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Second-order nonlinear processes like Sum-Frequency Generation (SFG) are essen-

tially defined in the electric dipolar approximation. However, when dealing with

the SFG responses of a bulk, big nanoparticles, highly symmetric objects or chiral

species, magnetic and quadrupolar contributions play a significant role in the process

too. We extend the diagrammatic theory for linear and nonlinear optics to include

these terms for single objects as well as for multipartite systems in interaction. Mag-

netic and quadrupolar quantities are introduced in the formalism as incoming fields,

interaction intermediates and sources of optical nonlinearity. New response functions

and complex nonlinear processes are defined, and their symmetry properties are an-

alyzed. This leads to a focus on several kinds of applications involving nanoscale

coupled objects, symmetric molecular systems and chiral materials, both in line with

the existing literature and opening new possibilities for original complex systems.
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I. INTRODUCTION

Second-order nonlinear optical processes like Second Harmonic Generation (SHG) and

Sum-Frequency Generation (SFG) are usually exploited for their symmetry properties mak-

ing them intrinsically specific to interfaces.1 In particular, SFG can be experimentally de-

signed to perform surface-specific infrared-visible spectroscopy and thus finely probe vi-

brational and vibronic properties of molecular species. Even if it is possible to extract a

spectroscopic response characteristic of the interface only, the surface-related signal is some-

times perturbed by the presence of additional sources of SFG, arising from the underlying

bulk2 (e.g. substrate) or a subjacent multilayered structure.3,4 Interference between surface

and substrate signals may be experimentally suppressed5 or conversely exploited to access

phase information.6,7 Other distortions of the SFG signals stem from the interaction between

the probed molecules and their local environment, which can be made of various coupled

entities, from fellow molecules (in homogeneous samples) to organic and inorganic partners

(in composite materials). Such couplings are usually controlled by the experimenter and

may even allow the characterization of additional information (e.g. molecular packing in a

dense monolayer8) or the enhancement of the molecular SFG response through coupling to

nanoscale objects like nanoparticles9 or semiconductor quantum dots.10

A general diagrammatic theory has been established,11 based on Matsubara loop di-

agrams and governed by Feynman rules, for the description and calculation of the SFG

processes involving interactions between molecules and their partners. Even if our loop

diagrams and the usual doubled-sided diagrams both succeed in describing the response

functions of one isolated entity, double-sided diagrams fail to account for composite sys-

tems because the combination of two or more double-sided diagrams is not a double-sided

diagram. On the contrary, our formalism allows to combine an arbitrary number of inter-

connected loop diagrams into one loop diagram representing the system as a whole. This

approach has been successfully applied to the molecule-nanoparticle systems to account for

plasmon-enhanced vibrational SFG spectroscopy.12 In this case, electric dipole-dipole cou-

pling between molecules and particles was postulated, as usual in the description of the

optical response of complex systems.8,13,14 This corresponds to the first-order contribution

to the multipolar perturbative expansion of the electromagnetic interaction.15 The higher

orders, among which the magnetic and quadrupolar terms are the leading contributions,
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are usually neglected on the basis of their weaknesses. However, the purely electric dipo-

lar approximation cannot be considered as a general prescription, as shows the example of

the Mie theory for spheres16 which requires to sum up all the multipolar orders. Besides,

modeling the SHG and SFG responses needs to include quadrupolar and magnetic terms

in various cases: metallic substrates,17 liquid bulks,18,19 nanoparticles.20–23 For example, the

SFG signal originating from the water bending mode has been ascribed to a quadrupolar

process,24–26 even if there is still an ongoing debate on this point.27 This is especially impor-

tant for bulk contributions to second-order nonlinear optics,28,29 where the electric dipole

terms vanish while the magnetic and quadupolar ones do not. The weaknesses of these

responses may be compensated by the bigger amount of matter probed, in particular in

transmission geometry where the phase mismatch is more favorable than in reflection,30,31

as well as by high electric field gradients, related to the discontinuity of material properties

at the interface between two bulks32,33 or to the fast amplitude decay of the electric field

inside a nontransparent material.34 As for chiral objects, their optical activity is known to

originate in the interaction between electric and magnetic dipolar excitations,35,36 either

intra- or intermolecular.37,38

In this paper, we extend the Feynman-Matsubara diagrammatric description of linear

and nonlinear optical response functions to include magnetic and quadrupolar contributions

at all stages. This implies to consider (i) magnetic fields and electric field gradients as

vectors of light-matter interactions, (ii) magnetic and quadrupolar molecule-partner inter-

action Hamiltonians, and (iii) magnetic dipoles and electric quadrupoles as sources of SFG

radiation. As a consequence, new first- and second-order response functions are defined,

which calculations require to involve magnetic dipole and electric quadrupole transition

probabilities. Even if these are usually considered weak (about one percent of the electric

dipole ones39), they can become the main allowed transitions for symmetry reasons.19,40 The

molecule-partner diagrams are factored by these new response functions, connected through

energy transfer coefficients. We thus enumerate and sort all the relevant diagrams, then

discuss their practical consequences for SFG spectroscopy in the cases of various bipartite

molecule-partner systems, according to their local and global geometries and to the nature

of the partner coupled to the molecules.
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II. ELEMENTARY RESPONSE FUNCTIONS

Before considering the bipartite diagrams describing the response functions of molecule-

partner composite systems, we must pay a special attention to the definition of the ele-

mentary response functions describing a single object, whether it is the molecule or any

quantum object playing the role of its partner in the following sections. Considered as a set

of N electrons whose position operators are {r̂ν}Nν=1, a microscopic entity is characterized

by three operators: the electric dipole moment p̂, the electric quadrupole moment q̂, and

the magnetic moment µ̂. They constitute the main basis on which the optical behavior of

a microscopic system is described and are respectively defined as:

p̂ =
N∑
ν=1

er̂ν , q̂ =
N∑
ν=1

er̂ν
tr̂ν , and µ̂ = γ(L̂+ gsŜ), (1)

where L̂ =
∑N

ν=1 r̂ν × p̂ν and Ŝ are the total orbital and spin angular momenta of the

electrons, p̂ν the momentum operator, γ = e/2m the gyromagnetic ratio, and gs = 2 the

electron Landé g-factor.35,41,42

At first and second orders in the source fields, these electric and magnetic moments

are driven by linear polarizabilities α and first nonlinear hyperpolarizabilities β. At the

electric dipolar level, the polarizability αee relates the excitation electric field E to the

response dipole moment p = ⟨p̂⟩ through pi(ω) =
∑

j α
ee
ij (ω)Ej(ω). In the SFG process, the

hyperpolarizability βeee mixes two sources E(ω1) and E(ω2) to generate an electric dipole

at frequency ω3 = ω1 + ω2, given by pi(ω3) =
∑

j,k β
eee
ijk(ω1, ω2)Ej(ω1)Ek(ω2).

In terms of loop diagrams, both quantities have been drawn (Fig. 1a and b) and cal-

culated in previous papers according to the Feynman rules dedicated to optical response

functions.11,12 They encompass two and three vertices, respectively, representing light-matter

interactions at the electric dipole level, thus governed by the Hamiltonian He = −p̂ ·E. For

the polarizability αee(ω), we have:

αee
ij (ω) =

1

ℏ
∑
m,n

ρ̂mm

(
pinm pjmn

ω + ωnm + ıΓnm

− pjnm pimn

ω − ωnm + ıΓnm

)
. (2)

where {i, j} stand for the Cartesian coordinates {x, y, z}, pinm = ⟨n|p̂i|m⟩ represents the

transition electric dipole moment along the i-direction between states |m⟩ and |n⟩ (charac-
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FIG. 1. Loop diagrams of elementary response functions. (a) Linear polarizability αee and (b) first
hyperpolarizabilty βeee of a simple system at the pure electric dipole level. These two diagrams
define the frequency filling of the propagators associated with the states |m⟩, |n⟩ and |r⟩ which
also applies to the others. Linear polarizabilities (c) αeQ and (d) αQe involving an input and
an output quadrupolar vertex, respectively. Hyperpolarizabilities (e) βeeQ and (f) βQee involving
an ω2-input and an ω3-output quadrupolar vertex, respectively. The hyperpolarizability βeQe is
obtained from ‘eeQ’ by applying the gradient ∂ξ on Ej (instead of Ek) and placing the quadrupolar
interaction on the corresponding vertex. (g) Linear polarizability αmm at the pure magnetic level.
(h) Linear polarizability αQQ at the pure quadrupolar level. Linear polarizabilities (i) αem and
(j) αme involving an input and an output magnetic vertex, respectively. Hyperpolarizabilities (k)
βeem and (l) βmee involving an ω2-input and an ω3-output magnetic vertex, respectively. The
hyperpolarizability βeme is obtained from ‘eem’ by considering the input field Bj instead of Ej

and placing the magnetic interaction on the corresponding vertex. For all hyperpolarizabilities,
we must consider a second diagram obtained through the permutation of the two input photons
(1 ↔ 2) to recover the complete response function βijk.
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terized by the energy difference ℏωnm = ℏωn − ℏωm and the transition linewidth Γnm), and

ρ̂mm is the density matrix diagonal element related to state |m⟩. The equivalence between

ρ̂mm and the Fermi-Dirac distribution ρ(ωm) at energy ℏωm has been used.11 The response

function βeee
ijk(ıω1, ıω2) is expressed as a function of imaginary frequencies (which are natural

as far as Feynman-Matsubara formalism is concerned) and encompasses six terms:

βeee
ijk(ıω1, ıω2) =

1

ℏ2
∑
m,n,r

ρ̂rr

[
pirnp

j
nmp

k
mr

(ωnr − ıω3)(ωmr − ıω2)
+

pimnp
j
nrp

k
rm

(ωrm − ıω2)(ωrn + ıω1)

+
pimrp

j
rnp

k
nm

(ωmr + ıω3)(ωnr + ıω1)
+

pirnp
j
mrp

k
nm

(ωnr − ıω3)(ωmr − ıω1)

+
pimnp

j
rmp

k
nr

(ωrm − ıω1)(ωrn + ıω2)
+

pimrp
j
nmp

k
rn

(ωmr + ıω3)(ωnr + ıω2)

]
. (3)

They give birth to the usual eight terms of the literature, and the response function in

real frequencies follows from analytic continuity.11 Appendix A provides a summary of the

method enabling to translate the drawing of a loop diagram into the analytical expression

of the associated response function.

Here we consider alternate response functions for which one of the vertices involves a mag-

netic or a quadrupolar interaction, respectively described by the HamiltoniansHm = −µ̂ ·B

and HQ = −1
2

∑
i,j q̂ij ∂jEi = −1

2
(q̂∇) ·E, with ∇ = t(∂x, ∂y, ∂z), encoding how the mag-

netic moment µ = ⟨µ̂⟩ interacts with a magnetic fieldB and the quadrupole moment q = ⟨q̂⟩

with electric field gradients ∂jEi, respectively.
43 These additional responses are usually small

as compared to the electric dipole terms, but may become measurable in some cases as de-

tailed in the Introduction. Throughout the paper, the superscripts ‘e’, ‘m’ and ‘Q’ stand

for ‘electric dipole’, ‘magnetic dipole’ and ‘electric quadrupole’, respectively. Note that

the quadrupole superscript is in capital in order to remind that it involves a rank-2 tensor

while the electric and magnetic dipoles involve rank-1 tensors. The tensor dimension of the

response functions will indeed depend on the natures of the associated moments.

As for the linear response, it is possible to draw simple (em) and (eQ) diagrams and con-

vert them into response functions. In Fig. 1i and j, we define the rank-2 response functions

αem and αme by pi =
∑

j α
em
ij Bj and µi =

∑
j α

me
ij Ej. These hybrid functions transform a

magnetic (resp. electric) excitation by light into an electric (resp. magnetic) response.44–48

In the same way, the first order rank-3 response functions αeQ and αQe (Fig. 1c and d)

mix the electric and quadrupole sources (Ej or ∂ξEj) and responses (pi or qξi) through
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pi =
∑

ξ,j α
eQ
iξj∂ξEj and qξi =

∑
j α

Qe
ξijEj, where ξ depicts the Cartesian coordinate along

which the field gradient is assessed.49,50 The values of all these response functions flow from

the calculation of their loop diagrams following the twelve Feynman rules. We provide a

detailed example for αem and αeQ in Appendix B, together with the results for the others.

It essentially turns out that the response functions αem, αme, αeQ and αQe can be deduced

from Eq. (2) by simple manipulations of the transition dipole moments. As discussed later,

(em/me) and (eQ/Qe) response functions are forbidden for centrosymmetric objects and

bulks.

In order to address the centrosymmetric case, it is also possible to define a purely magnetic

linear polarizability αmm (Fig. 1g) accounting for the generation of a magnetic moment µ

after a B excitation: µi(ω) =
∑

j α
mm
ij (ω)Bj(ω). This (mm) polarizability is an optical

response function characterizing the generation of an induced microscopic moment µ in

response to the magnetic component of an electromagnetic wave, hence oscillating at an

optical frequency. It must be distinguished from the magnetic susceptibility defined for

magnetic materials with respect to their macroscopic magnetization. In the same way, the

quadrupolar response function αQQ is defined as qξi =
∑

ζ,j α
QQ
ξiζj∂ζEj (Fig. 1h). Both αmm

and αQQ are introduced here in order to ensure compliance with the lowest orders of Mie

theory. As we shall see below, their use is mostly restricted to systems involving a spherical

partner. In that particular case, αQQ may be accounted for by an equivalent isotropic scalar

quadrupolarizability.49 For lower symmetries, they are superseded by αem, αme, αeQ and

αQe.

Following the example of first-order functions, we define a new set of second-order re-

sponse functions in order to account for magnetic and quadrupolar light-matter interactions.

We limit ourselves to elementary SFG processes for which one interaction at most differs
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from the electric dipole Hamiltonian. Hence we have:

pi(ω3) =
∑
jk

[
βeee
ijk(ω1, ω2)Ej(ω1)Ek(ω2)

+ βeem
ijk (ω1, ω2)Ej(ω1)Bk(ω2) + βeme

ijk (ω1, ω2)Bj(ω1)Ek(ω2)

+
∑
ξ

βeeQ
ijξk(ω1, ω2)Ej(ω1) ∂ξEk(ω2) + βeQe

iξjk(ω1, ω2) ∂ξEj(ω1)Ek(ω2)
]
, (4)

µi(ω3) =
∑
jk

βmee
ijk (ω1, ω2)Ej(ω1)Ek(ω2), (5)

qξi(ω3) =
∑
jk

βQee
ξijk(ω1, ω2)Ej(ω1)Ek(ω2). (6)

These alternate second-order elementary functions2,33,51,52 are more described in the lit-

erature than their first-order counterparts. From symmetry reasons, the fully electric-dipole

functions βeee vanish in a centrosymmetric bulk, while the others do not. Even if the lead-

ing (eee) SFG process is most of the times recorded precisely for its surface specificity (in

order to extract an optical signature of the interfaces where this centrosymmetry is bro-

ken), the other contributions from the bulk often mix with the surface ones6,30,53 and have

their own interest.17,19 In other words, the hierarchy between the (eee), (eem/eme/mee) and

(eeQ/eQe/Qee) β functions (in terms of perturbative expansion with respect to the field

amplitude) is soften because of the different selection rules they depend on.

As explained in Appendix B, the calculations of tensors βeem, βeme, βmee, βeeQ, βeQe

and βQee follow from Eq. (3) after elementary substitutions of one electric dipole transition

moment by one magnetic dipole moment or one electric quadrupole moment, respectively,

according to the appropriate light-matter Hamiltonians. Calculations of the generic terms

of βeem and βQee are provided as examples in Appendix B.

The formal definition of all these elementary response functions in terms of electric fields,

their gradients and magnetic fields is local at the microscopic level. In order to apply

these response functions to actual experimental data analysis, we still have to relate them

to measurable input and output quantities, i.e. intensities proportional to the squared

amplitudes of the electric far fields. They are equal to the local fields in vacuum, but not

in condensed media. As for the right-hand sides of Eqs. (4−6), local electric fields are

known to relate to their far field counterparts through Fresnel factors,4,54,55 and electric

field gradients follow accordingly.56 As for the local magnetic fields, appropriate modified
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Fresnel factors (Appendix C) also relate them to the far electric fields,57 provided that a

plane wave description is assumed as is the case in the second quantization formalism of

the electromagnetic field.39 The emitted SFG intensity originates from the three sources

listed at the left-hand sides of Eqs. (4−6). For a single emitter, the emitted SFG field

arises from the multipole expansion of the scattered field in the radiation zone, as accounted

for by the textbooks.16,58 Usually, as far as SFG experiments are concerned, an assembly

of emitters is considered, building up a macroscopic medium described by its volume (or

surface) densities of sources, namely electric polarization P (r), magnetic polarization M(r)

and electric quadrupole moment density Q(r), by averaging the microscopic sources over a

unit volume. Although specific Fresnel factors may be calculated to relate these electric,4,59

magnetic57 (Appendix C) and quadrupolar source densities to the emitted far electric field,

the easiest method consists in embedding them into an effective dipole source15,17 Peff(r)

before calculating the emitted field:

Peff(ω3, r) = P (ω3, r)−
1

2
t[t∇Q(ω3, r)]+

ı

ω3

∇×M (ω3, r), (7)

where the last term is obtained by assuming the time harmonicity of the fields.

III. BIPARTITE SYSTEMS

When the system is composed of two subunits, the full response functions of the system

have to take into account the capabilities of the two units to exchange energy as part of

the response process. This energy exchange is parametrized by an interaction Hamiltonian

and graphically represented in the diagrams by the exchange of a real (or virtual, possibly)

vector boson (Fig. 2). The response functions without energy exchange, α[0] and β[0], may

be seen as the zeroth-order response in terms of interaction Hamiltonian. Still, the higher

order terms involving energy exchange may dominate the response, as is well-known for a

molecule-nanoparticle system under the electric dipole approximation: the (eee) molecular

SFG response function indeed involves first-order terms driven by the nanoparticle polariz-

ability, which becomes giant when the beam energy matches the surface plasmon resonance

energy.9,12,14

Below, we consider the SFG response function of the molecule and the way it is modi-

9



fied by the presence of a partner when the whole system is excited by two light beams at

frequencies ω1 and ω2, generating a third beam at frequency ω3 = ω1 + ω2. As we have

seen in Section II, beyond the electric dipole approximation, this response also encompasses

magnetic and quadrupole vertices. This means that we also have to take into account the

magnetic and quadrupolar contributions to the interaction Hamiltonian, and the associated

bosons. Given that these terms actually represent higher order contributions (i.e. with a

smaller order of magnitude) with respect to the electric dipole, we may limit our description

to diagrams involving one of such interaction bosons at most. As a consequence of the input

and output properties of optical response functions (Feynman rule #1)11 and of the unique-

ness of the SFG vertex (where relationship ω3 = ω1 + ω2 applies, Feynman rule #5),11 the

vector boson energies ωb have to match one of the energies present in the system (i.e. ωb = ω1,

ω2 or ω3), which simplifies the frequency filling of the two-loop diagrams.12 For magnetic

couplings in particular, it is worth noting that the energies linked to a direct interaction

between orbital or spin magnetic moments of the molecule and its partner lie far below the

accessible optical frequencies at stake in an SFG process. Vector bosons carrying energy

in the optical range are actually rather linked to interaction Hamiltonians involving elec-

tromagnetic fields (and their gradients) oscillating at optical frequencies. In the following,

we restrict our analysis to such electromagnetic Hamiltonians. We do not include the spe-

cial case of static fields (i.e. involving a zero-frequency boson), which deserves a special

treatment in the future: it indeed offers additional perspectives for the interaction between

molecules and charged entities (e.g. electrodes) or to account for spin-spin interactions in

response to applied magnetic fields (e.g. when ferromagnetic materials or paramagnetic

molecules are involved).

A. Interaction Hamiltonians

In Ref. 11, we have seen that any matter-matter interaction between the subsystems

is described in the multipartite loop diagrams by four-particle vertices associated to the

canonical interaction Hamiltonian:

Hint =
∑
a,b

∑
m,n

Cab,mn c
†
md

†
acndb, (8)
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where {a, b, d†a, db} and {m,n, c†m, dn} are the quantum states and the associated fermionic

creation/annihilation operators of subsystems 1 and 2, respectively, and Cab,mn is the cou-

pling constant. Four-particle vertices are conveniently replaced in the diagrams by two

three-particle vertices linked by the exchange of a vector boson. As an example, exchange

of energy ℏω through electric dipolar coupling is mediated by the coupling constant

Cee
ab,mn =

∑
h,l

plabW
ee
lh (ω,R) phmn (9)

where plab (resp. phmn) is the electric dipole transition moment along coordinate l (resp. h)

between states b and a (resp. n andm) for subsystem 1 (resp. subsystem 2), andR = r1−r2

is the relative position of the subsystems. The matrix W ee is classically given by:12,16,39

W ee
lh (ω,R) =

eıω|R|/c

4πε0|R|3

[
δlh

(
1− ı

ω|R|
c

− ω2|R|2

c2

)
− R̂lR̂h

(
3− 3ı

ω|R|
c

− ω2|R|2

c2

)]
,

(10)

where R̂ = R/|R|. In Eq. (9), the full coupling constant is thus decomposed into a coupling

constant phmn between subsystem 2 and the boson, a boson propagator W ee
lh (with energy ℏω

flowing from h at subsystem 2 to l at subsystem 1), and a coupling constant plab between

the boson and subsystem 1. Eq. (9) can be seen as the projection onto states {a, b,m, n} of

the classical interaction energy evaluated at subsystem 1:

⟨Hee
int⟩ = −p1 ·E2(ω,R) , (11)

where p1 is the dipole moment of subsystem 1 and E2(ω,R) = −W ee(ω,R)p2 is the electric

field created at subsystem 1 by the dipole moment p2 of subsystem 2.

The nature of the coupling process at each interaction vertex influences both the value of

the boson propagator and the nature of the loop in which the vertex is embedded. From the

description of elementary response functions in Section II, we see that it is possible to involve

magnetic dipole and quadrupole vertices in multipartite diagrams provided that the boson

propagator is adapted accordingly. We separate magnetic from quadrupolar contributions

and avoid cross contributions between them.
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1. Quadrupolar interactions

For matter-matter quadrupolar interactions, we only consider vertices implying one

quadrupole moment and we thus discard the case of quadrupole-quadrupole interactions.

The first (Qe) coupling constant we are interested in is then defined as:

CQe
ab,mn =

∑
h,l,ζ

qζlabW
Qe
ζlh(ω,R) phmn, (12)

and classically driven by:

⟨HQe
int⟩ = −1

2
(q1∇) ·E2(ω,R). (13)

As the dipolar electric field created by subsystem 2 reads E2 = −W eep2, we get:

⟨HQe
int⟩ = −1

2

∑
ζ,l

qζl1 ∂ζE
l
2(ω,R) =

1

2

∑
ζ,l,h

qζl1 ∂ζW
ee
lh (ω,R) ph2 . (14)

We deduce that:

WQe
ζlh(ω,R) =

1

2
∂ζW

ee
lh (ω,R). (15)

By derivating the expression of W ee given by Eq. (10), we show that:

WQe
ζlh(ω,R) =

eıω|R|/c

8πε0|R|4

[
R̂ζδlh

(
−3 + 3ı

ω|R|
c

+ 2
ω2|R|2

c2
− ı

ω3|R|3

c3

)
(16)

+R̂ζR̂lR̂h

(
15− 15ı

ω|R|
c

− 6
ω2|R|2

c2
+ ı

ω3|R|3

c3

)
(17)

+(δζhR̂l + δζlR̂h)

(
−3 + 3ı

ω|R|
c

+
ω2|R|2

c2

) ]
. (18)

As for the (eQ) coupling constant, the W eQ tensor is defined by:

CeQ
ab,mn =

∑
h,l,ζ

plabW
eQ
lζh(ω,R) qζhmn. (19)

Assuming the (eQ/Qe) symmetry of the dipole-quadrupole interaction leads to CeQ
ab,mn =

CQe
mn,ab and enables us to write:

plab W
eQ
lζh q

ζh
mn = qζlmn W

Qe
ζlh p

h
ab = plabW

Qe
ζhl q

ζh
mn = plabW

Qe
ζhl q

hζ
mn = plabW

Qe
hζl q

ζh
mn, (20)
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where the summation is implicit for all pairs of identical indices/superscripts. In Eq. (20),

the second equality is obtained through the permutation of the dummy indices l and h,

the third one is based on the transposition symmetry of q, and the fourth one follows from

the permutation of the dummy indices h and ζ. As the WQe tensor is invariant under the

permutation of its last two indices, we eventually get:

W eQ
lζh = WQe

hlζ . (21)

This expression of the propagator W eQ
lζh, as deduced from Eq. (16−18), coincides with that

of the quadrupolar Green’s tensor GQ computed by A. B. Evlyukhin et al., which relates

the moment q to the electric field EQ it creates50,60 [see Eqs. (7) and (23) in these two

references, respectively]:

EQ
l (ω,R) = −

∑
l,ζ

W eQ
hζh(ω,R) qζh = − ω2

ε0c2

∑
h,ζ

GQ
lζ(ω,R) R̂h q

′
ζh. (22)

where q′ = 3 q − (Tr q)1 is the traceless definition of the quadrupole moment. The demon-

stration of Eq. (22) is derived in Appendix D.

2. Magnetic interactions

For matter-matter magnetic interactions, we have three coupling constants to consider:

two electric-magnetic (em/me) vertices, and one purely magnetic (mm) vertex. The first

(me) interaction tensor Wme is defined with respect to the coupling constant:

Cme
ab,mn =

∑
h,l

µl
ab W

me
lh (ω,R) phmn, (23)

corresponding to the classical interaction energy:

⟨Hme
int⟩ = −µ1 ·B2(ω,R) , (24)

where B2 is the magnetic field created at point R by the electric dipole p2. From the

Maxwell-Faraday equation expressed in time harmonic regime, ıωB2 = ∇×E2 = −∇× (W eep2).
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∂jEk(ω) Ei(ω)qjk ı( ̂qκ)i

( ̂qκ)i = ∑
l

qilκl

αeq
ijk(ω)

Bj(ω) Ei(ω)μj
1
ω

(μ × κ)i

(μ × κ)i = ∑
lh

ϵilhμlκh

αem
ij (ω)

∂kEl(ω2)

Ei(ω3)
qkl

ı( ̂qκ)i ?

βeeq
ijkl (ω1, ω2)

Ej(ω1)
pj

pi ?

Bj Eipi
mnμj

nm

<

<

ıω ıω

αij (ω)em(i)

Ej Biμi
mnpj

nm

<

<

ıω ıω

αij (ω)me(j)

Bj Biμi
mnμj

nm

<

<

ıω ıω

αij (ω)mm(g)

Ej Eipi
mn

� n⟩

� m⟩

pj
nm

<

<

ıων

ıων + ıω

ıω ıω

αij (ω)ee(a)

∂ξEj Eipi
mnqξj

nm

<

<

αiξj (ω)eQ(c)

Ej ∂ξEiqξi
mnpj

nm

<

<

ıω ıω

αξij (ω)Qe(d)

Pure electric dipole level Hybrid electric dipole/quadrupole level

Hybrid electric/magnetic dipoles levelPure magnetic dipole level

Ej

Eipi
mr

� n⟩
� m⟩

pj
nm

<

<

ıων

ıων + ıω3

ıω1
ıω3

βijk (ω1, ω2)eee(b)

ıω2Ek � r⟩

ıων + ıω1 <

pk
rn

+ (1↔2)

Ej

Eipi
mr

pj
nm

<

<

ıω1
ıω3

ıω2∂ξEk

<

qξk
rn

+ (1↔2)

βijξk (ω1, ω2)eeQ(e)

Ej

∂ξEiqξi
mr

pj
nm

<

<

ıω1
ıω3

ıω2Ek

<

pk
rn

+ (1↔2)

βξijk (ω1, ω2)Qee(f)

Ej

Eipi
mr

pj
nm

<

<

ıω1
ıω3

ıω2Bk

<

μk
rn

+ (1↔2)

βijk (ω1, ω2)eem(k)

Ej

Biμi
mr

pj
nm

<

<

ıω1
ıω3

ıω2Ek

<

pk
rn

+ (1↔2)

βijk (ω1, ω2)mee(l)

ıω ıω Ej

∂ξEi qξi
mn

pj
nm

ıω

Ej

∂ξEi

qξi
mr

pj
nm

Ek

pk
rn

<

<

<

<
<

ω1

ω3ω2

(ξ)j
(ζ)l

(ξ)k (ξ)i
(ζ)h

<

<

<

<

<

ω2

ω3ω1

(ξ)k
(ζ)l

(ξ)j (ξ)i
(ζ)h

<

<

<

<

<

ω3

ω2ω1

(ξ)i
(ζ)l

(ξ)j (ξ)k
(ζ)h

<

<

<

<

<

qξj

pl

pk pi

ph

β[1],eQe
iξjk

β[0],eee
ihk ⋅Wee

hl ⋅αeQ
lξj

2nd term of

Eq. (37)

(a) Generic bipartite diagrams

(b) Examples

<

<

<

<

<

β[0],eeQ
ijζh ⋅WQe

ζhl ⋅αee
lk

pk

pl

pj pi

qζh

β[1],eee
ijklast term of

Eq. (35)

<

<

<

<
<

μi

pl

pj pk

ph

αme
il ⋅Wee

lh ⋅β[0],eee
hjk

β[1],mee
ijk1st term of

Eq. (34)

Type 1a Type 3 Type 5a

<

<

ıω ıω

αζiξj (ω)QQ(h)

Pure electric quadrupole level

∂ζEiqξj
nm qζi

mn∂ξEj

(c) Elementary diagrams

pipj

<

<
pi

pj <

<

<

pk

αee
ij βeee

ijk

FIG. 2. (a) Generic bipartite diagrams. (b) Examples of Type 1a, 3 and 5a diagrams (see Table I).

The second line illustrates how to interpret each diagram (from right to left). (c) Reminder of the

elementary diagrams (at pure electric dipole level), given for comparison.

As a result:

⟨Hme
int⟩ =

1

ıω

∑
l,k,h,ζ

µl
1 ϵlζk ∂ζW

ee
kh p

h
2 , (25)
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where ϵ = (ϵijk) is the Levi-Civita tensor. Henceforth, we identify:

Wme
lh (ω,R) =

1

ıω

∑
k,ζ

ϵlζk ∂ζW
ee
kh(ω,R) =

2

ıω

∑
k,ζ

ϵlζk W
Qe
ζkh(ω,R). (26)

From Eq. (15), the (me) coupling matrix indeed turns out to be a tensor contraction between

ϵ and WQe. Thanks to Eq. (16−18), we find:

Wme
lh (ω,R) =

eıω|R|/c

4πε0|R|4
1

ıω

∑
ζ,k

ϵlζkR̂ζδkh

(
−3 + 3ı

ω|R|
c

+ 2
ω2|R|2

c2
− ı

ω3|R|3

c3

)
+ ϵlζkR̂kδζh

(
−3 + 3ı

ω|R|
c

+
ω2|R|2

c2

)
. (27)

Note that the Levi-Civita tensor removes the symmetric terms of WQe
ζkh with respect to the

first two indices. Through permutations of dummy indices, we eventually get:

Wme
lh (ω,R) =

eı|R|/c

4πε0c|R|3

(
ı
ω|R|
c

+
ω2|R|2

c2

)∑
k

ϵlhkR̂k (28)

This result coincides with the Eqs. (21) and (11) in Refs. 60 and 61, respectively. In the

same way, the (em) interaction is driven by:

Hem
int = −p1 ·E2(ω,R) , (29)

where the electric field is created by a magnetic dipole set at subsystem 2. We have:58

Hem
int = − eıω|R|/c

4πε0c|R|3

(
ı
ω|R|
c

+
ω2|R|2

c2

)
p1 · (µ2 × R̂), (30)

leading to the coupling constant Cem
ab,mn =

∑
h,l p

l
abW

em
lh (ω,R)µh

mn driven by:

W em
lh (ω,R) = − eıω|R|/c

4πε0c|R|3

(
ı
ω|R|
c

+
ω2|R|2

c2

)∑
k

ϵlhkR̂k. (31)

We see that W em
lh = −Wme

lh = Wme
hl (as ϵijk = −ϵikj), which restores the expected symmetry

between Cem and Cme when subsystems 1 and 2 are swapped. In addition, these terms have

no static contributions, i.e. they tend to zero for small distances between the partners (when
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ω|R|/c ≪ 1).

Finally, it is interesting to consider the magnetic dipole-dipole interaction. The equations

describing the magnetic field emitted by a magnetic dipole and the electric field emitted by

an electric dipole being symmetric, we directly get:

Wmm
lh (ω,R) =

1

c2
W ee

lh (ω,R). (32)

This defines the (mm) coupling constant:

Cmm
ab,mn =

∑
h,l

µl
abW

mm
lh (ω,R)µh

mn. (33)

B. Bipartite diagrams

Bipartite diagrams are constructed and calculated according to the Feynman rules defined

previously.11 Each subsystem is represented by a distinct loop, which may interact with

one or several photons involved in the SFG process. As the magnetic and quadrupolar

contributions are higher order effects in comparison with the electric dipole terms, we limit

the enumeration of diagrams to those which only involve the exchange of one vector boson.

In addition, as we are interested in the molecular SFG response in the presence of a partner,

(i) the lower loop is ascribed to the ‘molecule’ and the upper loop to its ‘partner’, which may

span many natures (nanostructure, fellow molecule, substrate, surface charges, etc.), and (ii)

we set the nonlinear vertex (where the constitutive relationship ω3 = ω1 + ω2 actually takes

place) on the molecular loop. As a consequence of these considerations, the molecular loop

has three interaction vertices (two photons and the vector boson), whereas the partner loop

exhibits two vertices (one photon and the vector boson).

The three generic bipartite diagrams are shown in Fig. 2. The full list of allowed diagrams

is obtained by: (i) applying full permutations of light-matter vertices i, j and k over the two

loops; (ii) defining the natures (electric dipole, magnetic dipole, quadrupole) of light-matter

interactions at these vertices; and (iii) defining the nature of the vector boson (i.e. matter-

matter interaction). In principle, each kind of interaction (electric, magnetic or quadrupolar)

may happen at each vertex, under a light-matter or matter-matter form. This is represented

in Fig. 2, wherein we label light-matter vertices with (ξ)v and matter-matter vertices with
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(ζ)u, so that single indexes v and u stand for an electric (via pv and pu) or a magnetic (via

µv and µu) interaction vertex, and double indexes ξv and ζu for a quadrupolar vertex (via

qξv or qζu) encompassing the operator ∂ξ or ∂ζ . This leads to very big amounts of diagrams43

but, owing to selections rules based on the symmetry properties of the different α and β

response functions and the perturbative orders of magnetic and quadrupolar terms, it is

possible to reduce the number of relevant diagrams. As explained in details in section IV,

a bipartite diagram is discarded if one of these three conditions is satisfied: (i) it contains

both magnetic and quadrupolar vertices, (ii) it is built with a (QQ) matter-matter vertex,

or (iii) its molecular loop exhibits more than one non-electric dipolar vertex.

While β[0] depicts the hyperpolarizability of the molecule without interaction with the

partner, the calculation of the one-boson bipartite diagrams leads to a partner-modified

hyperpolarizability β[1] and enables to compute the total molecular response β of the com-

posite system as β = β[0]+β[1]. This approach follows the same path as was done previously

for all-electric dipole diagrams involving only one boson.11,12 In a general way, the unper-

turbed molecular hyperpolarizability β[0] is modified by the presence of the partner when

one of the three beams (incoming or emitted) interacts with the partner (through one of

its polarizabilities α) and is conveyed to the molecule (by the boson propagator W ) where

the nonlinear SFG process takes place. Here, the result is complicated by the higher rank

of the tensors describing the elementary building blocks β[0], W and α when they involve

quadrupolar vertices. For diagrams involving only dipolar vertices (i.e. only electric and

magnetic dipoles), the resulting β[1] may be represented by the generic formula:

−β
[1]
ijk(ıω1, ıω2) = αil(ıω3)Wlh(ω3)β

[0]
hjk(ıω1, ıω2)

+ β
[0]
ihk(ıω1, ıω2)Whl(ω1)αlj(ıω1)

+ β
[0]
ijh(ıω1, ıω2)Whl(ω2)αlk(ıω2), (34)

where the summation over the {l, h} indices of W is implicit. As pictured in Fig. 2, each

term may be straightforwardly read from right to left in order to follow the energy flux and

the logical sequence of each process. Explicitly, in the first term of Eq. (34), the incoming

beams interact with the molecule (through β[0]) to create a dipole (electric or magnetic)

oscillating at frequency ω3. Its energy ℏω3 is conveyed to the partner (by W ) where it is

converted (through α) into the response dipole, hence encoded by the output of β[1]. In
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the second term, the incoming photon at frequency ω1 interacts with the partner (through

α) to generate an oscillating dipole which energy is conveyed to the molecule (by W ) in

order to take part in the SFG process (through β[0]) and produce the output dipole. Fixing

the natures of β[0] [i.e. (eee), (eem), (eme) or (mee)] and α [i.e. (ee), (em), (me) or (mm)]

unequivocally determines those of W , β[1] and the output dipole.

Type α W β[0] W α Vector boson Q/m vertex β[1]

1a
— — eee ee eQ ω1, ω2 ω1, ω2 eQe, eeQ
Qe ee eee — — ω3 ω3 Qee

1b
— — eee eQ QQ ω1, ω2 ω1, ω2 eQe, eeQ
QQ Qe eee — — ω3 ω3 Qee

2
— — eee eQ Qe ω1, ω2 ω1, ω2 eee
eQ Qe eee — — ω3 ω3 eee

3
— — eQe, eeQ Qe ee ω1, ω2 ω1, ω2 eee
ee eQ Qee — — ω3 ω3 eee

4
— — eQe, eeQ ee ee ω2, ω1 ω1, ω2 eQe, eeQ
ee ee eQe, eeQ — — ω3 ω1, ω2 eQe, eeQ
— — Qee ee ee ω1, ω2 ω3 Qee

5a
— — eee ee em ω1, ω2 ω1, ω2 eme, eem
me ee eee — — ω3 ω3 mee

5b
— — eee em mm ω1, ω2 ω1, ω2 eme, eem
mm me eee — — ω3 ω3 mee

6
— — eee em me ω1, ω2 ω1, ω2 eee
em me eee — — ω3 ω3 eee

7a
— — eme, eem me ee ω1, ω2 ω1, ω2 eee
ee em mee — — ω3 ω3 eee

7b
— — eme, eem mm me ω1, ω2 ω1, ω2 eee
em mm mee — — ω3 ω3 eee

8
— — eme, eem ee ee ω2, ω1 ω1, ω2 eme, eem
ee ee eme, eem — — ω3 ω1, ω2 eme, eem
— — mee ee ee ω1, ω2 ω3 mee

TABLE I. List of composite SFG response functions (β[1]) of the molecule-partner system involving

‘Q’ [Eqs. (35-38)] or ‘m’ [Eq. (34)] vertices. The ‘vector boson’ column gives the frequency that is

conveyed by the matter-matter vertex (via W ) and goes through the partner (via α), following a

logical sequence to be read from right to left as explained in the text. The ‘Q/m vertex’ column

indicates which photon frequency is assigned to the quadrupolar or magnetic vertex implied in the

process. Each ‘type’ of diagram is defined by the respective (e/m/Q) natures of β[1] and β[0].
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When quadrupolar interaction is introduced instead, a new set of terms appears:

−β
[1],eee
ijk (ıω1, ıω2) = αeQ

iζl(ıω3)W
Qe
ζlh(ω3)β

[0],eee
hjk (ıω1, ıω2) + αee

il (ıω3)W
eQ
lζh(ω3)β

[0],Qee
ζhjk (ıω1, ıω2)

+ β
[0],eee
ihk (ıω1, ıω2)W

eQ
hζl(ω1)α

Qe
ζlj(ıω1) + β

[0],eQe
iζhk (ıω1, ıω2)W

Qe
ζhl(ω1)α

ee
lj (ıω1)

+ β
[0],eee
ijh (ıω1, ıω2)W

eQ
hζl(ω2)α

Qe
ζlk(ıω2) + β

[0],eeQ
ijζh (ıω1, ıω2)W

Qe
ζhl(ω2)α

ee
lk(ıω2),(35)

−β
[1],Qee
ξijk (ıω1, ıω2) = αQe

ξil (ıω3)W
ee
lh (ω3)β

[0],eee
hjk (ıω1, ıω2)

+ β
[0],Qee
ξihk (ıω1, ıω2)W

ee
hl (ω1)α

ee
lj (ıω1)

+ β
[0],Qee
ξijh (ıω1, ıω2)W

ee
hl (ω2)α

ee
lk(ıω2)

+ αQQ
ξiζl(ıω3)W

Qe
ζlh(ω3)β

[0],eee
hjk (ıω1, ıω2), (36)

−β
[1],eQe
iξjk (ıω1, ıω2) = αee

il (ıω3)W
ee
lh (ω3)β

[0],eQe
hξjk (ıω1, ıω2)

+ β
[0],eee
ihk (ıω1, ıω2)W

ee
hl (ω1)α

eQ
lξj(ıω1)

+ β
[0],eQe
iξjh (ıω1, ıω2)W

ee
hl (ω2)α

ee
lk(ıω2)

+ β
[0],eee
ihk (ıω1, ıω2)W

eQ
hζl(ω1)α

QQ
ζlξj(ıω1), (37)

−β
[1],eeQ
ijξk (ıω1, ıω2) = αee

il (ıω3)W
ee
lh (ω3)β

[0],eeQ
hjξk (ıω1, ıω2)

+ β
[0],eeQ
ihξk (ıω1, ıω2)W

ee
hl (ω1)α

ee
lj (ıω1)

+ β
[0],eee
ijh (ıω1, ıω2)W

ee
hl (ω2)α

eQ
lξk(ıω2)

+ β
[0],eee
ijh (ıω1, ıω2)W

eQ
hζl(ω2)α

QQ
ζlξk(ıω2), (38)

where implicit summations over redundant indices (i.e. those of W ) apply for each term.

The different types of composite diagrams are summarized in Table I for both quadrupolar

and magnetic contributions.
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IV. CONSEQUENCES OF SYMMETRY AND GEOMETRY

A. Symmetries of uncoupled objects

Before considering bipartite systems, we first recall the influence of the symmetry proper-

ties of (i) any individual object at the microscopic scale and (ii) a macroscopic collection of

such objects on their linear and nonlinear optical response functions. Indeed, second-order

nonlinear optical processes like SFG have gained interest as they are symmetry-driven, in

particular with respect to inversion symmetry: the first hyperpolarizability β[0],eee of a sin-

gle centrosymmetric object vanishes at the electric dipole level of theory. In addition, at

the macroscopic scale, the second-order susceptibility χ(2) is obtained by summing up all

individual hyperpolarizability contributions over a unit volume, taking into account the

orientation average of the individual objects through χ(2) = N⟨β[0],eee⟩, where N is their

volume density. Even for non-centrosymmetric objects (i.e. β[0],eee ̸= 0), isotropic aver-

aging cancels χ(2) when it gives rise to a “centrosymmetric bulk” (e.g. when objects are

embedded as a solute in a liquid phase), thus no phase-matched SFG is produced. SFG may

still alternatively be measured in this case in the scattering geometry,62,63 provided that the

individual objects are big enough as compared to the wavelengths of light. It is also worth

noting that the isotropic distribution of chiral entities is not centrosymmetric,64–66 leaving

open the possibility to measure a dipolar contribution from the bulk.67 This is actually the

only situation giving rise to coherent SFG production from an isotropic bulk in the electric

dipole approximation.68

In Part II, we have defined new response functions beyond the electric dipolar level.

It is in fact rather easy to establish, by direct inspection69 or by writing down the trans-

formations of the various quantities,45 the behaviors of the various α and β tensors upon

inversion symmetry Ci. Some of them vanish indeed and are marked as such in Table II. We

note in particular that only β[0],eee vanishes for a centrosymmetric molecule, while hybrid

αeQ/Qe and αem/me do vanish for a centrosymmetric partner. The same conclusions apply

to their macroscopic counterparts describing a centrosymmetric bulk. In other words, for a

centrosymmetric single object or distribution of objects, only the (ee) contribution to linear

optics survives at first order in ‘m’ and ‘Q’ vertices, whereas the (eee) term is the only one

to vanish for SFG: all the other contributions in Eqs. (34−38) are allowed by symmetry.
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β[1] β[0] W α
Type Nature Ci ? Nature Ci ? Nature Nature Ci ?
0 eee NO eee NO ee ee YES
1a Qee/eQe/eeQ YES eee NO ee eQ/Qe NO
1b Qee/eQe/eeQ YES eee NO eQ/Qe QQ YES
2 eee NO eee NO eQ/Qe eQ/Qe NO
3 eee NO Qee/eQe/eeQ YES eQ/Qe ee YES
4 Qee/eQe/eeQ YES Qee/eQe/eeQ YES ee ee YES
5a mee/eme/eem YES eee NO ee me/em NO
5b mee/eme/eem YES eee NO me/em mm YES
6 eee NO eee NO me/em me/em NO
7a eee NO mee/eme/eem YES me/em ee YES
7b eee NO mee/eme/eem YES mm me/em NO
8 mee/eme/eem YES mee/eme/eem YES ee ee YES

TABLE II. Classification of the one-boson SFG response functions β[1] of the molecule-partner

system involving one ‘Q’ or ‘m’ vertex, each type being represented by one member. The columns

labelled “Ci ?” indicate whether each quantity β, W or α survives under inversion symmetry, i.e.

whether the process is allowed for a centrosymmetric entity or an isotropic bulk. The conventional

case of purely electric dipolar responses is recalled for information, referred as type 0.

1. First-order response of centrosymmetric objects

Considering the typical example of a spherical nanoparticle, its intrinsic contribution to

the linear optical phenomena is driven by αee, provided its size is negligible with respect to

the wavelength of light. It is indeed well-known that big nanospheres exhibit an additional

first-order quadrupolar response, as experimentally measured in solution70 and predicted by

the Mie theory.16,71,72 The associated quadrupolar Mie response, quantified by the so-called

a2 coefficient,72 derives from an isotropic quadrupolar polarizability consisting in an αQQ

response function,49,50 actually allowed for centrosymmetric objects (whereas αeQ/Qe = 0).

In such a case, the (QQ) term represents the first nonvanishing correction to the purely

electric dipole contribution and must be included in our analysis (hence type 1b in Ta-

ble II) in order to take the quadrupolar terms involved in a molecule-nanosphere system

into account, for instance. Interestingly, the literature counts other experimental evidences

of quadrupolar optical responses in the case non-centrosymmetric nanoparticles deposited on

solid substrates, like rings73 or cylinders.74 For such in-plane symmetric particles, the (Qe)

response has proved to vanish when excited at normal incidence (i.e. along the symmetry

axes) because the in-plane isotropy is enforced. Moreover, the (QQ) term is too small to be

measured as the sole surface response is generated by a small number of objects. Conversely,
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a (Qe) contribution becomes measurable at oblique incidence, for which the breaking of the

in-plane isotropy and retardation effects indeed induce a quadrupole.74,75 For such particles,

the (Qe) and (eQ) responses dominate the quadrupolar contribution as long as they are ex-

cited away from any in-plane symmetry axis. As a result, it seems reasonable to restrict the

use of αQQ within bipartite diagrams to the cases of systems involving a spherical partner.

The situation is different for magnetic response functions αem/me. They appear in the

literature under various forms,44–48 most of them linked to chiral objects, molecules or

nanostructures. As will be discussed later, they quantify the optical activity of molecu-

lar systems.35,36,76 By definition, chiral objects are not centrosymmetric and there is no

symmetry reason leading to the vanishing of their αem/me tensors. Nevertheless, as for the

quadrupolar counterparts, the magnetic contribution to light scattering by a sphere, asso-

ciated to the b1 coefficient in the Mie theory, is related to an αmm function.77 It has been

shown to play a role into the coupling of the linear optical response functions of a plasmonic

sphere with a dielectric sphere.61 To account for these specific situations, we also include

type-5b diagrams and thus involve αmm response functions in our analysis.

2. Second-order response of centrosymmetric objects

As mentioned earlier, the situation is opposite for the second-order response functions.

For a centrosymmetric object, the (eee) response vanishes whereas, as can be checked in

Table II, the β[0] responses involving one ‘m’ or ‘Q’ vertex are allowed. This is in fact well-

known for spherical nanoparticles, for which the only contributions to Second-Harmonic

Generation (SHG) have been shown to be of the (eeQ), (eQe) and (Qee) types,20,22 whereas

magnetic terms do not contribute because of the presence of mirror planes.22 Still, (eem),

(eme) and (mee) terms should be added when noncollinear and nondegenerate SFG is in-

volved, as is known from the SFG response of a centrosymmetric bulk.17 Of course, when

the (eee) response is also allowed by a lower degree of symmetry, we may expect that it

overwhelms these higher order terms. Even so, (eem), (eme) and (mee) terms have been

measured in particular cases like thin films of chiral molecules, with orders of magnitude

equal to the (eee) contributions when they could be experimentally separated.78 As for

quadrupolar terms, we expect these to significantly contribute when a molecule has a high

symmetry,79 upon dimerization for instance.19 In these two examples, measurement of size-
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able non-dipolar contributions to β[0] may also relate to a possible bulk origin, for which

the high number of molecules in the bulk compensates for the low intrinsic values of their

β[0]. Conversely, the higher (eee) terms will be limited to the interfaces, with a much lower

amount of source molecules.

B. Geometry of the molecule-partner system

When considering a bipartite system, the situation is complicated by several factors:

intrinsic symmetry properties of both the molecule and the partner, orientation averaging

of each subunit inside the bipartite system, orientation averaging of their relative positions,

relative distance between them and, finally, orientation averaging of the bipartite system as

a whole. Here we discuss these different layers of statistical operations.

1. Orientation statistics and symmetries of coupled objects

The symmetry tables or the methods recalled earlier allow to list the nonvanishing compo-

nents of the polarizabilities of the partner and the hyperpolarizabilities68,80,81 of the molecule

building up the bipartite system, in the frame of their own symmetry axes. In particular,

when one or both are centrosymmetric, the number of allowed processes decreases: only

types 3, 4, 7a, 7b and 8 remain for a centrosymmetric molecule, and types 0, 1b, 3, 4, 5b, 7a

and 8 for a centrosymmetric partner. For lower symmetries, the analysis of the relevant pro-

cesses depends on the definition of the system. Starting with one molecule interacting with

one partner whose relative positions and orientations are fixed, it is still possible to consider

a distribution of such a rigid system in a bulk or at a surface. In this case, an orientation

averaging is performed on their total response function β after its calculation. However, this

remains rather theoretical and fails most of the times to describe the complexity of actual

systems because realistic models must also account for the degrees of freedom (orientation,

relative distance) inside the bipartite system. Setting the orientation of the partner in the

first place, the molecule may be allowed to move more or less freely around it in short time

scales, or adopt several geometric relative conformations with a given probability. This is

equivalent to averaging over a distribution of conformations in order to model an average

bipartite system in a bulk. In this approach, orientation averaging shall be performed on
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the response function of the molecule and/or the coupling constant W , depending of the

degrees of freedom of the system. Furthermore, when one molecule interacts with several

identical partners (e.g. a molecule surrounded by interacting solvent molecules) or when

several identical molecules interact with one common partner (e.g. molecules adsorbed at

the surface of a nanoparticle), similar averaging operations have to be performed. From

ergodicity, averaging over the configuration space of an individual entity is equivalent to

averaging over an isotropic spatial distribution of identical entities. Whatever the number

of subunits in the system, the complete response function shall then be calculated as a sum

over individual response functions, considering that the identical molecules (resp. partners)

each adopt a different conformation with respect to the partner (resp. molecule).

As an example, let us consider molecules adsorbed at the surface of a partner nanoparticle,

respectively characterized by known β[0] and α response functions. In order to calculate the

molecular SFG response function modified by the presence of the partner, one has to consider

that each molecule may adopt several conformations, or an average conformation, for each

position at the surface of the particle, leading to different projections of β[0] components onto

the local frame of the nanoparticle at this point. Then, a sum over these positions [running

more precisely over W (R)] must be performed to scan the particle’s surface and account for

the distribution of the molecules around it. Finally, these sums over β[0] and W (R) may be

coupled or performed sequentially, depending on whether the orientation and distance of the

molecule with respect to the partner center depend on its position or not: as an illustration,

we can think about the differences between spherical and cubic particles. This may seem

like a difficult task, but a straightforward use of the direction cosine matrices82,83 followed

by an integration over the relevant angles and distances provides the expected result, which

can be found in the literature for the (eee) response of molecules adsorbed on a spherical

nanoparticle, or on a plane located below the particle.14 As expected, the total nonlinear

response of the “molecules on a sphere” system is found to vanish after integration of the

molecular individual responses over the whole sphere. Even if the molecular β[0],eee and the

nanoparticle αee are allowed by symmetry, the total integrated β relates to a multipartite

system for which centrosymmetry is recovered, hence its vanishing response as stated in

Table II (type 0). This example illustrates a general phenomenon for the symmetry analysis

of bipartite systems: not only the symmetry of each subunit but also the symmetry of the

whole system have to be analyzed in order to determine the vanishing components of the
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total second-order nonlinear response (hence the three columns labeled “Ci” in Table II as

far as centrosymmetry is concerned).

2. Symmetry-driven discrimination of β[0] and β[1] response functions

From Table I, we easily identify the composite diagrams which leave the nature of the

molecular hyperpolarizability unchanged: types 0, 2, 4, 6 and 8 are characterized by β[1]

and β[0] functions of the same kind. In this case, we recover the same situation as described

earlier at the electric dipole level and applied to molecule-nanoparticle systems:12 interaction

with the partner modifies the molecular hyperpolarizability in amplitude and in phase but

the molecular properties described by β[0] are transferred to β[1] for the bipartite system. In

contrast, diagrams of types 1, 3, 5 and 7 involve hyperpolarizabilities of different natures,

modified by the transfer from the isolated molecule to the bipartite system. For instance, in

the type-5a diagram of Fig. 2, the molecule creates a dipole oscillating at the SFG frequency

through an (eee) process (via β[0],eee) which couples to the partner through an (ee) coupling

(via W ee) and leads to the magnetic emission of SFG radiation by the partner through

an (me) linear process (via αme). Hence, this results in an (mee) hyperpolarizability for

the bipartite system. Such a change in natures between β[1] and β[0] may have interesting

consequences. For all the β[1] tensors allowed under Ci symmetry in Table II, their response

remains allowed even after isotropic averaging in a bulk. For types 1 and 5 in particular,

the β[1] molecular response, non-vanishing under isotropic averaging, arises from the β[0],eee

response of the molecule which conversely vanishes under the same isotropic averaging when

considered alone. A change in symmetry due to interaction with the partner triggers in this

case the generation of a bulk signal, transforming a material where bulk SFG is initially

forbidden to one where bulk SFG is allowed by incorporating an appropriate partner in

the system. In addition, as β[1] and β[0] do not obey the same selection rules, it becomes

conceivable to experimentally tune the polarizations of light and the angles of incidence in

order to favor one of them [as driven by Eqs. (34−38)] and quantify in this way the influence

of the molecule-partner coupling.
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3. Spatial and spectral modulations of β[1]

Beyond the symmetry-driven selection rules associated to the respective response func-

tions of the molecule, its partner and the composite system they form, the properties of the

coupling matrix W is obviously expected to play a pivotal role in the nonlinear response

of the bipartite coupled system. Since the coupling constants W strongly depend on the

distance |R| between the molecule and its partner, the resulting β[1] function explicitly en-

compasses a spatial dependence. From Eqs. (10), (16) and (28) in Section IIIA, we see that

W (R) sums up contributions expressed as the zeroth, first and second powers of ω|R|/c,

thus pertaining to the short, intermediate and long distances, respectively, and defining three

“wave zones”. As known from classical dipolar emission and dipole-dipole coupling,16,58 the

short distance terms describe the static case and the long distance ones refer to radiation.

The short distance approximation, typically for ω|R|/c ≪ 1, applies in the visible and IR

ranges to molecules in interactions with other molecules, nanoparticles of moderate size or

a substrate. In that case, the leading terms behave like 1/|R|3 for W ee and Wmm, and

1/|R|4 for WQe and W eQ, while W em and Wme are negligible as compared to (ee) and

(mm). In other words, Wmm must be included in our analysis as it is the sole contribution

of magnetic interactions at short distances. As a consequence, only magnetic types 5a, 7b

and 8 survive at short distances.

At first glance, the regime ω|R|/c ≪ 1 seems the most appropriate to describe local

energy exchange between the partners. The decrease of W amplitudes with |R| makes

the long distance approximation (ω|R|/c ≫ 1) less appealing for practical applications,

unless it is compensated by high values of α. We mainly count two interesting situations,

therefore related to the behavior of α. On the one hand, the linear polarizability of the

partner may exhibit spectral resonances over the ranges of the input/output frequencies ω1,

ω2 or ω3. In this way, coupling a molecule to a partner enables to enhance an intrinsically

weak molecular response (which is in principle the case for all β[0] except β[0],eee) through

a high polarizability of the partner. For instance, it is not rare to play with specific (ee)

resonances in the visible range like surface plasmon resonances,9,12 gap-mode, SHINE-SFG,84

and excitons.10 In addition, the resonance frequencies associated with the electric, magnetic

and quadrupolar polarizabilities may differ,70,85 enabling a spectral separation between their

respective contributions to β[1]. On the other hand, the existence of a significant and possibly
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resonant α contribution may be strongly correlated to the distance regime of the associated

coupling constantsW . This is the case for quadrupolar contributions, which are unavoidable

as soon as the partner size approaches the wavelength of light. The need to consider the

αQQ response of the partner concomitantly arises with a change in the distance regime

from short to intermediate values of |R| ∼ λ, implying a longer-range W eQ/Qe ∼ 1/|R|3

(compared with the 1/|R|4 behavior of the static term). Here, the consideration of large-

particle αQQ functions structurally goes hand in hand with the intermediate distance regime

of the associated (eQ) and (Qe) coupling matrices. Strictly speaking, all terms in W have

to be taken into account for such intermediate distances |R| ∼ λ and it should be advisable

to keep both the intermediate and radiation contributions as long as the short-distance

approximation is not enforced. For example, it has been shown that the absorption of

a dielectric nanoparticle is modified by phase-retarded coupling to a plasmonic partner

through the intermediate distance terms of (ee), (mm) and (me/em) W tensors.61

V. PRACTICAL EXAMPLES

Among the various contributions to the SFG processes listed in Part III B, the user has

to determine the leading and/or nonvanishing contributions in order to keep only the di-

agrams relevant for a given experiment. Of course, symmetry considerations are part of

this selection process as discussed in Part IV, but the natures of both the molecule and

the partner also play a major role. As detailed below, magnetic terms are relevant for

chiral entities (either molecule or partner), in particular when their optical activities flows

from their αem/me polarizabilities76 through the so-called one-electron37 or “µ-m”38 schemes.

Quadrupolar contributions may meanwhile become important when the objects (i) are big

enough to break the quasistatic approximation in the system (i.e. retardation and propaga-

tion of the electric fields have to be taken into account),74 (ii) are too symmetric to generate

only a dipolar response,19 (iii) experience high electric field gradients at the boundary of

a metallic or highly refractive medium,86 or (iv) have their relative distance much smaller

than their sizes.87,88 Both magnetic and quadrupolar polarizabilities also appear important

to describe big spherical particles.50,61 We now focus on some examples of systems for which

the quadrupolar and magnetic bipartite diagrams become relevant.
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A. Quadrupolar contributions

As for the quadrupolar interactions, their contributions to the SFG response are expected

to significantly grow when the partner size Dpart increases, as compared to the wavelength of

light λ, because of the growing importance of retardation effects. Still, even for objects with

sizes D ≪ λ, the dipole approximation (with respect to the electric multipole expansion)

is known to fail to account for matter-matter interactions when the spatial gap δ between

the interacting objects is smaller than their sizes.87,89,90 We may simply illustrate this by

comparing the plasmonic properties of a molecule-nanosphere system, for which the inter-

object gap is of the order of the molecular size, to those of a nanoparticle dimer in which

the gap may be reduced far below the particle size. The first system is straightforwardly

modeled in the dipolar approximation as long as Dpart ≪ λ,14 whereas it is well-known

that the second system requires a multipolar description of the plasmonic interaction.88 For

other kinds of interactions, in the case of nanoscale fluorophores like semiconductor quantum

dots87 (4-10 nm in diameter) and carbon nanotubes89 (0.6 nm × 3 nm), the resonant energy

transfers occurring within pairs cannot be theoretically modeled by a strictly dipole-dipole

coupling W ee. In this context, some theoretical works start examining the limits of Förster’s

dipole-dipole theory. For carbon nanotubes (which could play the role of the molecular

species as well as the nanoscale partner in a molecule-partner system), X. Zhang et al.

have shown that higher multipole interactions are determining,89 favoring resonant energy

transfers between dark states (i.e. dipole-forbidden) instead of bright states (i.e. dipole-

allowed). We understand that the involvement and the nature of quadrupolar contributions

in a bipartite system depend not only on the values of Dmol/λ and Dpart/λ, but also on the

spatial gap δ, through the ratio δ/min(Dmol, Dpart).

1. Energy transfer between small partners with small gap (type 2)

Here we consider systems for which the relative sizes of the two objects verify D1, D2 ≪ λ,

while δ < min(D1, D2), as in the above-mentioned dimer of carbon nanotubes. We can easily

draw the parallel between dark state-mediated resonant energy transfers and diagrams of

type 2 (cf. Table II), which support the possibility of an enhanced (eee) contribution to the

SFG response arising from an (eQ) coupling. In the same way as resonant energy transfers
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between closely spaced nanoscale objects may be dominated by quadrupolar interactions,

the hyperpolarizability βeee of a big enough molecule coupled with a partner through a small

gap could be mainly driven by β[0],eeeW eQαQe (type 2) instead of β[0],eeeW eeαee (type 0),

whatever the molecule initially described by β[0],eee. Here, the role of αQe makes sense: on

the one hand, the light-matter interaction between the incoming photon and the partner is

governed by the length scale between the partner size Dpart and the excitation wavelength

λ, which justifies that the right index of α (i.e. its input) is electric dipolar; on the other

hand, the matter-matter interaction between the molecule and its partner is driven by

the length scale between their gap δ and their smallest size, i.e. min(Dmol, Dpart), which

justifies that the left index of α (i.e. its ouput) is quadrupolar within our hypotheses. Here

we understand that the typical lengths and distances at play within the bipartite system

define the wave zone and the nature of the coupling that must be considered as well as

how to model the partner. In addition, symmetries also enter the game when nanoscale

partners such as metal nanoparticles or semiconductor nanocrystals are involved. For such

objects, synthesized through a bottom-up mechanism, a small size goes along with a lot of

surface defects acting as sources of symmetry breaking and quantifying the departure from

the perfect spherical symmetry:23 even for such “symmetric” objects, nonvanishing αQe/eQ

may be considered. Conversely, a growth in size often translates into an increasing degree

of centrosymmetry as the surface defects loose their significance with the decrease of the

surface-to-volume ratio. As a result, when the partner size grows, αQe/eQ tend to vanish and

the surface-specific type-2 diagrams become negligible. However, this is counterbalanced by

the rising of retardation effects and, schematically, type-2 SFG diagrams can be discarded

to the benefit of type-1b diagrams, driven by αQQ ̸= 0.

2. Quadrupolar SFG from large centrosymmetric partners (type 1b)

It is useful to remind that the quadrupolar contribution is expected to be superseded

itself by higher order multipole terms as the particle size increases. In order to design a

W eQ-coupled bipartite system, the size of the partner must be carefully chosen so as to

minimize both the dipolar and the octupolar contributions. In the case of colloidal silver

nanoparticles, this quadrupolar regime is achieved for a diameter sizing around 160 nm with a

quadrupolar resonance at ∼ 450 nm in wavelength, as deduced from UV-visible absorption
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spectroscopy70 (which is driven by, and hence gives access to, αQQ). However, for the

majority of the systems, we may expect the quadrupolar resonances to be accompanied

by magnetic ones,85 whatever the size. The discrimination between the W eQ and W em

coupling regimes is then possible according to the frequency range over which we probe

the system. In the case of silicon nanocubes, P. D. Terekhov et al.85 theoretically showed

that the optical scattering spectrum of parallelepipeds of 250 nm × 250 nm × 275 nm

is dominated by (i) a quadrupolar resonance over the wavelength range 700-760 nm and

(ii) two magnetic resonances below 700 nm. From such UV-visible spectra, it is then possible

to extract the αQQ and αmm response functions associated to each set of resonances (note

that Fresnel factors may have to be considered to properly relate the far-field resonances

to response functions α), and to plug them into type-1b and type-5b diagrams in order to

compute their respective contributions to the SFG response. In the context of IR-visible

SFG spectroscopy, the resonant terms of the hyperpolarizability β[1] of a molecule coupled

with such a nanocube would typically read:β
[1],eQe
iξjk (ω1, ω2) = −β

[0],eee
ihk (ω1, ω2)W

eQ
hζl(ω1)α

QQ
ζlξj(ω1) if λ1 > 700 nm

β
[1],eme
ijk (ω1, ω2) = −β

[0],eee
ihk (ω1, ω2)W

em
hl (ω1)α

mm
lj (ω1) if λ1 < 700 nm

, (39)

where ω1 = 2πc/λ1 scans the visible-near IR quadrupolar and magnetic resonances of the

nanocube and ω2 probes the IR vibrational response of the molecule [summation is implicit

for all pairs of identical indices in Eq. (39)].

Interestingly, the electric dipole-quadrupole W interactions become huge for metal

nanoparticles arranged in 2D-array geometry.50,72 Henceforth, even if type-1b diagrams

do not lead to a surface-specific response (since bulk-allowed), the associated SFG contri-

butions can be important for the study of nanostructured plasmonic substrates designed for

surface-enhanced vibrational spectroscopy. As theoretically modeled by A. B. Evlyukhin

et al.,50 600 nm-periodic hexagonal 2D arrays of 120 nm-sized gold nanoparticles exhibit a

strong and sharp quadrupolar resonance at 770 nm and a broad quadrupolar band between

500 and 650 nm. Such a nanostructured surface would then constitute an appropriate

substrate on which to graft molecular species for studying their αQQ-enhanced SFG re-

sponse over the 500-800 nm wavelength range. By the same token, S. P. Hastings et al.

have experimentally and theoretically demonstrated that immobilized spiky gold nanoshells
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(∼ 200 nm in diameter) feature quadrupolar resonances which significantly enhance Raman

scattering91 (which is also a nonlinear optical process used for vibrational spectroscopy).

While such plasmonic modes are nonradiating in the far-field wave zone, their contribution

to the local field enhancement of molecules grafted on the spiky nanoshells (e.g. mercapto-

benzoic acid91) is predominant and gives rise to the so-called Quadrupole-Enhanced Raman

Scattering (QERS) process. SFG spectroscopy could similarly benefit from such quadrupo-

lar near-field resonances through type-1b (and type-1a, for non-centrosymmetric partners)

hyperpolarizabilities.

Furthermore, given that type-1 processes are bulk-allowed, coupling molecular analytes

(e.g. solute molecules) with the aforementioned partners (e.g. silver nanoparticles, semicon-

ductor quantum dots, carbon nanotubes, silicon nanocubes, spiky gold nanoshells) would

also lead to resonantly enhanced (eQe/eeQ/Qee) SFG responses in colloidal suspensions,

provided that the visible-near IR (ω1) and/or the SFG (ω3) frequencies coincide with the

partner resonance modes. Depending on its degree of symmetry, we may for example rea-

sonably expect a quadrupolar SFG emission mediated by the partner through β[1],Qee =

(αQeW ee +αQQWQe)β[0],eee, even though the quadrupolar resonances of αQe (that is bulk-

forbidden) and αQQ are not the dominant linear processes in the far-field when the partner

is alone.

3. SFG from molecular quadrupoles (type 4)

A special attention must also be paid to diagrams of type 4, which are characterized by

bulk-allowed (eQe/eeQ/Qee) β[1] functions [like type 1, but with (ee) coupling and (ee) part-

ner polarizability]. As soon as the bipartite systems follow an isotropic volume distribution,

type-4 diagrams are the sole non-vanishing contributions involving the linear electric dipole

response of the partner and thus arise as the leading ones (notwithstanding their magnetic

counterparts of type 8). However, processes of type 4 may require molecular species which

naturally feature quadrupolar behaviors through β[0]. Three categories of molecular systems

hence come to mind. (i) First, this occurs when the molecular structure exhibits a signif-

icant degree of symmetry, like nonpolar organic molecules or quadrupolar chromophores.

For instance, in the vicinity of liquid/air interfaces, the SFG response of benzene has been

ascribed to its quadrupole transition,33 through a significant β[0],Qee contribution.92 Quite
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recently, some benzene derivatives like ethylbenzene, toluene, benzaldehyde and aniline have

also revealed such properties,79 even though their respective substituents theoretically break

the background centrosymmetry of benzene. In contrast, the interest of quadrupolar chro-

mophores (e.g. D-π-A-π-D structures) for (eQe/eeQ/Qee) SFG is more ambiguous as they

exhibit charge-transfer states with high dipole moments,93–96 which somehow compensate

the vanishing of their ground state dipole moments and may dominate any quadrupolar re-

sponse. The dipolar versus quadrupolar origin of their second-order nonlinear properties has

not been addressed in the literature and the potential of small quadrupolar chromophores

like squaraine derivatives95,97 as quadrupolar SFG probes remains an open question. (ii) Sec-

ond, the antiparallel dimerization of identical molecules can introduce the inversion symme-

try required to cancel their dipolar response. This has been observed by vibrational SFG

spectroscopy for H-bond-stabilized acetic acid dimers,19 whose IR resonance at 1712 cm−1

has been assigned to the quadrupolar response of the C=O vibrations while the SFG am-

plitude appeared proportional to the volume concentration of dimers, confirming its bulk

origin. In the same vein, polarization-resolved hyper-Rayleigh scattering (i.e. scattering

SHG98) experiments have shown that mixed suspensions of cationic amphiphilic molecules

featuring a strong β[0],eee lose their electric dipole response after the increasing addition of

an anionic surfactant (with zero β[0],eee) due to the appearance of centrosymmetric micelles

characterized by a dominant quadrupolar β response.99 (iii) Third and last, we can expect

the intrinsic molecular response to be mainly quadrupole-driven when the electronic struc-

ture of the molecule is initially rich in dark states (i.e. dipole-forbidden excited states), as

is the case for carbon nanotubes.89

B. Magnetic contributions

For a system encompassing neither an external magnetic field nor a permanent magnetization,100

there are essentially two kinds of magnetic contributions to the bipartite diagrams, differing

by the origin of the magnetic response functions as defined in Parts II and III. In the first

family, the magnetic contributions stem from the solid state (i.e. bulk) properties of the

object. They are rather common for condensed matter objects like a solid substrate or a

nanoparticle and follow from achiral components of the bulk-allowed response functions: po-

larizability αmm, hyperpolarizabilities βmee, βeme and βeem. The simplest example is given

32



by the Mie theory for spheres, for which the magnetic dipolar term is driven by coefficient

b1,
77 allowing nanoparticles to participate to type-5b diagrams through αmm. For this kind

of solid state processes, magnetic terms compete with the quadrupolar ones provided that

electric field gradients reach high values, as is especially the case at the boundary of a metal.

In addition, they suffer from their symmetry rules: for instance, the magnetic terms do not

contribute to the SHG signals produced by nanospheres22 or at the surface of a metal.17

We may also mention that noble metal nanoparticles have been shown to exhibit magnetic

properties,101,102 but we have found no report of an influence on their optical properties in

the absence of an external magnetic field.

The second family encompasses all magnetic contributions related to chirality or, beyond

the sole molecular description, to optical activity. Diagrams involving chiral molecules, but

also some objects like chiral nanostructures which contribute to the first family too, pertain

to this second family. Chiral nanostructures, as well as chiral molecules, have nonvanish-

ing αem/me response functions,45–48 specific to chirality.44,103 These rank-2 tensors contain

the so-called “one-electron” chiral contribution to linear optics (in our multipartite system

perspective, we choose to call it the single-object chiral response) and act as sources of

optical rotation76,104,105 and circular dichroism.106–108 As a consequence, they may be experi-

mentally determined or reconstructed from such elementary measurements. Conversely, the

second-order response functions β of the (eee), (eem), (eme) and (mee) kinds encompass

both chiral and achiral components,57 so none of them is intrinsically specific of a chiral

system. It has also been shown that the chirality of an experiment could arise by probing

an achiral molecule under a chiral optical setup109 or in a chiral supramolecular assembly.110

Concentrating on the magnetic contributions to chirality (quadrupolar contributions may

be neglected as far as chirality is concerned37,111), we understand that the situation differs

between linear and second-order nonlinear optics. As for the former, they are essential to

the description of optical activity whereas, for the latter, there is no general agreement

on the need to include magnetic contributions in the analysis of chiral SHG or SFG re-

sponse. As stated in Ref 112: “Clearly, there are still some lingering questions regarding

the general conditions under which contributions beyond the electric dipole approximation

are experimentally significant.”

In the literature, part of the publications show that magnetic contributions play a role

in chiral molecular nonlinear response,51,103,113,114 and that chiral magnetic components of
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the second-order susceptibility may have the same order of magnitude as the chiral elec-

tric components,78,115 while other papers succeed in interpreting experimental data using

electric dipolar contributions only.66,116 It is not central to the present paper to analyze

the reasons for these discrepancies,112 for which we simply provide a non-exhaustive list.

These can indeed relate to: (i) the origin of chirality (there are essentially two kinds of

molecular chirality as described in the SHG and SFG literature: the one-electron helical

model117 and the coupled oscillator model;118 and it has been shown that second-order non-

linear optical response of the former involves magnetic components whereas they are not

necessary for the latter37); (ii) the nature of the investigated system (for highly ordered

or isotropic monolayers, thin and thick films, and chiral liquids, the balance between elec-

tric and magnetic contributions dramatically changes depending on the surface vs. bulk

balance, and ordered vs. disordered molecular assembly; in chiral liquids for example, the

magnetic contributions are estimated to vanish65); (iii) the experimental method, amongst

SHG, homodyne or heterodyne SFG (e.g. chiral liquids produce SFG radiation but no

SHG,119 while heterodyne SFG helps separating surface from bulk chiral contributions);66

(iv) the experimental observables (discrimination between enantiomers by SFG chiral120–122

or differential123,124 polarization schemes; optical rotatory dispersion in SHG,125 linear and

circular dichroisms in SHG126,127 and SFG;128 determination of a full set of electric and mag-

netic tensor components by continuous polarization tuning103); (v) the resonance phenomena

(when vibrational or electronic resonances are involved, in the specific cases of IR activity,

Franck-Condon vibronic coupling or breaking of the Born-Oppenheimer approximation, their

selection rules and dispersion relation modulate the response; for example, vibrational SFG

in chiral liquids requires an electronic resonance to enhance the antisymmetric part of the

Raman tensor67,129); (vi) the interactions involved in the nonlinear process. In all situations

for which the experimental conditions are not designed to separate electric from magnetic

contributions, it is conceivable that some experimental signals attributed only to (eee) terms

encompass in fact also inseparable magnetic contributions, in particular from the bulk.

1. Review of the first-order chiral response

As mentioned in point (i), the nature of chirality controls the properties of the chiral

response. For single objects, the one-electron activity is enough.35,76,104,130,131 However, op-
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FIG. 3. Representative bipartite diagrams for linear response functions α[1](ω). In this case, the

asymmetry between molecule and partner is lost, as they are both the locations of α-driven linear

processes.

tical activity has been known for long to also stem from an assembly of chiral or achiral

objects. Apart from the supramolecular assemblies of oriented achiral entities,110 there is a

huge literature on the optical activity of coupled noncoplanar dipoles132 and, more gener-

ally, of polymers and peptides described as aggregates of identical monomers in interaction,

either randomly or partially oriented.108 For such systems, there are three sources of opti-

cal activity:38,133 the single-object response (driven by αem and αme), the coupled electric

dipolar response (chirality of the Kuhn type132,134) and the coupled electric-magnetic dipo-

lar response (chirality of the “µ-m” type38). Several equivalent methods have been estab-

lished in order to account for such effects,108 either by quantum mechanical40,133 or classical

approaches.13 They consider optical activity created and modified by dipole-dipole coupling

(i.e. involving W ee) between monomers. In other words, they take into account the influ-

ence of the diagrams of types 5a and 8 (more precisely, their counterparts in linear optics,

which are in fact symmetric between molecule and partner) and also, more unexpectedly,

of the diagrams of type 0. Figure 3 illustrates these three cases, giving rise to bipartite α[1]

response functions.

In order to briefly review the origins of such processes, we consider a bipartite system

wherein partner and molecule are identical. Contrary to the single-object chirality, the chiral

response of noncoplanar coupled dipoles remains fully described by electric dipolar contri-

butions as it only involves two electric dipoles oscillating at the partner and the molecule (a

35



classical interpretation shows the equivalence with a hybrid electric-magnetic mechanism38).

In the diagrammatic perspective, this mechanism is simply represented by a type-0 diagram

of the first order response function α[1],ee (Fig. 3). In the literature, W ee is usually consid-

ered at the static level,134 meaning that no ω|R|/c retardation term is considered in Eq. (10)

as for the energy transfer. However, retardation in the propagation of the light beam trav-

eling from partner to molecule, neglected up to now, is taken into account through a factor

eik·(r2−r1) = e−ik·R, where k = ω/c k̂ is the wavevector of light. A plane wave description is

again assumed. At first order, e−ik·R ≈ 1 − ik ·R and the coupling constant in Eq. (9) is

modified into:

(Cee
ab,mn)retarded ≈

∑
h,l

plabW
ee
lh (1− ik ·R) phmn = Cee

ab,mn + (Cee
ab,mn)chiral, (40)

where plab and phmn refer to the molecule and the partner, respectively. The first term is re-

sponsible for the α[1],ee response due to the achiral electric dipole-dipole coupling. Retaining

only the second term, responsible for the chiral response, we plug it into a bipartite diagram

(Fig. 3, type 0) to get:

[α
[1],ee
ij (ıω)]chiral =

ıω

c
(k̂ ·R)

∑
l,h

αee
il (ıω)W

ee
lh (ω)α

ee
hj(ıω). (41)

Here, α is the polarizability of each object inside the system, which also integrates the

effects of the Cee
ab,mn couplings, leading for example to excitonic splitting.135,136 In an isotropic

material, the rigid bipartite system may take any orientation with respect to the laboratory

axes. Using the properties of rotational averaging105 ⟨T ⟩ijk = −1/6
(∑

i,j,k Tαβγϵαβγ

)
ϵijk

over the third rank tensor Tijk =
∑

l,h α
ee
il W

ee
lh (ω)α

ee
hjRk, we see that only the terms with

i, j, k all different survive. We note that this is the essence of a chiral response, which

requires to involve the three directions of space and changes sign with the handedness. If

we fix ȷ̂ as the direction of the electric field E = |E| ȷ̂, the average electric dipole created

by ⟨α[1],ee
chiral⟩ij is oriented along ı̂, i.e. along the magnetic field B = −|E|/c ı̂. We have:

⟨pchiral⟩ = ⟨α[1],ee
chiral⟩ij |E| ı̂ = ıω

6
(k̂ ·R)

∑
l,h

αee
il W

ee
lh αee

hj B. (42)

Using the Mawxell-Faraday equation ıωB = ∇×E, we recover ⟨pchiral⟩ = g∇×E, where
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g is given by the Kirkwood equation105,134,137 and quantifies the chiral response (e.g. optical

rotation).138,139 We note that, in the literature, Eq. (40) is equivalently transformed into

the projection of the quantity R · (pmol × ppartner) onto states (a, b,m, n), which becomes

the source of chirality.13,40,108,140 For practical systems involving polymers, the scheme is

extended to an arbitrary number of monomers by summing up over monomers and using

the self-consistent achiral polarizability as α, this quantity being easily accessed by linear

(e.g. absorption) spectroscopy.

In the “µ-m” scheme (that we could call here “p-µ” scheme, as we depict the electric

and magnetic dipoles by p and µ, respectively, whereas µ and m are often used instead

in the original literature on the subject), chirality stems from a molecule-partner interac-

tion wherein the light-induced dipolar transition moments are, on the one hand, electric

(resp. magnetic) at the molecule and, on the other hand, magnetic (resp. electric) at the

partner.13,40,108 In terms of our diagrammatic description of the first-order response, it in-

volves diagrams of types 5a and 8 (Fig. 3), where the chiral response of the bipartite system

is driven by:

−α
[1],em
ij (ıω) = αee

il (ıω)W
ee
lh (ω)α

em
hj (ıω), (43)

and:

−α
[1],me
ij (ıω) = αme

il (ıω)W ee
lh (ω)α

ee
hj(ıω), (44)

respectively. Diagrams of types 5b, 6 and 7 are not considered in the literature because,

as it is sometimes stated:38 “magnetic dipoles do not couple directly with electric dipoles.”

This is true when only electric dipolar interaction (W ee) between molecule and partner is

considered. Attempts to extend this coupling to quadrupolar interaction have been made,38

but not to W em and Wme. The underlying hypothesis is that only the static terms for

interaction are considered, leaving only (ee), (eQ), (Qe) and, with a lower magnitude, (mm)

W tensors. When these tensors are extended to include retardation of the dipole and

quadrupole radiations [i.e. ω|R|/c contributions in Eq. (10), (28) and (31)], new types of

processes become allowed. We indeed wonder why retardation should be taken into account

[Eq. (40)] in the propagation of light beams to account for the response of coupled dipoles,

but not in the interaction Hamiltonians. These new processes mediated by W em and Wme

mix the single-object achiral (αee) and chiral (αem/me) responses to generate an electric

dipolar response. This time, the “µ-m” coupling is buried inside the system, still leading to
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a chiral response.

2. Second-order response

By analogy with linear optics, the three sources of chirality listed in the previous Part

build up the chiral response functions of nonlinear optics in multipartite systems. Chirality

of the response is to be estimated on the basis of the complete β[1] function but, as will

be briefly detailed below, we have to distinguish three cases corresponding to the three

schemes listed in Part VB1: the chiral response may be located at the molecule (single-

object scheme), at the partner (“µ-m” scheme) or result from the chiral interaction between

both (coupled oscillators). In the single-object scheme, the molecule is fully responsible

for the chiral response and directly generates (eee), (eem), (eme) and (mee) responses at

the β[0] level.37,117 It does not need coupling with a partner but, as in the electric dipole

approximation, the response functions are modified by the presence of any kind of achiral

partner in types 0, 5b, 7a and 8 diagrams. The coupled dipoles have been extensively used

to describe the chiral SFG response of molecules like binaphtol in a phenomenological point

of view: the bipartite system is considered as a whole and the chiral properties of β[1] follow

from the contraction with the Levi-Civita tensor ϵijk upon rotational averaging141 and from

the underlying R · (p × p) scheme.128,140 Other descriptions follow from the mechanical

oscillations of electrons with coupled moves.37,139 To our knowledge, a description of the

chiral SFG response of noncoplanar dipoles in terms of type-0 diagrams, i.e. in the same

line as the Kirkwood equation, has never been considered. We note that such a “Kirkwood-

like” description would make it easier to introduce the resonant processes required for the

nonvanishing of the chiral response.37,65,142 Finally, in the “µ-m” schemes, the magnetic

contribution required to induce a chiral response is set on the partner through αem and

αme, and transferred to the molecule in type-5a, -6 and -7b diagrams. This time, only the

partner needs to be chiral, which is of course the case as far as a chiral polymer is concerned,

but may also apply to a chiral nanoparticle coupled to an achiral molecule. We note the

particular case of type 7b, for which the chiral response may be considered on either the

molecule or the partner.

For identical molecule and partner, type-5a diagrams transform an electric dipolar (eee)

β[0] response into a mixed electric-magnetic response by coupling to neighboring molecules
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through their αme/em, while the same kind of response is conversely generated in type-

8 diagrams from a mixed (eem), (eme), (mee) β[0] molecular response through the usual

(ee) polarizability. Both types rely on electric dipole-dipole coupling. This illustrates the

difference between nonlinear (Fig. 2) and linear (Fig. 3) optics: for the former, the coupled

tensors β[0] and α refer to different optical processes. In other words, the role of each object

is well defined. For the latter, the α response is common to molecule and partner, making

it necessary to use a self-consistent method to establish the link between the polarizabilities

of the monomers with and without coupling. When dealing with the second order response,

it is implicitly assumed that all the couplings have already been included at first order, so

that the α response functions to be used in the implementation of the method (e.g. types

5a and 8) are those of the coupled system. As such, they directly flow from experimental

data (e.g. absorption for αee, optical rotation or circular dichroism for αme/em).

In addition to types 5a and 8, the other types relate on electric-magnetic or magnetic-

magnetic dipole-dipole coupling, usually discarded in the literature. These are interesting

for two reasons. First, in types 5 and 7, the coupling transforms a mixed electric-magnetic

β response into an (eee) response (and vice versa). For type 7a in particular, this is done by

coupling to the dominant (ee) molecular polarizability (still in the case of identical molecule

and partner). The consequence is that a part of the monomer (mee/eme/eem) response [resp.

of the monomer (eee) response] is experimentally measured as an (eee) contribution [resp.

a (mee/eme/eem) contribution] in the bipartite system. Depending on the order inside

the sample, and on the presence of bulk contributions, the sum of all the contributions

of types 0, 5, 6, 7 and 8 may tune the balance between (eee) and mixed (mee/eme/eem)

terms. It appears interesting to investigate their influence on the debated relative magnitudes

of electric and magnetic terms in the SHG and SFG responses. Second, for all types of

diagrams, the coupling makes it possible to modify the (ijk) indexing of a second-order

tensor component. Consequently, as there are chiral and achiral components for each kind

of tensor, it is possible to create a chiral β[1] response from an achiral β[0] and vice versa.

This is a purely nonlinear optical effect as the equivalent does not exist in linear optics.
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VI. CONCLUSION

Second-order nonlinear processes like SHG and SFG have always been exploited for their

symmetry properties, in relation with the geometry of the probed material. This directly

results from the fact that nonlinear optics is essentially described in the literature within

the frame of the electric dipolar approximation. Still, the question of the physical origins

of the SFG signals actually measured in an experiment (surface vs. bulk, chiral vs. achi-

ral) also closely relates to the electric quadrupolar and magnetic dipolar responses of the

probed materials. Such quadrupolar and magnetic contributions are partially considered in

the literature to account for the first hyperpolarizabilities of simple molecular systems (i.e.

single objects). Here, we provide a comprehensive study of the quadrupolar and magnetic

contributions to SFG in the more complex case of bipatite composite systems, based on the

diagrammatic theory of nonlinear optics that we have developed earlier. In accordance with

the multipolar expansion of electromagnetic interactions, we generalize our formalism, pre-

viously applied at the electric dipole level (‘e’), to the electric quadrupole (‘Q’) and magnetic

dipole (‘m’) levels of theory. We then introduce new one- and two-loop diagrams dedicated

to the computation of hybrid ‘e-Q’ and ‘e-m’ optical response functions, and thus generate

a set of new nonlinear mechanisms sorted according to their specific symmetry rules and

the systems they apply to. In particular, we examine the consequences of our formal re-

sults on molecule-nanoparticle and molecule-molecule binary systems. For the former, the

quadrupolar contributions enable us to account for size effects and non-dipolar electronic

enhancement: depending on the sizes of the molecule, the nanoscale partner and their gap,

the quadrupolar response may become dominant and resonant with the input and output

light beams. Quadrupole-enhanced SFG thus appears as an interesting development path

for vibrational spectroscopy. As for bipartite systems made of two identical molecules, our

diagrammatic treatment of magnetic contributions proves to account well for chiral SFG:

considering a single molecule as a monomer, we especially describe how loop diagrams can

be used to build up the chiral response of molecular aggregates and polymers, formalizing

the connection between the three classical schemes of chirality (i.e. one-electron model,

Kuhn-Kirkwood mechanism and hybrid electric-magnetic dipole coupling).

Hence, this article provides a unified formalism to treat the electric dipole-, electric

quadrupole- and magnetic dipole-driven linear and nonlinear optical responses of composite

40



systems. We have particularly focused on relating our approach to the existing literature

in order to place our work in the continuity of established formalisms. The tools that are

elaborated here are designed for a straightforward implementation and are illustrated with

various well-known and exploratory systems, which are as many development paths and new

tracks for experimenters and theoreticians.
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Appendix A: Computation method for composite loop diagrams

As developed in Refs. 11 and 12, the computation of a loop diagram is based on twelve

Feynman rules. We do not reproduce these rules here (we refer the reader to the origi-

nal publications) but briefly list the steps of the computation. As it describes an optical

response function, a diagram generally consists of (i) several loops, representing the enti-

ties (or subsystems) composing the system and connected by interaction bosons, and (ii)

photons, representing the interactions of the system with the outside (i.e. the inputs and

output of the response function). Computation first consists in identifying the order of the

response function from the number Np of photons involved. Each diagram involving Np

photons is associated to an (Np − 1)th-order function: whatever its number Nl of loops, a

diagram represents a first-order α function for Np = 2 and a second-order β function for

Np = 3. The diagram is also characterized by the number Nv of interaction processes, each

one taking place at a vertex located on a loop: we count Np light-matter interactions (be-

tween the photons and the subsystems) and (Nv −Np) matter-matter interactions (between

the subsystems), mediated by interaction bosons. We remind that two vertices linked by a

boson only count for one interaction process. For each interaction indexed by i ∈ J1, NvK,

the associated coupling constant Ci derives from the corresponding interaction Hamiltonian:

it is defined by Eq. (8) and (9) for a matter-mater interaction, and simply reads pjnm, µ
j
nm

and qξjnm for dipolar, magnetic and quadrupolar light-matter interactions, respectively, pro-

jected over the polarization of light j. All Ci include a sum over the quantum states of the

subsystem(s) involved in the interaction process (e.g. {abmn} in Eq. (9) for matter-matter

interaction and {mn} for light-matter interaction).

For interested readers, we describe here the “machinery” leading to the response functions

in their final form in imaginary frequencies. Other readers may skip this paragraph. For

each of the Nl loops, we assign an implicit Matsubara frequency (e.g., ıων) to the propagator

associated to the initial state of the subsystem. We then apply the energy conservation

(in terms of imaginary frequencies) at each vertex by ensuring that the constitutive energy

relationship (e.g., ıω3 = ıω1+ıω2) applies at one and only one vertex. Each loop now appears

as a set of interaction vertices (to which a coupling constant Ci is assigned), responsible for

a change in quantum states as described by Ci, and linked by propagators describing the

evolution of their corresponding quantum state. Each propagator is thus associated to
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an imaginary-time Green’s function Gnn(ıων + ıωn) where n is the label of the quantum

state and ıωn the imaginary frequency that has been assigned to it by the conservation of

energy (it can be checked that ωn is necessarily a positive or negative photon frequency,

or zero). The response function of the diagram is obtained by multiplying the coupling

constants Ci and the imaginary-time Green’s functions, and summing their product over all

the implicit Matsubara frequencies and the quantum states. The sum must be weighted by

(−1)Np+1 ·bNp−Nv−1 ·ℏNp−2Nv , where 1/b = kBT is the thermal energy. The response function

f thus gets the following generic form:

f(ω1, · · · , ωNp−1) =
(−1)Np+1

b−Np+Nv+1ℏ−Np+2Nv

∑
{ν}

∑
{n}

∏
n

Gnn(ıων + ıωn)
Nv∏
i=1

Ci, (A1)

where the first sum is over the set of the Nl Matsubara frequencies and the second one over

the set of all quantum states. For diagrams involving loops linked by two or more bosons

(which does not apply in the present article), additional rules and approximations apply,

detailed in the Supplementary Material of Ref. 12. The sum over Matsubara frequencies is

solved by application of the residue theorem, along the lines recalled in Ref. 11.

For diagrams involving only one loop (i.e., only light-matter Ci constants), the residue

theorem generates a sum of Np terms. Each term relates to one of the propagators (reference

state, e.g. m) and is the product of the Np coupling constants Ci weighted by the density

matrix diagonal element of the reference state ρ̂mm, and (Np − 1) energy denominators

containing the energy difference between the reference state and all the other states in

the loop. The total elementary response function is obtained by summing all the different

diagrams corresponding to the (Np − 1)! permutations of the photons. First-order response

functions α thus sum up two terms [Eq. (2)], and second-order β functions group 3× 2 = 6

terms [Eq. (3)]. For diagrams involving several loops, the sums over Matsubara frequencies

are separable, one per loop: each sum transforms the product of light-matter Ci and Gnn(ıω)

associated to this loop into an elementary response function. The full diagram therefore

involves a matrix product (or a tensor contraction) of elementary response functions and

matter-matter coupling constants, as is seen in Eq. (34−38). The diagram can be directly

read in this case by following the energy flow of each photon from right to left as illustrated

in Fig. 2.
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Appendix B: Elementary response functions

From the diagram in Fig. 1i, we use the Feynman rules11 to deduce the {i, j} term of the

tensor αem:

αem
ij (ıω) =

(−1)3

ℏ2b
∑
n,m;ν

pimn µ
j
nm Gmm(ıων)Gnn(ıων + ıω), (B1)

where Gmm(ıων) is the imaginary-time Green function of state |m⟩ and b = 1/kBT . Applying

the residue theorem to Eq. (B1) gives:

αem
ij (ıω) = −1

ℏ
∑
n,m

pimn µ
j
nm

ρ(ωm)− ρ(ωn)

ωm − ωn + ıω
(B2)

where ρ(ω) is the Fermi-Dirac distribution. Using the equivalence between ρ(ωm) and ρ̂mm,
11

we have:

αem
ij (ıω) =

1

ℏ
∑
n,m

ρ̂mm

(
pimn µ

j
nm

ωnm − ıω
+

µj
mn p

i
nm

ωnm + ıω

)
, (B3)

where ωnm = ωn − ωm. Identically, we have:

αme
ij (ıω) =

1

ℏ
∑
n,m

ρ̂mm

(
µi
mn p

j
nm

ωnm − ıω
+

pjmn µ
i
nm

ωnm + ıω

)
. (B4)

It can be checked that both quantities are related by αme
ij (ıω) = αem

ji (−ıω). In addition,

when they apply to a molecule, the wavefunctions of the states may be considered real, and

the dipolar and magnetic transition moments become real and imaginary, respectively.36,107

Using the fact that, for Hermitian operators, transposed matrix elements are conjugated, we

get in this particular case αme
ij (ıω) = −αem

ji (ıω), which may be generalized to chiral reciprocal

entities.47

From the diagram drawn in Fig. 1c representing αeQ, we get in the same manner:

αeQ
iξj(ıω) =

(−1)3

2ℏ2b
∑
n,m;ν

pimn q
ξj
nmGmm(ıων)Gnn(ıων + ıω). (B5)

The main difference with αem lies in the tensor rank, which is here increased to 3 because

of the matrix nature of q = (qξi). Since the residue theorem only applies to the sum over ν

[i.e. 1
b

∑
ν Gmm(ıων)Gnn(ıων + ıω)], the computation of αeQ

iξj is formally the same as that of
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αem
ij , simply changing µj into 1

2
qξj:

αeQ
iξj(ıω) =

1

2ℏ
∑
n,m

ρ̂mm

(
pimn q

ξj
nm

ωnm − ıω
+

qξjmn p
i
nm

ωnm + ıω

)
. (B6)

Identically, we have:

αQe
ξij(ıω) =

1

2ℏ
∑
n,m

ρ̂mm

(
qξimn p

j
nm

ωnm − ıω
+

pjmn q
ξi
nm

ωnm + ıω

)
. (B7)

Eqs. (B6) and (B7) coincide with the perturbative expressions obtained by A. Morita143

[Eqs. (10) and (9) in this reference, respectively] and C. Neipert et al.144 [Eqs. (2.13) and

(2.14) in this reference, respectively]. It can also be checked that αeQ
iξj(ıω) = αQe

ξji(−ıω).

The previous examples illustrate the fact that elementary functions involving one mag-

netic dipole (resp. electric quadrupole) vertex may be easily deduced from the purely electric

dipolar ones by replacing the corresponding electric transition dipole by its magnetic (resp.

quadrupolar) analogue.145,146 Consequently, the generic term of tensors βeem, βeme and βmee

(resp. βeeQ, βeQe and βQee) are deduced from Eq. (3) by replacing pk, pj and pi transition

moments by µk, µj and µi (resp. 1
2
qξk, 1

2
qξj and 1

2
qξi), respectively. This is actually very

general for magnetic and quadrupolar terms, and flows from the expressions of the corre-

sponding terms in the light-matter interaction Hamiltonian.147 As an example, the generic

term for βeem is given by:

βeem
ijk (ıω1, ıω2) =

1

ℏ2
∑
m,n,r

ρ̂rr

[
pirnp

j
nmµ

k
mr

(ωnr − ıω3)(ωmr − ıω2)
+

pimnp
j
nrµ

k
rm

(ωrm − ıω2)(ωrn + ıω1)

+
pimrp

j
rnµ

k
nm

(ωmr + ıω3)(ωnr + ıω1)
+

pirnp
j
mrµ

k
nm

(ωnr − ıω3)(ωmr − ıω1)

+
pimnp

j
rmµ

k
nr

(ωrm − ıω1)(ωrn + ıω2)
+

pimrp
j
nmµ

k
rn

(ωmr + ıω3)(ωnr + ıω2)

]
. (B8)

The last three terms of the bracket are deduced from the application of Feynman rules to the

diagram of Fig. 1k, while the first three ones flow from its brother diagram (1 ↔ 2) obtained

by permutation of the two inputs (Ej, ω1, p
j) and (Bk, ω2, µ

k). In the same manner, we
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can straightforwardly write the quadrupolar contribution βQee for instance:

βQee
ξijk(ıω1, ıω2) =

1

2ℏ2
∑
m,n,r

ρ̂rr

[
qξirnp

j
nmp

k
mr

(ωnr − ıω3)(ωmr − ıω2)
+

qξimnp
j
nrp

k
rm

(ωrm − ıω2)(ωrn + ıω1)

+
qξimrp

j
rnp

k
nm

(ωmr + ıω3)(ωnr + ıω1)
+

qξirnp
j
mrp

k
nm

(ωnr − ıω3)(ωmr − ıω1)

+
qξimnp

j
rmp

k
nr

(ωrm − ıω1)(ωrn + ıω2)
+

qξimrp
j
nmp

k
rn

(ωmr + ıω3)(ωnr + ıω2)

]
.(B9)

It is identical to the expansion made by A. Perry et al.148, for whom the hyperpolarizability

tensor is named and indexed χQs
ijkl(ωvis, ωIR) in the context of vis-IR SFG spectroscopy [see

Eq. (40) of this reference].

Appendix C: Fresnel factors for hybrid electric-magnetic response functions

We consider a three-layer model consisting of two infinite plane interfaces [in the (x̂, ŷ)

plane] separating three media labelled [1], [2] and [3], each characterized by a complex

refractive index (e.g. n[1]). Thickness of medium [2], where the nonlinear process takes

place, is supposed negligible as compared to the wavelength of light. The input light beams

(i = 1, 2) are incident (wavevector ki = ωi/c k̂i, angle of incidence θ
[1]
i ) on the system from

medium [1] and SFG is emitted at ω3 towards the same medium in reflection. For a more

complete description of the model and notations, please refer to Ref. 57 and 4. Fresnel factors

for the incoming beams relate E[2](ωi) andB[2](ωi), the field amplitudes inside layer [2], to the

far electric field amplitude E0(ωi) in medium [1]. We have E
[2]
α (ωi) = Fα(ωi)E

0(ωi)e
[1]
α (ωi),

where α stands for {x, y, z} and e
[1]
α (ωi) is the projection of the unit polarization vector of

light ê[1](ωi), i.e. a combination of its ŝi and p̂i unit vectors, onto coordinate α. Values

for Fα(ωi) may be written in short notation Fx(ωi) = [1 − r13p (ωi)], Fy(ωi) = [1 + r13s (ωi)]

and Fz(ωi) = [1 + r13p (ωi)] (n
[1]/n[2])2, where r13s/p are the reflectivity coefficient at the {13}

interface for s and p polarizations, respectively. More detailed expressions may be found in

the literature.4,54,59 For an electromagnetic plane wave, when the electric field is polarized

along ŝi (resp. along p̂i), the magnetic field is polarized along −p̂i (resp. along ŝi). In

other words, the magnetic field is polarized along ê[1],B(ωi) = k̂i × ê[1](ωi). We define the
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incoming Fresnel factors of the magnetic field FB(ωi):

Bα(ωi) = FB
α (ωi)e

[1],B
α (ωi)E

0(ωi), (C1)

with, using Ref. 57 and the formulas of Ref. 4:

FB
x (ωi) =

n[1]

c
[1− r13s (ωi)],

FB
y (ωi) =

n[1]

c
[1 + r13p (ωi)],

FB
z (ωi) =

n[1]

c
[1 + r13s (ωi)]. (C2)

For simplicity, we consider the macroscopic SFG response of layer [2] as described by its

surface nonlinear susceptibilities χ(2),eee, χ(2),eem, χ(2),eme and χ(2),mee, each being related

to one response function βeee, βeem, βeme and βmee through χ(2) = Ns⟨β⟩, where Ns is

the surface density of entities and brackets denote appropriate orientation averaging. The

nonlinear susceptibilities are the sources of nonlinear polarization P (ω3) and magnetization

M (ω3) in medium [2]. The Fresnel factors for the reflected SFG beam are defined by:

E0(ω3) =
2iπω3

cn
[1]
3 cos θ

[1]
3

∑
α

Fα(ω3)e
[1]
α (ω3)P

[2]
α (ω3), (C3)

and:

E0(ω3) =
2iπω3

cn
[1]
3 cos θ

[1]
3

∑
α

FB
α (ω3)e

[1],B
α (ω3)M

[2]
α (ω3), (C4)

where it can be checked that the formal expressions for Fα(ω3) and FB
α (ω3) are identical

to their counterparts for ω1 and ω2 [Eq. (C2)]: the universality of the three Fresnel factors

also applies to the magnetic components. Finally, the SFG intensity, as measured by the

experimenter, reads:

I(ω3) =
8π3(ω3)

2

c3n
[1]
3 n

[1]
1 n

[1]
2 (cos θ

[1]
3 )2

|χ(2)
eff |

2I(ω1)I(ω2), (C5)
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wherein the quantity χ
(2)
eff including electric and magnetic contributions is defined by:

χ
(2)
eff =

∑
αβγ

Fα(ω3)e
[1]
α (ω3)Fβ(ω1)e

[1]
β (ω1)Fγ(ω2)e

[1]
γ (ω2)χ

(2),eee
αβγ

+ Fα(ω3)e
[1]
α (ω3)Fβ(ω1)e

[1]
β (ω1)F

B
γ (ω2)e

[1],B
γ (ω2)χ

(2),eem
αβγ

+ Fα(ω3)e
[1]
α (ω3)F

B
β (ω1)e

[1],B
β (ω1)Fγ(ω2)e

[1]
γ (ω2)χ

(2),eme
αβγ

+ FB
α (ω3)e

[1],B
α (ω3)Fβ(ω1)e

[1]
β (ω1)Fγ(ω2)e

[1]
γ (ω2)χ

(2),mee
αβγ . (C6)

Appendix D: Equivalence with traceless quadrupole moment

To demonstrate the equivalence between our description of (eQ) couplings based on W eQ

and that of A. B. Evlyukhin et al.50,60, we first write W eQ
lζh = WQe

hlζ in a compact form:

W eQ
lζh(ω,R) = R̂hδlζ X16

(
ω|R|
c

)
+ R̂hR̂lR̂ζ X17

(
ω|R|
c

)
+ (δhζR̂l + δhlR̂ζ)X18

(
ω|R|
c

)
,

(D1)

where X16, X17 and X18 are the polynomials in brackets in Eqs. (16), (17) and (18), respec-

tively, weighted by factor eıω|R|/c/8πε0|R|4. According to Eqs. (7) and (23) in Refs. 60 and

50, the quadrupolar Green’s tensor GQ reads:

GQ
ij =

ε0c
2

3ω2

[
δij(X16 +X18) + R̂iR̂jX17

]
. (D2)

From Eq. (D1), we have:

∑
h,ζ

W eQ
lζh qζh =

∑
h,ζ

[
R̂hδlζ (X16 +X18) + R̂hR̂lR̂ζ X17

]
qζh + R̂l (Tr q)X18, (D3)

where we used the identity
∑

h,ζ δhζ qζh = Tr q. To relate it to GQ and q′ = 3 q − (Tr q)1,

we compute:

ω2

ε0c2

∑
h,ζ

GQ
lζ R̂h [3qζh − (Tr q) δζh] =

3ω2

ε0c2

∑
h,ζ

GQ
lζ R̂h qζh −

ω2

ε0c2
(Tr q)

∑
h

GQ
lh R̂h. (D4)

We can identify the right-hand sides of Eqs. (D3) and (D4). Using Eq. (D2), the first sums

over h and ζ are equal in both equations. As for the second sum in Eq. (D4), over h, we
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can check that:
ω2

ε0c2
(Tr q)

∑
h

GQ
lh R̂h = −R̂l (Tr q)X18, (D5)

where we used
∑

h R̂
2
h = 1 and X16+X17+X18 = −3X18. We thus retrieve the second term

of Eq. (D3) and demonstrate Eq. (22).
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