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Abstract: Snakebite envenoming can be a life-threatening medical emergency that requires prompt
medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die
from snakebites and threefold more victims suffer life-altering disabilities. The current treatment
of snakebite relies solely on antivenom—polyclonal antibodies isolated from the plasma of hyper-
immunised animals—which is associated with numerous deficiencies. The ADDovenom project
seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaf-
fold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic
nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites
to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using
state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro
and in vivo venom neutralisation assays. We anticipate that the approaches described here will
produce antivenom with unparalleled efficacy, safety and affordability.

Keywords: snakebite; antivenom; venom; biologics; ADDomer

Key Contribution: In this paper we describe the aims of the ADDovenom project and the
methodologies that will be used.

1. Introduction

Snakebite envenoming is a neglected tropical disease that is responsible annually
for up to 138,000 deaths and 400,000 disabilities in surviving victims [1], disproportion-
ately affecting the most economically and medically disadvantaged communities of Asia,
sub-Saharan Africa and Latin America [2]. The first-choice treatment for snakebite is
intravenously delivered antivenom, which is produced by hyperimmunising equines or
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ovines with subtoxic doses of venom(s) and then purifying immunoglobulins from result-
ing sera/plasma samples. Consequently, the resulting antivenoms are associated with
numerous deficiencies, including limited cross-snake species reactivity, poor dose efficacy
and high incidence of adverse reactions [3]. The efficacy of current antivenoms is often
restricted to the snake venom(s) used as immunogens in the manufacturing process, due to
the significant variation in toxin composition observed between the venoms of different
snake species, though venom components can differ even between different individuals of
the same species or over the lifetime of a single snake [4]. Snake venoms typically contain
mixtures of functionally distinct protein isoforms encoded by relatively few toxin fami-
lies, and are biochemically diverse secretions that cause variable pathologies in snakebite
victims (i.e., haemotoxicity, neurotoxicity and/or cytotoxicity) [1]. Venom toxin variation
therefore underpins the restrictive cross-snake species efficacy of antivenom, which in
turn translates into the limited geographic utility, reduced economies of scale and poor
commercial manufacturing incentives associated with these life-saving therapeutics [5].

Most regions affected by snakebite envenoming are home to several species of medically-
important snakes; therefore, most antivenom manufacturers use venom from multiple
snake species to produce polyspecific (polyvalent) antivenoms for the target region [6].
This inherently results in a smaller proportion of antibodies in the antivenom directed
against the toxins from any one species in comparison to antivenoms raised against only
one venom (“monospecific” or “monovalent” antivenom), and therefore much higher
doses of polyspecific antivenoms are required to effectively treat envenoming [7]. Fur-
ther compounding the poor dose efficacy of antivenom is evidence that only 5–36% of
immunoglobulins purified from the animal sera/plasma are specific to the venom proteins
used for immunisation [8–10], and only a proportion of those are likely to be neutralising
antibodies. The weak potency of antivenoms, which often require multiple vials to effect
a cure, increases the risk of adverse reactions to the large quantity (often grams) of intra-
venously administered, non-human immunoglobulin, while also resulting in increased
costs to the patient. Another consideration regarding the accessibility of antivenoms is
cold-chain transport and stable low-temperature storage requirements, which frequently
prevents their effective distribution in peripheral rural health centres close to the popula-
tions that have the greatest need [11].

Snakebite envenoming was recognised as a priority neglected tropical disease by the
World Health Organisation (WHO) in 2017 due to the significant public health problem
it presents across most of the rural tropics. A number of novel snakebite treatments are
under development: monoclonal human/humanised antibodies (or cocktails thereof),
non-antibody toxin-binding proteins or peptides, small molecule drugs and aptamers (for
reviews on these therapeutic modalities for snakebite see [12–14]). These treatments aim
to be better tolerated, more affordable and to possess broader snake species utility than
existing antivenoms; however, only two are currently in clinical trials [15,16]. Thus, there
remains a strong need to explore alternative biological therapeutics that may provide the
next breakthrough in snakebite treatment. Here, we describe the proposed development of
ADDomer—a novel protein-based nanoparticle therapeutic for snakebite—in our so named
“ADDovenom” project.

2. ADDomer—A Versatile Thermostable Nanoparticle

ADDomer is a nanoparticle scaffold derived from the adenovirus penton base protein
protomer [17]. In adenovirus, the protomer forms pentons at the vertices of the capsid, pro-
viding a base for fibre protein attachment [18]. When expressed recombinantly in isolation,
60 protomers spontaneously self-assemble into pentons that form a dodecahedron, known
as ADDomer (for adenovirus-derived dodecamer) (Figure 1a,b). ADDomer-based nanopar-
ticles have been developed as efficient vaccines, e.g., against Chikungunya, SARS-CoV-2
or foot-and-mouth disease [17,19–21]. The penton base protein protomer comprises two
domains: a jelly-roll fold and a crown domain (Figure 1c). The jelly-roll fold mediates
multimerisation into the penton and dodecamer assembly. The crown domain comprises
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two loops on its surface: the variable loop (VL) and the RGD loop (Figure 1c). The VL and
RGD loops are highly variable in sequence and length among the penton base proteins
found in different adenoviruses. Immunogenic epitopes and other sequences can be in-
serted into these loops without compromising efficient folding of the penton base protein
and assembly into the ADDomer [17]. The immunogenic epitopes are then displayed on
the surface of the ADDomer in 60, 120 or even more copies, depending on the number of
epitopes inserted into VL and RGD loops [17].
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Figure 1. Structure-based design of ADDobody. (a) Twelve pentons self-assemble into the ADDomer
particle (PDB ID 6HCR [17]). ADDomer is shown in grey, one penton is highlighted in colour. (b) The
penton consists of five penton base proteins (depicted in magenta, purple, light blue, blue and dark
blue). (c) Penton base protein comprises a jelly-roll fold multimerisation domain and a crown domain
with hypervariable RGD and VL loops. (d) ADDobody is the engineered crown domain. RGD and
VL loops were randomised in sequence and length to generate the ADDobody library. (e) Scheme
of ribosome display in vitro selection and evolution. The DNA library encoding the ADDobody
library (up to 1012 members) is transcribed using T7 RNA polymerase and then translated in vitro.
Ribosome-mRNA-ADDobody complexes form and ADDobodies (magenta) can fold outside the
ribosomal tunnel due to an unstructured “spacer” fused to the C-terminus of ADDobody. The
complexes are used for selection against immobilised antigens/toxins. Non-binders are eliminated
during stringent washing steps. mRNA is recovered by dissociating the ribosomal complexes with
EDTA, reverse transcribed and PCR amplified (RT-PCR). During PCR, the ribosome-binding site and
T7 promoter sequence are reintroduced into the construct. Error-prone PCR introduces mutations
into selected binders allowing in vitro evolution. The resulting DNA library is enriched for binders
and can be used for a new ribosome display round or cloned into a plasmid to clonally isolate and
express selected ADDobodies.

ADDomer nanoparticles have a number of key advantages that make them uniquely
suitable for deployment in developing countries:

1. Thermotolerance up to >45 ◦C [17,22]. It has been shown that the ADDomer nanopar-
ticle can be stored for one month at ~20 ◦C; it can be frozen and thawed and/or
heated to 45 ◦C for 1 h, virtually without losing its structural integrity [17]. Con-
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sistently, ADDomer does not require cold-chain storage, which constitutes a key
logistic advance;

2. ADDomers can be lyophilised [22]. This manufacturing step increases storage life,
providing a commercial incentive for manufacturers;

3. ADDomers can be produced as recombinant protein-based nanoparticles with ex-
ceptionally good yields using a baculovirus–insect cell expression system, allowing
establishment of good manufacturing practices with stringent quality control;

4. Importantly, the penton base protein is the least immunogenic of all the adenovirus
capsid proteins. Therefore, ADDomer presents a low immunogenicity scaffold.

The aforementioned characteristics of the ADDomer scaffold—thermotolerance, shelf
life, recombinant production and low immunogenicity—are equally desirable for antiven-
oms. We found that the architecture of the crown domain with its highly variable loops has
remote similarities with complementarity determining regions (CDR loops) in antibodies,
used to recognise cognate antigens. We hypothesised that the crown domain could be
functionalised to bind toxins. Then, the ADDomer could act as a superbinder “sponge”
to neutralise toxins. A prerequisite for such a superbinder is the feasibility of a binder
molecule representing the crown domain of the protomer. The bipartite architecture of the
protomer suggested a possibility to separate the crown from the jelly-roll fold. Thus, we
designed ADDobody, comprising only the crown domain and produced the prototype in
Escherichia coli with excellent yields as a monomeric protein (Figure 1d) [23]. Next, the VL
and the RGD loops of the crown domain were randomised in length and sequence, mimick-
ing the CDR loops of antibodies (Figure 1d). The resulting synthetic ADDobody library is
used for ribosome display in vitro selections (Figure 1e) against native and recombinantly
produced toxins. Selected specific binders are biophysically characterised and tested for
toxin neutralisation using enzymatic or cell-based assays. In a next step, the selected
toxin-neutralising ADDobody can be rejoined with the jelly-roll fold multimerisation do-
main to produce the ADDomer-based superbinders [23] (Figure 1). The resulting antitoxin
nanoparticle displays 60 binding domains against the toxin target, ensuring high-avidity
binding and highly efficient neutralisation of the snake toxin targets.

3. The EU-Funded ADDovenom Project

In the ADDovenom project, we will focus on neutralising venoms from two medically-
important groups of African snakes that cause severe life-threatening envenoming across
the continent, namely saw-scaled vipers (Viperidae: Echis spp.) and mambas (Elapidae:
Dendroaspis spp.) [24]. Echis saw-scaled vipers are responsible for the largest numbers
of bites and deaths in the northern half of Africa, and their venom mainly causes life-
threatening haemorrhage and coagulopathy, as well as debilitating local tissue necro-
sis [25]. These effects are caused by toxins such as the snake venom metalloproteinases
(SVMPs), phospholipases A2 (PLA2s), serine proteases, C-type lectin-like proteins and dis-
integrins [26]. Contrastingly, envenoming by Dendroaspis mambas causes neuromuscular
paralysis, which may become rapidly lethal if respiratory paralysis occurs [24]. Their venom
contains several distinct neurotoxins [27], which are mostly members of the three-finger
toxin (3FTx) and Kunitz-type toxin families [28,29].

We seek to develop ADDomers and ADDobodies with neutralising capabilities against
Echis SVMPs, PLA2s and disintegrins and mamba 3FTx and Kunitz-type toxins, using
the approaches shown in Figure 2. First, venom mass spectrometry will be performed to
determine the venom toxin content of each species. Proteomics will identify the protein
sequence of priority toxins to be targeted, their post-translational modifications, disulphide
bonds and relative abundance in each venom. Priority toxins will then be expressed as
recombinant toxins using bacterial and eukaryotic expression systems. A naïve synthetic
ADDobody library and recombinant toxins will be used to select for specific, high-affinity
toxin binders using ribosome display. The resulting ADDobodies and ADDomers (multi-
merised ADDobodies) will then be tested for their in vitro and in vivo neutralising capabil-
ities against specific venom toxins and crude venom and will also be assessed in vivo for
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their safety and pharmacokinetic characteristics. Finally, a good manufacturing practice
(GMP)-compatible platform will be developed for the production of toxin-neutralising AD-
Domers.
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Figure 2. Overview of the ADDovenom project. Mass spectrometry will be used to define the venom
composition of nine snake venoms and identify toxins. Toxins will then be produced as recombinant
proteins in bacterial and insect cell expression systems. A synthetic library of ADDobodies will
be created and screened using ribosome display to identify specific, high-affinity binders to the
recombinant toxins. ADDobodies and ADDomers will then be assessed for toxin-neutralising ability
using in vitro assays and in vivo models of venom bioactivity. Finally, a GMP-compatible platform
will be developed to produce toxin-neutralising ADDomers at scale.

3.1. Venom Mass Spectrometry and Bioinformatics

One key challenge for the design of toxin-specific therapies is that it is often not
apparent which specific isoforms within a family of toxins must be neutralised to prevent
mortality and morbidity. The ADDovenom project will take advantage of the versatility of
mass spectrometry approaches [30,31] to determine the inventory of peptides and proteins
present in the nine African snake venoms collected from saw-scaled vipers (E. ocellatus,
E. pyramidum leakeyi, E. leucogaster and E. coloratus) and mambas (D. polylepis, D. angusticeps,
D. viridis, D. jamesoni jamesoni and D. j. kaimosae) to be used in this project. From the peptide
sequences, the prediction of toxin families and their related pharmacological activities will
enable a ranking of toxins according to their toxicological importance to generate a list of
“priority” target toxins to be neutralised for each venom. A toxin database containing all
this information will be generated to identify the target toxins for recombinant expression
(see Section 3.2).

These objectives will be achieved through the application of venomics, a methodology
that integrates data generated from transcriptomics and proteomics [32,33]. This rational
approach has already been demonstrated to be particularly powerful in exploring the
remarkable toxin arsenal of animal venoms. Snake venoms are typically composed of a
combination of tens to hundreds of different components, mostly peptides and proteins
(>90%), that vary between and within snake species [34,35]. Consequently, identifying
the most potent toxins with proteomics can help identify targets for the production of
recombinant antivenoms, which present promising new approaches to treating snakebites.

In the ADDovenom project, we will characterise the crude venom complexity of
nine medically-important African snakes, as summarised in Figure 3. Each venom will
be analysed using two-dimensional sodium dodecyl sulphate polyacrylamide gel elec-
trophoresis, leading to a rough evaluation of their structural family. Accurate masses of the
most concentrated toxins are obtained by analysing the venoms using matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition to
this visualisation of venom composition, the results will be exploited to roughly evaluate
the abundance of each detected family of toxins, with the aim of extracting information on
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the pharmacological activity in each venom that requires neutralising. Each venom is then
subjected to the bottom-up proteomics strategy; peptides sourced from digested toxins are
sequenced by liquid chromatography (LC)-MS/MS using Orbitrap analysers, exploiting
their high resolution (70,000 at m/z 200), mass accuracy (less than 1 ppm at 2 m/z) and
fragmentation efficacy (higher-energy collision dissociation—HCD) for toxin sequencing
and identification.
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Figure 3. A brief overview to illustrate the aims of the mass spectrometry work package. Nine of
the deadliest snakes found in sub-Saharan Africa are selected for this study, including five species of
Dendroaspis and four species of Echis. Shotgun proteomics, along with the use of a database repository
and transcriptome data, will be used to generate a toxin database. Bioinformatic tools will then be
utilised to predict the biochemical and structural features of the toxins and in combination with
predicted/putative biological activity will help to identify and select the most potent toxins in the
venom for use in ADDomer production.

Several methodologies can be considered to increase the efficiency of the sequencing
step. The first approach is based on bottom-up shotgun proteomics where each crude
venom is chemically treated to reduce and alkylate the cysteines responsible for disulphide
bonds formation. The samples are then digested by three enzymes (trypsin, chymotrypsin
and GluC serine protease) to amplify the level of information gathered through the MS/MS
process, by creating overlapping peptides [36]. The huge amount of proteomics data is then
analysed by dedicated bioinformatics tools such as Peaks X (Bioinformatics Solutions) [37].
This software allows the prediction of sequences from MS/MS spectra (de novo sequencing),
but also enables matching of protein annotations to the obtained mass spectra/sequences
via protein databases extracted from the Uniprot or NCBI servers (e.g., “toxins” AND
“snake”). In the case of ADDovenom, the transcriptomics data from mRNA sequencing
of the snake venom glands are included to generate a more precise and complete protein
database to match with the proteomics data [35,38].
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Every toxin sequenced from the nine venoms is added to a home-made database
containing the following: toxin name, Uniprot accession number (if known), sequence,
mass, toxin family, relative toxin abundance and, where available, predicted/putative
biologic activity. By providing the families and the relative abundancies of the toxins, this
database constitutes a helpful tool in the process of identification and selection of the most
potent toxins to be targeted by the produced ADDobodies/ADDomers. Although the
sequence and the abundance does not constitute perfect evidence of toxicity, they serve as
an acceptable compromise as a starting point.

In addition, evaluation of what the produced antitoxin molecules are binding to
is of prime importance. A methodology allowing the determination at the molecular
level of which families of toxins are captured by functionalised ADDomers (qualitative)
and how many ADDomers are needed for neutralising a defined quantity of injected
venom (quantitative) is desired. Using antivenomic principles [32,39], we will establish
a high-throughput methodology based on magnetic beads coated, in the first instance,
with antibodies sourced from gold standard antivenoms as a proof of concept, followed
by specific ADDomers targeting toxins. After venom incubation, mass spectrometry
will be applied to monitor which toxins are captured by the antibodies or ADDomers.
This approach will provide rapid and robust evaluation of the potency of antitoxins to
selectively and quantitatively bind to targeted toxins. Furthermore, it will provide an
evidence base as to whether ADDomer constructs have higher avidities than classical
antibody-based antivenoms.

3.2. Production of Recombinant Toxins as Antigens for Ribosome Display Selection

Current antivenoms are generated using crude or fractionated venom for immuni-
sation. Recombinant toxin production has the advantage that no venomous snakes are
required, tags can be added to facilitate downstream work, and high protein purity can be
achieved, allowing the biochemical and biophysical characterisation of the recombinant
toxins prior to their use as antigens in ribosome display selection experiments. Ribosome
display is an in vitro selection and evolution method ideally suited for generating high-
affinity binders from very large synthetic libraries (encoding antibody single-chain variable
fragments, nanobodies or engineered proteins) [40–44]. While it is desirable to work with
purified, well-characterised toxins, a key challenge is to establish expression protocols for
the active toxins; in particular, SVMPs contain many disulphide bridges (some SVMPs
comprise 40 cysteines) which make them difficult to express and fold correctly. Success-
ful recombinant protein production, however, will remove the batch-to-batch biological
variability in venoms and yield reliably pure protein with defined activity.

Only very few production protocols for toxins are available in the literature [45],
and our objective is to develop new protocols, optimised for individual toxins, during
this project using prokaryotic (E. coli) and eukaryotic (baculovirus–insect cell expression)
production systems. Moreover, to test the activity of recombinantly produced toxins,
specific functional tests are required for each toxin family, confirming that the purified
proteins are correctly folded and bioactive. For instance, the N-terminal and C-terminal
residues of venom toxins can contribute to ligand binding and biological activity [46,47].
Therefore, functional tests must be performed to confirm that the addition of tags does not
interfere with toxin activity.

In a first approach, all prioritised toxin types (see Section 3.1) will be produced in E. coli
and purified following a high-throughput protocol that has been successfully validated for
a previous EU project called VENOMICS [48] to purify thousands of toxins including 3FTxs,
Kunitz-type toxins and disintegrins [48,49]. The toxins are produced in the periplasm of
E. coli using an N-terminal hexahistidine-tagged redox-active DsbC as fusion tag. DsbC
fusions increase solubility and contribute to oxidation of the cysteines, allowing efficient
formation of correctly folded disulphide bridges [48]. The fusion protein can be cleaved
off using TEV protease after affinity purification, restoring the native N-terminus in the
toxin. For ribosome display selections, a non-cleavable C-terminal Avi-tag for biotinylation
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is fused to the toxins [50]. Importantly, folding of the toxins can be further improved by
the co-expression of two cysteine chaperones, protein disulphide isomerase (PDI) and
sulfhydryl oxidase Erv1p (the CyDisCo system, see [51]).

Larger toxins with enzymatic activity and composed of several domains, such as
SVMPs, contain many disulphide bonds required for structural integrity and possibly also
cysteines in the active centre for metal coordination. Due to this increased complexity,
bacterial expression systems often fail to produce active enzymes. If the toxins cannot be
produced in high yields in E. coli or are non-functional, our expression system of choice is
MultiBac, a state-of-the-art baculovirus–insect cell expression system [52]. The toxins are
then expressed with a melittin signal sequence fused to the N-terminus to ensure that they
are secreted into the medium [53] facilitating purification. Insect cell expression may lead
to post-translational modification (PTM) of toxins, glycosylation and phosphorylation; the
impacts of these PTMs on toxin activity and solubility are largely unknown to date.

A further strategy regarding toxin antigen production for selection experiments we
will pursue is generation of “epitope strings” comprising an N-terminal, highly produced
fusion protein (e.g., maltose-binding protein) and the most conserved sequences from
one toxin family fused via glycine-serine-rich linker sequences [54]—the idea being that
conserved regions are functionally important and binding these regions with ADDomers
may interfere with their toxicity/function.

Our objective in ADDovenom by implementing these approaches is twofold: to
provide the toxin components as antigens for our selection studies and to develop protocols
and a knowledge base for how to comprehensively produce toxins of interest in the best
suitable expression system.

3.3. Evaluation of the Neutralising Ability of ADDobodies and ADDomers

Ribosome display selected ADDobodies and corresponding ADDomers capable of
binding recombinant toxins will be assessed for their ability to neutralise toxin function
using a panel of serological, phenotypic and functional in vitro assays against crude venom
and recombinant toxins. First, serological methods such as end-point ELISA and im-
munoblots will be used to demonstrate recognition of the target toxin and venom proteins.
Typically, an indirect ELISA format is used in which the venom/toxin of interest is coated
on an ELISA plate, incubated with the test antibody (i.e., antivenom or other protein ther-
apeutic), and a secondary antibody capable of binding the test antibody/protein used to
detect binding. Although ELISAs generally show good correlation with in vivo neutral-
ising ability, for some venoms a poor correlation is observed [55], highlighting the need
for rigorous functional in vitro and in vivo testing for each candidate therapeutic beyond
serological assays.

ADDobodies/ADDomers directed against Echis SVMP, PLA2 and disintegrin toxins
will be tested using specific enzyme activity assays and phenotypic assays, as indicated
in Figure 4. Neutralisation of SVMP activity will be measured using the fluorogenic assay
previously described [56]. Briefly, the quenched fluorescent peptide Mca-KPLGL-Dpa-AR-
NH2 (ES010, BioTechne) is cleaved by SVMP between the Gly and Leu residues, releasing
the fluorescent Mca-containing fragment from the quenching Dpa-containing fragment
(Figure 4a), resulting in increased fluorescence. Other assays of SVMP bioactivities, includ-
ing enzymatic activity, cytotoxicity assays and endothelial cell tube formation assays are
reviewed by Macedo and Fox (2016) [57]. The enzymatic activity (phospholipid cleavage)
of Echis PLA2 toxins will be determined using a fluorescent liposome-based PLA2 assay
(EnzCheck, ThermoFisher) [38]. The assay reagent is prepared by encapsulating a fluo-
rescent dye (BODIPY PC-A2) in a liposome containing dioleoylphosphatidylcholine and
dioleoylphosphatidylglycerol (Figure 4b). Liposomes cleaved by PLA2 release the fluores-
cent substrate. Lower enzymatic activity is reported for S49-containing snake venom PLA2s
which exert cytotoxic activities in a calcium-independent manner [58] which can be mea-
sured in standard cell viability assays [59]. Echis venoms contain both D49 (enzymatically
active) and S49 (enzymatically inactive) PLA2 variants.
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Figure 4. In vitro assays that will be used to measure venom activity and neutralisation by ADDomers.
(a) The SVMP assay uses a quenched fluorogenic peptide substrate (ES010, BioTechne) which is
cleaved by SVMPs, resulting in a free unquenched fragment. Structural model shown (green-pink-
cyan) is an E. ocellatus SVMP (AlphaFold AF-Q2UXQ5-F1). (b) Enzymatically active PLA2s are
measured using a fluorescent assay (EnzCheck, ThermoFisher) in which a fluorescent substrate
(BODIPY PC-A2) is encapsulated in liposomes. PLA2s hydrolyse the phospholipids, resulting
in increased fluorescence. Structural model shown (blue) is a PLA2 from E. ocellatus (AlphaFold
AF-P59171-F1). (c) The plasma clotting assay measures the optical density (OD) of plasma in a
spectrophotometer to detect clot formation where a higher OD indicates clotting. A normal plasma
clotting control is concurrently run, and compared to venom samples to indicate whether venom
is causing pro-coagulant or anti-coagulant effects. (d) Flow cytometry assays can demonstrate
disturbances in platelet aggregation (indicated by changes to forward and side scatter) and the binding
of disintegrins to activated GPIIb/IIIa can be detected with PAC-1-FITC antibody. (e) The neurotoxic
activity of α-neurotoxins (a subclass of 3FTx) can be measured in a cell-based assay using cells natively
expressing muscle-type nAChRs incubated with a fluorescent dye (FLIPR Membrane Potential Assay,
Molecular Devices) that measures the change in membrane potential upon acetylcholine-induced
nAChR activation. Protein shown (cyan-green) is α-elapitoxin-Dpp2d from D. polylepis (PDB ID:
4LFT). (f) The neurotoxic activity of Kunitz-type toxins on voltage-gated potassium channels will
be measured in a cell-based assay using transfected HEK293 cells expressing human Kv1.1 or Kv1.2
channels. Cells are incubated with the fluorescent FLIPR Membrane Potential Assay dye (Molecular
Devices) that measures the change in membrane potential upon application of extracellular potassium
sulphate which causes cell membrane depolarisation and therefore activation of Kv channels. Protein
shown (red-yellow) is dendrotoxin-I from D. polylepis (PDB ID: 1DEM).
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The haemostatic disturbances caused by Echis venoms can be measured using a
phenotypic in vitro plasma clotting assay [60], in which the time for “normal” plasma
to clot is measured spectrophotometrically, and simultaneously disturbances to plasma
clotting (either pro-coagulant or anti-coagulant) by venom toxins are detected by the
differences in time to form a clot (Figure 4c). Disintegrin activity can be measured using
several different methods that examine the effects of the toxins on platelet aggregation.
Traditionally an aggregometer is used [57], but this approach requires specialist equipment
and is low throughput. Alternatively, flow cytometry can be used to detect the binding of
certain disintegrins (RGD-containing disintegrins and some variations as WGD and KGD)
to platelet receptors, and subsequent effects on platelet aggregation can be assessed by
flow cytometry comparing forward and side scatter patterns. After platelet activation, the
integrin glycoprotein GPIIb-IIIa undergoes conformational changes to expose an epitope
that is specifically recognized by the antibody PAC-1 [61]. The binding of PAC-1 antibody
is competitively inhibited by RGD-containing peptides, and thus the PAC-1-FITC antibody
can be employed in flow cytometry to quantify disintegrin binding to GPIIb-IIIa(Figure 4d).
However, some venom disintegrins do not bind the GPIIb-IIIa integrin and therefore
require alternative assays for their specific integrin targets, such as fibroblast cell migration
assays [62].

ADDobodies/ADDomers targeting the selected mamba toxins will be tested in cell-
based assays for antagonism of muscle-type nicotinic acetylcholine receptors (nAChRs) and
voltage-gated potassium channels, the targets of α-neurotoxins (a subclass of 3FTx) and
Kunitz-type toxins, respectively. To measure the effects of mamba long- and short-chain
α-neurotoxins on nAChRs, we will use a functional assay that measures the ability of the
receptors to activate in response to binding of the agonist acetylcholine (Figure 4e) [63].
This assay uses a cell line natively expressing muscle-type nAChR to measure the effects of
α-neurotoxins, and complements an existing assay that measures the effects of neurotoxins
on the neuronal α7-nAChR subtype [64], which are selectively targeted by long-chain
3FTx [65]. Traditional assays of the inhibitory activity of Kunitz-type toxins on voltage-
gated potassium channels (Kv) use electrophysiological recording of Xenopus oocytes or
mammalian cells engineered to express Kv channels [66]. Electrophysiology techniques
are considered the gold standard in ion channel research but require specialist equipment
and training, and are typically low throughput [67]. In the ADDovenom project, we are
developing a higher-throughput (96-well format) assay to measure dendrotoxin-mediated
block of Kv1 channels. HEK293 cells stably expressing tetrameric human Kv1.1 and 1.2 are
stimulated by potassium sulphate, causing a change in membrane potential measured by
a commercial membrane potential dye (FLIPR Membrane Potential Assay Kit, Molecular
Devices), and antagonism of Kv channels by Kunitz-type toxins can therefore also be
detected (Figure 4f).

Neutralising ADDobodies/ADDomers will subsequently be tested for venom neutralisa-
tion in vivo using murine models of envenoming. We will assess ADDobodies/ADDomers
for their efficacy against the lethal systemic effects of Echis and Dendroaspis venoms using
the WHO-approved “effective dose 50” (ED50) murine model of snakebite envenoming,
where venom challenge and treatment are preincubated together ahead of intravenous
co-administration [68]. Evidence of efficacy in this “best case” in vivo model of envenom-
ing will provide a compelling justification to apply more challenging animal models that
better recapitulate an envenoming scenario, specifically with therapeutic administration
occurring after venom challenge [69].

3.4. Scalable Bioprocess for ADDomer Production

ADDomer nanoparticles are produced in insect cells, a very competitive manufac-
turing host, that enables expression at high level of exogenous proteins encoded in a
baculovirus genome. As eukaryotes, insect cells can process complex secondary structures,
are easy to culture and can grow in serum-free media, require less energy than mammalian
cells and have low biosafety requirements [70]. The most frequently used insect cells
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derive from Spodoptera frugiperda and Trichoplusia ni and both offer GMP compatible cell
lines [71–73]. By testing a variety of culture modes and culture medium supplementation
strategies, production yields can be increased. Even though the most used culture mode
is the batch system, protein-based nanoparticles and other insect cell-derived products
can also be produced in fed batch or perfusion [74,75], both to be tested for ADDomer
production (Figure 5). A hybrid perfusion process will also be tested, considering the
cost and benefit of using larger media volumes and implementing cell-medium separation
devices in the production phase [75]. Use of stainless steel or of single-use bioreactors will
be considered [76], with future transfer of the final process to a GMP facility in mind, and
the latter providing easier technology transfer to GMP. The choice of upstream parameters
will be combined with downstream optimisation, ensuring a good compromise between
purity and product loss along the process. Once more, ensuring process scalability and
GMP compatibility are the main focus. Moving towards a continuous bioprocess has been
a major interest as the higher automation will lead to process intensification, reduce steps
and shorten the production cycle, thus reducing the production cost [77,78]. Downstream
process optimisation encompasses an array of techniques ranging from bench top to indus-
trial scale; however, not all can easily be performed under GMP standards. Centrifugation
steps and chromatography with low loading capacity will be avoided (e.g., size exclusion
chromatography). The first step will be to optimise the clarification via microfiltration,
using for example hollow fibre tangential flow filtration systems. As ADDomer nanopar-
ticles are an intracellular product, this system will be used to separate the cells from the
supernatant followed by in situ lysis of cells and recovery of the clarified ADDomer par-
ticles (Figure 5). Purification strategies will combine different types of chromatography
in bind/elute or flow through modes with anion exchange membranes, these last ones
removing DNA, baculovirus and charged host cell proteins. The process will be finalised by
ultrafiltration/diafiltration in tangential flow mode and sterile filtration to ensure sterility
and stability in the defined storage buffer.
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Quality control protocols will be established ensuring reliable efficacy of the antivenom
and robust, large-scale ADDomer nanoparticle production. These will cover from the pro-
duction phase to the final product. During production, virus titre and cell growth rate will
be analysed prior to infection. During downstream processing, the intermediate products
will be screened by high-performance liquid chromatography (HPLC) for particles quantifi-
cation and purity analysis. The final product will be screened for the main properties of the
ADDomer nanoparticle as an antivenom: size and morphology will be screened by trans-
mission electron microscopy, presence of aggregates will be evaluated using multi-angle
dynamic light scattering (MADLS), and HPLC will enable accurate quantification. Impuri-
ties will also be controlled by measuring the amount of residual host cell protein, endotoxin
levels, host cell DNA concentration and mass spectrometry to identify main contaminants.

For vaccines, cold-chain logistical issues account for up to one third of the final cost
and for up to 50% of yearly dose wastage [79,80]. It is likely that similar numbers apply to
antivenoms. The need to reduce costs and wastage has driven several studies to develop
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thermostable, cold-chain free solutions in a variety of systems [81–83]. As mentioned in
Section 2, ADDomer-based proteins are inherently very stable (Tm > 45 ◦C) which will
translate in a wider range of storage and transport temperatures and consequently reduce
the associated cost and reduce reliance on cold-chain logistics. Buffer formulation can play
an important role in nanoparticle stability. Even though stability of ADDomer is not a
main concern, different buffers (e.g., phosphate-, citrate-based) and stabilisers reported
as “generally regarded as safe” (GRAS) will be considered and the cost benefit of their
introduction evaluated. Non-animal origin stabilisers such as amino acids and sugars
have been reported to increase protein stability by increasing solubility, preventing protein
aggregation, or reducing oxidation [84]. ADDomer antivenom final formulation will be
tested under different temperature settings as well as freeze–thaw cycles to evaluate long
term stability.

4. Future Perspective and Conclusions

We anticipate the resulting therapeutics arising from the ADDovenom project will fea-
ture numerous advantages over existing antivenoms in terms of efficacy, safety, affordability
and manufacturing ability. Existing antivenom production uses animal immunisation with
whole venom, which does not take into account the immunogenicity or toxicity of the
numerous proteinaceous contents of venom; thus, many of the antibodies raised against
venom are directed against non-toxic or low-abundance toxins. Our approach uses mass
spectrometry and bioinformatics to rationally identify priority toxins to target. The low
immunogenicity of the protein scaffold and the ability to manufacture ADDobodies and
ADDomers to GMP-standards in bacterial and insect cells, respectively, will result in a reli-
able product with improved safety profiles over existing animal-derived antivenoms. The
multi-modality format of ADDovenom (i.e., 38 kDa ADDobodies and 3.5 MDa ADDomers)
lends itself to providing both a local treatment with characteristics suited to topical applica-
tion and/or transcutaneous delivery, whilst the high-avidity ADDomers (60 binding sites)
will be suited towards neutralising systemic toxins in the circulation. Finally, ADDobodies
and ADDomers show impressive thermostability without the need for cold-chain storage,
can be lyophilised to extend shelf life and can be produced recombinantly in exceptionally
good yields at a competitive production cost. Collectively, these characteristics provide
a strong rationale for the ADDovenom project and the future discovery of toxin-specific
ADDomers as novel therapeutics for tropical snakebite.
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