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A R T I C L E I N F O A B S T R A C T

Editor: Spyros Fountas Crop diseases and pests constitute significant causes of yield losses for crops. To limit the harm incurred by 
those events, farmers resort to plant protection products. Such products are known to have adverse effects both 
on the environment and on human health. Agronomists make continuous efforts to limit the usage of plant 
protection products to situations where those products are strictly necessary. To determine such situations, 
agronomists and policy-makers often rely on decision support tools to model and predict the dynamics of plant 
diseases. Decision support tools are based either on mechanistic models or on statistical approaches learned 
from large datasets of biotic (e.g., disease incidence, plant phenological stage) and abiotic (meteorological, soil 
characteristics) observations in cultures. The surge of powerful machine learning (ML) methods in the last decade 
makes such approaches a natural pathway to model the dynamics of plant diseases.

Machine learning models can reveal the factors that contribute the most to disease and pests outbreaks, provided 
that those models are simple enough for human inspection. Simplicity, however, may come at the price of lower 
prediction performances when compared to more complex models.

In this paper, we offer a deep look at the performance of ML models of different complexity when used on two 
use cases of crop disease prediction: downy mildew in the grapevine, and Cercospora leaf spot in the sugar beet.

We compare model accuracy and complexity using a year-based cross-validation approach. Our results suggest 
that interannual meteorological variations are a very important factor in plant disease prediction. Moreover, 
in line with the observations of the research community in interpretable ML, model complexity stands in clear 
trade-off with accuracy. This makes models of intermediate complexity appealing for predicting the dynamics of 
crop diseases as they can provide explicit insights about the rationale of their predictions.
1. Introduction

Crop protection against plant diseases is crucial to secure crop 
yields. To this end, farmers and agronomists make use of plant pro-

tection products, i.e., pesticides, to combat plant diseases and pests in 
cultures. It is well-known, however, that the usage of such products 
has multiple downsides. Besides their impact on farmers’ health, and 
their polluting effect on the environment, such products incur an eco-

nomic cost on both farmers and consumers, not to mention their role in 
the development of pesticide-resistant breeds [1] and the indirect con-

tamination in other stages of the food supply chain [2]. It follows that 
minimizing the usage of pesticides in cultures incurs countless benefits. 

* Corresponding author.

One way to reduce our dependence on such products is to adapt their 
usage to local factors [3] such as the climate/weather, the soil type, or 
the farming practices. This can be achieved through the deployment of 
models that can predict disease incidence or risk of outbreak. Such tools 
help farmers and agronomists avoid the usage of pesticides when they 
are not necessary.

There have been multiple efforts to model and predict the risk of 
outbreak and the incidence of plant diseases in cultures [4]. Exist-

ing methods can be categorized into two families. On the one hand, 
mechanistic models are constructed based on prior observations and 
knowledge of the diseases or pests’ life cycles. These models require 
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extensive agronomical studies and experts intervention, and were the 
preferred approach to model plant diseases for long time. An inflexion 
point arose with the emergence of large amounts of data including past 
observations of diseases in cultures – as human annotations or as images 
–, but also information about abiotic factors such as the characteristics 
of the soil and meteorological data. This data abundance has made sta-

tistical models, in particular machine learning models, more appealing 
in the last decade, and has nurtured their steady increase in accuracy 
and sophistication.

ML models used in crop protection are usually trained for a single 
type of crop and disease. This is due to the fact that different crops de-

velop in different ways, and so do diseases and pests. It is also known 
that models are typically trained for a given region, and are less accu-

rate when used on data from other regions [5]. Some approaches rely 
on image classification with deep learning [6–9] for disease diagno-

sis. Other models are designed to predict or forecast the incidence of 
a disease at a particular period of the year, e.g., before harvest, based 
on human annotations. This forecast can take the form of an incidence 
prediction (regression) or a risk of outbreak (classification) [3]. In those 
cases the models’ outcomes help agronomists decide whether to apply 
or not plant protection products in their cultures.

But besides forecasting the incidence of crop diseases, ML models 
can also help agronomists understand which factors contribute to the 
development of those diseases. This is possible, however, if the model is 
simple and interpretable enough to be understood by humans. Examples 
of interpretable ML models are linear functions and shallow decision 
trees.

A simple, yet effective proxy to model interpretability is model com-

plexity [10]. Complexity is usually measured as the number of relevant 
parameters that play a role in the model’s answers, and it is known to 
be correlated with interpretability. To see why, it suffices to compare 
the effort of interpreting a linear model with 5 variables versus a linear 
model with 300 variables.

While complex models such as neural networks or gradient boost-

ing tend to be less interpretable than transparent simple methods such 
as linear regression or shallow trees, in some cases this complexity pays 
off in terms of prediction performance [11,12,10].1 This trade-off be-

tween complexity and prediction accuracy can happen because more 
parameters or weaker assumptions endow models with more expres-

siveness and flexibility to capture subtle interactions. Simpler models 
make assumptions that may not encapsulate the complexity of real data. 
For example linear models assume there exists a linear relationship be-

tween the input features and the target variable i.e., the variable we 
want to model or predict. This, for instance, excludes any potential 
interactions between the input features as predictors for the target vari-

able. Between complex approaches and simple models lie pattern-based 
models [10,15] that strike an interesting trade-off because they remain 
relatively simple white boxes that exhibit higher predictive power than 
linear regression or decision trees.

Existing works that use ML methods for crop protection have 
paid little attention to the potential needs for interpretability and the 
complexity-interpretability trade-off [16,7,9]. We therefore contribute 
to the state of the art by studying this trade-off in the context of 
crop protection. We train different popular machine learning models 
of varied complexity for two typical crop protection tasks: (i) disease 
incidence prediction, and prediction of the symptoms appearance date. 
We predict these target variables for the downy mildew in grapevine 
cultures, and for the Cercospora leaf spot in sugar beet crops, both in 
France. In both cases we resort to biotic (e.g., past disease incidences) 
and abiotic (e.g., meteorological data) predictors. Our tasks are classical 
regression problems, therefore the studied models include (i) black-

1 As shown by [13,14], the accuracy-interpretability trade-off is not necessar-

ily observed in every application domain and depends on multiple factors such 
2

as the quality of the data.
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box ensemble methods such as random forests and gradient boosting 
trees; (ii) white boxes such as linear regression; and (iii) HiPaR [10], 
a pattern-based regression method of intermediate complexity. Our 
experiments confirm a clear complexity-accuracy trade-off in our use 
cases, and also show different techniques to distill agronomical insights 
from both white- and black-box ML models. Our results suggest that de-

spite the difference in prediction accuracy and model architecture, the 
models agree on some common insights. Moreover, interannual effects 
play a very important role, which makes very difficult to have a single 
model that can predict disease incidence for any arbitrary year.

Section 2 describes the datasets used for our study, the methods 
trained on those datasets as well as their performance. This is followed 
by a discussion of the different agronomical findings we extracted from 
the trained ML models in Section 3. Section 4 concludes the paper with 
avenues for future research in the prediction of disease incidence in 
cultures.

2. Material and methods

We now describe the agronomical datasets used in our study as well 
as the machine learning models trained on those datasets.

2.1. Data

Our study case builds upon four datasets covering two major plant 
diseases observed in French cultures: Grape downy mildew and Sugar 
beet Cercosporia.

2.1.1. Sugar beet Cercosporia epidemiologic data

Sugar beet Cercosporia (SBC) incidences were observed in several 
vineyards located in France by different extension services, including 
the ITB (Institut Technique de la Betterave). The experimental obser-

vations have been collected from 2009 to 2020 in different regions in 
France.

For each monitored site, a specific part of the area, further referred 
to as the “plot”, was observed throughout a specific year. Weekly visual 
inspections were performed on leaves covering one hundred plants in 
order to assess disease incidence. The incidence was calculated as the 
proportion of sugar beet leaves displaying symptoms of Cercosporia leaf 
spot (Cercospora beticola). Weekly inspections were conducted in each 
plot from leaf emergence (which happens in mid-May) until harvest (af-

ter mid-September). The collected dataset adds up to 1235 individual 
plots. We highlight that no plot was observed every year, and that con-

versely, not all plots can be monitored in a single year.

For each plot, we define the date of SBC onset (yearly symptoms 
apparitions date) as the first day in which the proportion of infected 
leaf exceeded 10%. The end of season incidence for SBC was defined as 
the maximum incidence for the period going from the 25th of August 
to the 15th of September.

2.1.2. Grape downy mildew epidemiologic data

Grape downy mildew (GDM) incidence were observed in several 
vineyards located in France by different wine extension services includ-

ing the IFV (Institut Français de la Vigne et du Vin). The data have been 
collected from 2010 to 2017.

For each considered plot, an untreated row of vines was observed. 
Each untreated row was surrounded by two other untreated rows to 
ensure that they were not unintentionally sprayed with fungicides. In 
the monitored central row, weekly visual inspections were performed 
on leaves in order to measure disease incidence. The incidence was 
calculated as the proportion of vine leaves displaying downy mildew 
symptoms caused by Plasmopara viticola. Weekly inspections were con-

ducted in each vineyard from budburst (early March) until at least 
bunch closing (mid-late July) or stopped when the incidence was close 
to 100%. The observations consist of around 9407 weekly datapoints 

corresponding to 713 plots.
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Table 1

Description of the meteorological variables used to model the dynamics of the Sugar beet Cercosporia (SBC). Tem-

peratures are considered as inhibiting below 10 °C or above 38 °C.

Name Feature

RHmX Mean Relative Humidity lower than X (X = {60, 65, 80, 90})

H87 Humidity index equals to 87

H87Y Humidity index equals to 87 for at least (Y = {6, 10}) hours

TmX Mean Temperature higher than (X = {15, 20})

TmXTinfYZ Mean Temperature higher than (X = {15}) but lower than (Y = {10}) for at least (Z = {3}) hours

TbloX Number of days where temperatures were defined as inhibiting to SBC growth for more than (X = {3,6}) hours.
For each plot, date of GDM onset (yearly symptoms apparitions date) 
was defined as the first week in which the proportion of infected vines 
leaf exceeded 1%. The end of season incidence for GDM was defined as 
the maximum incidence for each plot.

2.1.3. Meteorological data

Meteorological variables were provided by the SAFRAN weather 
database constructed and maintained by the French national meteoro-

logical service (Météo-France). SAFRAN organizes the French territory 
into a grid of size 8×8 Km and stores meteorological data for each cell 
in the grid [17]. Daily observations on humidity, mean temperature, 
wind, amount of rainfall, and solar radiation were used to compute dif-

ferent meteorological variables for both diseases.

For SBC, each meteorological variable covers a period of half a 
month (15 days) from January to June. Features in the dataset follow a 
given convention. The first part describes the temporal characteristics of 
the feature with the first three letters of the corresponding month, fol-

lowed by an ‘A’ for the first half of a month or a ‘B’ for the second half. 
The second part describes the climatic nature of the feature and how 
this information was calculated. The feature suffixes are described in 
Table 1. For example, the variable named JanA-ndRHm60 corresponds 
to the number of days (nd) such that the relative humidity was higher 
than 60 percent (RHm60) during the first half (A) of January (Jan).

For GDM, features either describe meteorological conditions at the 
date of recording or its sum for the four previous weeks before record-

ing. For example, the predictive variable ETP gives us the evapotranspi-

ration at the time of recording. ETP-4w is the sum of evapotranspiration 
for the four previous weeks. Two exceptions are the number of rainy 
and dry days, which are counted from the beginning of January. This 
length of four weeks was chosen based on expert insights about the 
growth speed of downy mildew.

2.1.4. Four prediction targets

From both diseases data and associated climatic variables, we finally 
obtained 4 data sets corresponding to our 4 prediction targets.

• Sugar beet Cercosporia (SBC) end of season incidence (% of leaves 
with diseases) with 1235 plots and 367 variables including one 
categorical variable and 366 numeric ones. The categorical feature 
is the risk-exposure, an indicator defined by agronomists based on 
their own knowledge of each plot’s sensitivity to SBC. The numeri-

cal variables correspond to the one described in Subsection 2.1.3.

• Sugar beet Cercosporia (SBC) symptoms appearance date (day 
number of year) with 1235 plots and 367 variables.

• Grape downy mildew (GDM) end of season incidence (% of sick 
leaves) with 359 plots and 22 variables including two categorical 
and 20 numeric.

• Grape downy mildew (GDM) symptoms appearance date (week 
number of year) with the same 359 plots and 22 variables.

Thus, the target variables are numerical. We are thus confronted to a 
3

regression problem in all cases.
2.2. Regression methods

We assume that the goal is to predict the values of a real variable, 
that we call the target variable, using observations from another set of 
variables that we call the predictive variables. Examples of target vari-

ables are given in Subsection 2.1.4. Conversely, the predictive variables 
constitute the set of meteorological indicators (see Table 1). This sce-

nario constitutes a classical regression problem. We first introduce some 
notation and then survey the most popular regression methods used 
in crop protection on tabular data. We extend the discussion with the 
description of a pattern-aided regression method that deals with the 
complexity-accuracy trade-off introduced in previous sections.

2.2.1. Problem formulation and notation

Let us assume that we count on a set of 𝑛 target observations rep-

resented as a column vector 𝒚 ∈ ℝ𝑛. Those target observations are 
associated to a set of observations on the predictive variables, orga-

nized in a matrix 𝑿 ∈ ℝ𝑛×𝑑 . Each row 𝒙⊤
𝑖
∈ ℝ𝑑 in the matrix stores 

the observed values of the 𝑑 predictive variables associated to a tar-

get observation 𝑦𝑖. From now on, we denote vectors and matrices with 
names in bold to distinguish them from scalars and functions. More-

over, matrices are denoted with capital letters. If a predictive variable 
is categorical, e.g., plant variety, we assume its values have been en-

coded as real numbers, for instance, by resorting to strategies such as 
one-hot encoding or dimensionality reduction.

The goal of regression analysis is to learn a function 𝑓 such that 
𝒚 = 𝑓 (𝑿) + 𝝐 and 𝝐 is minimal. The function 𝑓 is a model of the data 
designed to predict the target variable for unseen instances 𝒙⊤ ∈ℝ𝑑 of 
the predictive variables. The term 𝝐 is the error of the regression model 
and accounts for potentially unobserved predictors of 𝒚. The model 𝑓
is learned on a set of training and validation observations.

2.2.2. Classical regression methods

Linear regression This method assumes that the relation between the 
target variable 𝒚 and the predictive variables 𝑿 is linear, that is,

𝒚 = 𝜷𝑿′ + 𝝐 with 𝜷 = argmin
�̂�
||𝒚 −𝑿′�̂�||22 (1)

𝜷 = (𝑿⊤𝑿)−1𝑿⊤𝒚, (2)

where 𝑿′ = 1 ⊕ 𝑿, i.e., 𝑿′ ∈ ℝ𝑛×(𝑑+1) and 𝜷 ∈ ℝ𝑑+1 are the param-

eters of the model (the operator ⊕ denotes column concatenation), 
namely the linear coefficients associated to each of the 𝑑 predictive 
variables plus the intercept coefficient 𝛽0. The parameters of the model 
can be computed by minimizing the loss function 𝑙(�̂�) = ||𝒚 −𝑿′�̂�||22
with the method of ordinary least squares (OLS) as illustrated in Equa-

tion (2). Linear models are among the most popular regression methods 
due to their simplicity and interpretability. This is because the magni-

tude of the coefficients tells us explicitly how much a predictive variable 
contributes to the model’s prediction. On the downside, the linearity as-

sumption may come at the expense of low prediction accuracy, which 
is why linear models are often used as baseline methods.

Lasso To reduce the risk of over-fitting in linear regression, Lasso [18]
proposes an L1-regularization of the loss function, which favors mod-
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els with few non-zero coefficients. This is achieved by minimizing the 
following objective:

𝜷 = argmin�̂� 𝑙(�̂�) + 𝜃||�̂�||1. (3)

By minimizing the L1-norm of 𝜷 we can obtain sparse models that can 
not only prevent or mitigate over-fitting, but that are less complex and 
therefore easier to inspect by humans. The penalization term 𝜃 is a 
hyper-parameter that controls the importance of the sparsity constraint 
in the optimization process. The Lasso method selects the set of param-

eters �̂� that achieves the highest performance in cross-validation.

Decision/regression trees A decision tree is a binary tree where each in-

ternal node evaluates a Boolean condition on a predictive variable. The 
children of a node are decision trees associated to an evaluation out-

come, i.e., true or false. Leaves (also called final nodes) are linked to 
a prediction of the model for the target variable. When the target vari-

able is numerical, we talk about regression trees [19]. Regression trees 
are white-box models because the model’s prediction on a particular in-

stance 𝒙⊤ ∈ ℝ𝑑 can be explained by following the path from the root 
to the leaf node that predicts the outcome for 𝒙⊤. This makes regres-

sion trees interpretable models, provided that the tree is not too deep 
for human inspection. Despite their interpretability, decision trees are 
prone to over-fitting if not properly parameterized, and are usually out-

classed in terms of predictive performance by ensemble methods such 
as random forests and gradient boosting trees.

Random forests Random Forests are ensembles of weak decision tree 
estimators [20]. Predictions are computed by averaging the predictions 
of each tree in the ensemble. The weak estimators are learned by ap-

plying bagging and random feature selection. In bagging, each tree is 
learned by sampling from 𝑿 and 𝒚 uniformly and with replacement. 
Moreover, the trees are trained on different subsets of the features, 
which gives each tree a “partial” but “unique” view of the data. These 
techniques make random forests very robust to over-fitting, and a very 
popular choice for crop protection [21]. On the downside, random 
forests are not interpretable because the aggregation step makes it very 
difficult to trace the outcome of the model back to the input features 
– without resorting to post-hoc inspection approaches as we will show 
later.

Gradient boosting Another popular ensemble method is gradient boost-

ing [22]. Like random forests, the basic principle is to compute a robust 
prediction from the predictions of a set of weak learners. Different from 
random forests, learning is based on an additive model where each 
learner ℎ𝑚 is fit on the error of the previous learner ℎ𝑚−1 – technically 
on the negative gradient of the minimized loss function. Put differently, 
each new learner is trained to correct the errors of the previous one:

𝑓𝑚(𝑿) = 𝑓𝑚−1(𝑿) + 𝛾𝑚ℎ𝑚(𝑿) (4)

𝛾𝑖 =(𝒚, 𝑓𝑚(𝑿)) (5)

The individual learners can be of any type, however decision trees 
are a common choice [22]. Gradient boosting models are very robust 
to over-fitting, and like random forests, behave pretty much like black 
boxes.

2.2.3. Hierarchical pattern-aided regression (HiPaR)

Pattern-aided regression Pattern-based regression models consist of a 
set of local models trained on regions of the data. Those regions are 
characterized by interpretable patterns, namely logical conditions on 
the predictive variables, e.g., wind-speed > 50. The local models are 
usually interpretable functions, e.g., linear functions, that capture local 
relationships between the target and the predictive variables that can-

not be observed at the “global level”. As shown in the literature [10,15], 
these methods exhibit higher predictive performance than linear regres-
4

sion at the price of a manageable increase in complexity. Examples of 
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pattern-aided regression methods include piecewise regression [23], re-

gression trees [20], model trees [24],2 Contrast pattern-aided regression 
(CPXR) [15], and HiPaR [10]. We elaborate on the latter method in the 
following.

HiPaR Hierarchical Pattern-aided Regression [10] estimates the values 
of the target variable via a compact set of local hybrid rules on the 
predictive variables. These rules have the form:

𝑝 = 𝐶1 ∧…𝐶𝑚 ⇒ 𝒚 = 𝑓𝑝(𝑿𝑝). (6)

In this expression, the pattern 𝑝 is a conjunction of conditions on 
the predictive variables such as wind-speed > 50 ∧ humidity > 30. Those 
conditions define subsets or regions of the data 𝑿𝑝 ⊂𝑿. A hybrid rule 
is associated to a local linear model 𝑓𝑝 that has been trained on 𝑿𝑝, 
and that refines the predictions of a global linear model 𝑓 trained on 
𝑿. The model 𝑓 , called the default model, is used to make predictions 
whenever none of the local hybrid rules applies. After having learned 
the default model, HiPaR mines a compact set of hybrid rules by means 
of two phases:

1. During the enumeration phase, the learning algorithm explores 
the space of patterns 𝑝 in a depth-first hierarchical fashion. When 
a pattern 𝑝 is visited, HiPaR learns a hybrid rule of the form 
𝑝 ⇒ 𝒚 = 𝑓𝑝(𝑿𝑝) on 𝑿𝑝 – the set of observations that satisfy 𝑝 –, 
and then explores the sub-regions of 𝑿𝑝. Since the search space is 
exponential in the number of features, a set of pruning strategies 
reduces it by avoiding the exploration of unpromising sub-regions; 
for example a minimum support threshold is enforced to avoid sub-

regions with very few points.

2. Despite the pruning strategies carried out during the enumeration 
stage, the set of resulting hybrid rules can still be very large. For 
this reason, HiPaR carries out a selection phase that retains a small 
set of hybrid rules with good performance and minimal overlap. 
This phase is governed by two hyper-parameters: the support and 
the overlap bias. They determine, respectively, to which extent 
very specific rules are preferred over general rules, and how much 
overlap between the selected rules is allowed.

Contrary to tree-based models, HiPaR’s hybrid rules are extracted 
from a hierarchy with potentially overlapping regions as depicted in 
Fig. 1. When a new observation 𝒙⊤ satisfies more than one hybrid rule, 
the final prediction is the weighted average of the predictions of the in-

dividual rules. The weight is inversely proportional to the rule’s error 
on a validation subset. This makes HiPaR models more robust than lin-

ear functions and regression trees, but significantly more complex. That 
said, HiPaR hybrid rules remain white-box models that allow for simple 
inspection of the most important predictive variables in the prediction 
for an observation 𝒙⊤ ∈ℝ𝑑 .

Table 2 summarizes the strengths and weakness of the methods dis-

cussed in this section.

2.3. Training and testing procedures

2.3.1. Optimization and performance evaluation

One of the challenges of evaluating different machine learning mod-

els is to select the best configuration so that comparisons are fair and 
meaningful. In an agronomical scenario the important interannual dif-

ferences make standard cross-validation unadapted. Therefore, we use 
cross-validation by year, that is, each year is used as a fold in the pro-

cess. The data from a given year is separated from the rest of the dataset 
for testing, whereas the observations from remaining years are used to 

2 These are regression trees such that some nodes, usually the leaves, are 

linear models on the target variable.
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Fig. 1. A depiction of the regions explored by HiPaR for two steps of the enumeration phase. Each rectangle defines a region described by a pattern, on which 
HiPaR learns a local regression model. Regions can overlap; an example is the regions stage = “b. veraison” and variety = “Grenache”. Once a region is explored, e.g., 
stage = “b. veraison”, HiPaR will look at its sub-regions in a depth-first-search manner (figure on the right).
train the algorithm. That way we are able to estimate the actual ca-

pacity of the algorithms to predict for unseen scenarios, e.g., for a new 
year.

Inside each fold, we select the best model by optimizing the hyper-

parameters of each method. HiPaR’s enumeration phase can take long 
for very low support thresholds. Therefore we run the enumeration 
phase with a support threshold of 30% the size of the dataset once – 
i.e., regions covering fewer points are not explored –, and we then op-

timize the hyper-parameters of the selection phase to pick the most 
performing set of rules.

We use the coefficient of determination (R2) as prediction perfor-

mance metric. The R2 score is defined as the proportion of the variance 
in the predicted target variable explained by the independent vari-

ables. Contrary to the root mean square error (RMSE), R2 values can 
be compared among different prediction tasks (e.g., disease incidence 
and symptoms appearance). Indeed, the closer to 1 the R2 is, the better 
the model fits the data. Values close to zero denote a performance com-

parable to predicting the mean of the target variable, whereas negative 
scores mean the model is worse than a mean-based simple predictor.

2.3.2. Complexity measure

To measure the complexity of the studied machine learning models, 
we resort to the complexity measure for pattern-based models proposed 
by [10] that counts the number of elements in the model. An element 
is either a non-zero coefficient or a condition on a predicting variable. 
We remark that this measure is also applicable to tree-based methods 
such as random forests or gradient boosting trees because each node of 
each tree of the ensemble defines either a condition on one attribute or 
a linear model – for simple regression trees this linear model is a single 
constant. The number of elements can be very large when the ensemble 
consists of many trees, which points out the complexity of such models.

Under this principle, a Lasso model is generally less complex than 
a HiPaR model with several rules. This is the case because for Lasso 
we only need to count the non-zero coefficients in the linear function, 
whereas for HiPaR we must consider both the number of conditions and 
the coefficients of each of the local models.

If we consider the following regression tree 𝑇 :

𝑥1 > 10

𝑥2 < 5.5

150 300

50

Then its complexity 𝑐(𝑇 ) is 5. Likewise, if we consider the rule 𝑅:
5

𝐶1 ∧𝐶2 ∧𝐶3 ∧𝐶4 ⇒ 𝒚 = 3𝑥1 + 4𝑥2 − 4𝑥3 + 8, (7)
then its complexity 𝑐(𝑅) is 8 because the rule consists of 4 conditions 
and 4 linear coefficients.

2.4. Results

2.4.1. Performance-complexity trade-off

Fig. 2 depicts the trade-off between the complexity and accuracy 
of the studied machine learning methods. On the x-axis we show the 
complexity of the models (in log scale). The y-axis corresponds to the 
median R2 coefficient of each model in cross-validation. Models located 
in the top-left part of the space strike a better accuracy-complexity 
trade-off as they predict the data more accurately with fewer elements. 
As suggested by [10], more complex models such as random forests 
or gradient boosting trees achieve the best performance at the price of 
high complexity. Lasso regression, our baseline, is often the least ac-

curate model. HiPaR positions itself in between linear regression and 
ensemble methods striking a very interesting trade-off for 3 of the 4 
prediction tasks.

We highlight that accuracy varies drastically across tasks: All mod-

els struggle when it comes to predicting the date of apparition of downy 
mildew in vine cultures, as the median R2 for all methods is negative 
(bottom-right figure). We observe R2 scores between 0.12 and 0.26 for 
the final downy-mildew incidence (on the bottom-left) with gradient 
boosting as the winner. HiPaR lies close to Lasso, which means that it 
did not find many regression rules improving performances marginally 
over the baseline. The performance different between the two target 
variables in the downy-mildew dataset could be explained by the rela-

tively low number of observations for the date of symptoms apparition 
– 359 versus 700 observations for the end-of-season incidence.

The reach of the aggregated variables is relatively limited too. By 
this we mean most of these variables over a range of 4 weeks before 
data collection. While this confirms the trade-off, the low R2 makes this 
dataset less interesting to study further.

The results for the sugar beet Cercospora are more encouraging. 
The R2 median scores for the apparition date vary between 0.13 and 
0.18 with gradient boosting leading the rank and followed by HiPaR 
(top-right figure). For the prediction of the end-of-season incidence per-

formance ranges from 0.05 to 0.35. In this use case HiPaR outperforms 
all methods and finds a large number of rules that improve performance 
significantly when compared to a single linear model, and without in-

curring as much complexity as the ensemble methods.

When we look at the performance of the methods per year 
(Figs. 3-6), we notice that performance can vary drastically from one 
year to another, and that both end-of-season incidence and date of ap-

parition are very hard to model for some years. This is true for all 
methods. As a general trend, we can observe that Cercospora end of 
season incidence predictions seem to follow a downward trend in per-

formance. The performance variability across folds (Figs. 3-6) for the 
different methods is comparable and does not seem to follow a notice-

able pattern.

Now that we have illustrated the accuracy-complexity trade-off 

present in our use cases, we delve into the knowledge captured by the 
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Table 2

Overview of the machine learning methods used in this study.

Models Characteristics Advantages Disadvantages

Lasso Sparse linear regression Simple/interpretable Baseline method

HiPaR Pattern-based Medium-complexity High computation time

Random Forests Ensemble-, tree-based High accuracy, Built-in feature importance values Black-box model

Gradient Boosting Ensemble-based High accuracy Black-box model

Fig. 2. R2 of different machine learning models compared against their complexity. The x-axis correspond to the number of elements that compose each model (log 
scale). The y-axis is the median R2 values in cross-validation. GBR stands for gradient boosting regression, and RFR for random forests regression.
different methods. To do so we analyze the models trained to predict 
year 2009 for the end-of-season incidence of the sugar beet Cercospora, 
as these models exhibit the highest explained variance across all years 
(R2 scores of 0.67 and 0.66 for gradient boosting trees and random 
forests, 0.3 for Lasso, and 0.47 for HiPaR). For white-box models such 
as Lasso and HiPaR, we conduct direct inspection of the models’ el-

ements. For the complex black-box approaches, we resort to classical 
model inspection techniques and assess whether our models agree on 
the relationships between the predictive variables and the target vari-

ables.

2.4.2. Use case: incidence of the sugar beet Cercospora

In this section we carry out an inspection phase aimed to distill 
agronomical insights from the experimental machine learning models 
trained to predict the incidence of sugar beet Cercospora. These mod-
6

els were trained on all years except 2009 and correspond to the most 
performing cross-validation round of our experiments. We resort to clas-

sical interpretation techniques including feature importance rankings, 
partial dependence plots, and simple rule inspection. The first tech-

nique tells us which are the most important variables that play a role 
in the prediction. PDPs and rule inspection allow us to identify thresh-

old effects on the predicting variables, that is, cases when the behavior 
of the target variable varies in a piece-wise manner, i.e., according to 
thresholds on the predicting variables. Pattern-based regression meth-

ods such as HiPaR are good at detecting such kind of effects. Moreover, 
such methods allow us to study more fine-grained interactions among 
the predicting variables present in the rules. Our observations set the 
ground for the discussion in Section 3.

Feature importance A simple way to interpret the knowledge captured 
by a machine learning model is to construct a feature-importance rank-
ing that tell us how much the model’s input variables affect the model’s 
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Fig. 3. Mildew symptoms apparition date.

Fig. 4. Mildew end of season incidence.

Fig. 5. Cercosporia symptoms date of apparition.
output. This ranking can be based on the actual contributions of a 
variable to the answers of a model, e.g., the coefficients of a linear 
regression, or on model-aware scores computed a posteriori for black-

box models. In this spirit we contrast the feature-importance rankings 
of Lasso, RFR and GBR and depicted them in Fig. 7. Lasso’s linear co-

efficients encode the actual contributions of the input features to the 
answers of the model. They are therefore signed. To turn the linear 
coefficients into importance scores, we take their absolute value. Con-
7

versely, RFR and GBR are based on tree ensembles for which different 
importance scores have been developed. We choose the permutation 
feature importance method as implemented in the scikit-learn library. 
This approach estimates the importance of a feature by shuffling its val-

ues across rows in 𝑿. The resulting decrease in accuracy is then used to 
determine how much the model relies on a feature to make predictions 
– the higher the decrease, the informative the feature is for predicting 
the target variable.

As we can see, RFR and GBR yield very similar rankings – their top-4 

variables are the same even though the order is not identical. The vari-
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Fig. 6. Cercosporia end of season incidence.

Fig. 7. Parallel coordinates chart comparing feature-importance rankings for Lasso, random forests, and gradient boosting trees when predicting end-of-season 
incidence for the sugar beet Cercospora. For each model we chose the top-4 most important features. For each model, features below the 4 can be further down the 
importance order than what is displayed.
Table 3

Top-5 important linear coeffi-

cients learned by Lasso.

Variable Coefficient

Threshold-1 -41

AprA-STm10 27.64

JunA-ndW2 -23.39

JunB-STm10 22.24

AprB-ndRHm60 14.73

able threshold-1 is the most important feature for all three models. This 
variable represents the day in which the first symptoms of Cercospora 
were detected in the culture. Conversely RFR and GBR’s accuracy rely 
on the risk-zone expert-based indicator, which is less important for lin-

ear regression. While importance scores tell us which information the 
model is looking at, it does not tell whether those features tend to in-

crease or decrease the model’s incidence prediction. We can, however, 
obtain this information by looking at the linear coefficients learned by 
Lasso.

Table 3 shows the top-5 most important linear coefficients.

We remind the reader the meaning of these variables:

Threshold-1 : The symptoms apparition date

AprA-STm10 : The sum of the daily average temperatures of the days 
above 10 °C during the first half of April.

JunB-ndW2 : The number of days in the first half of June such that 
the average wind speed was higher than 2 m/s.

JulB-STm10 : The sum of the daily average temperatures above 10 °C 
during the second half of June.

AprB-ndRHm60 : The number of days in the second half of April such 
8

that the relative humidity is higher than 60%.
Table 3 tells us that the later symptoms appear, the lower the fi-

nal incidence tends to be. The predicted incidence tends to increase 
when temperature and humidity in June and April increase, whereas 
faster winds seem to hinder the development of Cercospora. These re-

sults must be taken with a grain of salt given the fact that our baseline 
Lasso model can explain only 30% of the target variable’s variance. That 
said, these variables are used by more accurate models such as RFR and 
GBR, which means that we are not uncorrelated with the target vari-

able.

Threshold effects As stated before, pattern-based regression methods 
are constructed to detect predicting variable threshold effects on the 
target variable. In HiPaR such effects are explicitly stated in the rule 
conditions. To observe whether our models captured such effects we 
have a deep look at the hybrid rules learned by HiPaR on our studied 
use case, and contrast those thresholds to those learned by the more 
complex models, namely RFR and GBR. Since those models are actually 
based very large ensembles of threshold-based estimators, we observe 
those threshold effects by means of partial dependence plots (PDP). This 
widely-used inspection technique allows us to visualize the behavior of 
a model’s prediction (y-axis) for the different values of a predicting 
variable (x-axis).

In our use case, HiPaR learned 3 hybrid rules whose conditions 
are listed in Table 4. As displayed before, thresholds (in red) used in 
HiPaR’s rules roughly fits with changes in the PDPs behavior. While 
they not the most important features as seen before, it seems to indi-

cate that these thresholds are not insignificant (according to RFR and 
GBR models). We suppose that these features might act as proxies for 
other features, or simply have an indirect influence on the final result 
that is not detectable by using PDPs.

In other words, HiPaR detected different linear behaviors based on 

whether a plot lies or not within a region deemed risky by experts 
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Fig. 8. Partial Dependence Plots for the predicting variables MarB-ndW4, JulB-STm10, JunA-ndTm15 and JunB-STm10 on random forests and gradient boosting trees. 
The red line represents a threshold learned by HiPaR.
Table 4

Conditions of the hybrid rules learned by 
HiPaR when predicting the end-of-season in-

cidence of the sugar beet Cercospora.

Rule 1 JunA-ndTm15 < 8, risk-zone=false

Rule 2 JulB-STm10 < 324

Rule 3 MarB-ndW2 ≥ 4, JunB-ndTm15 < 13

(risk-zone), or whether the number of hot days in June and July are be-

low certain thresholds (JunA-ndTm15, JulB-STm10, JunB-ndTm15), or 
whether the second half of March was windy (MarB-ndW2). We now 
construct PDPs for the numerical variables on RFR and GBR, which we 
depict in Fig. 8.

Feature interactions Each of the conditions listed in Table 4 is associ-
9

ated to a local linear model (learned using Lasso). Those models reveal 
local interactions between the variables in the conditions and the lin-

ear coefficients, and are designed to refine the baseline linear (called 
also the default) model learned on the entire dataset. Out of 368 fea-

tures used as input in the models, Lasso selects between 25 and 55. This 
represents between 6.7% and 15% of the available features. Moreover, 
local models are systematically less complex than the default model as 
Table 5 shows.

We can also observe that coefficients overlap between the different 
hybrid rules is low. This means that each local model is relying on 
different signals to make predictions on the end-of-season incidence. 
Fig. 9 depicts the intensity and polarity of 16 of those coefficients for 
both the default and local models.

Our first observation is that the apparition date (threshold-1) is con-

sistently important across all models – and always correlated negatively 
with the predict incidence. The features risk-zone and JunA-ndW2 (wind 

speed in the first half of June) are used in all models except the first rule 
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Fig. 9. A color encoding for the linear coefficients of the three hybrid rules learned by HiPaR. Cells in white □ denote features with a linear coefficient strictly equal 
to 0, which means those features aren’t used by the model.
Table 5

Number of common non-zero coefficients of the linear models 
learned by HiPaR for the prediction of the end-of-season sugar 
beet Cercospora.

Rule 1 Rule 2 Rule 3 Default Model

Rule 1 25 8 3 6

Rule 2 28 6 16

Rule 3 26 12

Default Model 55

because these variables appear in the conditional part of this rule (Ta-

ble 4).

This rule can be interpreted as follows: Plots with lower disease ex-

posure (risk-zone=false) and lower temperatures in the first half of June 
(JunA-ndTm15 < 8), experience an aggravated development of Cer-

cosporia as humidity in May (MayA-ndRHm60), wind speed in March 
(MarA-ndW4), and rainfall in February (FebA-SR) increase. Wind dur-

ing June (JunB-ndW2) is associated to a slow down of the disease.

The second rule suggests that lower temperatures in July (JulB-

STm10 < 324) make Cercosporia sensitive to wind in January, Febru-

ary, June, and July (JanB-ndW2, FebA-ndW2, JunA-ndW2, JulA-ndW2). 
Conversely, a wet June (JunA-ndRHm65) or a windy March (MarA-

ndW4) appear as aggravating factors. A windy July (JulA-ndW4), a rainy 
February (FebA-SR) and a hotter April (AprA-STm10) have a mitigated 
effect on the development of Cercosporia.

The third rule triggers when the month of March is windy (MarB-

ndW4 ≥ 4) June is not very hot (JunB-ndTm15 < 13). In that case, 
higher temperatures in May (MayB-ndTm20) and a wet April (AprB-

ndRHm60) are correlated with the growth of Cercosporia growth. Con-

versely, wind in June (JunA-ndW2) and July (JulA-ndW4) exhibit a 
negative correlation with growth.

Finally, we observe that the default model combines signals from all 
the local rules, even though it does not always rely on the same vari-

ables. This happens because the learning objective of this model must 
fit the observations from all the sub-regions. This translates into select-

ing variables (such as JunB-STm10) that explain incidence for all the 
observations, i.e., at the global level, but that have little to no explana-

tion power when limited to subsets of the data such as the observations 
on regions not deemed risky by the experts (risk-zone=false).

3. Discussions

We structure our discussion along three axes: (a) the complexity-

accuracy trade-off discussed in Subsection 2.4.1, (b) the implications of 
complexity in interpretability, and (c) the agronomical insights offered 
by the models trained.

Complexity and accuracy Our results go in line with what has been 
observed in other works on model complexity [15,10], that is, the ten-

dency of complex models to outperform simple models in terms of 
prediction accuracy. It is crucial to highlight though, that such a trend 
holds under the assumption that the models have been properly param-

eterized and trained. For instance, a complex model trained on very 
10

little data will surely over-fit that data specially if there are as many 
or more parameters than data points. Conversely if the data adheres to 
the learning hypothesis of a simple model, e.g., linearity, such model 
will surely shine in terms of performance regardless of its complexity. 
Finally, even if a model was trained under a reasonable learning hypoth-

esis, testing it on data that diverges from the training distribution will 
result in unsatisfactory prediction performance. We can observe such 
a phenomenon for the models tested on years 2013 and 2015 for the 
prediction of both the incidence and the date of apparition in both cul-

tures. The observations collected those years are atypical because some 
of the predicting variables exhibited measures outside the amplitudes 
observed other years. This translated into a clear under-fitting with the 
lowest R2 scores registered in our experiments.

Interpretability It is widely-assumed that interpretability and model 
complexity are positively correlated. An illustration of such phe-

nomenon can be observed from our use case. Both linear and pattern-

based model allowed us to distill insights easily and directly from the 
structures of the models themselves. For more complex models such as 
random forests and gradient boosting trees we had to resort to exter-

nal inspection tools such as the permutation-based accuracy decrease 
and the partial dependence plots (PDPs). Albeit effective, those tech-

niques have limitations. Importance scores do not tell us if a variable 
is positively or negatively correlated with the prediction of the model. 
PDPs can be applied to up to two variables at the same time, and make 
independence assumptions that often do not hold on the data. This 
happens because each point in the curve is the result of averaging the 
model answers over all possible values of the remaining predicting vari-

ables. Since some combinations of values may be unlikely, PDPs must 
be taken with a grain of salt, specially when the predicting variables 
exhibit some correlation. That said, the PDPs for RFR and GBR in our 
experiments were in concordance with the threshold effects observed 
when using HiPaR. It should be noted that while RFR, GBR, and HiPaR 
resort to thresholds on the predicting variables, the fact they all outper-

form Lasso significantly suggest that threshold effects are a reasonable 
hypothesis for the prediction of plant diseases based on meteorological 
data.

Agronomical insights Based on our use case study on the sugar beet 
Cercospora, we observe that aggregating the meteorological indicators 
according to the seasons, i.e., winter, spring, and summer can effec-

tively explain some of the variation in disease incidences.

Winter defines the initial conditions: This is the period in which 
the primary inoculum of Cercospora lies in the soil in the form of 
spores. Spring defines the development period for both crops and the 
Cercospora. Finally, summer encompasses the end of the season, and 
the moment in which the disease’s symptoms, as well as its effects, are 
obvious.

As a general rule, dry summers seem to hinder the growth of Cer-

cospora. This follows from the importance assigned by the models to 
the wind and temperature factors during June and July. Dry winters 
also seem to mitigate the disease’s spread. Conversely, a hot and humid 
spring stands as the main aggravating factor in Cercospora’s incidence. 
Thanks to the hybrid rules provided by HiPaR, we can obtain more nu-

anced relationships between the incidence and the predicting variables. 

Rule 2 in Table 4 tells us that a mild month of July should make us 
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focus the attention on the initial conditions (winter), in particular the 
wind and the sun exposure and the temperature – the two latter fac-

tors contributing positively to the presence of the primary inoculum. 
Moreover, a windy spring with mild temperatures in June should target 
our attention towards the development phase (spring) in particular to-

wards temperature and humidity, which are positively correlated with 
incidence. In all cases, the date of apparition is the best predictor of the 
final incidence, which means that early detection is the best weapon 
against Cercospora.

We could not draw insights from the prediction of the downy-

mildew on the vine because the transparent models explain no more 
than 14% of the observed variance for the incidence – the results for 
the date of apparition are worse. We think this performance gap is 
due to the fact that the dataset relies only on meteorological measures 
for the four weeks that precede the end of the season. In other words, 
this dataset lack the richness of the meteorological signals available for 
the sugar beet Cercospora dataset. This observation confirms the im-

portance of accurate and complete meteorological measurements when 
modeling the dynamics of plant diseases. We also believe that the study-

ing the impact of the granularity of the meteorological indicators in 
such tasks remains an interesting research avenue.

4. Conclusions

In this paper, we have shown the interest of exploring the complex-

ity trade-off for machine learning models when applied to predicting 
the incidence of plant diseases. It is accepted that in some applications, 
complex models such as neural networks or gradient boosting gener-

ally perform better than simpler ones such as linear regression. This 
comes, however, at the cost of interpretability, which (a) is vital when 
we need to draw insights from the prediction model, and (b) fosters 
transparency, which can in turn favor acceptability by users. Post-hoc 
explanation methods can help us extract insights from accurate black-

box models, but they are not the only solution as we have shown in 
this work: medium-complexity models based on pattern-aided regres-

sion can achieve competitive prediction performance while remaining 
simple and interpretable. Moreover, our experiments with post-hoc ex-

plainability techniques such as partial dependence plots suggest that 
pattern-aided regression can reveal threshold effects that are also ex-

ploited by the more accurate black-box ensemble methods. Using those 
models, we have also shown that medium-complexity methods are well 
suited to extract more pertinent information compared to simpler mod-

els. Likewise medium-complexity models are easier to interpret com-

pared to more complex methods. This shows the utility of pattern-aided 
regression and makes it appealing for crop prediction. Since there is 
a direct correlation between interpretability and acceptability, evalu-

ating the complexity of a model is not trivial and should be taken into 
account. This aspect has been already addressed from the angle of learn-

ing complexity [25] or from the perspective of data complexity [26], 
but rarely in terms of the complexity of the resulting model. Finally, our 
study suggests that the meteorological inter-annual variations make dis-

ease incidence prediction very challenging, and that predicting disease 
incidence for any year requires more research as well as more historical 
(quality) data.

In the future we envision to study whether increasing the tempo-

ral and spatial granularity of the meteorological attributes can help 
us improve the quality of our predictions. An interesting research av-

enue could be to apply representation learning techniques in order 
to learn novel and useful meteorological indicators that predict dis-

ease incidence more accurately. Given the inter-annual variations of 
weather patterns, future approaches should be able to categorize pre-

diction models based on the meteorological profile of the data used to 
train them. We believe that unsupervised learning techniques could be 
adapted in that regard. Such approaches may be even necessary in the 
11

light of a climate that will keep changing in the upcoming years.
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