
HAL Id: hal-04382397
https://hal.science/hal-04382397v2

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Comparison of EDHOC and DTLS 1.3 in
Internet-of-Things Environments

Geovane Fedrecheski, Mališa Vučinić, Thomas Watteyne

To cite this version:
Geovane Fedrecheski, Mališa Vučinić, Thomas Watteyne. Performance Comparison of EDHOC and
DTLS 1.3 in Internet-of-Things Environments. IEEE Wireless Communications and Networking Con-
ference, Apr 2024, Dubai, United Arab Emirates. �hal-04382397v2�

https://hal.science/hal-04382397v2
https://hal.archives-ouvertes.fr


Performance Comparison of EDHOC and DTLS 1.3
in Internet-of-Things Environments

Geovane Fedrecheski, Mališa Vučinić, Thomas Watteyne
Inria Paris

Paris, France
Email: {first.last}@inria.fr

Abstract—Authenticated key exchange protocols play a crucial
role in the communication security stack of an Internet-of-Things
(IoT) device: they authenticate the communicating parties and
establish a shared symmetric secret between them. Following a
large debate in the community, the Internet Engineering Task
Force (IETF) has recently standardized a new protocol called
EDHOC for authenticated key exchange targeting IoT environ-
ments. The EDHOC protocol performs a compact Diffie-Hellman
key exchange handshake, requiring several times less bytes-over-
the-air than the de-facto solution used in the Internet, the (D)TLS
protocol. In this paper, we study how this reduction in message
size correlates with the usage of other scarce resources in IoT
environments: time, energy, and memory. We evaluate EDHOC
and DTLS with different authentication configurations over two
IoT radio technologies. First, we measure the EDHOC and DTLS
handshakes on constrained hardware over an IEEE 802.15.4
radio. We observe that EDHOC achieves ×6 to ×14 reduction
in packet sizes, ×1.44 improvement in handshake duration and
×2.79 reduction in energy consumed. Next, we simulate time on
air on LoRaWAN networks and find that, in the most restrictive
configuration (SF = 12), DTLS uses at least ×7 more time
on air than EDHOC. Finally, we measure flash memory and
RAM usage, with the EDHOC implementation achieving a ×4
reduction in both.

Index Terms—Internet of Things, Authenticated key exchange,
Performance, EDHOC, DTLS.

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has prompted
standardization bodies such as the Internet Engineering Task
Force (IETF) to develop new protocols that satisfy the con-
straints imposed by its constrained devices and networks. The
results of these efforts span from the lower layers bridging
IEEE 802.15.4 and IPv6 through 6TiSCH, extend up to the
application layer with the Constrained Application Protocol
(CoAP), and address end-to-end security with Object Security
for Constrained RESTful Environments (OSCORE). These
new specifications tailored for IoT environments address real-
world limitations such as low processing power, small batter-
ies, and reduced data rates.

One missing piece in this context consists in providing a
lightweight key exchange protocol that can supply session keys
to OSCORE. To address this, the Lightweight Authenticated
Key Exchange (LAKE) working group in the IETF has re-
cently published the Ephemeral Diffie-Hellman Over COSE
(EDHOC) protocol. EDHOC provides a compact handshake
and reuses elements already needed by OSCORE, leading to
reduced message and code footprints.

As debated in the community, one could argue that Data-
gram Transport Layer Security (DTLS) already provides the
necessary elements for IoT security. In fact, DTLS is the
de-facto solution for protecting UDP-based communications,
which in turn makes it compatible with CoAP. Furthermore,
DTLS has been thoroughly evaluated by the research commu-
nity and has several available implementations, making it a
relevant candidate for authenticated key exchange in the IoT.

Nevertheless, DTLS faces challenges to be used in highly
constrained networks, mainly due to its large message foot-
print. A typical DTLS handshake transfers close to 1 kB of
data [1], and performing DTLS handshakes over LoRaWAN
networks has been shown to take several minutes [2]. In
addition, its relatively complex message flow requires equally
complex implementations.

EDHOC [3] allows for lightweight handshakes that typically
transfer between 101 and 242 bytes [1], depending on the
configuration. Being intentionally developed for IoT environ-
ments, it has only three mandatory messages. Also, by reusing
elements from OSCORE, code size can be kept low. Finally,
EDHOC is transport agnostic and can work even in networks
where IP is typically not available, such as LoRaWAN or
Bluetooth Low Energy.

In this paper, we evaluate whether the reduced message sizes
of EDHOC against DTLS translate into the use of other rele-
vant resources. We implemented both protocols on two typical
constrained IoT devices communicating via IEEE 802.15.4
radios. We measured the mean energy and time spent by each
handshake, as well as the memory usage. Results show a
×7.75 reduction in message footprint and approximately ×1.9
reduction in energy and time, when comparing EDHOC and
DTLS using raw public keys (RPKs) and mutual authentica-
tion. We also find that EDHOC uses up to ×4 less flash and
RAM than DTLS.

We also provide a simulation of LoRaWAN time on air.
We computed the message sizes for EDHOC and DTLS, and
computed the time on air that these messages would require.
Results show that, in the worst case (LoRa spreading factor
= 12), EDHOC takes almost 7 seconds to transmit, while the
DTLS configurations take up to 50 and 80 seconds.

The main contribution of this paper is a comparison of
the formally published version of EDHOC (draft-22) and
DTLS 1.3 across several metrics (message footprint, time,
energy, memory) using real hardware and under constrained



Client Server

ClientHello

HelloRetryRequest + cookie

ClientHello + cookie

ServerHello

CertificateRequest*

Certificate

CertificateVerify

ServerFinished

ClientFinished

Ack

EncryptedExtensions

Certificate*
CertificateVerify*

Optional 
message

Only used for
mutual auth.

---

*

Fig. 1: The DTLS 1.3 handshake. Our evaluation includes all
the optional messages.

IoT networks (IEEE 802.15.4 and LoRaWAN). To the best of
our knowledge, we are the first to show how the commonly
measured message footprint correlates with handshake dura-
tion, energy consumption, and memory usage. We release the
code and data used in this paper as open source1.

The rest of this paper is organized as follows. Section
II provides an overview of DTLS and EDHOC. Section III
presents the evaluation, including the experimental setup and
the results. We discuss related work in Section IV and present
a discussion of our findings in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND

A. DTLS 1.3

The Transport Layer Security (TLS) protocol, standardized
by the IETF and currently at version 1.3 [4], provides state-
of-the-art authentication, integrity, and confidentiality to mes-
sages exchanged over the Internet. TLS was defined to work
over a reliable transport channel, most commonly Transmis-
sion Control Protocol (TCP).

To enable similar security properties in connectionless trans-
ports, the IETF developed the Datagram TLS (DTLS) [5].
Currently at version 1.3, DTLS is defined as a delta of TLS,
which enables code reuse. Among the main differences to TLS
are the presence of an explicit counter (to enable out-of-order
delivery) and a mechanism to counter Denial of Service (DoS)
attacks based on a cookie exchange during the handshake.

In this paper we evaluate the handshake of DTLS 1.3. We
show the DTLS 1.3 message flow in Fig. 1, with optional
messages in dashed lines. The handshake begins with the client
and server exchanging ClientHello and ServerHello messages,

1https://github.com/geonnave/edhoc-dtls-comparison

Message 1

Initiator Responder

Message 2

Message 3

Message 4

Fig. 2: The EDHOC handshake. The last message is optional.
Our evaluation includes the three first messages and a final
CoAP acknowledgment.

respectively. These have the goal of establishing shared key-
ing material and selecting the cryptographic parameters. To
counter DoS attacks, DTLS uses an optional cookie-based
mechanism that involves re-sending the initial messages.

Next, beginning with EncryptedExtensions, all messages
are encrypted. Three optional messages follow, in which
the server asks the client for its certificate, sends its own
certificate, and sends a signature over the handshake content
so far. After the ServerFinished message, the client may also
send its certificate and certificate verification signature. The
handshake finishes with a ClientFinished message followed
by an acknowledgment (Ack) from the server. At this point
the client and server are ready to communicate securely.

Entities using DTLS can authenticate based on pre-shared
keys, certificates, or raw public keys (RPKs), which must be
signaled during the handshake. DTLS also optionally supports
certificate verification with a chain of trust. The security
requirements and capabilities of the participating entities de-
termine how these parameters are selected. For example, pre-
shared keys are computationally cheaper and result in smaller
message sizes when compared to RPKs or certificates. Sim-
ilarly, RPK-based authentication uses less bytes over the air
than certificates, but do not provide root of trust verification.

Since the main motivation for DTLS was to support op-
eration in connectionless transports, it does not necessarily
satisfy requirements typically found in IoT environments. For
example, a DTLS handshake with RPKs transmits a total of
894 bytes of data [1], which can be challenging to send in
low-power IoT networks. In addition, the several messages
exchanged during a DTLS handshake require more elaborate
state machines, leading to implementation complexity and
potentially larger memory requirements.

B. EDHOC

The Lightweight Authenticated Key Exchange working
group of the Internet Engineering Task Force (IETF) has de-
veloped the Ephemeral Diffie-Hellman Over COSE (EDHOC)
protocol [3]. Its goal is to enable mutual authentication and
the derivation of secret keys between two constrained parties,
the initiator and the responder, with messages small enough
to be used in low-power IoT networks. A typical EDHOC



handshake consists of three messages of sizes 37, 45, and 19
bytes. EDHOC is agnostic of the transport layer and can be
used in environments without IP, although its recommended
and default setting is to be carried over the reliable CoAP.
The main use case of EDHOC is to supply session keys to
OSCORE, which provides end-to-end message encryption.

Devices using EDHOC authenticate via either X.509 certifi-
cates or raw public keys. To minimize message sizes, EDHOC
may only send the credential identifiers, in which case the
application is responsible for resolving the actual credentials.
Authentication is achieved via static Diffie-Hellman or signa-
ture keys, including any combination of them.

We illustrate the EDHOC handshake in Fig. 2: it consists of
three messages, plus an optional fourth message. In the first
message, the initiator sends its intended authentication method
and cipher suite, as well as an ephemeral public key. The
responder then sends back its own ephemeral key, along with
an encrypted credential identifier and an authentication item
(either a signature or a MAC). In both messages, connection
identifiers are also exchanged.

The third message is encrypted and authenticated by the
derived secret, and it carries the initiator’s credential identifier
as well as an authentication item. Upon receiving it, the
responder derives the shared secret and optionally sends the
fourth message. Next, the shared secret can be used to protect
application messages, e.g., via the OSCORE protocol [6].

One of the goals of the EDHOC specification is implemen-
tation simplicity [7]. To achieve that, it reuses several elements
already needed by OSCORE, such as CBOR, COSE, and
CoAP. In addition, it uses a simple model for message flights,
consisting of only three mandatory messages. Furthermore,
several low-cost optimizations are used in order to reduce
message sizes, such as the use of CBOR sequences and
compact representation of string identifiers [3].

One of the main goals of EDHOC is to allow secure key
establishment in severely constrained IoT networks, and it
achieves that by being very efficient with respect to message
footprint. It remains an open question, however, whether this
reduction in message footprint translates to a reduction of other
important resources in IoT environments, such as processing
time, energy, and memory. Similarly, it remains unknown how
these metrics fare when compared to DTLS 1.3, arguably
EDHOC’s most relevant alternative.

III. EVALUATION

We present the evaluation of the EDHOC and DTLS hand-
shake in three steps. First, we evaluate bytes over the air,
handshake duration, and energy consumption on constrained
IoT hardware and using an IEEE 802.15.4 radio. Next, we use
an airtime model to simulate the duration of the handshake
in LoRa networks with varying spreading factors. Finally, we
assess memory usage of the implementation.

A. IEEE 802.15.4

We evaluate EDHOC and DTLS over IEEE 802.15.4, using
a network stack composed of IEEE 802.15.4, 6LoWPAN,

IPv6, and UDP. We use IEEE 802.15.4 in its non-beacon mode
and the unslotted CSMA-CA multiple access technique. In the
case of EDHOC, we also include the CoAP layer and use it
for EDHOC transport. We leverage RIOT [8], an IoT operating
system, and its gnrc network implementation.

To evaluate EDHOC, we use the lakers 2 Rust crate,
linked as a static library in RIOT. To evaluate DTLS, we
use wolfSSL 3, an embedded-friendly library with support
for DTLS version 1.3. We evaluate EDHOC and DTLS
libraries running on nRF52840 hardware clocked at 64 MHz.
nRF52840 is a 32-bit ARM Cortex-M4 system on chip that
integrates an IEEE 802.15.4-compatible radio and a crypto-
graphic accelerator, the ARM Crypto Cell 310 (CC310).

We configure the EDHOC library to use the authentication
method 3 and cipher suite 2. EDHOC method 3 corresponds to
authentication using static Diffie-Hellman keys on both ends.
EDHOC cipher suite 2 implies Elliptic-curve Diffie-Hellman
key exchange (ECDHE) on curve P-256, SHA-256 hash func-
tion, and AES-128-CCM authenticated encryption algorithm.
In the absence of static Diffie-Hellman key authentication in
DTLS 1.3, we configure the DTLS 1.3 library to use ECDHE
authenticated with elliptic-curve digital signature algorithm
(ECDSA). We rely on the same elliptic curve (P-256) and
authenticated encryption algorithm (AES-128-CCM) as in the
case of EDHOC. In both cases, all cryptographic operations
are hardware-accelerated using CC310 cryptographic backend.

We evaluate a total of five configurations: EDHOC
with RPKs and mutual authentication, DTLS with RPKs
with/without mutual authentication, and DTLS with certifi-
cates with/without mutual authentication. Note that the mutual
authentication is mandatory in EDHOC but optional in DTLS.

Bytes over the air: We assess the number of bytes over
the air when considering the full network stack, which includes
headers from lower layers and fragmentation. To do so, we run
the handshake between two devices and sniff the radio traffic
with a third device, and analyze the capture.

We summarize the results in Fig. 3. We can see that
EDHOC sends ×6.09 and ×14.35 less bytes over the air
when compared to DTLS with raw public keys without mutual
authentication and to DTLS with certificates and mutual
authentication, respectively. One aspect to note is that in the
DTLS case, the accumulated headers of the MAC layer already
top the accumulated bytes of the full EDHOC handshake. The
reason is that although the IEEE 802.15.4 headers are only 21
bytes, its Maximum Transmission Unit (MTU) is 127 bytes,
causing DTLS to rely heavily on fragmentation, as shown in
Table I. Thus, the MAC headers are sent many times over the
network, further accentuating the message sizes differences.
Table I also shows the accumulated bytes over the air per
layer of the network stack. Note that 6LoWPAN contains the
compressed IPv6 and UDP headers.

Handshake duration and energy consumption: Next, we
look into the question of how the difference in bytes over

2https://github.com/openwsn-berkeley/lakers/
3https://www.wolfssl.com/



EDHOC
RPK Mutual

DTLS
RPK

DTLS
RPK Mutual

DTLS
Cert

DTLS
Cert Mutual

Protocol

0

500

1000

1500

2000

2500

3000

3500

4000
To

ta
l (

by
te

s)
IEEE 802.15.4
6LoWPAN
CoAP
Content

1.00

6.09

7.75

9.35

14.35

Ra
tio

Fig. 3: Bytes over the air for EDHOC and DTLS handshakes.

TABLE I: Messages and fragments per handshake, and the
amount of bytes over the air for each layer.

Protocol Messages Fragments IEEE
802.15.4

6LoWPAN CoAP Content Total

EDHOC RPK Mutual 4 4 84 36 66 103 289
DTLS RPK 10 18 378 154 0 1228 1760

DTLS RPK Mutual 13 23 483 199 0 1558 2240
DTLS Cert 10 26 546 194 0 1961 2701

DTLS Cert Mutual 13 39 819 279 0 3049 4147

the air translates into the usage of other resources: handshake
duration and energy consumption. We measure it using a
power profiler device (Otii Arc4) connected to the device that
initiates the handshake. The power profiler provides power
to the device under test (DUT), and measures its current
consumption. The profiler also supports reading from a digital
pin, allowing us to precisely time each handshake. The DUT
firmware was configured to run the handshake 20 times. We
collect the results using the power profiler software and calcu-
late the amount of energy and time spent for each handshake.

Fig. 4 presents the results on handshake duration and
energy consumption. We note that the duration and energy
are highly correlated. The configuration of DTLS with raw
public keys and no mutual authentication uses approximately
×1.44 more time and energy compared to EDHOC. The DTLS
configuration with certificates and mutual authentication uses
×2.79 more time and energy compared to EDHOC. Thus, the
improvement in packet sizes in EDHOC actually translates to
a smaller improvement in duration and energy consumption.

Note that the smaller packets are due to the compact
serialization used by EDHOC, which imply less radio usage
but not necessarily processing time, the latter being heavily
affected by cryptographic operations. This is relevant since
both protocols feature CPU-intensive computations, most no-
tably the generation of ephemeral asymmetric key pairs and
performing a Diffie-Hellman operation.

B. LoRaWAN

We evaluated the time on air (ToA) for executing EDHOC
and DTLS handshakes over LoRaWAN. LoRa is a low-power,

4https://www.qoitech.com/otii-arc-pro/

0 100 200 300 400 500
Duration (ms)

EDHOC
RPK Mutual

DTLS
RPK

DTLS
RPK Mutual

DTLS
Cert

DTLS
Cert Mutual

Pr
ot

oc
ol

(a) Handshake Duration

0 2 4 6 8 10 12 14
Energy (mJ)

EDHOC
RPK Mutual

DTLS
RPK

DTLS
RPK Mutual

DTLS
Cert

DTLS
Cert Mutual

Pr
ot

oc
ol

(b) Energy Consumption

Fig. 4: Results of time and energy measurements for a hand-
shake under several configurations.

long-range technology designed to run on ISM bands. Its
corresponding link layer is called LoRaWAN, and it defines
the communications protocol and architecture. LoRaWAN is
highly configurable, allowing clients to choose a particular
spreading factor and bandwidth that better suits their needs
for data rate, distance, and energy consumption. To prevent
channel overuse, regulators impose severe radio duty cycles,
typically in the order of 1%.

Although there are efforts to bring IP connectivity to Lo-
RaWAN networks [9], most implementations transmit applica-
tion data directly on top of the link layer, due to LoRaWAN’s
data rate constraints. EDHOC can be used in this scenario,
since it was designed to be independent of the underlying
transport. Running DTLS on top of a LoRaWAN link, how-
ever, becomes impractical, since DTLS assumes an underlying
UDP/IP stack. For this reason, similarly to other works [2], we
approached the problem of evaluating DTLS over LoRaWAN
by using a simulation based on an airtime model.

We collected messages from a real handshake over
IEEE 802.15.4, stripped off the link layer headers and, after
calculating the resulting message sizes, divided them in lists
of fragment sizes according to the MTU of each LoRaWAN
spreading factor (SF). We then used an open source tool5

to estimate the time on air for EDHOC and DTLS over
LoRaWAN in several spreading factor configurations.

Figure 5 presents the results. With Spreading Factor 12, the
time on air for EDHOC is less than 7 seconds, while for DTLS
it can be almost 50 or 80 seconds for RPK and certificates,
respectively.

C. Memory Usage
We measure memory usage in two steps. First, we mea-

sure flash memory and static RAM by analysing the .map

5https://github.com/tanupoo/lorawan toa



EDHOC
RPK Mutual

DTLS
RPK

DTLS
RPK Mutual

DTLS
Cert

DTLS
Cert Mutual

Protocol

0

20

40

60

80

100

120
Ti

m
e 

on
 A

ir 
(s

)
Spreading Factor

SF7
SF8
SF9
SF10
SF11
SF12

Fig. 5: Time on air for EDHOC and DTLS handshakes under
different spreading factors (not considering duty cycle).

files generated during compilation. In this analysis we only
include the symbols relevant to the library (either lakers
or WolfSSL) and its application code, i.e., symbols used by
the operating system and crypto backend are discarded. In the
second step, we measure peak stack and heap to obtain runtime
usage of the RAM. We use the RIOT module ps to measure
stack and implement heap-painting6 to obtain maximum heap
usage. Note that peak heap is only measured for WolfSSL,
since lakers does not use dynamic memory.

0 20 40 60 80 100 120 140
Flash Usage (kB)

lakers
RPK Mutual

WolfSSL
RPK

WolfSSL
Cert

WolfSSL
RPK Mutual

WolfSSL
Cert Mutual

Pr
ot

oc
ol

(a) Flash memory

0 5 10 15 20 25 30 35
RAM Usage (kB)

lakers
RPK Mutual

WolfSSL
RPK

WolfSSL
Cert

WolfSSL
RPK Mutual

WolfSSL
Cert Mutual

Pr
ot

oc
ol

Static RAM
Peak Stack
Peak Heap

(b) RAM.

Fig. 6: Flash memory and RAM usage for the lakers and
wolfSSL implementations.

Flash memory: Fig. 6 presents the RAM and flash
footprint results. wolfSSL uses virtually the same amount of
flash in all configurations, and requires about ×4.5 more flash
than lakers. This is in part due to the fact that EDHOC
was designed to be simple to parse and decode, which it

6Memory painting consists in filling the memory with a known pattern and
scanning it after some processing to assess how much of it has changed.

does by relying on CBOR encoding. In addition, the lakers
implementation uses only inline CBOR processing, i.e., it does
not depend on a CBOR library. It is also worth noting that the
lakers implementation only implements one authentication
method and cipher suite, while wolfSSL supports several
DTLS configurations. A final nuance is that, while wolfSSL
is implemented in C, lakers is written in Rust, which
typically leads to binaries twice as large than C [10].

Volatile memory: Fig. 6b presents the results on RAM
footprint. Overall, WolfSSL uses between ×3.6 and ×4 more
RAM than lakers. The lakers implementation uses far
less static RAM, but almost double of the stack, which is
compensated by its zero use of the heap. Among the reasons
for this difference, are the increased complexity of parsing
DER files versus the more simple CBOR approach, and the
fact that DTLS needs a more elaborate state machine due to
the amount of messages that are exchanged (see Table I).

IV. RELATED WORK

Several works assess the amount of resources used by
Internet-of-Things security protocols. In Table II, we provide a
summary of the previous literature, designating which works
evaluate DTLS, EDHOC, or both, as well as the evaluated
version. Most works assess either DTLS or EDHOC, with
two exceptions Durand et al. [11] and Mattsson et al. [1],
that compare both protocols.

Table II also compares our work to others in terms of which
metrics were evaluated for the selected protocols. All works
evaluate message sizes, while the metrics of time, energy,
and memory are evaluated by a count of 4, 2, and 2 works,
respectively. Our work compares the latest version of DTLS
and EDHOC, as published by the IETF, across all four metrics.

TABLE II: Related work. V and D indicate the DTLS Version
and EDHOC Draft number; L and I indicate LoRaWAN and
IEEE 802.15.4.

Work DTLS EDHOC Time Energy Msg. Size Memory Network
[12] V-1.2 D-06 ✓ ✓ L
[13] D-08 ✓ ✓ I
[11] V-1.3 D-12 ✓ ✓ ✓
[14] V-1.3 ✓ ✓ ✓ I
[15] D-02 ✓ ✓ ✓
[2] V-1.2 ✓ ✓ L
[1] V-1.3 D-18 ✓

Ours V-1.3 D-22 ✓ ✓ ✓ ✓ I, L

Among the works that use LoRaWAN, Sanchez-
Iborra et al. [12] use EDHOC to derive network and
application keys, while Rademache et al. [2] measure ToA
for TLS and find significant bottlenecks, especially in the
downlink.

From the point of view of DTLS, a comparison of versions
1.2 and 1.3 concludes that the latter adds a small overhead in
flash and RAM [14]. The same study observes that there is
a relatively small difference in bytes-over-the air with DTLS
compared to TLS. Several works compare DTLS and EDHOC
with respect to bytes-over-the-air [1], [11], [14], and conclude
that exchanged data is significantly reduced when using the



latter. Others propose modifications to EDHOC to reduce even
more the amount of transmitted data [13].

Another work proposes and evaluates two C libraries for
OSCORE and EDHOC respectively, and evaluates them in dif-
ferent IoT hardware [15]. Both libraries use a relatively small
amount of flash (<= 19kB) and integrate key management
with trusted execution environments. Among the differences
to our work are the choice of language (lakers is written
in Rust), that their evaluation does not use cryptographic
hardware accelerators, and that the measurements are done
in the bare metal configuration, i.e., without a network stack.

V. DISCUSSION

As shown in this and previous works, EDHOC offers a
notable reduction in the bytes-over-the-air footprint. Since it
implies less use of the radio, it also saves energy. We note
that the smaller sizes are achieved at the cost of operational
flexibility, since the evaluated EDHOC handshakes only send
credential references. This means that a credential provisioning
procedure is needed when EDHOC is used.

We observed that EDHOC reduces up to ×2.79 the time and
energy needed to complete a handshake. Shorter handshake
time means less latency from the application point of view,
which could be noticeable by users [16]. Note that these
metrics may be impacted by the chosen authentication method,
cipher suite, and cryptographic backend.

We noted a significant improvement of EDHOC over DTLS
in the memory usage. While implementation-dependent, we
have shown that both Flash and RAM usage in lakers
correspond to around ×4 of the figures used by wolfSSL.
Among the implications are a potential cost reduction, and
having more memory made available for the application code.

VI. CONCLUSION

In this paper, we compare EDHOC, a newly standardized
key exchange protocol for IoT with (D)TLS 1.3, the de-
facto Internet security solution. Previous works identified that
EDHOC offers smaller message footprints when compared to
DTLS. We investigate how this reduction in message sizes
translates to the use of other scarce resources in IoT envi-
ronments, including time, energy, and memory. We evaluate
EDHOC and DTLS 1.3 implementations on a constrained
device using the IEEE 802.15.4 radio, and by simulating time-
on-air for LoRaWAN networks.

We show that, in the RPK with mutual authentication con-
figuration over IEEE 802.15.4, the difference in bytes over the
air is of ×7.75 in favor of EDHOC. In this same configuration,
the handshake duration and energy consumption is improved
by ×1.88 and ×1.93, respectively. Next, we found that flash
usage differs in ×4.55 and that the total RAM difference is
of ×3.52. Similarly, in the LoRa simulation, we learned that
with SF = 12 there is a time-on-air improvement of ×9.69.
Therefore, EDHOC outperformed DTLS in all metrics, with
biggest improvements on time-on-air, followed by memory
usage, and at last by duration and energy usage.

ACKNOWLEDGMENT

This document is issued within the frame and for the
purpose of the OpenSwarm project. This project has received
funding from the European Union’s Horizon Europe Frame-
work Programme under Grant Agreement No. 101093046.
Views and opinions expressed are however those of the au-
thor(s) only and the European Commission is not responsible
for any use that may be made of the information it contains.

REFERENCES

[1] J. P. Mattsson, F. Palombini, and M. Vučinić, “Comparison of CoAP
Security Protocols,” Working Draft, IETF Secretariat, Internet-Draft
draft-ietf-lwig-security-protocol-comparison-07, January 2023.

[2] M. Rademacher, H. Linka, J. Konrad, T. Horstmann, and K. Jonas,
“Bounds for the Scalability of TLS over LoRaWAN,” in Mobile
Communication-Technologies and Applications; 26th ITG-Symposium.
VDE, 2022, pp. 1–6.

[3] G. Selander, J. P. Mattsson, and F. Palombini, “Ephemeral
Diffie-Hellman Over COSE (EDHOC),” Internet Engineering Task
Force, Internet-Draft draft-ietf-lake-edhoc-22, Aug. 2023, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
lake-edhoc/22/

[4] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://www.rfc-
editor.org/info/rfc8446

[5] E. Rescorla, H. Tschofenig, and N. Modadugu, “The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3,” RFC 9147,
Apr. 2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9147

[6] G. Selander, J. P. Mattsson, F. Palombini, and L. Seitz, “Object Security
for Constrained RESTful Environments (OSCORE),” RFC 8613, Jul.
2019. [Online]. Available: https://www.rfc-editor.org/info/rfc8613

[7] M. Vučinić, G. Selander, J. P. Mattsson, and T. Watteyne, “Lightweight
authenticated key exchange with EDHOC,” Computer, vol. 55, no. 4,
pp. 94–100, 2022.

[8] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt,
“RIOT OS: Towards an OS for the Internet of Things,” in 2013
IEEE conference on computer communications workshops (INFOCOM
WKSHPS). IEEE, 2013, pp. 79–80.

[9] A. Minaburo, L. Toutain, C. Gomez, D. Barthel, and J.-C. Zúñiga,
“SCHC: Generic Framework for Static Context Header Compression
and Fragmentation,” RFC 8724, Apr. 2020. [Online]. Available:
https://www.rfc-editor.org/info/rfc8724

[10] H. Ayers, E. Laufer, P. Mure, J. Park, E. Rodelo, T. Rossman, A. Pronin,
P. Levis, and J. Van Why, “Tighten rust’s belt: shrinking embedded Rust
binaries,” in Proceedings of the 23rd ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems, 2022, pp. 121–132.

[11] A. Durand, P. Gremaud, J. Pasquier, and U. Gerber, “Trusted lightweight
communication for IoT systems using hardware security,” in Proceedings
of the 9th International Conference on the Internet of Things, 2019, pp.
1–4.

[12] R. Sanchez-Iborra, J. Sánchez-Gómez, S. Pérez, P. J. Fernández, J. Santa,
J. L. Hernández-Ramos, and A. F. Skarmeta, “Enhancing lorawan secu-
rity through a lightweight and authenticated key management approach,”
Sensors, vol. 18, no. 6, p. 1833, 2018.

[13] S. Pérez, J. L. Hernández-Ramos, S. Raza, and A. Skarmeta, “Appli-
cation layer key establishment for end-to-end security in IoT,” IEEE
Internet of Things Journal, vol. 7, no. 3, pp. 2117–2128, 2019.

[14] G. Restuccia, H. Tschofenig, and E. Baccelli, “Low-power IoT com-
munication security: On the performance of DTLS and TLS 1.3,” in
2020 9th IFIP International Conference on Performance Evaluation and
Modeling in Wireless Networks (PEMWN). IEEE, 2020, pp. 1–6.

[15] S. Hristozov, M. Huber, L. Xu, J. Fietz, M. Liess, and G. Sigl, “The
cost of OSCORE and EDHOC for constrained devices,” in Proceedings
of the Eleventh ACM Conference on Data and Application Security and
Privacy, 2021, pp. 245–250.

[16] J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How much faster is fast
enough? user perception of latency & latency improvements in direct
and indirect touch,” in Proceedings of the 33rd annual acm conference
on human factors in computing systems, 2015, pp. 1827–1836.


