). Set (γ : δ) = (4rs : (r − s)2), then g is given by:

g : (X : Z) 7→
(

γ(X − Z)2 : 4δXZ
)

.

g can be computed in 2S + 1m0 + 3a (4XZ = (X + Z)2 − (X − Z)2), the codomain K2 is a
Montgomery Kummer line and the curve constant d2 can be computed in 4S + 6a with:

d2 = (γ + δ)2

(γ + δ)2 − (γ − δ)2 .

The computation of d2 is a direct application of Eq. (3). For completeness, we also provide
the dual isogeny formula.

Proposition 3.11 (Dual isogeny). Using notation of Theorem 3.10, the dual isogeny of g is
given by ĝ where:

ĝ : (X : Z) 7→ (u(X, Z) + 2δv(X, Z) : u(X, Z)− 2δv(X, Z))

u(X, Z) = (γ + δ)(X + Z)2 − (γ − δ)(X − Z)2

v(X, Z) = (X + Z)(X − Z).
ĝ can be computed in 1M + 2S + 2m0 + 3a.

Proof. We have that ker ĝ = ⟨R2⟩, we can’t apply results from Theorem 3.7 since we don’t know
the 4-torsion above R2. We have already computed the matrix M associated to τR2 and the type
λ = δ2 − γ2:

M =
(
−δ −γ
γ δ

)
.

We also have already seen that 1
λ (M · (X + Z)(X − Z)) = (X + Z)(X − Z), so we are looking

for one other invariant:
1
λ

(
M · (X + Z)2

)
= (γ − δ)2

δ2 − γ2 (X − Z)2 = −γ − δ

γ + δ
(X − Z)2

.

Hence the two invariant quadratic forms we will consider are:

u(X, Z) = (γ + δ)
(

(X + Z)2 + 1
λ

(
M · (X + Z)2

))
= (γ + δ)(X + Z)2 − (γ − δ)(X − Z)2

v(X, Z) = (X + Z)(X − Z).

We then set g0(X : Z) = (au(X, Z) + bv(X, Z) : cu(X, Z) + dv(X, Z)), which by construction
verifies g0(· + R2) = g0. Since we want it to be the dual of g, we are looking for the following
equations:

• g0(g(O1)) = g0(O2) = O1, which implies 2δc + d = 0.
• g0(g(T ′

1)) = g0(T2) = T1, which implies 2δa− b = 0.
• g0(g(T̃1)) = g0(T ′

2) = T ′
1, which implies a = c.

We factor by a in g0 and get the following expression:
g0 : (X : Z) 7→ (u(X, Z) + 2δv(X, Z) : u(X, Z)− 2δv(X, Z)).

We then check that it behaves correctly on the remaining 2-torsion:
• g0(g(R1)) = g0(R2) = (4δλ : 0) = O1.
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• g0(g(T ′′
1 )) = g0(S2) = (0 : 4δλ) = T1.

Finally, g0 = ĝ. □

4. Hybrid ladder

Let π : E → P1 ≃ K be a Montgomery Kummer line. Recall that if one knows π(P ), π(Q)
and π(P −Q), then it is possible to recover π(P + Q) using differential addition formulas which
are given in Appendix A, Algorithms 4 and 5. Special formulas for doubling is necessary because
the general formula do not work when P = Q (unlike for the theta model which use the same
formulas for doublings and differential additions). We will also use the notation [P ] = π(P ) in
the algorithms.

Using these formulas, one can compute π(n · P ) on the Kummer line using the Montgomery
ladder (Algorithm 6). The key of the ladder is that, at each step, we have π(U−V ) = π(P ), where
U and V are the two points we keep track of. It is clear that the cost of a scalar multiplication
depends linearly on the cost of one differential addition and one doubling. In this paper, we
focus on the doubling part. If we look at the computational cost of the doubling in Algorithm 5,
we get 2M + 2S + 1m0, where m0 is a multiplication by a curve constant.

On the other hand, the computational cost of a doubling up to a 2-torsion point in Proposi-
tion 3.5 and Algorithm 1 is 4S + 2m0. Depending on the context, a square tends to be faster
than a multiplication. For instance, 3S = 2M in Fp2 = Fp[i] when p ≡ 3 mod 4. The comparison
is given in Table 1.

Doubling Doubling up to a 2-torsion point
Detailed cost 2M + 2S + 1m0 4S + 2m0

3S = 2M, m0 = M ≈ 4.33M ≈ 4.67M
3S = 2M, 5m0 = M ≈ 3.53M ≈ 3.07M

Table 1. Comparison of doubling formulas computational cost

For parameters where the multiplication by a curve constant is way faster than a generic
multiplication, then our translated doubling is faster. This can be achieved for instance by having
small constants, i.e. less than a computer word. By adapting the Montgomery ladder to take into
account the additional 2-torsion point, we can build a new hybrid ladder in Algorithm 3. The
major change is that, instead of having π(U−V ) = π(P ), we allow π(U−V ) ∈ {π(P ), π(P +R1)}.
The correctness of our scalar multiplication is explained in Appendix D, the formula for the
correction step that may occur is given by Eq. (5).

Now, in the context of ECC, if we are working on a set curve like in ECDSA, we can choose a
convenient one such that the associated constants are less than a computer word, and that way
one can get m0 way smaller than M.

Remark 4.1. Since we work on a set curve, some constants can be saved. Implementation-wise,
constants are given as a numerator r and a denominator s, and because everything lives in a
projective space a multiplication by r

s can be put into two multiplications by r and by s. We will
denote by c the cost of a multiplication by a small constant.

• In the doubling Algorithm 5, we directly choose d to be small, so 1m0 = 1c for this one.
• With the additional 2-torsion point in Algorithm 1, the curve constants are A1

B1
and A2

B2
.

We can choose B1 = 1, and that’s it because the others are tied, we end up with three
constants then: A1, A2 and B2. In this algorithm, 2m0 = 3c.
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Algorithm 3: Scalar multiplication with hybrid ladder
Input: n = (1, bℓ−2, . . . , b0) an ℓ-bits integer, [P ] a point on K1
Output: [n · P ]
Data: On K1, [Q] = [P + R1] using Eq. (5)

1 Function ScalarMult(n, [P ]):
2 [U ]← [P ];
3 [V ]← DoublingTranslation([P ]);
4 for i← ℓ− 2 to 0 do
5 [D]← [U − V ]; // This is either [P ] or [Q] which are pre-computed
6 if bi = 0 then
7 [V ]← DiffAdd([U ], [V ], [D]);
8 [U ]← DoublingTranslation([U ]);
9 else if bi = 1 then

10 [U ]← DiffAdd([U ], [V ], [D]);
11 [V ]← DoublingTranslation([V ]);
12 end
13 end
14 if ℓ ≡ 0 mod 2 or b0 = 0 then
15 return [U + R1]; // Details in Appendix D
16 end
17 return [U ];

Instead of dealing with the low level libraries implementation of multiplication to take into
account the small constants, we provide a proof of concept as well as verification scripts on
GitLab1. The context is the following:

• We work over Fp10 = Fp5 [i] where i2 = −1 and Fp5 = Fp[u] where u5 = 2. The extension
Fp10/Fp5 is to ensure that 3S = 2M, and the extension Fp5/Fp is to have a large extension
with trivial multiplication by u and i. A small constant corresponds to an element of Fp.
The construction obviously puts some constraints on p (p ≡ 3 mod 4 and p ≡ 1 mod 5).
• We choose A1 = 1 + µi and d = ν + i for some µ, ν ∈ Fp, that way A2 = 2 + µi and

B2 = µi. Multiplication by these constants are faster to deal with than multiplication
by generic number over Fp10 .
• We repeated 100 times 100 random scalar multiplications.

The chosen parameters are the following:
• p = 14859749208866121031.
• µ = 1141088753069104366 such that A1 = 1 + µi.
• ν = 400659849698428527 such that d = ν + i.

The results are in Table 2 and show that we achieve a 6.2% gain over Montgomery ladder.

Montgomery ladder Hybrid ladder
Average (s) 2.502± 0.039 2.348± 0.017 (6.2%)

Table 2. Timings on Intel Core i5-1145G7 @ 2.60GHz

1https://gitlab.inria.fr/nsarkis/poc-scalar-multiplication-kummer-lines

https://gitlab.inria.fr/nsarkis/poc-scalar-multiplication-kummer-lines
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Remark 4.2. In the differential addition Algorithm 4, since in our application π(U −V ) is also
a constant, it is possible to add a constraint for this one to be small too and that improves the
whole time saved. However, this is not necessary for our comparison as the differential addition
is the same in both ladder.
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Appendix A. Montgomery arithmetic on a Kummer line

We work on a Kummer line K associated to a Montgomery curve with constant A. Arith-
metic in Algorithms 4 and 5 was introduced by Montgomery in [Mon87]. They are used in the
Montgomery ladder (Algorithm 6).

Algorithm 4: Differential addition in Montgomery xz-coordinates
Input: [P ] = (X1 : Z1), [Q] = (X2 : Z2) and [P −Q] = (X0 : Z0) ̸= (1 : 0)
Output: [P + Q] = (X : Z)

1 Function DiffAdd([P ], [Q], [P −Q]):
2 u← (X1 + Z1)(X2 − Z2);
3 v ← (X1 − Z1)(X2 + Z2);
4 w ← (u + v)2;
5 t← (u− v)2;
6 X ← w;
7 Z ← X0

Z0
t;

8 return (X : Z);

Algorithm 5: Doubling in Montgomery xz-coordinates
Input: [P ] = (X1 : Z1)
Output: [2 · P ] = (X : Z)
Data: If A is the Montgomery curve constant, d = A+2

4

1 Function Doubling([P ]):
2 u← (X1 + Z1)2;
3 v ← (X1 − Z1)2;
4 t← u− v;
5 X ← uv;
6 Z ← t(v + dt);
7 return (X : Z);

Appendix B. More examples of 2-isogenies: Legendre and theta models

In this section, we will look at two other classical Kummer lines models.

B.1. Legendre model. An elliptic curve is said to be in Legendre form if it has full rational
2-torsion and is then put in the following shape:

E : By2 = x(x− 1)(x− γ), γ ∈ k.

In terms of Kummer lines, this is a particular case of Main Example 1. The ramification is as
follows:

O = (1 : 0)∗
T = (0 : 1) R = (1 : 1) S = (γ : 1).

We will focus on two isogenies with kernel T .
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Algorithm 6: Scalar multiplication with Montgomery ladder
Input: n = (1, bℓ−2, . . . , b0) an ℓ-bits integer, [P ] a point on K1
Output: [n · P ]

1 Function MontgomeryLadder(n, [P ]):
2 [U ]← [P ];
3 [V ]← Doubling([P ]);
4 for i← ℓ− 2 to 0 do
5 if bi = 0 then
6 [V ]← DiffAdd([U ], [V ], [P ]);
7 [U ]← Doubling([U ]);
8 else if bi = 1 then
9 [U ]← DiffAdd([U ], [V ], [P ]);

10 [V ]← Doubling([V ]);
11 end
12 end
13 return [U ];

Example B.1 (Montgomery model to Legendre model). Suppose our initial Kummer line K1
is a Montgomery one with the following ramification:

O1 = (1 : 0)∗
T1 = (0 : 1) R1 = (A1 : B1) S1 = (B1 : A1).

A1
B1

may not be rational. We also know about the 4-torsion points above T1, which are T ′
1 = (1 : 1)

and T ′′
1 = (−1 : 1).

We can use the invariants from Section 3.1. Set f : (X : Z) 7→
(

(X + Z)2 : (X − Z)2
)

, it is
T1-invariant and the ramification on the codomain is:

• f(O1) = f(T1) = (1 : 1)∗

• f(R1) = f(S1) = ((A1 + B1)2 : (A1 −B1)2)
• f(T ′

1) = (1 : 0)
• f(T ′′

1 ) = (0 : 1)
We notice that this is exactly a Legendre model with γ2 = (A1+B1)2

(A1−B1)2 up to translation by a 2-
torsion point. We already justified in Main Example 4 that f(R1) = f(S1) is rational even if R1
is not. The ramification of the codomain is:

O2 = (1 : 0) T2 = (0 : 1) R2 = (1 : 1)∗
S2 = (γ2 : 1).

The 2-isogeny is then g = f +R2 and can be computed in 2S+2a, γ2 can be computed in 2S+2a.
Another idea is to use invariants (X + Z)2 and XZ. We set g0 : (X : Z) 7→ ((X + Z)2 : XZ),

the ramification on the codomain this time is:
• g0(O1) = f0(T1) = (1 : 0)∗

• g0(R1) = f0(S1) = ((A1 + B1)2 : A1B1)
• g0(T ′

1) = (4 : 1)
• g0(T ′′

1 ) = (0 : 1)
We have to change the shape of our ramification, we are looking for a homography h such that:

• h(1 : 0) = (1 : 0)
• h(4 : 1) = (1 : 1)
• h(0 : 1) = (0 : 1)
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We find that h(X : Z) = (X : 4Z) satisfies these conditions. We then set g = h ◦ g0 and:

γ2 = h((A1 + B1)2 : A1B1) = (A1 + B1)2

4A1B1
.

The ramification on the codomain is:

O2 = (1 : 0)∗
T2 = (0 : 1) R2 = (1 : 1) S2 = (γ2 : 1).

This can be computed in 2S + 3a using 4XZ = (X + Z)2 − (X − Z)2, and γ2 also in 2S + 3a.

Example B.2 (Legendre model to Montgomery model). On the other hand, it is also possible
to go from a Legendre model to a Montgomery one via a 2-isogeny. Suppose our initial Kummer
line K1 is a Legendre one with the following ramification:

O1 = (1 : 0)∗
T1 = (0 : 1) R1 = (1 : 1) S1 = (γ1 : 1).

In Main Example 3, we computed the following quadratic forms that are T1-invariant:

u(X, Z) = X2 + γ1Z2 v(X, Z) = XZ.

In Main Example 4, we also computed the 4-torsion above T1:

T ′
1 = (√γ1 : 1) T ′′

1 = (−√γ1 : 1).

First, set g0 : (X : Z) 7→ (X2 + γ1Z2 : XZ), it is T1-invariant and the ramification on the
codomain is:

• g0(O1) = f0(T1) = (1 : 0)∗

• g0(R1) = f0(S1) = (1 + γ1 : 1)
• g0(T ′

1) = (2√γ1 : 1)
• g0(T ′′

1 ) = (−2√γ1 : 1)
To recover a Montgomery Kummer line, we also need a 4-torsion point. Set R′

1 = (r : s) to be
a 4-torsion point above R′

1. Let σ be an element of the Galois group of our field k. Then either
[σ(R′

1)] = [R′
1], or [σ(R′

1)] = [R′′
1 ] is another 4-torsion point above R1 because 2σ(R′

1) = σ(R1) =
R1. We can’t have R′′

1 = R′
1 + R1 because on the Kummer line [R′

1] = [R′
1 + R1], therefore R′′

1 =
R′

1 + T1 = R′
1 + S1 on the Kummer line. Hence, σ(g0(R′

1)) = g0(σ(R′
1)) = g0(R′

1 + T1) = g0(R′
1).

In all cases, g0(R′
1) is invariant by Galois.

The translation by R1 is given by τR1 : (X : Z) 7→ (X−γ1Z : X−Z). Because R′
1 +R1 = R′

1,
we find using τR1 that r2 + γ1s2 = 2rs. Then g0(R′

1) = (2 : 1).
To go to a Montgomery model, we want a homography h : (X : Z) 7→ (aX + bZ : cX + dZ)

such that:
• h(1 : 0) = (1 : 0), i.e. c = 0.
• h(1 + γ1 : 1) = (0 : 1), i.e. b = −a(1 + γ1).
• h(2 : 1) = (1 : 1), i.e. d = 2a + b = a(1− γ1).

This yields h(X : Z) = (X − (1 + γ1)Z : (1− γ1)Z). One can check that:

h(2√γ1 : 1) = (√γ1 − 1 : √γ1 + 1) h(−2√γ1 : 1) = (√γ1 + 1 : √γ1 − 1).

We end up on the following Montgomery model with the 2-isogeny g = h ◦ g0:

O2 = (1 : 0)∗
T2 = (0 : 1) R2 = (√γ1 − 1 : √γ1 + 1) S2 = (√γ1 − 1 : √γ1 + 1).
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B.2. Theta model. In this section we look at another model where the neutral point is not at
infinity this time. Let a, b ∈ k be two constants that will define our ramification:

O1 = (a : b)∗
T1 = (−a : b) R1 = (b : a) S1 = (−b : a).

This is called a theta model with theta constants (a : b), we will again focus on 2-isogenies with
kernel T1.

We first want to compute potential 4-torsion points, we have:

τT1(X : Z) 7→ (−X : Z) τR1 : (X : Z) 7→ (Z : X) τS1 : (X : Z) 7→ (−Z : X).

If T ′
1 = (X : Z) is a 4-torsion point above T1, we want to solve T ′

1 + T1 = T ′
1. With a similar

approach, these are the 4-torsion points on this model:
• Above T1: T ′

1 = (1 : 0) and T ′′
1 = (0 : 1).

• Above R1: R′
1 = (1 : 1) and R′′

1 = (−1 : 1).
• Above S1: S′

1 = (i : 1) and S′′
1 = (−i : 1) with i2 = −1.

Aside S′
1 and S′′

1 which may not be rational, there are always two rational independent 4-torsion
points on this model: T ′

1 and R′
1. This is one more occurrence of a Montgomery model where

this time two points of two torsion are required to be of Montgomery type. In the theta model,
the ramification is then put in a way to be invariant both by (X : Z) → (Z : X) as in the
Montgomery model, but also by (X : Z) 7→ (−X : Z). In particular the full 2-torsion is always
rational in the theta model.

The matrix associated to τT1 is M =
( −1 0

0 1
)

and M2 = I2, so the type is 1 as expected and
M acts as:

M ·X2 = X2 M · Z2 = Z2 M ·XZ = −XZ.

Example B.3 (Theta model to Montgomery model). We will use X2 and Z2 as the invariants,
set f : (X : Z) 7→ (X2 : Z2). A quick computation yields:

• f(O1) = f(T1) = (a2 : b2)∗

• f(R1) = f(S1) = (b2 : a2)
• f(T ′

1) = (1 : 0)
• f(T ′′

1 ) = (0 : 1)
We also have f(R′

1) = (1 : 1) and f(S′
1) = (−1 : 1), the 4-torsion above (1 : 0). The ramification

is Montgomery shaped up to a translation, the 2-isogeny is then g = f + R2 with:

O2 = (1 : 0) T2 = (0 : 1) R2 = (a2 : b2)∗
S2 = (b2 : a2).

f can be computed in 2S, the codomain in 2S too.
This can be used to find doubling formulas on the theta model. If ĝ is the dual of g, we

have that ker ĝ = ⟨T2⟩. We use the same invariants as in Theorem 3.4 because we start on a
Montgomery model, and we set ĝ0 : (X : Z) 7→ ((X + Z)2 : (X − Z)2). One computes, with
(A2 : B2) = (a2 + b2 : a2 − b2):

• ĝ0(O2) = ĝ0(T2) = (1 : 1)∗

• ĝ0(R2) = ĝ0(S2) = (A4 : B4)
• ĝ0(T ′

2) = (1 : 0)
• ĝ0(T ′′

2 ) = (0 : 1)
Because we want to compute the dual, we are aiming for the following equations:
• ĝ(g(O1)) = O1 i.e. ĝ(O2) = (a : b).
• ĝ(g(S′

1)) = S1 i.e. ĝ(T ′
2) = (−b : a).

• ĝ(g(R′
1)) = R1 i.e. ĝ(T ′′

2 ) = (b : a).
• ĝ(g(T ′

1)) = T1 i.e. ĝ(R2) = (−a : b).
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As usual, we look for a homography h such that ĝ = h ◦ ĝ0. Using the first three equations, we
find that:

h : (X : Z) 7→ (b(B2X + A2Z) : a(−B2X + A2Z)).
We finally check that indeed h(A4 : B4) = (−a : b), and therefore we have ĝ = h ◦ ĝ0. Because
ĝ(g(P )) = 2 · P and ĝ(R2) = T1, we can then compute 2 · P + T1 = ĝ ◦ f(P ) in 4S + 2m0 + 2a,
which is essentially 2 · P because τT1(X : Z) = (−X : Z).

Example B.4 (Theta model to theta model). We recall the theta model here:
O1 = (a : b)∗

T1 = (−a : b) R1 = (b : a) S1 = (−b : a).

Assume in this example that we have a 8-torsion point T̃1 = (r : s) above T ′
1. Using invariants X2

and Z2, we set g0(X : Z) = (X2 + Z2 : X2−Z2) and once again (A2 : B2) = (a2 + b2 : a2− b2).
One computes:

• g0(O1) = g0(T1) = (A2 : B2)∗

• g0(R1) = g0(S1) = (−A2 : B2)
• g0(T ′

1) = (1 : 1)
• g0(T ′′

1 ) = (−1 : 1)
The 4-torsion is g0(T̃1) = (r2 + s2 : r2 − s2) := (u : v), g0(R′

1) = (1 : 0) and g0(S′
1) = (0 : 1).

By setting h : (X : Z) 7→ (BX : AZ), the ramification is put in the correct shape. It remains
to check is that (A : B) is indeed rational in this context. To do so, we will look at the 4-torsion
on the intermediate model, set:

O0 = (A2 : B2)∗
T0 = (−A2 : B2) R0 = (1 : 1) S0 = (−1 : 1).

We then have T ′
0 = (1 : 0) and T ′′

0 = (0 : 1) and R′
0 = (u : v) by the 2-isogeny. On this model,

the translation by R0 is τR0 : (X : Z) 7→ (A2Z : B2X). The 4-torsion verifies R′
0 + R0 = R′

0,
therefore:

(A2v : B2u) = (u : v) ⇐⇒ u

v
= ±A

B
.

Hence (A : B) is rational, so is h and g = h ◦ g0 which gives the following theta model:
O2 = (A : B)∗

T2 = (−A : B) R2 = (B : A) S2 = (−B : A).

The 4-torsion is T ′
2 = g(R′

1) = (1 : 0), T ′′
2 = g(S′

1) = (0 : 1) and R′
2 = g(T̃1) = (1 : 1) when we

choose (A : B) = (u : v).
We recover the usual duplication formula on theta coordinates. Since the codomain is in the

theta model, we can also easily compute the dual isogeny by swapping (a : b) and (A : B) in the
formulas, and recover the doubling formulas from [GL09].

Appendix C. Computing 2n-isogenies between Montgomery models

As explained in Section 2, 2n-isogenies can be computed via chaining 2-isogenies. Starting
with a point P0 of 2n-torsion on an elliptic curve E0, one can reduce its order by:

• Either computing 2 · P0, in which case we stay on the curve E0.
• Or computing the image of P0 via the 2-isogeny of kernel 2n−1 ·P0, in which case we end

up on some curve E1

We then have two important operations: doubling and image by a 2-isogeny. One thing to keep
in mind is that we have to do operations in the correct order, it is not possible to compute
an image without the kernel, and it is not possible to compute a doubling without the curve
constant.

As a first step, one always need to compute every 2i ·P0. Then a naive approach would be to
compute the 2-isogeny with kernel 2n−1 · P0, compute every image, and repeat this process on
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the new curve. One could also only compute the image of P0, compute every doubling of the new
point P1 on the new curve and repeat the process. It is convenient to represent such strategies
as trees, like in Fig. 1. The leaves are 2-torsion points on the corresponding curve.

P0

2 · P0

22 · P0

23 · P0

24 · P0

25 · P0

26 · P0

P1

2 · P1

22 · P1

23 · P1

24 · P1

25 · P1

P2

2 · P2

22 · P2

23 · P2

24 · P2

P3

2 · P3

22 · P3

23 · P3

P4

2 · P4

22 · P4

P5

2 · P5

P6

E0 E1 E2 E3 E4 E5 E6 E7
f0 f1 f2 f3 f4 f5 f6

P0

2 · P0

22 · P0

23 · P0

24 · P0

25 · P0

26 · P0

P1

2 · P1

22 · P1

23 · P1

24 · P1

25 · P1

P2

2 · P2

22 · P2

23 · P2

24 · P2

P3

2 · P3

22 · P3

23 · P3

P4

2 · P4

22 · P4

P5

2 · P5

P6

E0 E1 E2 E3 E4 E5 E6 E7
f0 f1 f2 f3 f4 f5 f6

fi : Ei → Ei+1
is a 2-isogeny

Pi+1 := fi(Pi)

do
ub

lin
g

image

Figure 1. 27-isogeny f = f6 ◦ · · · ◦ f0 with kernel P0 — naive approaches

This is obviously not optimal however, too many useless points are computed, and we end
up with O(n2) operations for a 2n-isogeny. In their paper [FJP14, § 4.2.2], De Feo, Jao and
Plut explain how to find optimal strategies, taking into account the relative cost of a doubling
compared to an image. An example is given in Fig. 2, where using a binary tree gives a O(n log n)
operations for a 2n-isogeny.

P0

2 · P0

22 · P0

23 · P0

24 · P0

25 · P0

26 · P0

P1

23 · P1

25 · P1

P2

23 · P2

24 · P2

P3

23 · P3

P4

2 · P4

22 · P4

P5

2 · P5

P6

E0 E1 E2 E3 E4 E5 E6 E7
f0 f1 f2 f3 f4 f5 f6

Figure 2. 27-isogeny f = f6 ◦ · · · ◦ f0 with kernel P0 — optimized approach

In this section, we focus on 2n-isogenies where the intermediate Kummer lines are given by
Montgomery models. We will denote them as Ki with i ≥ 0, so K0 is the initial Kummer line,
and the ramification will be denoted as follows:

Oi = (1 : 0)∗
Ti = (0 : 1) Ri = (Ai : Bi) Si = (Bi : Ai) = Ri + Ti
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As shown in Section 3, the point Ri = (Ai : Bi) can be used for the translated doubling formula
on Ki. It can also be used to recover the curve constant for standard doubling, it is always
rational, even if Ri and Si are not:

di = (Ai −Bi)2

(Ai −Bi)2 − (Ai + Bi)2

We also denoted earlier (a′
i : b′

i) the 4-torsion point above Ri and (ai : bi) = (a′
i + b′

i : a′
i − b′

i).
We will focus on the case where P0 is above the 2-torsion point R0, as we want to compare

it to Renes formulas provided in [Ren18, Prop. 4.2], and for simplicity we neglect the cost of
the additions. We recall from Section 3 that for the isogeny with kernel Ri, the translated
by fi(R′

i) = Ri+1 = (a′
i
2 : b′

i
2) isogeny formula Ki → Ki+1 is then given by (X : Z) 7→(

(bi(X + Z) + ai(X − Z))2 : (bi(X + Z)− ai(X − Z))2
)

. The codomain Ki+1 is represented by
Ri+1 and can be computed in 2S, and the translated image costs 2M + 2S.

Since Ri+1 = fi(R′
i) is the kernel of the next isogeny fi+1, computing translated images by

Ri+1 does not matter, except at the very last step where we can use the standard non translated
formulas instead. Thus, similarly to what was done in Section 4, we can build an hybrid algorithm
which combines Montgomery doubling (standard or translated by Ri) and our translated image
formula.

Remark C.1. As we can see, our image formula only involves the 4-torsion point R′
i above

Ri (we can also recover from it the constant di), so the leaves in our strategy tree will be the
4-torsion points instead of the 2-torsion ones. This also implies that if we want to compute a
2n-isogeny, we have to assume we are given a 2n+1-torsion point, or we do the last step with
Renes formulas which doesn’t have this constraint.

What matters now is to compare the standard costs operations from [Ren18, Prop. 4.2] with
the ones provided in Section 3, this is done in Table 3. Unlike in Section 4, after the first
2-isogeny, we don’t have control on curve constants any more, so m0 must be counted as two
generic multiplications because of the numerator and the denominator.

Doubling ImageOperation [Mon87] Proposition 3.5 [Ren18] Theorem 3.7
Cost 2M + 2S + 1m0 4S + 2m0 2M + 1m0 2S + 1m0

Cost (m0 = 2M) 4M + 2S 4M + 4S 4M 2M + 2S
Constants used di (Ai : Bi), (Ai+1 : Bi+1) (Ai : Bi) (ai : bi)

Table 3. Comparison of operations on Kummer lines to compute 2n-isogenies

We see that our formulas for images should is faster than Renes one. The cost of the codomain
is more tricky: Renes formulas directly gives di+1 in 2S. Our formulas give Ri+1 in 2S; but from
Ri+1 we can only use our translated doubling formulas, which are in this context more expensive
than the standard doubling formulas. Thus we need to compute di+1 from Ri+1 which costs 2S
by the formula

di+1 = (a′2
i − b′2

i )2

(a′2
i − b′2

i )2 − (a′2
i + b′2

i )2 ,

for a total codomain cost of 4S.
Asymptotically, since there are exactly n codomains to compute, they are negligible compared

to images and doublings which are in O(n log n). An implementation to compute a 2n-isogeny
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using this hybrid method with SIKEp434 parameters is available in the same GitLab repository
and shows that we do end on the same curve as the one with Renes’ formulas. For these
parameters, our implementation shows that our hybrid method is slower, because the n considered
is not large enough that the faster images compensate the slower codomains.

Another reason why this would not be viable anyway is that there exists efficient 4-isogeny
formulas [CH17, § A], which saves half of the steps while having competitive costs for multiplica-
tion by 4 and images, hence are much faster. Indeed the 4-isogeny codomain costs 4S (computing
di+2 from di and R′

i), and a 4-isogeny image costs 6M+2S. We remark that this is the same cost
as combining our translated 2-isogeny image with the standard 2-isogeny image. In particular,
by composing our translated 2-isogeny image twice, there is also a translated (by a point of
2-torsion) 4-isogeny image in only 4M + 4S. However, to be able to use these translated images,
our codomain formula would be slower.

Only in some hypothetical context where we would need to compute a lot of images, assuming
we already know the codomains, then the hybrid approach would be faster.

Appendix D. Correctness of the hybrid ladder

Fig. 3 shows two steps of Algorithm 3 and explains why we are cycling between 1 and 2
translated points. We want to compute n · P , with n an ℓ-bits integer, its bits are denoted bi.
Set also Q = P + R where R is the extra 2-torsion point and assume the input is U0 = m · P
and V0 = (m + 1) · P + R, this corresponds to the initialization of our algorithm. According to
Fig. 3, the correction to the end result is as follows:

• If we have an odd number of steps, i.e. ℓ is even, we get U = n · P + R, so we always
need to correct U .
• On the other hand, if ℓ is odd, we get V = n · P + R if and only if the last bit is 0,

otherwise we have U = n · P .

Appendix E. Odd degree isogenies on Kummer lines

In this section, we extend the work of [Ren18] to build isogenies of odd degrees on any model
of a Kummer line.

Let E be an elliptic curve, and K be a cyclic kernel of odd degree ℓ, and f : E → E′ the
corresponding isogeny. To build a model of the Kummer line associated to E′ = E/K, we need
to build sections of 2(OE′), hence invariant sections of f∗(2(OE′)) =

∑
T ∈K 2(T ) on E.

If s is an invariant section, its associated divisor div s is invariant. The converse is not true,
there is an obstruction coming from the Weil-Cartier pairing.
Lemma E.1. Let D =

∑
i ai

∑
T ∈K(Pi + T ) = div sD a principal divisor and P0 :=

∑
aiPi.

Then sD is invariant by translation if and only if P0 ∈ K.
Proof. Since div sD is invariant by K, if T ∈ K, the function sD(P + T ) has the same divisor
as sD, hence differ by a constant. By definition of the Weil-Cartier pairing ef , this constant is
precisely equal to ef (T, f(P0)). So sD is invariant by K if and only if P0 ∈ E[ℓ] is orthogonal to
K, if and only if P0 ∈ K, if and only if f(P0) = OE′ .

Another equivalent proof is to remark that sD is invariant by translation if and only if D
descends to a divisor D′ =

∑
i ai

∑
T ∈K f(Pi) on E′ which is linearly equivalent to 0, which is

the case if and only if P0 ∈ K. □

Example E.2. Take Q1, Q2 ∈ E(k), sD =
∏

T ∈K
x−x(Q1+T )
x−x(Q2+T ) (we use the convention that x −

x(OE) := 1). Its associated divisor is

D =
∑

T ∈K

((Q1 + T ) + (−Q1 + T )− (Q2 + T )− (−Q2 + T )) .
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Figure 3. Two steps of scalar multiplication based on hybrid ladder

Then sD is invariant by translation and descends to x−f(Q1)
x−f(Q2) on E/K, x a Weierstrass coordinate.

When Q2 = OE, we recover a formula from [CH17; Ren18].
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As illustrated by Example E.2, we can use Lemma E.1 to construct divisors associated to an
invariant section. From such a divisor we can use Miller’s algorithm to construct the associ-
ated section s. Since the isogeny is of odd degree, it preserves the 2-torsion, so by evaluating
s on the ramification point of the Kummer model of E we can efficiently recover the Kummer
model of E′ given by s.
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