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PAC-Bayesian Domain Adaptation Bounds for Multi-view learning

Mehdi Hennequin 1 2 Khalid Benabdeslem 1 Haytham Elghazel 1

Abstract

This paper presents a series of new results for do-
main adaptation in the multi-view learning setting.
The incorporation of multiple views in the domain
adaptation was paid little attention in the previous
studies (Germain et al., 2013; 2015a). In this way,
we propose an analysis of generalization bounds
with Pac-Bayesian theory to consolidate the two
paradigms, which are currently treated separately.

1. Introduction
The objective of training predictive models is to train al-
gorithms that fit training data well but generalize well on
different distributions (e.g. test sets). In fact, in the theory
of statistical learning, the strong hypothesis that training and
test data are to be drawn from the same probability distribu-
tion (Gareth et al., 2013). However, this assumption is often
too restrictive to be used in practice or in many real-life
applications. Indeed, a hypothesis is learned and deployed
in different and significantly changing environments. Due
to that, we obtain a shift in the data distributions. A typical
solution for addressing this issue is to retrain the models.
This process of retraining can result in both time and fi-
nancial expenses. Thus, we need to design methods for
adapting a model from learning (source) data to test (target)
data. In the field of machine learning, this scenario is com-
monly known as domain adaptation (DA) or covariate shift
(Moreno-Torres et al., 2012). Essentially, DA techniques
aim to address the challenge of learning when the learning
task is the same but the domains exhibit variations in their
feature spaces or marginal conditional probabilities.

On the other hand, data can be expressed through multiple
independent feature sets, as stated in Xu et al. (2013). As a
result, the data can be partitioned into independent groups,
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known as views (Xu et al., 2013). In domain adaptation,
these views are usually merged into a single view to align
with the learning objective. Nonetheless, this process of
merging can potentially result in negative transfer, as high-
lighted in Zhang et al. (2020), whereby the integration of
each view’s unique statistical characteristics could lead to
the introduction of unwanted data or knowledge. We find
little research on multi-view domain adaptation (MVDA)
(Yang et al., 2012; Hennequin et al., 2022a;b; Munro et al.,
2021) where considerable attention has been paid to al-
gorithm, while analysis of generalization bound remains
largely understudied. In this way, we propose a theoretical
analysis by means of Pac-Bayesian theory, with the aim of
unifying the two paradigms that have conventionally been
treated as separate entities (Germain et al., 2013; 2015a;
Goyal et al., 2017).

2. Related Works
In this section, we present theoretical studies of multi-view
learning and domain adaptation related to the Pac-Bayesian
theory. First, we introduce the theoretical concepts needed
for the following sections. In a second phase, we present the
work done by Germain et al. (2013) on the PAC–Bayesian
domain adaptation. Finally, we present the works achieved
to Pac-Bayesian theory and multi-view learning.

2.1. Notation and Assumptions

This section introduces the definitions and concepts needed
for the following sections. Let X ∈ Rd and Y = {−1,+1},
denote respectively input space of dimension d and out-
put space. In the scenario of unsupervised multi-view do-
main adaptation (UMVDA) we consider, the learner re-
ceives two samples: a labeled sample from a source do-
main DS , defined by a distribution Q over X × Y; and
unlabelled sample according to the target domain DT , de-
fined by a distribution P over X × Y; QX , PX being the
respective marginal distributions over X . We denote by
S = {(xi, yi)}mi=1 ∈ (X × Y)m the labeled sample of size
m received from the source domain, which is drawn i.i.d.
from Q. In addition, we consider that the data instances can
be represented or partitioned in V different views. More
formally, for v ∈ {1, . . . , V }, and V ≥ 2 is the number
of views of not-necessarily the same dimension. Through-
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out the paper, we will abbreviate v ∈ {1, . . . , V } with
v ∈ [[V]]. The labeled samples multi-view is defined as fol-
lows, ∀ v ∈ [[V]], S = {(xv

i , yi)}mi=1 ∈ (X v × Y)m, with
{xv

i }mi=1 supposed to be drawn i.i.d. according to distribu-
tion Q. Note that the multi-view observations {xi}mi=1 =

{(x(1)
i , . . . , xv

i )}mi=1 belong to a multi-view input set X =
X 1×, . . . ,×X v , with X v ∈ Rdv , and dv denote the dimen-
sion of the vth view, where d = d1×, . . . ,×dv . In the same
way, we define unlabeled samples from the target domain,
∀ v ∈ [[V]],TX = {x′

i
v}ni=1 of size n drawn i.i.d. according

to PX (note that, T = {(x′v
i , yi)}ni=1 drawn i.i.d. according

to P ). In our context, we consider that we have no labels in
the target domain, however we have prior knowledge about
the views in both domains.

We define a hypothesis class H of hypotheses h : X → Y
. Besides, for the concept of multi-view learning, we
consider for each view v ∈ [[V]], a set Hv of hypothesis
h : Xv → Y . The expected source risk or true source
risk of h ∈ H over the distribution Q, are the proba-
bility that h errs on the entire source domain, RQ(h) =
E(x,y)∼Q

[
L0-1

(
h(x), y

)]
, where L0-1(a, b) = I

[
a ̸= b

]
is

the 0-1-loss function and where I[a ̸= b] is the indicator
function which returns 1 if a ̸= b and 0 otherwise. For
any two functions (h, h′) ∈ H, we denote by RQX (h, h

′)
the expected disagreement of h(x) and h′(x), which mea-
sures the probability that h and h′ do not agree on the
entire marginal distributions QX over X , RQX (h, h

′) =
Ex∼QX

[
L0-1

(
h(x), h′(x)

)]
. The empirical source risk

RS(h) for a given hypothesis h ∈ H and a training sample
S = {(xi, yi)}mi=1 where each example is drawn i.i.d. from
Q is defined as, RS(h) =

1
m

∑m
i=1 L0-1

(
h(xi), yi

)
. In the

same way, we define the empirical source disagreement by
RSX (h, h

′) = 1
m

∑m
i=1 L0-1

(
h(xi), h

′(xi)
)
, where SX =

{(xi)}mi=1 where each example is drawn i.i.d. from QX .
The expected target risk RP (·) over P , the expected target
disagreement RPX (·, ·) over PX , the empirical target risk
RT(·) over P , the empirical target disagreement RTX (·, ·)
over PX are defined in a similar way.

2.2. Simple Pac-Bayesian Bounds

The PAC-Bayesian approach abbreviated Pac-Bayes is anal-
ysis techniques of generalization in the theory of statisti-
cal learning. PAC-Bayes inequalities were introduced by
Shawe-Taylor & Williamson (1997), and McAllester (1998;
1999); and further formalised Catoni (2007; 2004b;a) and
other (see Guedj (2019) for a recent survey and Alquier
(2021) for an introduction to the field). It provides PAC
(probably approximately correct, Valiant, 1984) generaliza-
tion bounds by expressing a trade-off between the empirical
risk on the training set and a measure of complexity of the
predictors class as a weighted majority vote over a set of
functions from the hypothesis space H.

In this section, we recall the general PAC–Bayesian gener-
alization bounds in the setting of binary classification with
the 0-1-loss defined in the above section. To derive such a
generalization bound, one assumes a prior distribution P
over H, which models an a priori belief on the hypothe-
sis from H before the observation of the training sample
S ∼ Qm. Given the training sample S, the learner aims
at finding a posterior distribution Q over H that leads to a
well-performing Q-weighted majority vote BQ (also called
the bayes classifier) defined as: BQ(x) = sign

[
E

h∼Q
h(x)

]
.

We want to learn Q over H such that it minimizes the
true risk RQ(BQ) of the Q-weighted majority vote. How-
ever, the risk of BQ is known to be NP-hard, therefore
PAC–Bayesian generalization bounds do not directly fo-
cus on the risk of BQ. Instead, it gives an upper bound
over the expectation over Q of all the individual hypothesis
true risk called the expected/true Gibbs risk: RQ(GQ) =

E
h∼Q

[
RQ(h)

]
.

The expected Gibbs risk is closely related to the determinis-
tic Q-weighted majority vote. Indeed, if BQ(·) misclassifies
x ∈ X , then at least half of the classifiers (under mea-
sure Q) make a prediction error on x. Therefore, we have
RQ(BQ) ≤ 2RQ(GQ). Another result on the relation be-
tween RQ(BQ) and RQ(GQ) know as C-bound (Lacasse
et al., 2006).

The PAC-Bayesian theory, suggests that minimizing the ex-
pected Gibbs risk RQ(GQ) can be done by minimizing the
trade-off between the empirical Gibbs risk RS(GQ) and
Kullback–Leibler divergence minimization DKL(Q||P).
Note that PAC–Bayesian generalization bounds do not di-
rectly take into account the complexity of the hypothesis
class H, but measure the deviation between the prior dis-
tribution P and the posterior distribution Q on H through
the Kullback–Leibler divergence. In the literature, we find
three main PAC-Bayesian bound proposed by McAllester
(1999); Seeger (2002); Langford (2005) and Catoni (2007).

2.3. Analysis of Domain Adaptation Pac-Bayesian
Bounds

In this section, we recall the work done by Germain et al.
(2013; 2015a) on how the PAC–Bayesian theory can help
to theoretically understand domain adaptation through the
weighted majority vote learning point of view.

The first Pac-Bayesian generalization bound for domain
adaptation was introduced in Germain et al. (2013). The au-
thors defined a divergence measure that follows the idea
of C-bound. Thus, Germain et al. underlined that the
domains DS and DT are close according to Q if the ex-
pected disagreement over the two domains tends to be close.
More formally, if RQ(GQ) and RP (GQ) are similar, then
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and RQ(BQ) and RP (BQ) are similar when dQX (Q) and
dPX (Q) are also similar. In this way, the authors introduced
the following domain disagreement pseudometric 1.

Note that disQ(·, ·) is symmetric and fulfills the triangle
inequality (Germain et al., 2013). Note that for the sake of
simplicity, we suppose that m = n, i.e., the size of S/SX and
T/TX are equal. The authors showed that disQ(QX , PX )
can be bounded in terms of the classical PAC-Bayesian
quantities and propose the following theorem (the theorem
and it’s proof can be found in Germain et al. (2013; 2015a)).

Note that the authors in Germain et al. (2013; 2015a) pro-
pose the theorem as ”Catoni’s type”. It present interesting
characteristics. First, its minimization is closely related to
the minimization problem associated with the SVM when Q
is an isotropic Gaussian over the space of linear classifiers
(Germain et al., 2009). Second, the value C = 2α allows
to control the trade-off between the empirical risk and the
complexity term DKL(·∥·).

Thereby, from this domain’s divergence, the authors proved
the following domain adaptation bound (the theorem and its
proof can be found in Germain et al. (2015a)).

In this section, we presented the principal bounds for Pac-
Bayesian domain adaptation, in the next section we will
discuss about Pac-Bayesian bounds in the multi-view learn-
ing setting.

2.4. Analysis of Pac-Bayesian Multi-view Bounds

First, the authors in Sun et al. (2017) provided PAC-
Bayesian bounds over the concatenation of the views, using
priors that reflect how well the views agree on average
over all examples, and deduced a SVM-like learning algo-
rithm from this framework. However, this concatenation
is designed for two views and kernel method, it is not gen-
eralizable to other methods. A more general framework
of Pac-Bayesian bounds for multi-views was introduced in
Goyal et al. (2017). In the paper, the authors inroduced the
two-level multiview approach. For each view v ∈ [[V]], they
consider a view-specific set Hv of voters h : X v → Y , and
a prior distribution Pv on Hv. Given a hyper-prior distri-
bution π over the views [[V]]. In the paper, PAC-Bayesian
learner objective has two parts. The first part is finding a
posterior distribution Qv over Hv,∀ v ∈ [[V]]; The second
is finding a hyper-posterior ρ distribution on the set of views
[[V]]. Thereby, Goyal et al. (2017) defined the multi-view
weighted majority vote BMV

ρ (x) = sign
[
E

v∼ρ
E

h∼Qv

h(xv)
]
.

Thus, the authors propose to build a learner that in-
tends to construct posterior and hyperposterior distribu-
tions that minimize the actual risk RD(BMV

ρ ) of the mul-

1A pseudometric d is a metric for wich the property d(x, y) =
0 ⇔ x = y is relaxed to d(x, y) = 0 ⇐ x = y

tiview weighted majority vote defined as: RQ(BMV
ρ ) =

E
(xv,y)∼Q

[
L0-1

(
BMV
ρ (xv), y

)]
.

The authors in the paper provide general multi-view PAC-
Bayesian theorems and derive also a generalization bound
with the approaches of McAllester (1998); Seeger (2002);
Langford (2005); and Catoni (2007) introduce in section 2.2.
The main difference between Goyal et al.’s bounds to theo-
rems McAllester (1998); Seeger (2002); Langford (2005);
and Catoni (2007) relies on the introduction of view-specific
prior and posterior distributions, which mainly leads to an
additional term Ev∼ρ DKL(Qv∥Pv), expressed as the ex-
pectation of the view-specific Kullback-Leibler divergence
term over the views [[V]] according to the hyper-posterior
distribution ρ.

3. Analysis of Unsupervised Multi-view
Domain Adaptation

In this section we propose to introduce the concept of multi-
view learning in the DA with generalization Pac-Bayesian
guarantees. Then, we adapt the divergence proposed by
Germain et al., Germain et al. (2013; 2016) with the concept
of multi-view weighted majority vote introduced in Goyal
et al. (2017). In a second phase, we propose a Pac-Bayesian
domain adaptation bound in the multi-view setting.

3.1. Multi-view Domain Disagreement

Germain et al. (2013) and Mansour et al. (2009) propose
a divergence measure that is based on the expected dis-
agreement over the two domains. In the idea of measure
disagreement we propose to adapt the definition proposed
by Germain et al. (2013) to multi-view learning. Thus, we
define the multi-view domain disagreement as follows:
Definition 3.1. (Multi-view domain disagreement) ∀ v ∈
[[V]], for any set of voters Hv for any marginal distribu-
tions QX and PX over X , any set of posterior distribution
{Qv}Vv=1 on Hv , for any hyper-posterior distribution ρ over
[[V]], the multi-view domain disagreement disMV

ρ (QX , PX )
between QX and PX is defined by:

disMV
ρ (QX , PX ) =

∣∣∣dMV
PX

(ρ)− dMV
QX

(ρ)
∣∣∣, (1)

where dMV
QX

(ρ), dMV
PX

(ρ), are expected disagreement defined
in Goyal et al. (2017).

Theorem 3.2. ∀ v ∈ [[V]], for any distributions Q and P
over X × Y , for any set of voters Hv, for any marginal
distributions QX and PX over X , any set of posterior distri-
bution {Qv}Vv=1 on Hv , for any hyper-posterior distribution
ρ over [[V]], we have:

RP (G
MV
ρ ) ≤ RQ(G

MV
ρ ) +

1

2
disMV

ρ (QX , PX ) + λρ, (2)
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where λρ is the deviation between the expected joint errors
between pairs for voters ad pairs of views defined in section
2.4 on the target and source domains, which is defined as
λρ =

∣∣∣eMV
P (ρ)− eMV

Q (ρ)
∣∣∣ and where

eMV
P (ρ) = E(x,y)∼P E(v,v′ )∼ρ2 E(h,h′)∼Q2

v

[
L0-1

(
h(x), y

)
×

L0-1
(
h′(x), y

)]
,

eMV
Q (ρ) = E(x,y)∼Q E(v,v′ )∼ρ2 E(h,h′)∼Q2

v

[
L0-1

(
h(x), y

)
×

L0-1
(
h′(x), y

)]
.

Proof. The proof borrows the straightforward proof tech-
nique of Theorem 9 in Germain et al. (2015a).

3.2. Specialization of multi-view domain disagreement
to the Classical Approaches

In this section, we follow the same principles as Germain
et al. (2009; 2015b). Selecting a well-suited deviation func-
tion ∆, we can derive easily the classical PAC-Bayesian
theorem of Catoni (2007) presented in the section 2.2.

To derive a generalization bound with the Catoni (2007)’s
point of view—given a convex function F and a real number
c > 0 we define the measure of deviation as ∆(a, b) =
F(b) − c Germain et al. (2009; 2015a;b). We obtain the
following generalization bound:

Corollary 3.3. ∀ v ∈ [[V]], for any set of voters Hv for any
marginal distributions QX and PX over X , any set of poste-
rior distribution {Qv,S}Vv=1 on Hv , for any hyper-posterior
distribution ρS over [[V]], for any set of prior distributions
{Pv}Vv=1 on Hv, for any hyper-prior distribution π over
[[V]], for any δ ∈ (0, 1], ∀α > 0, with probability at least
1− δ, we have:

E
S∼Qm

disMV
ρS

(QX , PX ) ≤ 2α

1− e−2α

[
E

S∼Qm
disMV

ρS
(SX ,TX )

+

E
S∼Qm

E
v∼ρS

DKL(Qv,S∥Pv) + E
S∼Qm

DKL(ρS∥π) + ln
√

1
δ

m× α

]
.

(3)

Proof. The proof uses the ideas of the techniques and tricks
of Germain et al. (2015a;b).

3.3. The PAC-Bayesian DA-Bound

Finally, the Theorem 3.2 leads to a PAC-Bayesian bound
based on both the empirical source error of the Gibbs clas-
sifier and the empirical Multi-view domain disagreement
pseudometric estimated on a source and target samples. The
following bound is based on Catoni’s approach 3.3:

Theorem 3.4. ∀ v ∈ [[V]], for any set of voters Hv for any
marginal distributions QX and PX over X , any set of poste-
rior distribution {Qv,S}Vv=1 on Hv , for any hyper-posterior
distribution ρS over [[V]], for any set of prior distributions
{Pv}Vv=1 on Hv, for any hyper-prior distribution π over
[[V]], for any δ ∈ (0, 1], with probability at least 1− δ, we
have:

E
S∼Qm

RP (G
MV
ρS

) ≤ E
S∼Qm

c′RS(G
MV
ρS

) + E
S∼Qm

α′ 1

2
disMV

ρS
(SX ,TX )

+

(
c′

c
+

α′

α

) E
S∼Qm

E
v∼ρS

DKL(Qv,S||Pv) + E
S∼Qm

DKL(ρv,S||π)

m

+
ln 1

δ

m
+ λρ +

1

2
(α′ − 1),

(4)

where c′ = c
1−e−c and α′ = 2α

1−e−2α .

Proof. In Theorem 3.2, replace ES∼Qm RQ(G
MV
ρS

) and
ES∼Qm disMV

ρS
(QX , PX ) by their upper bound, obtained

from Corollary 2 in Goyal et al. (2017) and Corollary
3.3.

4. Discussions and Conclusion
The primary contrast between our bounds 3.3; 3.4, and Ger-
main et al. (2015a)’s bounds lies in the incorporation of
view-specific prior and posterior distributions. This results
in an extra term, Ev∼ρ DKL(Qv∥Pv), which represents the
expected value of the view-specific Kullback-Leibler diver-
gence term over the views[[V]], based on the hyper-posterior
distribution ρ. The second difference comes from the expec-
tation over all the possible learning samples in bounds itself
(Goyal et al., 2017). In this way, the expectation ES∼Qm

is distributed for the all terms in the bounds. Thereby, the
DKL(·∥·) terms take account of the the posterior and hyper-
posterior distribution Qv,S/ρS outputted by a given learning
algorithm after observing the learning sample S.

Finally in this paper, we propose a first PAC-Bayesian anal-
ysis of weighted majority vote classifiers for domain adap-
tation with the concept of multi-view learning. Our works
is based on theoretical results and for the future we aim to
derive from introduced bounds a new domain adaptation
multi-view algorithm. We will build on the work of Ger-
main et al. (2009; 2013) to propose a specialized algorithm
for linear classifiers or to propose a specialized algorithm
for neural networks Sicilia et al. (2022).
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