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Abstract
Over the last few years, several review articles described the adverse events analysis as sub-optimal in clinical trials. Indeed, 
the context surrounding adverse events analyses often imply an overwhelming number of events, a lack of power to find 
associations, but also a lack of specific training regarding those complex data. In randomized controlled trials or in observa-
tional studies, comparing the occurrence of adverse events according to a covariable of interest (e.g., treatment) is a recurrent 
question in the analysis of drug safety data, and adjusting other important factors is often relevant. This article is an overview 
of the existing regression models that may be considered to compare adverse events and to discuss model choice regard-
ing the characteristics of the adverse events of interest. Many dimensions may be relevant to compare the adverse events 
between patients, (e.g., timing, recurrence, and severity). Recent efforts have been made to cover all of them. For chronic 
treatments, the occurrence of intercurrent events during the patient follow-up usually needs the modeling approach to be 
adapted (at least with regard to their interpretation). Moreover, analysis based on regression models should not be limited 
to the estimation of relative effects. Indeed, absolute risks stemming from the model should be presented systematically to 
help the interpretation, to validate the model, and to encourage comparison of studies.

Key Points 

For the comparison of adverse events between patients, 
regression models adjusting important covariables may 
be considered both in observational and randomized con-
trolled trials.

Time-to-event models have been advocated in adverse 
events analysis. However, models like logistic regression 
(with rare event corrections) may be considered for rare 
events.

If possible, the absolute risk from the regression model 
should be presented systematically because it may help 
validation and interpretation, particularly in the compet-
ing risk settings, and comparison between studies with 
different follow-up times.

Due to the multiple facets of adverse events data, several 
risk measures may be relevant to accurately evaluate and 
compare patients’ toxicity profiles.
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1 Introduction

Over the past few years, there have been several studies 
undertaken to depict the situation with regard to the col-
lection, reporting and analysis of drug safety data in rand-
omized controlled trials (RCTs). In a review, the practice 
regarding the collection, reporting and the analysis of 
adverse events (AEs) were described as inconsistent and 
sub-optimal [1]. The CONSORT harm extensions [2, 3] 
provided guidelines to cover the reporting of harms but 
have not been sufficiently adopted [1]. With regard to the 
statistical part of AE analysis, guidelines hardly tackle 
the question, but focus mainly on collection and reporting 
[4]. A scoping review of the statistical methods identified 
several studies designed specifically for AE data, but those 
methods have rarely been applied [5]. A recent survey 
conducted by statisticians from academia and industry to 
understand the current practice [6] identified several barri-
ers that limit the application of those methods. Beyond the 
barrier of the design and characteristics of the RCT (e.g., 
the overwhelming number of events and the underpow-
ered sample size for harm outcomes), many participants 
indicated a lack of guidelines, of awareness of appropriate 
methods, and of training on the subject.

For treatment comparison, even for randomized designs, 
it may be interesting to consider multivariate regression 
models to adjust on important covariables to improve pre-
cision and reduce sample size [7–9]. However, they are 
barely used in practice [10]. In pharmacoepidemiology, 
i.e., the study of the risks and therapeutic effects of drugs 
in real-life populations [11], regression modeling is even 
more relevant, as those studies rely on observational data 
with no control for confounders, so adjusted analysis may 

be necessary to reduce biases. However, due to the mul-
tidimensional nature of AEs (e.g., timing, multiplicity, 
severity) modeling is challenging [12]. For chronic treat-
ments or in oncology, the occurrence of intercurrent events 
(e.g., death, treatment interruption, treatment discontinu-
ation) is unavoidable even in controlled designs and must 
be considered during the choice of the model and of the 
risk measures [13].

Over the last few years, several authors advocated the 
use of competing risk methods to avoid bias related to the 
death in time-to-event outcomes of AE analysis [14, ]. Non-
parametric estimation of risk measure was discussed in the 
context of pharmacoepidemiology, but without considering 
competing events, and more recently in the context of RCTs 
[15]. Models for neglected dimensions were proposed like 
recurrence [16] or severity [17]. To our knowledge, there is 
no specific overview of which regression model to choose 
depending on the research question and the data structure. 
The purpose of this article is to (1) provide an overview 
of regression models available to compare adverse events 
between patients, (2) to discuss and give some clues regard-
ing the choice of the model according to the characteristic of 
the event, the clinical framework, and the objective.

2  Models

2.1  Towards the Model

The definition of the event(s) and its (their) specificities 
highly affect the modeling choices. Figure 1 gives a general 
overview of the characteristics that may considered when 
identifying a suitable model. The AE might occur early 

Fig. 1  Event characteristics 
driving the modeling choices
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or late (situation 1 or 2) after treatment initiation, it might 
occur more than once (situation 3) or have various severities 
(situation 4). Furthermore, different AE types may be mod-
elled together to catch a common effect (situation 5) (e.g., 
different AEs from a same body system [18]). Finally, when 
available, AE duration may be of interest because long dura-
tions may highly affect patients’ quality of life (situation 6).

Additional to the event characteristics, the therapeutic 
pathway of the patients may influence the characteristics of 
the model. In a chronic disease such as cancer, a patient’s 
follow-up may last several months or years so that during the 
treatment, many incidents may happen, referred as intercur-
rent events in the Addendum on estimands and sensitivity 
analysis in clinical trials of the ICH Guidelines [13, 19]. We 
will mention some of them that usually require the model to 
be adapted. Figure 2 depicts common successions of inci-
dents as they may be seen during a patient’s follow-up.

Patient A and B belong to the classical setting of survival 
analysis, the event of interest (e.g., the AE) occurring at 
different times and potentially censored (patient B). A first 
type of intercurrent event is death (Patient C), which obvi-
ously prevents the AEs from occurring. When interested in 
comparing the occurrences at a given time for all patients, 
the model usually needs to account for a terminating event. 
Targeting the “direct” effect of the covariable on the occur-
rence of AEs (i.e., not mediated by the competing event) 
is much more complicated, as it requires the hypothetical 

scenario in which the intercurrent event would not occur. 
This is not achievable, unlike sometimes making unrealistic/
untestable assumptions [20, 21] (e.g., independence between 
the competing events and the events of interest). We will not 
address those methods in the article. Patient D discontinues 
the treatment, which usually reduces or even removes the 
risk of AEs. Hence, this phenomenon counts as an informa-
tive censoring event. Contrary to death, the outcome may 
not be defined because AE collection may be reduced in 
frequency or even discontinued as in patient D bis (e.g., if 
the patient begins another treatment) [22]. Treatment inter-
ruption for a given period (Patient E), co-medication (Patient 
F), or dosage change (Patient G) modify the risk of expo-
sure to AEs and raise important methodological issues, not 
to mention that collecting information about co-medication 
from the patients is very difficult and when present may have 
thousands of modalities.

2.2  Single Event Models

The usual practice in AE analysis is to focus on one occur-
rence of an event (e.g., the first, or the most serious). This 
section details regression models for a single event outcome. 
For a formal definition of the outcome and associate risk 
measure in each case, the reader may refer to Table 1.

Fig. 2  Typical patients’ thera-
peutic pathways
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2.2.1  Logistic Regression

Logistic regression is the most obvious way of relating 
covariables with a single event. In AE analyses, it may not 
always be appropriate. Regarding the characteristics we 
described above, we identified the following situations to 
be appropriate for this model.

– Early occurrence Estimates stemming from the logis-
tic regression (e.g., probabilities or odds ratios [OR]) 
may be highly biased in presence of censoring (loss to 
follow-up, administrative censoring) so early AEs may 
be less sensitive to this issue (situation 1 in Fig. 1) [23]. 
Moreover, for those events, the times of occurrence may 
be quite homogenous between patients so that modeling 
their timing may have limited interest.

– Rare events When considering rare events, the logistic 
regression may be a modeling option. As the event prob-
abilities may be underestimated in those setting [24], it 
can be combined with useful type of penalization (e.g., 
Firth’s correction) to reduce biases [25]. Variants of 
Firth’s corrections have also been developed to improve 
the estimates of ORs [26]; they may be particularly use-
ful for analyses of rare but serious AEs [27, 28] with 
case-control designs [22].

– Case-control designs The ORs directly stemming from 
the logistic regression are known to be interesting for risk 
evaluation in the case-control study designs, in which the 
baseline probability is not available.

Odds ratios are often interpreted as probability ratios but 
this should be done with caution when the probability of 
an event occurrence is greater than 0.1 [29]. Indeed, in that 
case, ORs tend to differ from probability ratios and may 
therefore lead to overestimation of the association between 
the event and the risk factor. Estimating the risk ratio or risk 
difference with non-rare outcomes may avoid misleading 
interpretations, although they require more complex meth-
ods (e.g., binomial model) [30].

Handling terminal intercurrent events In case of com-
peting events, all those risk measures stemming from the 
logistic regression provide the total effect of the covariables 
on the AE occurrence, meaning a combination of both the 
direct effect on the AE occurrence and the effect mediated 
by the competing events [31]. That is why indicators based 
on probabilities are sometimes criticized for not providing 
information regarding potential differences in follow-up 
durations between patients [32]. A classic example is the 
comparison between treatments with the same hazards of 
AEs in case one of them increases survival or progression-
free survival. Considering the probability of event, the con-
clusion is that the risk of toxicity is larger in the group with 
increased survival; hence, the explanation is that patients 

who die rapidly do not have time to experience AEs in the 
other treatment arm [19].

2.2.2  Time‑to‑Event Models

To deal with censoring and to describe the occurrence of 
a single type of AE over time, time-to-event models have 
been advocated to improve the analysis of safety data [4, 19, 
33]. The proportional hazards model (or Cox model) is the 
most commonly used regression time-to-event model. The 
following situations (non-exhaustive list) are well suited for 
time-to-event models:

– Long-term toxicity analysis with censoring As long-term 
cohort analyses are usually affected by censoring (e.g., 
administrative), so time-to-event models are the only 
ones to guarantee unbiased estimates of the probability 
of events in that situation.

– Most non-recurrent AEs If the event of interest is not 
recurrent (e.g., serious events that may lead to treat-
ment discontinuation), building a time-to-event model 
is usually valuable because in addition to the treatment 
effect, it provides an interesting description of the risk 
of toxicity over time (e.g., cumulative hazard or survival 
in the Cox model). The proportionality assumption may 
be questionable and systematically checked, particularly 
when comparing treatments with very different toxicity 
profiles (e.g., immunotherapy vs chemotherapy). If the 
proportionality is not valid, flexible models allowing for 
time-varying effects may be useful [34].

– Special interest in time-varying covariables such as drug 
exposure Another valuable aspect of time-to-event mod-
els is their ability to consider important time-dependent 
covariables, such as exposure. In 2019, Danieli and Abra-
hamowicz [34] tackled the modeling of drug exposure 
and treatment interruptions in a time-to-event model 
to be used in observational studies. They considered a 
weighted cumulative exposure to deal with both the time 
elapsed since the last exposure and the cumulative dose. 
Flexible estimates described the way past exposures 
affect the hazard of a specific event. This approach is 
interesting in case of late AEs, potentially triggered by 
drug accumulation (Fig. 1 situation 2).

Hazard ratios (see Table  1) measure the association 
between the event and the covariables, although we gener-
ally cannot use them to establish causality [35], even with a 
correctly Cox specified model and a proper randomization 
at baseline. Indeed, by conditioning on survival, the risk 
set may be modified over time if the covariable of interest 
has an actual treatment effect or in presence of an unmeas-
ured covariable [36]. Cumulative probabilities difference 
or ratio may be considered instead for causal inference. In 
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both cases, reporting absolute risk measures (e.g., hazards 
or cumulative hazards, cumulative probabilities) is highly 
advised [37].

Handling terminal intercurrent events As previously men-
tioned, competing risks are often encountered in AE analy-
sis, particularly in oncology [14] complicating time-to-event 
analyses and their interpretation [38]. Two main approaches 
may be used for that type of analysis. The first is to model 
cause-specific hazards based on the times of occurrence for 
a single cause of failure (see Table 1). Cox model can be 
used to perform a regression on the cause-specific hazards. 
A distinct model for each cause of failure is needed to com-
pute the cause-specific cumulative incidence function. The 
second approach relies on sub-distributional hazards whose 
famous associated regression model is the Fine-Gray model 
[39]. Despite its unclear biological interpretation [40], the 
strength of the model is to directly link the variables to the 
cumulative incidence function in a single model [41]. In 
both cases, covariable effects measures (e.g., difference or 
ratio) derived from the cumulative probabilities provide the 
same total effect we previously described for logistic regres-
sion [31]. Dealing with the direct effect of the treatment 
cannot definitely be solved using the cause-specific or the 
sub-distributional hazards, which have generally no causal 
interpretation, even in randomized designs [31]. Causation 
in the competing risks setting is constituting an active fields 
of statistical research and other estimands may be considered 
(e.g., survivor average causal effect [SACE]) [21].

2.2.3  Models Comparing Severities

The severity of AEs is usually quoted using an ordered cat-
egorical or a numeric scale. The well-known National Can-
cer Institute’s Common Terminology Criteria for Adverse 
Events (CTCAE) uses a grade from 1 (mild) to 5 (death). 
Then, we may want to compare the impact of a covariable on 
the severity of an event (situation 4 of Fig. 1). For example, 
one may be interested in the level of toxicity of a treatment 
regarding various dose schemes [42] or by the risk factors 
of severity [43]. A natural option is to conduct an ordinal 
logistic regression (e.g., proportional odds model or continu-
ation ratio model) [44]. The idea of those models is to asso-
ciate the covariables with the probabilities of the levels of 
severities. However, as with the classical logistic regression, 
the ordinal logistic regression does not account for the tim-
ing of the AEs and it may be highly biased in the presence 
of censoring limiting the situations of application of those 
models. Hence, other modeling options may be considered 
according to the aim of the study.

– The interest is in the evolution of the severity of the 
adverse events in patients over time In this case, repeated 
measurements of the level of severity are collected and 

longitudinal models may be considered. A first option 
is the ordinal logistic regression with a random effect 
on the patient’s level. For example, Augustin et al [45] 
built a longitudinal proportional odds model on an oral 
mucositis score, with the cumulative dose and the mouth 
sites as covariables, to improve the planning of radiation 
therapy. The second option is to consider the grade (e.g., 
CTCAE grades) as a repeated measure over time using a 
linear mixed model [46–48]. The latter approach captures 
the complete toxicity trajectory of the patients, including 
the burden of low-grade AEs. It may provide a compre-
hensive, visual description of the toxicity profile despite 
the uncertain assumption of grade normal distribution.

Handling terminal intercurrent events When the lon-
gitudinal outcome and the occurrence of a terminal event 
(i.e., informative dropout) are correlated, the linear mixed 
model will lead to biased estimates. To reduce the bias, a 
joint model may be considered [49], i.e., a mixed model for 
the longitudinal data and a survival model for the time to 
death. Shared parameters like random effects link the two 
outcomes.

– The interest is in comparing the cumulative probabili-
ties of occurrence for each level of severity over time 
(potentially the maximum grade per patient) To handle 
this issue, Berridge and Whitehead [47] built a two-com-
ponent model to estimate the occurrence probabilities of 
AEs according to their severities. One component is a 
proportional hazard model, used to estimate the all-grade 
probability of events over time in an unbiased manner, 
and the second component is an ordinal logistic model 
which ventilates the probability over the levels of sever-
ity.

2.3  Recurrent Events Models

Harm studies tend to focus on severe life-threatening AEs 
(e.g., CTCAE grade 3–4), which are recommended to be 
systematically collected [4, 50]. As those events may lead 
to treatment discontinuation, single-event models seem 
rather suited to them. However, it became increasingly 
common to include patient reported outcomes (PRO) (e.g., 
PRO-CTCAE [51]) in clinical trials to complete AE col-
lection because physicians tend to under-report symptoms 
in terms of frequency and/or severity, compared to patients 
themselves [52]. Those events may be mild but recurrent 
(situation 3 in Fig. 1) and may highly affect the quality of 
life. However, the statistical methods used to deal with these 
recurrent events have been repeatedly reported as inappro-
priate (e.g., restricting the analysis to the first or the worst-
grade event) in clinical trials [1, 12, 16]. In this section, we 
discuss the use of some common recurrent events methods 
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in the context of AEs. The reader may refer to Table 2, for 
a summary of the models and formal definitions of the out-
comes and risk measures.

Previously, in the time-to-event model section, the hazard 
was defined as the instantaneous probability by unit of time 
of experiencing an AE in patients who had not experienced 
an AE previously. Here, the counting process theory is used 
to extend the notion of hazard to recurrent events. The inten-
sity of AEs is defined as the instantaneous probability by 
unit of time of experiencing an AE given the history of the 
process (e.g., the timing of the previous events) [53]. Addi-
tionally, ‘rate’ will stand for the instantaneous probability of 
experiencing an AE. We identified the two following clinical 
questions that may guide the choice of the recurrent event 
model.

– Interest in finding associations between the covariables 
and the overall occurrence of AEs over time: The most 
natural modeling approach is the Poisson and the Nega-
tive Binomial model [10]. However, the Andersen-Gill 
(AG) model [54] has been found to perform better in 
complex situations and should be preferred (unless the 
available data are aggregated counts) [55]. The latter is 
marginal (e.g., based on quantities such as the rate or the 
cumulative mean) semi-parametric regression on the rate 
(extension of the Cox model). The AG model may be 
easily applied with standard statistical software handling 
the Cox model, by simply rearranging the dataset [53, 
56]. A robust estimator of the variance is usually needed 
to account for correlation between the events of a same 
subject [57]. As marginal quantities, covariables effect on 
the rate or on the cumulative mean number of events do 
have a causal interpretation (no selection of the popula-
tion over time). Hence the rate is particularly interesting 
in randomized designs to compare treatment effects [58]. 
The cumulative mean number of events, that are easier to 
understand, may be obtained from the rate function.

  Handling terminal intercurrent events Terminal events 
may be managed similarly to the single event hazards by 
considering the modeling of the rate of AEs at a given 
time, conditioned on the survival from the terminal event 
at the same time (see Table 2) [53]. Due to this condition-
ing, the rate-based covariable effect estimates no longer 
have a causal interpretation [58]. Furthermore, the rate is 
no longer directly related to the cumulative mean func-
tion (it may also depend on the terminating event rate).

– Interest is to compare the patient’s individual risks of AEs 
given their number of previous events The Prentice-Wil-
liams-Petersen (PWP) [59] model may be considered in 
that situation. It is another semi-parametric proportional 

model based on intensities and the history of the process 
being merely summarized by the number of previous 
events. Hence, it can be seen as a multi-state model. Two 
formulations of the model are possible depending on the 
knowledge of the process. The first formulation is defined 
by the time of the events. The covariable effect on the 
occurrence of AEs is evaluated over the entire observa-
tion period and may be allowed to vary according to the 
number of previous events. In particular, the event occur-
rence does not depend on the delay since the previous 
event. The second formulation relies on inter-times or 
gap times, i.e., the delay between two subsequent events. 
In that formulation, the occurrence of an event does not 
depend on the delay since the beginning of the follow-
up (e.g., the beginning of the treatment). Like the AG 
model, the coefficient estimates may be obtained from 
a standard statistical software handling the Cox model, 
by rearranging the dataset and stratifying the number of 
previous events [53, 60]. As for the hazard, the covariable 
effects in PWP models do not have a causal interpretation 
(selection of the population) despite randomization at 
baseline [61]. Deriving the cumulative mean number of 
AEs from intensity models can be very complex, as well 
as can its interpretation [53].

Handling terminal intercurrent events The terminal event 
(e.g., death) may be related to the recurrent process (e.g., 
serious events). In that case, the joint modeling of the hazard 
of the terminating event and of the intensity of the process 
may be necessary (e.g., joint frailty model) [53, 62].

Comparing severities in recurrent event models The 
model of Berridge and Whitehead discussed in the single-
event model section was extended to deal with recurrent 
events by replacing the proportional hazard model by a 
recurrent model such as PWP [17].

2.4  Multi‑type Event Models

As discussed in section 2, patients may experience multiple 
types of AEs (situation 5 in Fig. 1). It is always possible to 
model them independently but this would result in a loss of 
power. Modeling AEs jointly seems more attractive. The 
Wei Lin and Weissfeld (WLW) model [63] is a Cox model 
extension that is able to handle several types of events (by 
stratifying the type). It provides a common measure of the 
variable effect across all types of AEs considered. This 
comes with an important gain in power but at the cost of 
the strong hypothesis that covariable’s effects are the same 
whatever the type of AEs.

Comparing severities in recurrent event models An exten-
sion of the Berridge and Whitehead model was proposed 
[58] in which the two components are respectively replaced 



212 E. Coz et al.

Ta
bl

e 
2 

 S
um

m
ar

y 
of

 th
e 

m
od

el
s a

nd
 ri

sk
 m

ea
su

re
s o

f t
he

 re
cu

rr
en

t e
ve

nt
 m

od
el

s a
nd

 m
ul

ti-
ty

pe
 e

ve
nt

s s
ec

tio
ns

C
R 

co
nt

in
ua

tio
n 

ra
tio

, H
R 

ha
za

rd
 ra

tio
, O

R 
od

ds
 ra

tio
a  W

e 
de

no
te

 th
e 

co
un

tin
g 

pr
oc

es
s N

(t
),

 a
ss

oc
ia

te
d 

w
ith

 th
e 

re
cu

rr
en

t t
im

es
 a

nd
 th

e 
hi

sto
ry

 o
f t

he
 p

ro
ce

ss
 H

(t
)

b  A
ct

ua
lly

, P
W

P 
is

 a
 sp

ec
ia

l c
as

e 
of

 th
e 

in
te

ns
ity

 fu
nc

tio
n,

 th
e 

hi
sto

ry
 o

f t
he

 p
ro

ce
ss

 b
ei

ng
 su

m
m

ar
iz

ed
 b

y 
N
(t
),

 w
ho

se
 g

en
er

al
 d

efi
ni

tio
n 

m
ay

 b
e 

w
rit

te
n:

 li
m

d
t→

0

P
(d
N
(t
)=

1
|H

(t
))

d
t

O
bs

er
va

tio
n

M
od

el
A

bs
ol

ut
e 

ris
k 

m
ea

su
re

s
A

ss
oc

ia
te

d 
re

la
tiv

e 
ris

k 
m

ea
su

re
In

di
ca

to
r

D
efi

ni
tio

n
In

 c
as

e 
of

 a
 te

rm
in

at
in

g 
ev

en
t 

oc
cu

rr
in

g 
at

 ti
m

e 
D

Re
cu

rr
en

t e
ve

nt
s m

od
el

s
 T

im
es

 to
 e

ve
nt

s, 
ce

ns
or

in
g 

tim
e

T
1
,
T
2
,
…

,T
k
,
C

A
nd

er
se

n-
G

ill
 +

 ro
bu

st 
es

tim
at

or
 o

f v
ar

ia
nc

e
R

at
e 
�
(t
)

d
�
(t
)

d
t

=
li
m

d
t→

0

P
(d
N
(t
)=

1
)

d
t

a
R

at
he

r c
on

-

si
de

r:
li
m

d
t→

0

P
(d
N
(t
)=

1
|D

≥
t)

d
t

b

R
at

e 
ra

tio

C
um

ul
at

iv
e 

m
ea

n 
fu

nc
tio

n 
�
(t
)

�
(N

(t
))

a

D
ire

ct
ly

 li
nk

ed
 to

 th
e 

ra
te

A
n 

ad
di

tio
na

l c
au

se
-s

pe
ci

fic
 

ha
za

rd
 m

od
el

 o
f t

he
 te

rm
i-

na
tin

g 
ev

en
t i

s r
eq

ui
re

d 
to

 
de

riv
e 
�
(t
)

M
ea

n 
di

ffe
re

nc
e

Pr
en

tic
e-

W
ill

ia
m

s-
Pe

te
rs

en
 

(P
W

P)
In

te
ns

iti
es

 �
k
(t
)b

li
m

d
t→

0

P
(t
<
T
k
≤
t+
d
t |N

(t
)=

k
−
1
)

d
t

Th
e 

jo
in

t m
od

el
in

g 
of

 th
e 

ha
za

rd
 a

nd
 in

te
ns

ity
 m

ay
 

be
 n

ee
de

d

In
te

ns
ity

 ra
tio

 In
te

r-e
ve

nt
s t

im
es

, c
en

so
r-

in
g 

tim
e

U
1
,
U

2
,
…

 , U
k
,
C

PW
P 

ga
p 

tim
es

 fo
rm

ul
at

io
n 

(P
W

P 
ga

p)
In

te
ns

iti
es

 �
k
(t
)b

li
m

𝑑
𝑡→

0

P
(t
<
U

k
≤
t+
d
t |N

(t
)=

k
−
1
)

d
t

 T
im

es
 to

 e
ve

nt
s, 

or
de

re
d 

se
ve

rit
y 

sc
al

e 
m

ea
su

re
s

( T
1
,
G

1

) ,
( T

2
,
G

2

)

,
…

( T
k
,
G

k

) ,
C

G
eb

sk
i e

t a
l: 

O
rd

in
al

 lo
gi

sti
c 

re
gr

es
si

on
 +

PW
P 

or
 P

W
P 

ga
p

C
um

ul
at

iv
e 

pr
ob

ab
ili

tie
s 

ov
er

 ti
m

e 
of

 se
ve

rit
y 

le
ve

ls
P
( T

k
<
t,
G

k
=
g
)

C
R

In
te

ns
ity

/h
az

ar
d

C
f. 

re
la

te
d 

re
cu

rr
en

t e
ve

nt
 c

om
po

ne
nt

 M
ul

tip
le

-e
ve

nt
s m

od
el

s
Ti

m
es

 o
f e

ac
h 

in
di

vi
du

al
 

ty
pe

 o
f e

ve
nt

, c
en

so
rin

g 
in

di
ca

to
r

T
1
,
T
2
…

 , T
m
,
C

W
ei

-L
in

-W
ei

ss
fe

ld
 (W

LW
)

H
az

ar
ds

li
m

d
t→

0

P
(t
<
T
k
≤
t+
d
t |T

k
>
t)

d
t

H
R



213An Overview of Regression Models for Adverse Events Analysis

by a multinomial logistic regression and a recurrent event 
model (PWP or WLW). One difficulty here is to carefully 
define mutually exclusive categories of AEs.

3  Discussion

In this article, we discussed various regression models for 
AE outcomes. We considered various dimensions of those 
events, including severity. Models dealing with severity 
are more complex (two-component models) and most 
have been proposed recently. More practical examples to 
facilitate their interpretation, as well as the implementa-
tion of software, would be useful so that they can be used 
routinely. In most cases, models should be adapted in the 
presence of a terminal event like death (at least with regard 
to their interpretation).

Although we extensively searched the literature to illus-
trate the methods of this overview, this article does not 
claim to be representative of the actual practice nor to be an 
exhaustive list of the methods used in that context. We first 
identified methodological articles dealing with the statistical 
issues in AE analysis in Pubmed and Google Scholar using 
keywords: “toxicities”, “adverse events” or “drug safety” 
with “statistical analysis”. We did not exclude any period of 
publication. From those articles, we built a list of regression 
models. To enrich the discussion, we managed to identify 
articles that apply the models in practice with drug safety 
data by searching the name of the model with the keywords 
“toxicities”, “adverse events” or “drug safety” in PubMed 
and Google Scholar as previously. Hence, this article pro-
vides some methodological tools that may suit common 
situations and answer some clinical questions. Most of the 
references we provided dealt with the comparison of AEs 
between treatment arms in RCTs but their usage may be 
extended to observational studies, like the Qualitop project 
[64], which motivated this article, and various covariables 
of interest.

Often, risks measures are used to “map the AE data to 
a single value” [19] for the purpose of safety evaluation. 
However, unlike efficacy, AE comparisons may not rely on 
a single value due to the complex dimensionality of those 
data. For example, providing both absolute and relative risk 
measures is commonly advised [37]. For non-parametric 
estimation, incidence rate is often advised compared to 
the overall probabilities to account for studies with various 
follow-up durations (e.g., due to different durations of two 
treatment arms) [19]. However, by considering the overall 
cumulative incidence function over time instead of an overall 
probability, quantities are more comparable. Graphical rep-
resentations of the absolute risk stemming from the regres-
sion model should be done systematically as it may help to 
validate the adequacy of the model (e.g., comparison with 

non-parametric estimates) and to interpret the model, par-
ticularly in the presence of competing risks. Moreover, it 
should facilitate further meta-analyses, mixing studies with 
various follow-up durations.

All throughout the article, we considered the outcome 
(AEs) of the models to be clearly defined. However, the 
number of AEs collected may be huge. For example, the 
CTCAE has narrowed the keyword field used to describe 
AEs but its version 4.0 still includes more than 1000 terms. 
Hence, the analyses and comparisons have to then focus on 
a small number of events of interest whereas the criteria for 
their selection are often unclear, ill documented or based 
on arbitrary rules (e.g., frequencies ≥ 5%) . Some authors 
considered grouping AEs according to the body systems 
[65] but assigning types of AEs into body systems is not 
always as easy as it may seem and the grouping choices 
may highly influence the conclusions of the study [18]. 
Selecting the AEs according to their attributability to the 
treatment is a more difficult task. In their 2016 recommen-
dations, Lineberry et al did not insist on this kind of selec-
tion because of its inherent subjectivity and limited value in 
clinical trials [4].

One common limitation of all the models we discussed is 
the reliability of data collection. If mild AEs may be of inter-
est regarding the quality of life of the patients, they are often 
under-reported by clinicians [52]. Therefore, using Patient 
Reported Outcomes (PRO) may be more relevant in that 
situation. Furthermore, we discussed models using sever-
ity that may be difficult to collect reliably over the whole 
follow-up, particularly in observational studies. For severe 
events, the patient is most likely to come for a consultation 
or may be hospitalized, so the collection of the AE is close to 
the time of occurrence. Otherwise, AE collection is usually 
performed when patient meets clinician for a follow-up visit 
(e.g., once a month). The time of occurrence is therefore 
not precisely collected, which leads to interval censoring 
and modeling issues. Moreover, some AEs may arise and 
be resolved in between visits (e.g., transient hyperthyroid-
ism during immunotherapy), so they may not be collected 
(truncation). Hence, comparing the occurrence of such AEs 
in patients with various visit frequencies may be misleading.

4  Conclusion

Comparing the adverse events between groups of patients 
is a recurrent occurrence with drug safety data. Regression 
models adjusting on important covariables may be consid-
ered in both observational and RCTs. Time-to-event models 
are advocated for AE analysis; however, the interpretation 
of those models are complicated because of competition 
with death or treatment discontinuation. Hence, the abso-
lute risk from the regression model should be presented 
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systematically because it may help validation and inter-
pretation, particularly in the competing risk settings, and 
comparison between studies with different follow-up times. 
Flexible time-to-event models dealing with baseline risks 
(unlike semi-parametric models) as well as non-linear and 
time-dependent covariate effects have proven to be useful 
and should be explored further in this context. Rare events 
are a recurrent issue in drug safety data and few models 
may suit rare outcomes. Hence, the logistic regression (with 
rare event corrections) may be a useful option. Recent arti-
cles proposed models accounting for severity; however, 
their interpretation may be difficult and real-life application 
should be performed to extend their use.
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