
HAL Id: hal-04382485
https://hal.science/hal-04382485

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cubedate: Securing Software Updates in Orbit for
Low-Power Payloads Hosted on CubeSats

François-Xavier Molina, Emmanuel Baccelli, Koen Zandberg, Didier Donsez,
Olivier Alphand

To cite this version:
François-Xavier Molina, Emmanuel Baccelli, Koen Zandberg, Didier Donsez, Olivier Alphand.
Cubedate: Securing Software Updates in Orbit for Low-Power Payloads Hosted on Cube-
Sats. PEMWN 2023 - The 12th IFIP/IEEE International Conference on Performance Eval-
uation and Modeling in Wired and Wireless Networks, Sep 2023, Berlin, France. pp.1-6,
�10.23919/PEMWN58813.2023.10304910�. �hal-04382485�

https://hal.science/hal-04382485
https://hal.archives-ouvertes.fr


Cubedate: Securing Software Updates in Orbit
for Low-Power Payloads Hosted on CubeSats

François-Xavier Molina, Emmanuel Baccelli, Koben Zanderg
Inria, France

firstname.lastname@inria.fr

Didier Donsez, Olivier Alphand
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG

firstname.lastname@univ-grenoble-alpes.fr

Abstract—CubeSat design is facilitated by the increasing avail-
ability of open-source software in the domain, and a variety
of low-cost hardware blueprints based on commodity micro-
controllers. We attain the rock-bottom price to reach orbit as
entities that design, launch and operate CubeSats started selling
to multiple tenants tiny rack slots for low-power payloads that
may be hosted on their CubeSat. The question arises of how to
provide state-of-the-art security for software updates on a multi-
tenant CubeSat, whereby mutual trust between tenants is limited.
In this paper, we provide a case- study: ThingSat, a low-power
payload we designed, is currently hosted on a CubeSat orbiting
at 500km altitude operated by a separate entity. We then design
Cubedate, a framework for securing continuous deployment of
software to be updated on orbiting multi-tenant CubeSats. We
also provide a highly portable open-source implementation of
Cubedate, based on the IoT operating system RIOT, which we
evaluate experimentally.

I. INTRODUCTION

Driven in part by the increasing involvement from public
research and the academic community [1], more and more
open source software and hardware is available, maturing and
used on CubeSats.

Their availability has lowered the bar of entry, with the
aim of designing low-cost CubeSats which can more reliably
achieve a successful launch – until recently, the failure rate
was still around 60% for first-time satellite builders [2].

With the same objective, another trend has been to buy tiny
“rack-space” in orbit [3]. With this model, a stakeholder (a
user) can place a small (<1U, a 10cm cube which is the small-
est standard size for a CubeSat) payload slot hosted inside a
CubeSat provided by an operator (a different stakeholder). The
user only needs to design and operate this payload, instead
of designing and operating the whole CubeSat, drastically
reducing users’ costs and lead time. Typically, such a payload
boils down to a printed circuit board (PCB) with sensors, a
low-power CPU (sometimes with separate wireless commu-
nication capabilities) and a bus communication interface to
the CubeSat main on-board flight computer (OBC). As such,
a hosted payload on a CubeSat resembles small embedded
devices usually found in the Internet of Things (IoT).

Nevertheless, even if the entry bar is lowered through
the combination of a hosted payload and leveraging open
source, software embarked on launched CubeSats tend to be
minimalist (think: space rush, time pressure to meet hard
launch deadlines...) and buggy, as most software is. In effect,
hosted CubeSat payload software must typically be updated
over-the-air (OTA) regularly, after it is deployed in orbit and

in operation. Beyond enabling OTA software updates on a
hosted CubSat payload, cybersecurity is a crucial emerging
aspect. Indeed, on the one hand, software updates can be used
to fix vulnerabilities but, on the other hand, tampering with
software updates can be used as a cyberattack vector [4].

State-of-the-art has so far focused on single-stakeholder
CubeSats use cases, where embarked software is managed by
a single entity. In this paper, we instead focus on the chal-
lenge of securing software updates on low-cost multi-tenant
CubeSats whereby the OBC and the payload are operated
by different stakeholders which do not necessarily trust each
other. In particular, we focus on payloads based on low-power
microcontrollers, which are essential on low-cost CubeSats,
where low power consumption is a key factor.

II. RELATED WORK

Open source hardware and software is increasingly used
on low-cost CubeSats, including microcontroller parts. For
instance pyCubed [2] proposes open source CubeSat hardware
based on an Arm Cortex-M4 (atsamd51) microcontroller and
matching Python (CircuitPython) based open source software.
OreSat [5] designs microcontrollers based CubeSats, and pro-
vides the corresponding open source software. Organizations
such as the Libre Space Foundation [6] harbor a number of
open source software code basis for CubeSats, such as UPSat,
Qubik.

Once the CubeSat is in orbit, during its lifetime, the em-
barked software will typically need updating. Some work such
as [7] have focused on the reliability of the ground-flight link
for firmware updates. Other work have focused on mitigating
radiation effects corrupting firmware storage and on error
correction, such as [8] or partly in [9]. A vanilla approach to
securing low-cost CubeSat software updates, such as described
in [10], uses weak security primitives (e.g., MD5 integrity
checks) instead of strong primitives such as authentication with
digital signatures and encryption. However, recent cyberattacks
such as the ViaSat outage in Ukraine [11] suggest that CubeSat
systems are more likely to become cyberattack targets. A
crucial related challenge is thus how to provide strong security
for in orbit software updates. Prior work such as NUTS [12]
have focused on authentication and communication security
over the ground-flight uplink.

However, to the best of our knowledge, no prior work exists
on providing strong security for software updates on a low-
power CubeSat payload, via a satellite uplink and an OBC that



Fig. 1. CubeSat hosted payload software update security end-to-end.

are both potentially untrusted. This hosted CubeSat use-case
is depicted in Fig. 1.

The main contributions of this paper are the following
• We provide a case-study, ThingSat: a low-power, low-cost

payload hosted on a CubeSat, currently in-orbit;
• We analyze its software update requirements and con-

straints;
• We define Cubedate, a generic architecture enabling

standards-based, secure software updates for payloads
hosted on a low-power CubeSat;

• We provide and evaluate an open source implementation
of Cubedate.

III. CASE STUDY: THINGSAT

The ThingSat project [13] aims to benchmark ground-space
LoRa links on different frequency bands and demonstrate the
effectiveness of that technology inside a LEO (Low Earth
Orbit) CubeSat.

ThingSat is deployed as a hosted payload on a shared 3U
CubeSat: STORK-1 from the polish start-up SatRevolution.
The CubeSat was launched on January 13th, 2022, currently
in orbit at an altitude of 525km (see its Two-Line Elements).

A. Distributed System Architecture

Fig. 2 describes the ThingSat deployment components. It
gives an overview of a typical CubeSat ecosystem, whereby
the interaction with this payload traverses untrusted elements.

The Low-power Space Segment comprises the on-board
computer (OBC) and hosted payloads, whom, interconnected
via a Controller Area Network (CAN) bus, which share
resources on the CubeSat. The OBC provided by the satellite
operator consists of a microcontroller with all its subsystems
to operate the CubeSat: Attitude Determination and Control
System (ADCS), communication subsystems (UHF/VHF/S-
band for uplink/downlink and antennas) and power subsys-
tem (Battery Management, Energy Harvesting with Solar
Panels, Auxiliary Power Supply). The ThingSat payload we
designed uses a STM32F405RG microcontroller featuring an
ARM Cortex-M4 core and open source firmware based on

LEO (~525km) polar orbit Cubesat subsystem
(4-5 passes a day, 30s-to-10min duration pass over a fixed Earth location)

OnBoard Computer

microcontroller

Com. System
(e.g. UHF/VHF+S-Band)

...ADCS Power

Thingsat hosted payload

STM32 microcontrollers

sx1302/sx1280 radio
(LoRa 868MHz/2.4GHz)

RIOT-OS

SAT Operator
Ground Stations

Com. System
(e.g. UHF/VHF+S-Band)

SP
AC

E 
SE

G
M

EN
T

G
R

O
U

N
D

 S
EG

M
EN

T

UHF UL/DL ~10kbps
telemetry, command, control

~300KB/day

UNTRUSTED PART
operated by the cubesat operator

TRUSTED PART
operated by the hosted payload owner

UP

CAN
CSP

Dual-Band Antenna
S-Band
~1Mbps
Larger File

1.
 M

is
si

on
 F

ile
 +

Fi
rm

w
ar

e 
U

pd
at

e

4.
 M

is
si

on
 R

es
ul

ts

3.
 D

at
a 

fro
m

Io
T 

de
vi

ce
s

2.
 e

m
itt

ed
 a

nd
fo

rw
ar

de
d 

da
ta

Thingsat IoT devices
and Ground Stations

Subsidiary radio
(e.g. LoRa 868MHz +

2.4GHz))

LoRa ~1-10kpbs

Fig. 2. ThingSat hosted payload: deployed components and architecture.

RIOT [14]. It embeds both a SX1302 transceiver for com-
munications on the 868MHz band and a SX1280 transceiver
for communications on the 2.4GHz band. Furthermore we de-
signed a corresponding dual-band patch antenna. When active
and using the 868MHz band, the ThingSat payload consumes
at 3.3V: (i) 90mA in standby, (ii) 110mA during a frame
reception (RX) and (iii) 300mA during a frame transmission
(TX) at the 27dBm maximum power. By operating in the
mWatt range, our payload achieves low-power consumption
what could not have been achieved with a raspberry pi or
without the de-facto low-power LoRa technology.

The Ground Segment comprises two elements. First, the
SatRevolution Ground Stations provided by the CubeSat op-
erator1 which communicate via UHF/VHF with the OBC, and
indirectly with the payload. This can be done directly through
a Command & Control Center, which acts as a broker between
payload maintainers and hosted payload (indirect access).
Second, the ThingSat LoRa Ground Stations we designed,
deployed and maintain, which can communicate via LoRa
directly with the ThingSat payload. These stations are based
on an ESP32 microcontroller, and a 2.4GHz SX1280-LoRa
transceiver, also running an open source firmware based on
RIOT.

B. Communication Characteristics Overview

ThingSat payload communicates either directly via low-
power WAN (LPWAN), or indirectly via the UHF/VHF link
provided by the CubeSat’s OBC.

1) Direct communication patterns via LPWAN: ThingSat
can communicate directly with LoRa. In principle, although it
is not used as such so far, this communication link could also
be used to transport software updates. The ThingSat payload
may act as either: (i) a Sat-IoT end-device (ED) that will send

1not necessarily owned by the CubeSat operator



LoRa frames to terrestrial LoRaWAN gateways or ThingSat
ground stations (GS), or (ii) an in-orbit LoRa sniffer, or (iii)
a store-carry-and-forward LoRa gateway.

Patterns (i) and (ii) allow to benchmark simple ground-space
LoRa links by computing statistics over multiple sent/received
frames. Pattern (iii) is a more complex scenario: the satellite
stores packets received from ED (Steps 1-2 on Fig. 3), carries
them (Step 3) and delivers them once LoRa GS destinations
are inside the footprint of the satellite (Step 4).

2) Indirect communication characteristics via UHF/VHF:
CubeSat-GS communications are typically done on amateur
frequency bands (UHF/VHF) with typically low data rates
ranging from 9.6Kbps to 100Kbps. A polar LEO satellite will
typically pass over a given ground station 2 to 4 times/day,
each pass having a communication window of 5 to 10 minutes.

For ThingSat, the CubeSat Operator provides only 2 ground
stations (both in Europe) communicating with the CubeSat
via a 10-Kbps UHF/VHF link. Thus, the daily throughput
is roughly 1500KB (corresponding to 2GS x 2 passes/day
x 5-min pass duration x 10Kbps). However, this throughput
must be shared between communications to/from the OBC (for
telecommand/telemetry/update) and to/from hosted payloads.
Therefore in practice, the total communication budget avail-
able for ThingSat via the UHF/VHF link is around 300KB/day.

3) Intermittent communication/power supply: Last but not
least, the ThingSat payload is not constantly powered on.
Typically, at any point in time, only one single hosted payload
is powered on. For a 3U, 1U is dedicated to the OBC and the
remaining 2U is available for hosted payloads (8 payloads
slots of 0.25U in the case of ThingSat). Therefore, on average
ThingSat is powered only 1/8th (12.5%) of the time.Other
factors such as mission specificities, regulations and battery
level also have an influence.

C. Hosted Payload Software Updates Requirements

Data exchanges between the Payload Maintainer and
ThingSat (Step 5 on Fig. 3) consist of downlinks used by
ThingSat to send mission results (radio metadata, frame stats,
collected LoRa frames) and diagnosis data (debug info on
failed missions/updates) and uplinks used for software up-
dates of two categories: (i) Firmware updates to fix bugs,
add/improve functionality (typically ∼200KB per FW, 1
FW/month) and (ii) Mission updates to configure scenarios
(typically ∼700B per mission scenario, 1 scenario/day).

IV. CUBEDATE: STANDARD SECURITY FOR CONTINUOUS
DEPLOYMENT OF LOW-POWER CUBESAT SOFTWARE

In this section we describe Cubedate, a structured approach
to securing heterogeneous software updates for in-orbit Cube-
Sat software.

A. Security Requirements

The minimal security guarantees that we aim for with
Cubedate are authenticity and integrity of software updates
delivered over the network, during the lifetime of the satellite
mission (5-10 years). Cubedate must allow for crypto agility,

LoRa IoT

end-devices

(ED)

Terrestrial 

Internet

cubesat
footprint

ThingSat LoRa
GroundStations

ThingSat
LoRa Network


Server

Cubesat Command
& Control Center

CubeSat operator

GroundStation

1. EDs send
LoRa packets

2. CubeSat
stores LoRa

packets

3. CubeSat
carries LoRa

packets

4. CubeSat relays
LoRa packets
towards GS

ThingSat 

LoRa communications

CubeSat operator
VHF/UHF

communications

5.Firmware & Mission Upload
/Results & Debug Download

Fig. 3. ThingSat in-orbit communication patterns.

i.e. update the crypto primitives used to secure update to
the satellite while in operation. This need can be dictated
either by cryptography’s evolving state-of-the-art (implemen-
tation/algorithm vulnerabilities are discovered) or by the need
to transfer the trust anchor to a new entity (the authorized
maintainer has changed). Additional guarantees beyond au-
thenticity/integrity should also be possible with Cubedate, such
as confidentiality, software update replay attacks, or software
update mismatch attacks.

B. Trust Anchor

Our model is based on a single trust anchor: the secret key
from the single authorized maintainer for the CubeSat hosted
payload. There is no mitigation if this trust anchor used is
compromised. We thus rely on the maintainers’ ability to keep
their private keys secure. Extensions using a (hierarchical)
public key infrastructure are possible but out of scope for this
paper.

C. Cubedate Software Life-Cycle Phases

The basic process we use for securing authenticity and
integrity of software updates is decomposed in six phases
shown in Fig. 4. During a preliminary, pre-flight phase (Phase
0) the authorized maintainer for the CubeSat-hosted payload
produces and flashes the payload with commissioning mate-
rial: a bootloader, the initial firmware, and authorized crypto
material (a public key, and a cryptographic hash function).
Once the hosted payload is commissioned it can be sent to
the CubeSat operator of installation in the CubeSat.

Once the CubeSat is in orbit, the hosted payload maintainer
can trigger iterations through cycles of Phases 1-5, whereby
the authorized maintainer can build a new software update
(Phase 1), hash the update and sign the hash (Phase 2) then
push a network transfer (PUT) towards the hosted payload
via the ground station and the OBC (Phase 3.1). The next
time it wakes up, the hosted payload can then ping and fetch



Fig. 4. CubeSat hosted payload secure software update process.

(GET) the update from the OBC (Phase 3.2), proceed to verify
the signature and the hash (Phase 4), and upon successful
verification, install/boot the new software (Phase 5), otherwise
the update is dropped.

D. Supporting Network Transport Heterogeneity

This aspect concerns Phase 3.1 and 3.2 in Fig. 4. Security
guarantees on software updates must remain valid end-to-end.
Depending on the use-case, “end-to-end” spans differently, as
depicted for example in Fig. 1. In the most complex case we
tackle in this paper, end-to-end means all the way from the
hosted payload software maintainer to the payload hosted in
orbit on the CubeSat. Software updates may be transported
over one or more network links of varying nature such as either
developer-to-groundstation link (Internet) or groundstation-
to-cubeSat links (UHF/VHF, LoRa...) or intra-cubeSat buses
(CAN, I2C, RS-232...).

Intermittent power supply, combined with orbiting and radio
range limitations impacts the intermittence of network connec-
tivity to/from the hosted payload: establishing a delay-tolerant
path and in-network data caching might be required. To cope
with this wide variety of network paths and links (including
ultra-constrained low-power elements), different approaches
can be envisioned at the network layer, the transport layer
and the application layer. Approaches span from proprietary
solutions to standards such as the low-power IPv6 protocol
stack (6LoWPAN, UDP, CoAP [15]) or experimental stacks
such as information-centric networking which benefits from
in-network caching even with small caches on microcon-
trollers [16].

Nevertheless, in order to retain generality, Cubedate does
not specify any particular approach at the network, transport
and application layers to enable the delivery of software
updates across the network. Cubedate only aims to guarantee
end-to-end security properties for the software update binaries
that are delivered, somehow, over the network.

E. Supporting Updated Software Heterogeneity

This aspect concerns both Phase 1 and Phase 5 in Fig. 4.
As seen in Fig. III-C, software updates may be of various
nature and size. Cubedate aims to support the same mech-
anism, workflow and guarantee to update the CubeSat (1)

firmware updates, (2) mission scenario files and (3) runtime
configuration files.

For this reason, we choose not to rely on specialized
approaches such as DFU (Device Firmware Update [17])
which assumes that the software is firmware and that the
device is connected directly via some local bus connection
(e.g. USB).

Instead, we aim to combine the use of generic and standard
metadata characterizing software updates and state-of-the-
art cryptographic primitives applicable on most low-power
microcontrollers and a large variety of low-power networks,
as described below.

F. Low-power End-to-End Security using SUIT (Software Up-
dates for Internet of Things)

Cubedate leverages the SUIT manifest [18] which specifies
a metadata format to describe software updates. This format
uses Concise Binary Object Representation (CBOR) for data
serialization, and a security wrapper which protects the meta-
data end-to-end, leveraging the CBOR Object Signing and
Encryption (COSE) specification - all of which are IETF open
standards for low-power communication security [19].

The Cubedate software update binary itself can be either
encapsulated in the SUIT manifest, or transferred separately
based on the URI provided in the manifest. For instance, the
metadata includes a sequence number (preventing unwanted
rollbacks), the expected device type (preventing software
mismatch), the SHA256 digest of the software update binary
and of the manifest, and the ed25519 digital signature of the
manifest (the metadata). As such, using Cubedate, software
updates for payload hosted on CubeSats mitigate attacks
including:

Tampered Software Update Attacks: An attacker may try
to update the IoT device with a modified and intentionally
flawed software image. To counter this threat, Cubedate uses
digital signatures on a hash of the image binary and the
metadata to ensure integrity of both the firmware and its
metadata.

Unauthorized Software Update Attacks: An unauthorized
party may attempt to update the IoT device with modified
image. Using digital signatures and public key cryptography,
Cubedate ensures that only the authorized maintainer (holding
the authorized private key) will be able to update the device.

G. Supporting Crypto Agility

The first level of crypto agility enabled by Cubedate uses
flexibility provided by the SUIT standard specification: while
keeping the same metadata and workflow, diverse crypto
primitives backends can be used. For instance, to upgrade from
pre- to post-quantum security, digital signature performed with
ed25519 (elliptic curve crypto), can be swapped for hash-based
signatures (LMS [20]).

The second level of crypto agility enabled by Cubedate
leverages a dedicated embedded runtime architecture: on the
one hand, we place the software update manager (implement-
ing SUIT-related operations) in the firmware image itself.



On the other hand, we perform cryptographic operations in
software only.

Thus, changing the trust anchor stored is as simple as
swapping a public key in the next firmware’s update manager.
Authorization to update the firmware can thus be easily dele-
gated to another maintainer, who can take over the production
and the roll out of authorized updates. Furthermore, the update
manager in the next firmware image could implement and use
upgraded cryptographic primitives.

H. Guarantees beyond Authenticity/Integrity

Cubedate may also guarantee confidentiality by encrypting
(optional) software updates transmitted over the network. It
is performed using the encrypt/decrypt mechanism provided
by the SUIT specifications [21], using a symmetric cryp-
tographic key commissioned in the update manager by the
authorized maintainer. Confidentiality can mitigate additional
cyberattacks leveraging analysis of CubeSat firmware/software
binaries.

Going beyond authenticity, integrity and confidentiality
guarantees for software updates delivered over the network,
using Cubedate also mitigates other attacks including:

Software Update Replay Attacks: An attacker may try to
replay a valid, but old (known-to-be-flawed) software. This
threat is mitigated by using a sequence number. Cubedate
uses a sequence number, which is increased with every new
software update.

Software Update Mismatch Attacks: An attacker may
try replaying a software update that is authentic, but for
an incompatible device. Cubedate includes device-specific
conditions, which can be verified before installing a software
binary, thereby preventing the device from attempting to use
an incompatible software image.

V. CUBEDATE IMPLEMENTATION

We implemented Cubedate by extending the open source
ecosystem around RIOT, which we combined with our initial
firmware running on the ThingSat payload, also open sourced,
which we published and maintain online [22].

1) Communication Bus: To provide a simple socket-like
API on top of the raw CAN bus connecting hosted payloads
and OBC on the CubeSat, we used libCSP, a library imple-
menting the CubeSat Space Protocol (CSP version 1), which
we integrated into RIOT. This stack is deployed on satellites
such as Nuts[12], GomSpace and used by SatRevolution.
Roughly, CSP provides an ’equivalent’ of the IP/UDP stack
and static routing.

2) SUIT Implementation: To fully support the wide variety
of software updates case required by Cubedate, we extended
existing RIOT implementation of SUIT [23] which, initially,
supported only firmware updates, internal storage, and WPAN
network delivery. We generalized the SUIT state machine to
add support for (i) Heterogeneous update delivery mechanisms
with configurable {message model, network stack, network
interface} bundle, or FileSystem read/write functions, (ii)

Heterogeneous storage destination with configurable inter-
nal/external memory either Volatile (e.g. RAM for mission
files, or for tiny runtime execution containers such as Fem-
toContainers [24]) or non-volatile (e.g. FileSystem or internal
Flash) and (iii) Heterogeneous update data URI with either a
local file (e.g. mounted USB device) or a remotely accessible
file (e.g. CoAP or HTTP endpoint).

3) Network Pull Implementations: The client/server inter-
action is initiated by the hosted payload which pulls (GET) the
software update data over the network from either the OBC,
or a groundstation. The pull mechanism we implemented
uses CoAP [25] an open standard low-power IPv6 protocol
following a general-purpose REST architecture. In particular,
it is not only applicable over the CAN/CSP link, but also
usable over VHF links [26] or LoRa links [27], which paves
the way for some Cubedate software updates over the direct
link from a ThingSat LoRa groundstation to the ThingSat
payload.

VI. CUBEDATE EVALUATION AND DISCUSSION

In the following, code measurements where generated com-
piling with ARM GCC 10.2.1, optimized for code size. As
code base, we used RIOT release 2022.01 and SUIT config-
ured with ed25519 digital signatures provided by the C25519
crypto library (which has a small footprint as shown in prior
work [23]).

1) Memory Footprint Overhead: To evaluate the RAM and
Flash footprint of our Cubedate implementation, we apply it
to the ThingSat use-case, compiled for the hosted payload
hardware described in Fig. III-A.

In Table I we compare the RAM and Flash memory
requirements for a ThingSat firmware with/without Cubedate-
compliant updates. We observe that Cubedate requires a mem-
ory budget of ∼4KB of RAM and ∼19KB of Flash, which
represents roughly a 10% increase in the total RAM and Flash
memory budget for ThingSat.

TABLE I
CUBEDATE IMPLEMENTATION: MEMORY FOOTPRINT IN BYTES.

ThingSat ThingSat+Cubedate

RAM [B] Flash [B] RAM [B] Flash [B]

CAN 10774 8762 10774 8762
Crypto 633 7386 64 13760
CoAP 1024 2192 1024 1632
CSP 8541 11771 8541 12653
SUIT 0 0 3200 7425

LoRa GW 22300 45688 22300 45688
Firmware 7008 108881 8225 114088

Total 50280 184680 54128 204008

TABLE II
CUBEDATE IMPLEMENTATION: SUIT METADATA SIZE.

Seq.Num. Digests IDs URI Auth. Other Total

4B 64B 32B 64B 64B 86B 314B



2) Network Transfer Overhead: On the UHF/VHF link
at 1kb/s, the additional network transfer time induced by
the Cubedate firmware size overhead (19KB) is roughly 15
seconds. This overhead is reasonable, but non-negligible con-
sidering that a connection to the CubeSat is segmented in time
windows of ∼300 seconds.

Next, in Table II we look in more details at the metadata
(SUIT manifest) used to secure Cubedate software updates
for ThingSat. As we can see, the metadata including all
CBOR/COSE formatting, digests (SHA256 hashes) and au-
thentication data (ed25519 signature) amounts to ∼330B. The
metadata overhead thus incurs negligible overhead (+0,15%) in
case of a ThingSat firmware update (of size 200KB on average,
recall Fig. III-C). However, for smaller software update such as
updating a mission scenario (average size 700B) the metadata
overhead is significant (almost +50%). Nevertheless, on the
UHF/VHF link at 1kb/s, this overhead remains negligible in
terms of additional network transfer time.

VII. DISCUSSION & PERSPECTIVES

1) Portability: Bolted on top of RIOT, our Cubedate im-
plementation works out-of-the-box (or is trivially portable) on
a very wide variety of low-power hardware built on Cortex-
M microcontrollers: the bulk of the 200+ boards supported
by RIOT. However, additional work would be needed to sup-
port other hardware based on different 32-bit microcontroller
architectures (e.g. RISC-V).

2) Network Stack Simplification & Standardization: The
use of CSP was mandated by the CubeSat operator. The
purpose of CSP was to provide an ultra-low footprint equiv-
alent of the IP protocol stack for CubeSats with legacy (8-
bit) microcontrollers. However, on modern (32-bit) micro-
controllers such as those used in ThingSat, this approach is
can be discussed. More widely spread standard alternatives
to CSP seems possible for a similar “price”. For example,
RIOT’s default low-power IPv6 (6LoWPAN) stack used with
static routing has a footprint in RAM/Flash memory that
is comparable to libCSP memory footprint. The 6LoWPAN
stack could run directly on the CAN bus or on LoRa (see
6loCAN [28] and SCHC [29]).

3) Alternative cryptographic primitives: In our experimen-
tal evaluation, we used ed25519 (elliptic curve cryptography)
digital signature providing 128-bit pre-quantum security. One
can consider either alternative primitives, while remaining
compliant with Cubedate and the SUIT standard. One com-
promise to significantly decrease network transfer and memory
footprint with Cubedate is to use HMAC (symmetric crypto)
instead of digital signatures for authentication. Another option
would be to upgrade security to 128-bit post-quantum security
by using hash-based signature instead of ed25519.

VIII. CONCLUSION

As the space race intensifies, rises the need for state-of-the-
art security to protect software updates on multi-tenant cubesat
in orbit. In this paper, we provided a corresponding case-
study: ThingSat, a low-power payload we designed, hosted

on a cubesat operated by a separate entity, currently orbiting.
We then designed and implemented Cubedate, a framework
achieving strong security guarantees and low overhead, for
continuous deployment of software over the air on multi-tenant
cubesat. The open source implementation of Cubedate we
provided and evaluated for ThingSat was built to be reusable
on a wide variety of low-power cubesat hardware.

REFERENCES

[1] NASA. CubeSat 101: Basic Concepts and Processes for First-Time
CubeSat Developers. https://www.nasa.gov/sites/default/files/atoms/files/
nasa csli cubesat 101 508.pdf.

[2] M. Holliday et al., “PyCubed: An Open-Source, Radiation-Tested Cube-
Sat Platform Programmable Entirely in Python,” SmallSat, 2019.

[3] SatRevolution. CubeSat STORK Mission. https://satsearch.co/products/
satrevolution-in-orbit-demonstration-iod.

[4] A. Greenberg, “Software has a Serious Supply-Chain Security Prob-
lem,” Wired, Sep 2017, https://www.wired.com/story/ccleaner-malware-
supply-chain-software-security.

[5] C. Spivey and E. Gizzi, A Modular, Open Source CubeSat Structure.
[Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2021-1256

[6] LibreSpaceFoundation. Open Source Projects. https://libre.space/.
[7] S. Fitzsimmons, “Reliable software updates for on-orbit cubesat satel-

lites,” Master’s thesis, CalPoly, 2012.
[8] B. Yuen and M. Sima, “Low cost radiation hardened software and

hardware implementation for cubesats,” Preprint arXiv, 2019.
[9] I. Sünter et al., “Firmware Updating Systems for Nanosatellites,” IEEE

Aerospace and Electronic Systems Magazine, 05 2016.
[10] M. I. Monowar and M. Cho, “Over-the-Air Firmware Update for an

Educational CubeSat Project,” IREASE, 2021.
[11] Reuters. Satellite Outage Caused Huge Loss in Communications

at War’s Outset. https://www.reuters.com/world/satellite-outage-caused-
huge-loss-communications-wars-outset-ukrainian-official-2022-03-15/.

[12] B. Bezem et al., “Authenticated uplink for the small, low-orbit student
satellite: NUTS,” NTNU Report, 2013.

[13] “Thingsat,” https://gricad-gitlab.univ-grenoble-alpes.fr/thingsat/public.
[14] E. Baccelli et al., “RIOT: An Open Source Operating System for Low-

end Embedded Devices in the IoT,” IEEE IoT Journal, 2018.
[15] R. Morabito and J. Jiménez, “IETF protocol suite for the IoT: Overview

& Recent Advancements,” IEEE Communications Standards Magazine,
2020.

[16] O. Hahm et al., “Low-power Internet of Things with NDN & cooperative
caching,” in ACM ICN, 2017.

[17] J. Beningo, “Update firmware in the field using a micro-
controllers DFU mode,” https://www.digikey.com/en/articles/update-
firmware-field-using-microcontroller-dfu-mode, 2018.

[18] B. Moran et al., “CBOR-based Serialization Format for the SUIT
Manifest,” IETF Internet Draft draft-ietf-suit-manifest, Oct 2021.

[19] H. Tschofenig and E. Baccelli, “Cyberphysical security for the masses:
A survey of the internet protocol suite for internet of things security,”
IEEE Security & Privacy, vol. 17, no. 5, pp. 47–57, 2019.

[20] G. Banegas et al., “Quantum-Resistant Security for Software Updates
on Low-power Networked Embedded Devices,” ACNS, Jun 2022.

[21] H. Tschofenig et al., “Firmware Encryption with SUIT Manifests,” Tech.
Rep. draft-ietf-suit-firmware-encryption-03, Mar. 2022.

[22] “Cubedate online repository,” https://github.com/thingsat/Cubedate.
[23] K. Zandberg et al., “Secure firmware updates for constrained IoT devices

using open standards: A reality check,” IEEE Access, 2019.
[24] K. Zandberg and E. Baccelli, “Femto-containers: Devops on micro-

controllers with lightweight virtualization & isolation for iot software
modules,” arXiv preprint arXiv:2106.12553, 2021.

[25] Z. Shelby et al., “Constrained Application Protocol RFC7252,” 2014.
[26] D. Palma, “Enabling the maritime Internet of Things: CoAP and

6LoWPAN performance over VHF links,” IEEE IoT Journal, 2018.
[27] R. Sanchez-Iborra et al., “IPv6 communications over LoRa for future

IoV services,” in IEEE WF-IoT, 2018.
[28] A. Wachter, “IPv6 over Controller Area Network,” Internet Engineering

Task Force, Internet-Draft, Feb. 2020. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-wachter-6lo-can-01

[29] A. Minaburo et al., “SCHC: Generic Framework for Static Context
Header Compression and Fragmentation,” IETF RFC 8724, Apr. 2020.


