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Abstract. Case-based reasoning (CBR) is a popular approach for problem-
solving and decision-making that involves using previous cases as a basis
for reasoning about new situations. While CBR has shown promise in
many domains, it is not immune to errors and failures. One limitation of
the approach is that it tends to focus primarily on successful cases, ignor-
ing the potential value of failed cases as a source of learning and insight.
While many studies have focused on the role of successful cases in CBR,
less attention has been given to the value of analyzing failed cases. In
this paper, we explore the benefits of reasoning from both successful and
failed cases in CBR. We argue that by examining both types of cases, we
can identify patterns and insights that can help to refine CBR methods,
improve their accuracy and efficiency, and reduce the likelihood of fu-
ture failures. Using a combination of theoretical modeling and empirical
analysis, we demonstrate that failed cases can provide valuable insights
into identifying potential solutions that might otherwise be overlooked.
To illustrate our approach, we present a case study in which we apply
our reasoning methodology to a real-world problem in the field of energy
management. Our analysis demonstrates that by considering both suc-
cessful and failed cases, we can identify new and more effective solutions
to the problem at hand.

Keywords: Case-based reasoning · adaptation · successful case · failed
case.

1 Introduction

Case-based reasoning (CBR) is certainly the most intuitive approach of artificial
intelligence to solve a problem since it mimics human behavior in problem-
solving. A CBR system looks in its memory represented by a base of previously
solved experiments called source cases, for cases having similar problems to the
target problem to be solved by adapting their solutions if necessary. The target
solution is revised to make sure of its adequacy to solve the target problem and
finally the base of cases is enriched following the new experiment of resolution of
the target case. Each step of the reasoning process is supported by a process of
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acquiring the necessary knowledge to perform this step. It is worth highlighting
the close connection between the knowledge of the different stages of the CBR
approach.

Of the four principal stages of the reasoning process, adaptation is a cru-
cial stage since the quality of the solution heavily depends on its performance.
Its focus is on fitting the solutions of similar source cases to meet the spe-
cific requirements of the target problem. This is particularly important since the
source problems usually do not match the target problem, and as a consequence,
without this step, the CBR system cannot ultimately generate an appropriate
solution to the target problem. Awareness of the pivotal role that adaptation
plays was noted from the early days of CBR systems, as a result, there is a
large number of studies exploring various approaches to acquiring adaptation
knowledge to improve its performance.

Existing adaptation approaches focus exclusively on cases whose solutions
are deemed relevant to the corresponding problems (hereafter these cases are
referred to as successful cases and are denoted by C+). The appreciation of
success is subjective to the application domain, e.g., in the context of the CBR
application in the elaboration of an energy management system in a building,
a successful case would correspond to a scenario satisfying the user’s comfort
while minimizing the energy expenditure. However, there are also failed cases. A
failed case (noted hereafter C−) is a case having an unsatisfactory solution to the
problem to solve, in particular, these are cases proposed by the adaptation pro-
cess but rejected during the validation stage. Moreover, the adaptation process
often involves the acquisition of the knowledge required to generate the adap-
tation rules. Usually, such knowledge is strongly dependent on the application
domain, making the acquisition process complex and challenging to understand
and grasp.

Surprisingly, despite a large number of research studies and an increased
interest in the adaptation issue, few works are concerned with the challenge of
proposing a domain-independent adaptation approach. Even less studies consider
adaptation from the solution quality perspective, i.e., addressing both failed and
successful cases. These cases are seldom used by the CBR systems even though
they constitute potentially useful source of knowledge.

In this work, we propose a novel perspective on the adaptation process of the
CBR paradigm, based on a fully domain-independent approach and drawing on
both successful and failed cases. In particular, the present study proposes a new
approach to the acquisition of adaptation knowledge exploiting both successful
cases and failed ones. The approach takes its inspiration from studies in the
planning of the path of a robot moving towards a destination in an unknown
and insecure environment (includes obstacles). The originality of this approach
consists in applying artificial forces to the solution to be proposed to move away
from failed source solutions and move closer to successful source solutions.

The rest of this paper is arranged as follows. Section 2 introduces an illus-
tration of motivation and the background of this work. Section 3 details the
contribution to harnessing failed and successful cases for a new adaptation ap-
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proach. An evaluation of the proposed approach is presented and discussed in
Section 4, before drawing conclusions about this work and outlining some guide-
lines for future work in Section 5.

2 Motivating example and preliminaries

A CBR-based energy management system (EMS) in a building is a representa-
tive case study of the systems relevant to the scope of this study. The objective
of an EMS is to fulfill the user’s desire for thermal comfort, air quality, etc.
while minimizing the energy consumption in the building. Indeed, a building
is a complex system whose potential to save energy depends on several factors
with dependencies difficult to identify [3], such as climate, building materials,
geographical position, and energy rate, but also the occupant of the building ex-
ercises a major influence. Findings of earlier work [7] has already highlighted the
advantage of acquiring adaptation knowledge in improving the performance of a
CBR-based EMS. Furthermore, due to the growing awareness of environmental
issues, several studies have focused on the correlation between energy consump-
tion in a building and the comfort of its occupants, leading to the definition of
standards [5,1,2] to estimate the comfort of users. Thanks to the norms defined
in these standards, the revision process can gauge the quality of the target solu-
tion proposed by the adaptation process, allowing the retention process to label
this solution as a successful case C+ or a failed one C−.

In the CBR-based EMS proposed in [3], the objective is to make the user
conscious of the influence of his actions on the energy behavior of the building.
For this, the system guides the user in his actions by advising him on a set of
actions aiming at decreasing the energy waste while considering his comfort. A
case describes the energy management scenario of a building for one day. The
actions retained in the system case base are the actions effectively carried out
by the building occupant, so there is no guarantee that they are actions that
generate satisfactory effects for the occupant. For this reason, the system is
provided with a function to evaluate the performance of the actions stored in
the case base, allowing to label the corresponding cases with the appropriate
labels (C+ or C−).

2.1 Founding notions and notations about CBR approach

The memory of a CBR system is made of a set of source cases Csr which con-
stitute a case base CB.

Case description. Let C, A, and E be three mutually disjoint sets. A case is
a triplet (C ,A, E) ∈ C× A× E where:
– C is an element of the context domain C, i.e., the imposed elements of the

problem over which one cannot exert control. For instance, in a CBR-based
disease treatment system, the context data can be the different physiological
measures of the patient (blood pressure, glycemic rate, etc.).
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– A is an element of the action domain A, i.e., elements that can be controlled
to achieve the relevant outcomes. It represents the solution proposed by the
system. For instance, the names and the protocol for administering the drugs
prescribed in a CBR-based disease treatment system.

– E is an element of the effect domain E, i.e., elements describe the state of
the system after applying action A to context C . For instance, the patient’s
physiological measures after the treatment.

A target context Ctg is a context for which the CBR system tries to predict
target actions Atg to generate target effects Etg and thus elaborate a target case
Ctg. Formally, the resolution of a problem in the CBR paradigm is defined by
Equation (1).

CBR system: (CB,Ctg) 7−→ Atg

Ctg ≜ (Ctg,Atg, Etg)
(1)

With CB – the case base.

Retrieving and adaptation. A full presentation of the reasoning process is
beyond the focus of this paper, but due to the particular connection between
adaptation and retrieving knowledge, it is usually necessary to present the adap-
tation process in conjunction with the retrieval process. Indeed, the reasoning
process modeled by Equation (1) is made up of two main steps.
– retrieval process: Given a threshold σ for the distance between the context

variables of the source cases and the target context, the retrieval process
consists of identifying the source cases having a context similar to the target
context. The profile of the retrieval function is given in Equation (2).

Retrieve: Ctg 7−→ {∀Csr ∈ CB/Distance(Ctg,Csr) ≤ σ} = SCtg (2)

Where Distance(Ctg,Csr) – a metric that computes the distance between
the context variable Ctg and the context variable Csr.
No constraints are imposed on the type of distance to use since it permits
handling the context variables. For instance, the Minkowski metric can be
used to calculate the context distance in a CBR-based EMS since the context
variables are real values.

– adaptation process: Since the source contexts usually do not match the target
context, it is required to define a function to adapt the source actions to
satisfy the requirements of the target context. The profile of the adaptation
function is defined by the Formula (3).

Adaptation: ∀ Csr ≜ (Csr,Asr, Esr) ∈ SCtg ,

({(Csr,Asr, Esr)},Ctg) 7−→ Atg

(3)

Where SCtg
– the set of similar source cases as defined by Equation (2).

Note that Equation (3) does not impose any constraints on the number of
similar cases considered in the adaptation process, thus we are dealing with a
compositional adaptation (whose single case adaptation is a particular case),
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where solutions from several source cases are combined to yield a target
solution. Indeed, the experiment indicated that retaining a single case often
gives less accurate results [9]. This is explained by the fact that frequently
only a part of the problem of the similar source case is relevant for the target
problem, which makes the task of adaptation complicated (if not impossible).

2.2 Collisionless path planning

Robot path planning study focus on the path planning of an autonomous robot
moving in an unknown environment, i.e., guide the robot in its movement from
an initial position to a target position by calculating the optimal but moreover
the safest path to avoid obstacles that can occur along the path towards the
target.

Several approaches were proposed to tackle this challenge, in particular, the
Artificial Potential Field (APF) approach originally proposed in [6] is extensively
adopted in robot guidance. The APF approach can cope with the reality of the
current environment of the robot displacement by considering both the objectives
to be reached and the obstacles to be avoided while moving. The key idea of this
approach is to consider the robot as a point evolving in a 2-dimensional space (in
the basic scenario) subject to the field influences of targets to reach and obstacles
to avoid. Consequently, the robot is subjected to two kinds of forces, including
an attractive one Fat generated by targets and a repulsive one Frp generated by
obstacles to move the robot further away.

Whereas repulsive forces are disproportional to the distance between the
robot and the obstacles, i.e. they are strongest close to the obstacles and are
less influential at distance, attractive forces are proportional to the distance
between the target and the robot. The combined (total) of all the forces

−→
F =

−→
Fat +

−→
Frp applied to the robot defines the movement direction of the robot and

its speed whilst avoiding collisions with obstacles. For the sake of simplification,
the principle of this method for a robot traveling in a 2-dimensions environment
is depicted in Figure 1.

Fig. 1: Artificial potential field. Fig. 2: CBR attractive force



6 F. Boulmaiz et al.

3 Reasoning from successful and failed cases

3.1 Problem formalization

The adaptation problem considering failed and successful cases can be formalized
as follows. Given the following observations:
– the case base CB is divided into two partitions of failed cases CB_ and

successful cases CB+. So, CB = CB_ ∪ CB+.
– by misuse of language, we refer to a target case as the elements of a target

context for which we are looking for a solution. The case structure is not
completely defined as the elements representing the actions and therefore,
the effects are unknown.

Finding a solution for a target case (thus under construction) is to infer, from
source cases having similar context, a set of target actions that best satisfy the
target context, which leads to the definition of the target effects, and thus to
building an effective case containing the three elements: context, actions, and
effects.

Similar source cases should be handled differently depending on whether they
are failed (member of CB_) or successful (member of CB+) and on their degree
of similarity to the target case. The method to be proposed should provide
mechanisms to move towards the solutions of successful similar source cases and
away from failed similar source cases while taking into account that the closer
the source case to the target case the more influence its solution has on the
target solution.

3.2 Principle

The principle of our approach to considering failed cases in the adaptation pro-
cess is inspired by navigation algorithms originating from the literature on the
programming of autonomous robots, in particular, based on the artificial poten-
tial field presented in Section 2.2.

Before describing the details of our approach in the next section, to ensure
the successful implementation of an artificial potential field-like concept in the
context of this work, some assumptions are formulated:
– while the labeling process falls outside the scope of this study, we assume

that previous experiences (source cases) are already labeled as successful or
failed cases. Furthermore, we suppose that the CBR system is given a quality
function Q which scores the efficacy of the actions applied to the context.
The highest scores are the best. This implicitly defines a threshold value PEi

s

for each effect feature Ei according to Equation (4).

∀ Ci ∈ CB , Q : Ei 7−→ R

L(Ci) =

{
Ci+ if Q(Ei) ≥ PEi

s , ∀Ei ∈ E
Ci− otherwise.

(4)

With L – the labeling function, Ei – an effect feature of case Ci.
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– classical CBR methods retrieve a defined number of neighboring cases from
the case base CB regardless of an optimal number of similar ones regarding
the target case. This KNN-like approach poses some issues since the target
cases do not necessarily have the same number of similar neighbors, while
some target cases should have more similar cases, others less. Furthermore,
the configuration where much more source cases with equal distance from
a target case than the predefined number, must be handled. In this work,
we assume the existence of a retrieval approach that adjusts the number of
source cases similar to the target case Ctr by dynamically defining a similar-
ity threshold σCtr for the context distance between Ctr and the neighboring
source cases. For instance, the work presented in [3], provides a method
to define this threshold by combining a statistical approach and a genetic
algorithm.

The key idea of the approach proposed in this work is to map the type of
source cases available in the case base, i.e., successful and failed cases, to the
type of objects handled in the context of robot moving, i.e., target and obstacles.
Therefore, failed cases are assimilated into obstacles and successful cases into
targets. While cases Ci+ ∈ SCtg with good performances should generate an
attractive force Fat that pulls the target solution towards them, the bad cases
Ci− ∈ SCtg

should produce a repulsive force Frp that pushes away the solution
from them.

The successful and failed source cases are considered to be sources for gener-
ating a potential field representing the properties of the target solution. As in the
robotic potential field method, the CBR potential field is still composed of two
fields. For instance, regarding the attractive potential field, an attractive force
is produced from the target solution to the source solutions of the successful
cases by the configuration of the latter, which allows to pull the target solution
towards the solutions of these cases.

To illustrate this concept, let’s consider, for the sake of presentation, a sys-
tem with domain knowledge containing only 2 action variables, the attractive
potential field generated by any successful case looks like Figure 2, where at each
point of the context space representing the target context, the force vectors are
directed towards the successful source case. Concerning the repulsive potential
field, a pushback force is generated by the configuration of the failed case to-
wards the target solution, which allows to pull the target solution away from the
solutions of these cases. Figure 3 depicts the CBR repulsive force in a similar
configuration to the example illustrating the CBR attractive force.

Ultimately, the configuration of the target solution, i.e., the position of the
target solution in the space of solutions (actions), is determined by summing
all repulsive and attractive forces generated by neighboring failed and successful
cases respectively. For the simple case of only two neighbors, a successful case
and a failed case, the total potential field has the shape shown in Figure 4.
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Fig. 4: CBR total potential force
3.3 Local prediction of the target solution

Although we are inspired by the potential artificial field method, its application
in the context of this work as applied in the robotics context does not permit
determining the solution for many reasons:
– the potential total force in the robotic context depends exclusively on the

distance between the goal/obstacles and the robot. In the CBR context, the
magnitude of the attraction and repulsion forces are not dependent only on
the distance between the target context and the neighboring source contexts
but also on the performance (quality solution) of the neighboring source
contexts.

– within the robotics context, unlike the attractive force, the magnitude of
the repulsive force is at its highest value close to the obstacle and decreases
proportionally when moving away from it. Within the context of CBR ap-
plications, the magnitude of the two forces should be proportional to the
performance of the source solutions but disproportional to the distance be-
tween the source contexts and the target one.

– there is usually only one goal to reach in robotic applications, but in the case
of a multi-goal environment, one looks for a path that goes through all these
goals in sequential order by optimizing some criteria. For CBR systems, the
aim is to combine the knowledge of all the neighboring source cases to infer
the target solution.

– while the purpose of the robotic potential artificial field is to find the safe
path to the goal, its purpose in the CBR application is to acquire new knowl-
edge that guides the adaptation process in the construction of the target so-
lution, i.e., to orient the reasoning process towards the most useful solutions
(closest and best-performing cases) and away from the worst cases (farthest
away or bad performance).

It is, therefore, necessary to adapt the approach of the artificial potential field
to take into consideration the specificities of the CBR adaptation process. To do
so, our approach defines the target solution (actions) Atg by the vectorial sum of
all attractive forces (FCi+

at ,∀ Ci+ ∈ SCtg
) and all repulsive forces (FCi−

rp ,∀ Ci− ∈
SCtg

) as described in Equation (5).
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Table 1: Summery of evaluation results.

APPROACH
TEST SET S1 S2 S3 S4 S5 GLOBAL

METRICS METRICS METRICS METRICS METRICS METRICS
PER (%) APR(%) TIR(%) PER APR TIR PER APR TIR PER APR TIR PER APR TIR PER APR TIR

CBR− S 16.73 59.13 59.13 17.85 48.57 48.57 19.53 60.12 60.12 20.48 56.07 56.07 18.79 64.48 64.48 18.68 57.67 57.67
CBR−B 18.27 57.51 57.51 15.36 63.90 63.90 22.85 59.69 59.69 24.23 65.52 65.52 21.10 662.71 62.71 20.36 61.87 61.87
CBR− P 22.62 42.26 57.10 18.54 48.85 63.71 20.14 50.21 60.10 22.48 52.92 70.19 23.47 39.86 60.09 21.45 46;82 62,24
CBR−R -2.56 32.18 49.75 9.12 29.89 51.19 14.71 43.07 64.24 17.45 39.52 57.74 12.04 41.26 62.84 10.15 37.18 57.15
CBR−APF 34.68 100 100 28.85 99.76 99.76 33.91 100 100 31.27 100 100 38.73 99.88 99.88 33.49 99.92 99.92

∀ Ci+, Ci− ∈ SCtg ,
∑
Ci

FCi
−−−−→
AtgAi =

∑
Ci+

FCi+
at

−−−−−−→
AtgACi+ +

∑
Ci−

FCi−
rp

−−−−−−→
AtgACi− = 0

(5)
As already mentioned earlier, the magnitude of the repulsion and attraction

forces depends both on the distance of the target context from the context of
the similar source case and on the performance of the latter. From Equation (5),
the metric FCi defines the magnitude and direction of the associated force to the
case Ci. We propose in Equation (6) a formula to estimate its value.

∀ Ci ∈ SCtg
,FCi =


(
1− DC(Ctg,Ci)

σCtg

)
× (Qi − Ps) if Qi ̸= Ps

1− DC(Ctg,Ci)
σCtg

else
(6)

With σCtg
– the context distance threshold, Qi – the performance of the case

Ci, Ps – the performance threshold, DC(Ctg, Ci) – the context distance between
Ctg and its neighbor Ci.

From Equation (6), one can observe that whatever the type of force, its mag-
nitude progressively decreases at the expense of an increasing context distance
until it becomes null when the context distance equals the similarity threshold
σCtg

. Besides defining the magnitude of the force, the operand Qi −Ps specifies
the type of the force. When Qi ≥ Ps, then FCi ≥ 0, and the case Ci generates
an attractive force else, it should be a repulsive force.

In this manner, the actions to be proposed Atg have to satisfy:

Atg =
1∑

Ci
FCi

∑
Ci

FCiAi , ∀Ci ∈ SCtg
(7)

Where SCtg – set of similar cases to the target case Ctg.

4 EVALUATION

The present section provides an empirical evaluation of our approach. The objec-
tive of the evaluation is twofold, i) study the potential impact of considering both
failed and successful cases on improving the performance of the CBR system; ii)
assess the performance of the artificial potential field approach, this is referred
to as CBR-APF in the following, compared to other adaptation approaches.
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4.1 Experimental setup

As mentioned in Section 2, the approach is implemented in an EMS whose
objective is to make the user aware of the impact of his actions on the energy
use in a building. Concretely, the EMS proposes to the occupant a series of
actions to improve the comfort while consuming less energy.

To evaluate our approach, we conducted an experiment using semi-synthetic
data generated from real-data presented in [4]. The case base contains 15,948
cases, where each case is composed of: 1) the effect variables which represent
the temperature and air quality in the building; 2) the action variables which
model the opening of the door and window; 3) the context variables which are
weather conditions. Each variable is described by a 24-value vector corresponding
to one day. We adopted a 5-fold cross-validation where the original case base is
randomly split into five equal-sized subsets: S1, S2, S3, S4, and S5. A single
set is selected as a test set CBT (target cases) while the remaining four sets
are used as a learning set CBL (source cases). The cross-validation procedure is
performed five times, each of the five sets being used once as a test set. The results
of the metrics adopted to evaluate the performance are averaged to provide a
final estimate.

To evaluate case performance we used functions that assess the user’s dissat-
isfaction with the effects of the actions, as presented by Formula (8). To simulate
the effects following the application of the proposed actions, a physical model of
the building involved in the experiment was developed.

Sh
T (T ) =


0 if T ∈ [21, 23]
T−23
26−23 if T > 23
21−T
21−18 if T < 21

, Sh
C(C) =

{
0 if C ≤ 500

C−500
1500−1000 if C > 500

(8)

With Sh
T (T ) – the dissatisfaction with the temperature in the office, Sh

C(C)
at hour h – the dissatisfaction with the air quality in the office at hour h.

4.2 Baselines and metrics

Several baselines are considered in the evaluation process:
1. the approach proposed in [4], denoted CBR-S in the following, exploits failed

and successful cases but with a null adaptation process as the latter consists
in making a vote among the similar cases solutions to select the solution
with the best performance (maximizes the quality function) by applying it
directly to the target case. The choice of this baseline is to check the relevance
of using several source cases to establish the adaptation process.

2. a standard barycentric approach that combines solutions from the set of
successful and failed similar source cases without artificial forces, noted CBR-
B hereafter. The goal is to validate the efficiency of the artificial forces in
improving the adaptation process.

3. a modified variant denoted CBR-P of our approach is tested, it considers
only positive cases and thus uses only attractive forces. The objective is to
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illustrate the advantage of considering both negative and positive cases w.r.t
only positive cases.

4. the approach proposed in [8] is used as a further baseline. This approach
referred to as CBR-R, is based on a KNN approach to select similar source
cases from which a generalized case is generated. Similar cases are used also
to train a linear regression model, which is applied to the generalized case
to predict the target case solution.

Note that in the experiment, the performance evaluation of all tested ap-
proaches is performed by comparison against a reference which is the actions
carried out by the user without assistance according to three measures:
– Performance Enhancement Rate (PER): The PER consists of comparing,

for each test case Ci, the average of the thermal performances Q∗
T , the air

quality performances Q∗
C , and the global performance Q∗ of the proposed

actions to the corresponding values Qr
T , Qr

C , and Qr of the actions already
recorded in the case base. The PERCi related to the test case Ci, if any, is
given by the (9).

PERCi
=

Q∗ −Qr

Qr
(9)

– Approach Efficiency Rate (APR):The APR is defined as the average of the
ratio of the number of test cases whose performance is improved by applying
the actions recommended by this approach to the total number of test cases.

APR =
Z+

Z
(10)

With Z = |CBT | – the set of test cases, Z+ =
{
Ci ∈ CBT / PERCi > 0

}
– True Improvement Rate (TIR): This measure is the average of the ratio

between the number of test cases whose performance is improved by applying
the actions recommended by the approach and the total number of the test
cases for which the approach successfully proposed a solution (improving or
degrading performance compared to the user’s actions).

4.3 Results and analyse

Whatever the adaptation approach applied in a CBR system, its performance
depends partially on the retrieval process. However, analyze the latter goes be-
yond the scope of the present paper. We use the approach given in [4] to estimate
the similarity and define the similar source cases in the training set. It follows
that each target case from the test set has at least one similar source case from
the training set.

Table 1 summarizes the results of the 5-fold cross-validation of our approach
against the four baselines considered. Some important findings from this exper-
iment are:
– while the value of the TIR metric corresponds to the value of APR for the

CBR-S, CBR-B, and CBR-APF approaches, the APR value is less than that
of TIR for the CBR-P and CBR-R approaches, which is due to the ability
of the first three approaches to computing a solution even with a similar set
of cases consisting exclusively of failed cases.
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– regardless of the test set, our CBR-APF approach is clearly better in per-
formance than all other baselines with also better APR and TIR.

– the number of similar source cases has a significant influence on the quality
of the adaptation process, a compositional adaptation systematically gives
a better PER, as illustrated by the comparison between PERs of CBR-APF
which is a compositional approach and CBR-S which uses a single similar
case.

– attraction and repulsion forces have an important impact on the results of the
adaptation process. Given the same number of similar cases, by using these
forces, our CBR-APF approach outperforms the CBR-B baseline, which does
not use them. CBR-APF is 1.64 times more performing than CBR-B regard-
ing the improvement of the cases performances (global PER= 33.49% versus
20.36%) and 1.61 times more efficient according to the number of cases for
which it manages to find a solution (CBR-APF improves the performance
of the solutions proposed by the user without assistance for 99.92% of cases
against 61.87% for CBR-B).

– using failed cases in case-based reasoning significantly influences the perfor-
mance of a CBR system. By exploiting both successful and failed cases, the
system improves the results of the reasoning process. Comparing the per-
formance of the CBR-APF approach with that of the CBR-P and CBR-R
approaches (both do not use failed cases in their reasoning), the TIR results
show that the CBR-APF approach outperforms the other baselines. CBR-
APF approach is more than three times more efficient than CBR-R and more
than 1.5 times more than CBR-P in improving the performance (PER).

5 CONCLUSION

This paper proposed a new approach to the adaptation process in the CBR
paradigm by looking at both failed and successful source cases instead of the
traditional practice of considering only successful source case. We found inspi-
ration in the studies on planning safe paths for a robot moving in an unknown
environment. The concept is that both successful and failed cases generate at-
traction and repulsion forces respectively on a likely barycentric solution to drive
the reasoning towards the best performing solutions and away from the failed
ones. The experimentation of this approach in the context of an EMS showed a
significant improvement in the system performance by considering both success-
ful cases and failed ones.

In this work we have developed and evaluated an approach considering the
whole set of successful and failed similar cases, it would be interesting to perform
a deeper evaluation taking into account the number of neighboring successful and
failed cases considering only the n cases with the best performances and the m
cases with the worst performances. Another line of future research for this work
would be to explore the possible impact of a failed case on the domain ontology
(if any). It could be useful to suggest new necessary conditions to add to the
domain ontology that would avoid the reappearance of such a negative case in
the future.
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