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A B S T R A C T
The increasing expansion of renewable energy sources leads to the growth of uncertainty in the
distribution network operation. Short-term operational planning performed by distribution system
operators should evolve to address those new operating conditions, in particular to allow the efficient
utilization of different flexibility levers. In this work, the use of a chance-constrained Alternating
Current Optimal Power Flow (AC-OPF) is proposed to model the operational planning problem,
considering the activation of several levers such as power modulation and power curtailment. The
correlation between the renewable generation profiles and loads is taken into account via a joint
probability constraint in the chance-constrained AC-OPF problem. The main novelty of the present
manuscript is the adoption of a Difference-of-Convex approach that allows to solve the obtained
optimization problem without convexification or linearization of the core OPF equations. The method
starts with a reformulation of the model as a Difference-of-Convex optimization problem, and then a
modified Bundle method algorithm is applied to solve it. The proposed methodology was tested in a
33 bus distribution network with 11 different values for the chance constraint satisfaction probability
(safety parameter) ranging from 0.75 to 1.

1. Introduction
1.1. Context

The use of renewable energy sources (RES) is becoming
increasingly important as the world seeks to transition to a
more sustainable and environmentally friendly energy sys-
tem. Several countries are proposing new targets to achieve
carbon neutrality. For example, in Europe, several programs
and initiatives have been defined such as Green Deal, Fit to
55 or RePower EU. In all documents, the targets are becom-
ing more and more ambitious with some concrete measures
such as incentives for the development of renewables and
the electrification of the transport sector [38]. Analysing
with more detail the mentioned initiatives, it is clear that
the transmission and distribution systems will be neuralgic
infrastructures.

Feed-in tariffs (FiT) for RES production were one of
the first incentive measures implemented by governments
to encourage their development [55]. With these tariffs,
RES production units could inject all the produced energy
and receive fixed and economically attractive remunera-
tion. Furthermore, system operators could not modulate the
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power injected by these units into their grid except under
critical operation conditions. In practice, it implied that the
system operators should be prepared to receive the contrac-
tualized capacity of production, which leads to significant
investments in grid infrastructure. Depending on the circum-
stances, it resulted in a significant increase in cost for these
producers, delays in commissioning, or even temporary lim-
itations on the power injection during reinforcement works.
Nowadays, considering the level of maturity of the RES tech-
nologies, mainly wind generation and solar photovoltaic, FiT
have been replaced by other mechanisms [29]. Smart (and
interruptible) connection points (SCP) and contracts have
been proposed [1] for RES and are being implemented in
Europe [12]. These contracts allow an increase in the hosting
capacity of existing systems and thus faster integration of
RES while reducing investment costs.

RES, such as solar and wind power, are inherently vari-
able and intermittent, and therefore present significant chal-
lenges to the efficient and reliable operation of power sys-
tems. To address these challenges, system operators, mainly
distribution system operators (DSOs), have to evolve from
a traditional fit and forget approach in network planning and
operation [16] to a more proactive one. Such a new approach
involves optimization of multi-annual investments in human
resources, infrastructure and technology, and the adoption
of new methods and tools. In this context, many Euro-
pean DSOs are implementing a streamlined time-continuum
based approach to network planning, operational planning
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and real-time operation, allowing a better and faster inte-
gration of new distributed energy resources (DER). This is,
for example, highlighted in Enedis’ (France’s largest DSO)
latest multi-annual network development plan [14]. Typi-
cally, this consists of characterising large investments sev-
eral years in advance, identifying and prioritising medium-
term investments, optimising works schedules in the short-
term, and operating networks in an optimized fashion. This
has however, and will continue to be, highly dependent on
political decisions, as is the case with above-mentioned FiT
and SCP mechanisms.

New network operational planning tools specifically tai-
lored to these needs have already been deployed and are
being improved to tackle the newest problems highlighted,
for example, in [14]. These improvements include mathe-
matical optimization based approaches to solving problems,
which represent a complete shift in the operational planning
paradigm for DSOs as it deals with the practical rules in
use-cases and contractual obligations through mathematical
optimization. DSOs like Enedis are continuing to work
on deployment of newer methods that take into account
other problems and opportunities like uncertainty in DER
production, interaction with external actors (e.g. flexibility
providers and TSOs), and integration of these new tools in
their IT and OT systems.

These optimization methods rely on power flow equa-
tions in order to ensure technical constraint satisfaction.
This, along with the objective of minimising costs associated
with the operational solution, gives rise to an alternating-
current optimal power flow problem (AC-OPF). In the case
of the industrial optimization solution developed by Enedis,
a deterministic and linearized AC-OPF model is used [44].
However, in a general case, an OPF problem is an optimiza-
tion problem with mixed integer variables that is strongly
NP-hard and nonconvex, as stated by various studies [7].
Several formulations and solution methods have been pro-
posed [18, 37], including classical optimization methods
that rely mainly on convex relaxations or approximations
[30, 20], nondeterministic search techniques (also known as
heuristic, stochastic or random search methods) [19], and
machine learning methods [22].
1.2. Optimal Power Flow (OPF) under

uncertainties
As traditional OPF models assume that the system pa-

rameters are deterministic, which may not be the case in
practice [42], modelling uncertainties has become an im-
portant research topic in the field of electric power systems,
particularly with the increasing penetration of RES. Solution
methodologies of related optimization problems are diverse,
and include meta-heuristic methods, robust and stochastic
approaches. The former group has gained attention in the
field of power and energy systems within the last ten years
[8], due to the ability to search for near-optimal solutions in a
large solution space efficiently (an overview of methods can
be found in [34]). However, from a theoretical point of view,

the quality of the obtained solution can be difficult to assess
in practice, as no optimality certificate is provided.

Robust optimization methods rely on constructing an
uncertainty set and searching for a reliable solution for
any scenario realization. This approach is proposed for the
management of distribution networks in [25, 17, 42, 53] with
different types of uncertain data. For instance, uncertainties
are solely on renewable energy sources in [25], whereas
[53] deals with stochastic load composition. The authors
in [42] describe multi-period grid management applying a
convex hull technique to define an uncertainty set. Solutions
obtained with robust optimization methods are optimal for
the worst-case scenario, and thus tend to be conservative.
In contrast, stochastic optimization methods assume that the
probability distribution of uncertain variables is known [41,
Chapter 1]. In particular, for the expected cost minimization
framework, it allows to achieve (expected) minimal cost
while preserving the required level of service for given sce-
narios. One widespread approach in stochastic programming
is chance-constrained optimization, where one searches for
a decision that minimizes costs while satisfying a set of ran-
dom constraints with a prescribed probability level [41, 2].
Chance-constrained optimization models are intuitive and
straightforward to explain. However, they are generally diffi-
cult to solve, because they often lack essential mathematical
properties such as convexity and differentiability [46].

The use of chance (probability) constraints for energy
management is discussed in detail in [50], where the authors
show how to ensure feasibility to the greatest extent possible,
while aligning with the goals of the system operator. In
the framework of OPF problems, most chance-constrained
models rely on linear or convex approximations and deal
with individual probability constraints, i.e., correlations be-
tween random variables are ignored. In [54] an OPF problem
with load uncertainties is considered, where probability
constraints are represented with individual bounds on state
variables. The model equations are linearized at the random
vector expected value, establishing a monotonic relation
between a constrained output and a random input. This
fact enables to treat the probability constraints regarding
the distribution of random variables. Partial linearization of
power flow equations is applied in [39], in order to transform
the individual chance constraints into deterministic ones
at the forecasted operating point. One of the assumptions
enabling the transformation is a relatively small forecast
error on the model uncertainties. Another approximation
is suggested in [10], where chance constraints are used to
enforce voltage regulation with prescribed probability. The
authors tackle them with convex relaxation and exploit lin-
earization of load-flow equations. Reference [6] deals with
minimization of an average generation cost over random
renewable power injections, while controllable generators
mitigate power fluctuations. To guarantee that thermal limits
are exceeded with low probability and ensure that the gen-
eration remains within imposed bounds, chance constraints
are employed separately for each type of constraint. Then,
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the model is reduced to a deterministic convex optimiza-
tion problem, more precisely, a second order cone program
(SOCP). A SOCP reformulation is also used in [33, 5] for
the case of individual chance constraints. In [31] a robust
modification of the approach given in [6] is presented, which
addresses the uncertainty in parameters of probability distri-
butions by restricting them to an uncertainty set. Another ro-
bust reformulation of a chance-constrained OPF modelling
systems with fluctuating power sources, is obtained in [52].
First, probabilistic bounds for the uncertainty are computed
using scenario-based approach, and then a robust variant of
the initial problem is solved due to these bounds.

A well-known downside of individual chance constraints
is that they ignore the random vector correlations, which are
important statistics that should be considered when mod-
elling real-life problems. As a strong correlation between the
renewable generation profiles and loads is observed [51, 36],
in the present work, the OPF problem is modelled as a
joint chance-constrained optimization problem. For a given
parameter 𝛼 ∈ [0, 1] and a probability measure ℙ, the
problem we investigate in this work can be synthetized as
follows:

𝐦𝐢𝐧Levers { Levers activation cost } (1a)
s.t. Activated levers satisfy contractual constraints (1b)

ℙ
[

Existence of a grid state within bounds
satisfying stochastic power-flow equations

]

≥ 1 − 𝛼.

(1c)
In this formulation, the decision variables are related

to the activation of flexibility contracts (levers), which in
our problem corresponds to DSO decisions on power mod-
ulation and power curtailment of distributed generation,
and limitations on power supply to consumers (energy not
supplied). Each grid user, who may be either a producer or
a consumer, is characterized by its grid connection contract
(FiT or SCP in our case). Depending on the contracts, levers
activated by the DSO must satisfy specific deterministic
constraints. Stochastic equations are related to technical
decision feasibility: given a DSO decision and a scenario
realization on power generation and loads, grid operating
conditions must remain within technical limits. In practice,
a decision on levers activation satisfying all the bounds
and stochastic power flow equations for all the possible
scenarios, may not exist. Hence, it makes sense to search
for a reliable, affordable decision that satisfies the stochastic
constraints with a probability level of at least 1−𝛼. Observe
that, if we take 𝛼 = 0 and a solution of problem (1) exists,
then such a solution is robust over all the possible scenarios.
The decision maker can thus adjust her risk aversion by
appropriately setting the parameter 𝛼: small 𝛼 reflects high
risk aversion.

In the proposed approach, the primary goal is to secure
the required level 1 − 𝛼, with 𝛼 > 0, for the system: we
search for an implementable decision that is feasible with
a probability of at least 1 − 𝛼. As we will see shortly, the
goal is obtained without any stringent assumption on the

probability distribution or modelling simplifications such
as linearization and convexification of core OPF equations.
The deterministic case 𝛼 = 0 is not within the scope
of the proposed methodology, which is applicable but not
tailored for this case. In section 2, we propose a realistic
mathematical model for (1) that is consequently noncon-
vex, nondifferentiable, and thus challenging. Nonconvexity
comes from the OPF equations, whereas the requirement
under probability sign in (1c) causes nondifferentiability of
the problem.

Despite recent advances in theory and numerical meth-
ods for chance-constrained problems, dealing with multi-
variate probability functions in optimization problems gen-
erally remains a challenging task. The main difficulty arises
in evaluating the probability function and computing its
(sub)gradient with reasonable precision. We recall that eval-
uating the probability function amounts to computing nu-
merically a multidimensional integral, a very difficult task
for even moderate dimensions [47]. The situation becomes
even more demanding for assessing (sub)gradients. For this
reason, a common practice is to estimate the probability
function with Monte-Carlo simulations using a finite sample
of scenarios [35]. For moderate sizes of the sample, and
under the assumption that all involved functions are convex,
one may model the probability constraint (1c) by using bi-
nary variables and BigM formulations (see, for instance, [49]
and references therein). Such an approach is inappropriate
for an OPF problem, because involved functions are not con-
vex. Hence, without modelling simplifications, new math-
ematical approaches are required to face nonconvexity and
nondifferentiability in problem (1). Based on the observation
that the requirement under the probability in (1c) can be
written as the difference of two convex functions, we apply
a Difference-of-Convex (DoC)1 optimization approach to
tackle our problem. To the best of our knowledge, DoC
programming has not yet been applied to the OPF class of
problems.
1.3. Chance-constrained optimization and the

DoC approach
A function is called DoC if it is expressible as the

difference of two convex functions. As already investigated
in [24] and [48], probability functions can be approximated
as accurately as one wishes by DoC functions. In Subsec-
tion 3.1, it is shown how to model (without approxima-
tion) the existence requirement in (1c) by a DoC function.
Therefore, we end up with a composition of DoC functions
that is itself DoC, and thus we can approximate probability
constraint (1c) with a DoC constraint:

ℙ
[

Existence of a grid state within bounds
satisfying stochastic power-flow equations

]

≥ 1 − 𝛼

≈ 𝑐1(𝑥) − 𝑐2(𝑥) ≤ 0,
1The standard abbreviation for Difference-of-Convex is DC. To avoid

confusion with "Direct Current" in OPF problems, we refer to the former
as DoC.
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where 𝑐1, 𝑐2 ∶ ℝ𝑛 → ℝ are (nondifferentiable) convex
functions. Given this approximation, we will show how to
construct a DoC optimization model for problem (1) fitting
into the following general structure:

min
𝑥∈𝑋

𝑓 (𝑥) ∶= 𝑓1(𝑥) − 𝑓2(𝑥) (2a)
s.t. 𝑐(𝑥) ∶= 𝑐1(𝑥) − 𝑐2(𝑥) ≤ 0, (2b)

where 𝑋 is a nonempty bounded polyhedron contained in
ℝ𝑛 and 𝑓1, 𝑓2 ∶ ℝ𝑛 → ℝ are convex functions as well. In
the present work, we will refer to (2) as a DoC optimization
problem.

DoC programming forms an important subfield of non-
convex programming, as it covers a large class of nonconvex
optimization problems from real-life applications. At the
same time, convex analysis apparatus enables to establish
optimality conditions for DoC problems and design algo-
rithms to solve them. These facts explain the increasing
interest in this field, which started in the 80s [28]. Important
facts about DoC programming such as optimality conditions
and duality can be found in the tutorial paper [11]. The
survey article [28] gives a large spectrum of examples and
algorithm developments in this field. Currently, most used
algorithms are based on iterative linearizations of compo-
nents 𝑓2 and 𝑐2 [28], on penalization technique applied to
the DoC constraint [27], and on improvement functions that
combine constraint and objective in single level [48]. The
latter is a well-known and successful strategy in the nons-
mooth optimization literature [40, 3, 32, 48]. In particular,
a bundle method with improvement function is proposed
in [48] for dealing with DoC-constrained DoC-problems.
Due to its good numerical performance reported in [48],
we choose this bundle algorithm – denoted by DoC bundle
method – to tackle our DoC optimization model (2) of the
chance-constrained OPF problem (1).
1.4. Paper Structure and Contributions

The main contributions of the present paper are:
1. The formulation of the operational planning prob-

lem considering the activation of flexibility contracts
(levers) under uncertainties, related to the proba-
bilistic nature of nodal generation and consumption,
as a joint chance-constrained OPF. The correlations
among the random variables are thus taken into ac-
count. Furthermore, no model linearization or con-
vexification is considered.

2. The design of an oracle (black-box) enabling to find
a DoC decomposition of the constraint under proba-
bility sign, which imposes the OPF solution to be in
the required bounds. This allows to apply DoC bundle
method to the obtained chance-constrained OPF.

3. An illustration of the practical performance of DoC
approach on two use-cases.

The remainder of this paper is organized as follows.
Section 2 is dedicated to the modelling of short-term op-
erational planning on grid users power modulation under

uncertainties as a chance-constrained OPF. A reformulation
of the obtained problem as a DoC model is given in Section
3, followed by an explanation of DoC bundle method. In
Section 4, numerical results for two use cases are provided,
which illustrate the performance of the described method.

2. Chance-constrained OPF model
In what follows the chance-constrained OPF model is

described by setting the decision variables, state variables
and constraints. The employed notation is introduced along
the way.
2.1. Decision variables and random vector

We denote by  the set of buses of the grid, and by 
the set of lines. Among the end buses  , there is one slack
bus and other buses with at most one connected grid user.
Each grid user is either a producer or a consumer. The set of
all grid users is denoted by ̃ ⊂  , identifying a grid user
𝑖 ∈ ̃ with a corresponding bus 𝑖 ∈  . Let  and  be the
subsets of producers and consumers, respectively. We wish
to determine the active power 𝑝𝑖 (positive for generation and
negative for consumption) and reactive power 𝑞𝑖 of each grid
user 𝑖 ∈ ̃ , based on the following decomposition:

𝑝𝑖 = 𝑝𝜙𝑖 (𝜉) − 𝒑𝜸𝑖 − 𝒑𝝂𝑖 , 𝑞𝑖 = 𝑞𝜙𝑖 (𝜉) − 𝒒𝜸𝑖 − 𝒒𝝂𝑖 . (3)
For buses 𝑖 ∈  ⧵ ̃ with no grid users, excluding the
slack bus, we set 𝑝𝑖 = 𝑞𝑖 = 0. The active and reactive
power demand (production and consumption), 𝑝𝜙𝑖 (𝜉) and
𝑞𝜙𝑖 (𝜉), are the uncertain parameters of our model, given as
scenario realizations of a random vector 𝜉 ∈ Ξ ⊂ ℝ𝑑 . In
case of considered flexibility contracts, the decision bears
on the active power modulation for SCP grid users within
the bounds of their guaranteed power denoted by 𝒑𝜸𝑖 ; on the
active power curtailment for FiT grid users and SCP grid
users beyond the bounds of their guaranteed power, and on
limitations on power supply to consumers (energy not sup-
plied), denoted by 𝒑𝝂𝑖 . We introduce also pair variables for
reactive power modulation: 𝒒𝜸𝑖 for SCP grid users within the
bounds of their guaranteed power; 𝒒𝝂𝑖 for FiT grid users and
SCP grid users beyond the bounds of their guaranteed power,
and consumers. In fact, each reactive power variable is a
function from the active, which will be defined in Subsection
2.3. This formulation was chosen as an easily modifiable for
the case of other DSO levers, where the reactive power can
be modulated directly. As the decision must be taken before
scenario realization is known, the aforementioned decision
variables do not depend directly on 𝜉. In order to distinguish
different types of decision variables, we denote by 𝑆𝐶𝑃the set of indexes for 𝒑𝜸 and 𝒒𝜸 , and by 𝐹 𝑖𝑇 that for 𝒑𝝂
and 𝒒𝝂 (note that 𝑆𝐶𝑃 ⊂  and  ⊂ 𝐹 𝑖𝑇 ). To simplify
the notation, if there is no need to distinguish user types, we
will denote decision variables by

𝐩 ∶= ({𝒑𝜸𝑖 }𝑖∈𝑆𝐶𝑃
, {𝒑𝝂𝑖 }𝑖∈𝐹 𝑖𝑇

) ∈ ℝ𝑛

𝐪 ∶= ({𝒒𝜸𝑖 }𝑖∈𝑆𝐶𝑃
, {𝒒𝝂𝑖 }𝑖∈𝐹 𝑖𝑇

) ∈ ℝ𝑛
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with 𝑛 = |𝑆𝐶𝑃 | + |𝐹 𝑖𝑇 |.On the contrary, the state variables |𝑉𝑖| and 𝛿𝑖 represent-
ing voltage at bus 𝑖 ∈  , as well as 𝑝𝑠𝑏 and 𝑞𝑠𝑏 representing
active and reactive power at slack bus, directly depend on 𝜉:
once the scenario realization 𝜉 is known, as well as the active
and reactive power 𝑝𝑖 and 𝑞𝑖 for all 𝑖 ∈ ̃ , state variables
can be found by Gauss-Seidel, Newton-Raphson or similar
methods [21].

Our problem thus has two main types of variables. First,
the power modulation variables 𝐩𝑖 and 𝐪𝑖 are determined for
all 𝑖 ∈ 𝑆𝐶𝑃 ∪ 𝐹 𝑖𝑇 before realization of the uncertain
event. Then, after a scenario 𝜉 is observed, which defines
the power production and consumption, 𝑝𝜙𝑖 (𝜉) and 𝑞𝜙𝑖 (𝜉) for
each grid user 𝑖 ∈ ̃ , a new grid-state is determined. It is
defined by the values of |𝑉𝑖| and 𝛿𝑖, 𝑖 ∈  , and 𝑝𝑠𝑏, 𝑞𝑠𝑏. The
goal is to check whether an operational current transit (for a
given scenario and power modulation) exists. In the next two
subsections, we will detail how these two types of variables
are combined in our chance-constrained OPF.
2.2. Power flow constraints under probability sign

We impose operational constraints which include bounds
on voltage variables and constraints on the slack bus power
variables. More specifically, we denote upper and lower
bounds on voltage variables by |𝑉𝑖|, 𝛿𝑖 and |𝑉𝑖|, 𝛿𝑖, respec-
tively. Constraints on active and reactive power at slack bus
𝑝𝑠𝑏 and 𝑞𝑠𝑏, are represented by a set 𝑠𝑏 defined in Demand
Connection Code [9], Figure 1. In addition, we add thermal
constraints on current transit (congestion constraints): for
each line (𝑖, 𝑗) belonging to the set , we impose an upper
limit (𝐼max

𝑖,𝑗 )2 on a quadratic form 𝑙 from the current.

Figure 1: Feasible 𝑃 -𝑄 diagram for slack-bus following De-
mand Connection Code.

All in all, we get the following set of constraints:
𝛿𝑖 ≤ 𝛿𝑖 ≤ 𝛿𝑖, ∀𝑖 ∈  (4a)
|𝑉𝑖| ≤ |𝑉𝑖| ≤ |𝑉𝑖|, ∀𝑖 ∈  (4b)
𝑙(|𝑉𝑖|, |𝑉𝑗|, 𝛿𝑖, 𝛿𝑗) ≤ (𝐼max

𝑖,𝑗 )2, ∀(𝑖, 𝑗) ∈  (4c)

(𝑝𝑠𝑏, 𝑞𝑠𝑏) ∈ 𝑠𝑏. (4d)
In order to ease the model representation, let us define the
following functions (here the sum is taken over all buses 𝑘
connected to the bus 𝑖):

L𝑅
𝑖 (𝐩, 𝛿, |𝑉 |, 𝜉) ∶=
(

𝑝𝜙𝑖 (𝜉) − 𝒑𝜸𝑖 − 𝒑𝝂𝑖
)

+
∑

𝑘∼𝑖
𝑌 𝑅
𝑖,𝑘|𝑉𝑖||𝑉𝑘| cos(𝛿𝑖 − 𝛿𝑘)

+
∑

𝑘∼𝑖
𝑌 𝐼
𝑖,𝑘|𝑉𝑖||𝑉𝑘| sin(𝛿𝑖 − 𝛿𝑘)

L𝐼
𝑖 (𝐪, 𝛿, |𝑉 |, 𝜉) ∶=

(

𝑞𝜙𝑖 (𝜉) − 𝒒𝜸𝑖 − 𝒒𝝂𝑖
)

+
∑

𝑘∼𝑖
𝑌 𝑅
𝑖,𝑘|𝑉𝑖||𝑉𝑘| sin(𝛿𝑖 − 𝛿𝑘)

−
∑

𝑘∼𝑖
𝑌 𝐼
𝑖,𝑘|𝑉𝑖||𝑉𝑘| cos(𝛿𝑖 − 𝛿𝑘).

Such functions define the stochastic power flow equations of
our problem.

We can now mathematically state the requirements under
the probability sign in problem (1) by defining the following
random set

𝑋(𝜉) ∶=

⎧

⎪

⎨

⎪

⎩

(𝐩,𝐪)
|

|

|

|

|

there exist |𝑉 |, 𝛿, 𝑝𝑠𝑏, 𝑞𝑠𝑏 satisfying (4),
L𝑅𝑖 (𝐩, 𝛿, |𝑉 |, 𝜉) = 0 for all 𝑖 ∈  ,
L𝐼𝑖 (𝐪, 𝛿, |𝑉 |, 𝜉) = 0 for all 𝑖 ∈  .

⎫

⎪

⎬

⎪

⎭

(5)
Note that variables |𝑉 |, 𝛿, 𝑝𝑠𝑏, 𝑞𝑠𝑏 depend directly on the
random event 𝜉, whereas (𝐩,𝐪) must be decided before
realization of 𝜉. We are thus interested in finding a decision
(𝐩,𝐪) belonging to the random set 𝑋(𝜉) with probability
1 − 𝛼, which is represented by a probability constraint in
our optimization model.
2.3. Chance-constrained OPF formulation

We continue by defining deterministic constraints of the
problem. We start with the conservative bound on generation
and consumption

𝑝̄𝜙𝑖 ∶= min
𝜉∈Ξ

𝑝𝜙𝑖 (𝜉) for all 𝑖 ∈ 

𝑝̄𝜙𝑖 ∶= max
𝜉∈Ξ

𝑝𝜙𝑖 (𝜉) for all 𝑖 ∈ .

When the support set of the random vector 𝜉 is represented
by finitely many Monte-Carlo scenarios, Ξ is a finite set, and
thus computing 𝑝̄𝜙𝑖 is a straightforward task. This parameter
enters in our optimization problem bounding the decision
variables on active power curtailment and modulation, 𝑝𝜈
and 𝑝𝛾 . The power curtailment must satisfy both contractual
and technical bounds, for all realizations of the random
vector 𝜉. Hence, we set the following constraints :

0 ≤ 𝒑𝝂𝑖 ≤ 𝑝̄𝜙𝑖 and 𝒒𝝂𝑖 = tan𝜙𝑖𝒑𝝂𝑖 , 𝑖 ∈ 𝐹 𝑖𝑇 ∩ 

𝑝̄𝜙𝑖 ≤ 𝒑𝝂𝑖 ≤ 0 and 𝒒𝝂𝑖 = tan𝜙𝑖𝒑𝝂𝑖 , 𝑖 ∈ 𝐹 𝑖𝑇 ∩ .

Ksenia Syrtseva, Paul Javal, Welington de Oliveira, Sophie Demassey, Hugo Morais, Bhargav Swaminathan: Preprint submitted
to Elsevier Page 5 of 15

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4510304

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



DoC Approach for Chance-Constrained OPF modeling the DSO Power Modulation Lever for Distribution Networks

where parameter tan𝜙𝑖 is given for each grid user. Mean-
while, for 𝑖 ∈ 𝑆𝐶𝑃 , the bounds on power modulation are
determined contractually. They can be modelled as fractions
of installed or subscribed power (for producer and consumer,
respectively). Due to the data used in practice, we imple-
mented them as a fraction of 𝑝̄𝜙𝑖 . All in all, we obtain the
following constraints:

𝑎−𝑝̄
𝜙
𝑖 ≤ 𝒑𝜸𝑖 ≤ 𝑎+𝑝̄

𝜙
𝑖 and 𝒒𝜸𝑖 = tan𝜙𝑖𝒑

𝜸
𝑖 ,

with 𝑎− ∈ [−1, 0] and 𝑎+ ∈ [0, 1].
As for the objective function, we consider the case when

𝑓 (𝐩,𝐪) is convex, Subsection 4.3. However, our approach
remains valid as long as the objective function is DoC only
using a generalized version of the algorithm proposed in
[48].

Based on the assumptions described in the previous para-
graphs, it is now possible to present the chance-constrained
model for the considered stochastic OPF problem:

min
𝐩,𝐪

𝑓 (𝐩,𝐪) (6a)
s.t. 0 ≤ 𝒑𝝂𝑖 ≤ 𝑝̄𝜙𝑖 ∀𝑖 ∈ 𝐹 𝑖𝑇 ∩  (6b)

𝑝̄𝜙𝑖 ≤ 𝒑𝝂𝑖 ≤ 0 ∀𝑖 ∈ 𝐹 𝑖𝑇 ∩  (6c)
𝒒𝝂𝑖 = tan𝜙𝑖𝒑𝝂𝑖 , ∀𝑖 ∈ 𝐹 𝑖𝑇 (6d)
𝑎−𝑝̄

𝜙
𝑖 ≤ 𝒑𝜸𝑖 ≤ 𝑎+𝑝̄

𝜙
𝑖 , ∀𝑖 ∈ 𝑆𝐶𝑃 (6e)

𝒒𝜸𝑖 = tan𝜙𝑖𝒑
𝜸
𝑖 , ∀𝑖 ∈ 𝑆𝐶𝑃 (6f)

ℙ
[

(𝐩,𝐪) ∈ 𝑋(𝜉)] ≥ 1 − 𝛼. (6g)

3. DoC reformulation and Bundle method
In this section, we first propose a DoC model for prob-

lem (6), and then we show how to solve it by the bundle
method of [48]. The proposed model is built upon two DoC
reformulations: one exact for the mathematical requirement
(𝐩,𝐪) ∈ 𝑋(𝜉) and another approximate for the probability
measure ℙ, as detailed in Subsections 3.1 and 3.2. Subsec-
tion 3.3 recalls the main details of the chosen optimization
algorithm for solving the underlying problem.
3.1. DoC reformulation of the condition

(𝐩,𝐪) ∈ 𝑋(𝜉)
Let 𝜉 ∈ Ξ be fixed. For notational convenience, we

will denote the decision variables (𝐩,𝐪) of our problem by
𝑥 ∈ ℝ2𝑛. Our development starts by noting that the squared
distance function to 𝑋(𝜉), i.e.,

𝑑2𝑋(𝜉)(𝑥) ∶= min
𝑧∈𝑋(𝜉)

1
2
‖𝑧 − 𝑥‖2,

yields the following useful relation:
𝑥 ∶= (𝐩,𝐪) ∈ 𝑋(𝜉) ⟺ 𝑑2𝑋(𝜉)(𝑥) = 0, 𝑥 ∈ ℝ2𝑛.

The squared distance function is not convex as the set 𝑋(𝜉)
given in (5) is not convex. However, it is a DoC function as
the following development shows:

𝑑2𝑋(𝜉)(𝑥) = min
𝑧∈𝑋(𝜉)

{1
2
‖𝑥‖2 − ⟨𝑧, 𝑥⟩ + 1

2
‖𝑧‖2

}

= 1
2
‖𝑥‖2 − max

𝑧∈𝑋(𝜉)

{

⟨𝑧, 𝑥⟩ − 1
2
‖𝑧‖2

}

= 𝑔1(𝑥, 𝜉) − 𝑔2(𝑥, 𝜉).

Indeed, for any arbitrary 𝜉 fixed, the convexity of both
functions

𝑔1(𝑥, 𝜉) ∶=
1
2
‖𝑥‖2 (7a)

𝑔2(𝑥, 𝜉) ∶= max
𝑧∈𝑋(𝜉)

{

⟨𝑧, 𝑥⟩ − 1
2
‖𝑧‖2

}

(7b)

with respect to 𝑥 directly results from the definition of
convexity. Moreover, observe that 𝑔1 − 𝑔2 is non-negative.
As a result, we have the following DoC reformulation for
checking whether (𝐩,𝐪) satisfies the constraints in (5):

𝑥 = (𝐩,𝐪) ∈ 𝑋(𝜉) ⟺ 𝑔1(𝑥, 𝜉) − 𝑔2(𝑥, 𝜉) ≤ 0.

While 𝑔1 is a simple quadratic function, 𝑔2(⋅, 𝜉) is more
involved: it is the optimal value of a nonconvex optimization
problem and is thus nondifferentiable. Its subdifferential at a
given point 𝑥 is given by

𝜕𝑔2(𝑥, 𝜉) ∶=
{

𝑠2(𝜉) ∈ ℝ2𝑛 ∶ 𝑔2(𝑧, 𝜉) ≥

𝑔2(𝑥, 𝜉) + ⟨𝑠2(𝜉), 𝑧 − 𝑥⟩ ∀ 𝑧 ∈ ℝ2𝑛
}

= arg max
𝑧∈𝑋(𝜉)

{

⟨𝑧, 𝑥⟩ − 1
2
‖𝑧‖2

}

= arg min
𝑧∈𝑋(𝜉)

1
2
‖𝑧 − 𝑥‖2.

If the set 𝑋(𝜉) were convex (and closed), then the above
projection problem would have had a unique solution and,
thus, 𝑔2 would have been differentiable.

Note that evaluating 𝑔2 at a given point 𝑥 and computing
one of its subgradient (an element of the subdifferential)
amounts to projecting 𝑥 onto the set 𝑋(𝜉) given in (5).
This task can be accomplished (at least approximately) by
OPF tools because this projection problem is indeed an OPF
with a quadratic objective function. A numerical procedure
(oracle) for accessing the DoC function 𝑔1(𝑥, 𝜉) − 𝑔2(𝑥, 𝜉)and its first-order information is as follows. Here, we use
the notation (𝐩𝑘,𝐪𝑘) to highlight that this point is fixed,
conceivably given by an algorithm at its iteration 𝑘.
Oracle 1. Black-box for the DoC function 𝑔1(𝑥, 𝜉)−𝑔2(𝑥, 𝜉).

1: Given (𝐩𝑘,𝐪𝑘) ∈ ℝ2𝑛 and event/scenario 𝜉 ∈ Ξ, let (𝐩̃, 𝐪̃) be a
solution of the OPF

min
(𝐩,𝐪)∈𝑋(𝜉)

1
2
‖(𝐩,𝐪) − (𝐩𝑘,𝐪𝑘)‖2, with 𝑋(𝜉) given in (5)

2: Set 𝑔1(𝐩𝑘,𝐪𝑘, 𝜉) ← 1
2
‖𝐩𝑘

‖

2 + 1
2
‖𝐪𝑘

‖

2 and 𝑠𝑘1(𝜉) ←
(

𝐩𝑘

𝐪𝑘

)

3: Set 𝑔2(𝐩𝑘,𝐪𝑘, 𝜉) ← ⟨𝐩𝑘, 𝐩̃⟩ − 1
2
‖𝐩̃‖2 + ⟨𝐪𝑘, 𝐪̃⟩ − 1

2
‖𝐪̃‖2 and

𝑠𝑘2(𝜉) ←
(

𝐩̃
𝐪̃

)

4: Return the first order information (𝑔1(𝐩𝑘,𝐪𝑘, 𝜉), 𝑠𝑘1(𝜉)) and
(𝑔2(𝐩𝑘,𝐪𝑘, 𝜉), 𝑠𝑘2(𝜉)).
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The most time-consuming task in Oracle 1 is Step 1. To
compute (𝐩̃, 𝐪̃), we may employ standard solvers from the
OPF literature and leverage computational burden by first
checking whether (𝐩𝑘,𝐪𝑘) satisfies the constraints in (5). The
latter amounts to solving a system of load-flow equations and
verifying if the computed solution (𝛿, |𝑉 |, 𝑝𝑠𝑏, 𝑞𝑠𝑏) satisfies
the bounds in (4). If it is the case, then (𝐩𝑘,𝐪𝑘) automatically
solves the OPF of Step 1: there is no need for calling an OPF
solver, but only a (simpler) load-flow algorithm. However,
if the computed solution of the load-flow equations does
not satisfy (4), then we say that (𝐩𝑘,𝐪𝑘) is infeasible for the
future event 𝜉. In this case, an OPF solver must be applied to
compute a point (𝐩̃, 𝐪̃) that is feasible for the scenario 𝜉 and
as close as possible to (𝐩𝑘,𝐪𝑘). Such a step thus amounts
to answering the following question: given that (𝐩𝑘,𝐪𝑘) is
infeasible for scenario 𝜉,

what is the smallest necessary perturbation on
(𝐩𝑘,𝐪𝑘) to render it feasible?

The answer is (𝐩̃, 𝐪̃) − (𝐩𝑘,𝐪𝑘), which is nothing but the
opposite direction to the subgradient 𝑠𝑘1(𝜉) − 𝑠𝑘2(𝜉). This
fact explicitly reveals the practical role of the subgradients
computed by Oracle 1: it guides the optimization process to
seek for a better candidate solution (at the next iteration),
and the use of an efficient OPF solver allows to improve nu-
merical performance. However, caution is necessary: in this
analysis, the oracle only sees the given individual scenario
𝜉. It is thus necessary to account for all the scenarios and the
probability measure in a higher-level oracle. That is the goal
in the following subsection.
3.2. DoC reformulation of probability constraint

This subsection aims at presenting a DoC approximation
for the probability constraint (6g). From the previous subsec-
tion we have

ℙ[(𝐩,𝐪) ∈ 𝑋(𝜉)] ≡ ℙ[𝑔1(𝐩,𝐪, 𝜉)−𝑔2(𝐩,𝐪, 𝜉) ≤ 0],

with 𝑔1, 𝑔2 two convex functions given in (7). Hence,
ℙ[(𝐩,𝐪) ∈ 𝑋(𝜉)] ≥ 1 − 𝛼

is equivalent to
ℙ[𝑔1(𝐩,𝐪, 𝜉) − 𝑔2(𝐩,𝐪, 𝜉) > 0] ≤ 𝛼.

Next, we follow the lead of [48] to approximate the proba-
bility measure by a DoC function. To this end, let 𝑣(𝜉) =
𝑔1(𝐩,𝐪, 𝜉) − 𝑔2(𝐩,𝐪, 𝜉) be the random variable of interest,
𝔼[⋅] the expected value operator w.r.t. ℙ, and let 𝟏(0,∞)(⋅)denote the characteristic function of the segment (0,∞), that
equals to 1 if 𝑣 > 0, and 0 if 𝑣 ≤ 0. Recall that the following
useful equivalence:

ℙ[𝑣(𝜉) > 0] = 𝔼[𝟏(0,∞)(𝑣(𝜉))].

The main source of difficulties is that 𝟏(0,∞)(⋅) is not convex
and, even worse, it is discontinuous at 0. As in [24] and [48],

we now approximate the characteristic function by a DoC
one. Given a small parameter 𝑡 > 0, the discontinuous char-
acteristic function can be approximated by the continuous
one

𝜁 𝑡(𝑣) ∶=

⎧

⎪

⎨

⎪

⎩

0, if 𝑣 ≤ 0
𝑣
𝑡 , if 0 < 𝑣 ≤ 𝑡
1, if 𝑡 < 𝑣.

(8)

Observe that lim𝑡↓0 𝜁 𝑡(𝑣) = 𝟏(0,∞)(𝑣) and 𝜁 𝑡(𝑣) has the

Figure 2: Function 𝜁 𝑡(𝑣) for 𝑡 = 10−4, 𝑡 = 10−5 and 𝑡 = 10−6.

following DoC decomposition:
𝜁 𝑡(𝑣) = max

{𝑣
𝑡
, 0
}

− max
{

0, 𝑣 − 𝑡
𝑡

}

.

Hence, the following expected value
𝔼[𝜁 𝑡(𝑔1(𝐩,𝐪, 𝜉) − 𝑔2(𝐩,𝐪, 𝜉))]

is an approximation of the probability
ℙ[𝑔1(𝐩,𝐪, 𝜉) − 𝑔2(𝐩,𝐪, 𝜉) > 0].

Such approximation is as good as one wishes: the smaller
is the parameter 𝑡 > 0, the closer 𝜁 𝑡(⋅) is to 𝟏(0,∞)(⋅).Furthermore, the composition of DoC functions under the
expectation is itself a DoC function:

𝜁 𝑡(𝑔1(𝐩,𝐪, 𝜉) − 𝑔2(𝐩,𝐪, 𝜉)) =
max{𝑔1(𝐩,𝐪, 𝜉), 𝑔2(𝐩,𝐪, 𝜉)}

𝑡
+ 1

−
max{𝑔1(𝐩,𝐪, 𝜉), 𝑔2(𝐩,𝐪, 𝜉) + 𝑡}

𝑡
.

It is well-known that the expectation 𝔼[⋅] can be effi-
ciently approximated via Monte-Carlo simulation by con-
sidering a fixed sample of scenarios randomly generated
according to the distribution of 𝜉. As usual in the stochas-
tic programming literature, in our numerical experiments
we randomly generate a sample of 𝑁 scenarios Ξ ∶=
{𝜉1,… 𝜉𝑁} and estimate the convex functions

𝔼
[max{𝑔1(𝐩,𝐪, 𝜉), 𝑔2(𝐩,𝐪, 𝜉)}

𝑡

]

+ 1
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and 𝔼
[max{𝑔1(𝐩,𝐪, 𝜉), 𝑔2(𝐩,𝐪, 𝜉) + 𝑡}

𝑡

]

.

by their sample average approximations. The justifica-
tion of such an approach is well documented in the literature
(e.g., [35]), and specialized to the the DoC setting in [24] and
[26, Subsection 7.7.2]. Hence, we can approximate the prob-
ability constraint (6g) with the following DoC constraint

𝑐1(𝐩,𝐪) − 𝑐2(𝐩,𝐪) ≤ 0,

where
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐1(𝐩,𝐪) ∶=
1
𝑁

𝑁
∑

𝑗=1
max{𝑔1(𝐩,𝐪, 𝜉𝑗), 𝑔2(𝐩,𝐪, 𝜉𝑗)}

+𝑡(1 − 𝛼),

𝑐2(𝐩,𝐪) ∶=
1
𝑁

𝑁
∑

𝑗=1
max{𝑔1(𝐩,𝐪, 𝜉𝑗), 𝑔2(𝐩,𝐪, 𝜉𝑗) + 𝑡}

(9)
are convex functions. As a result, we have our DoC optimiza-
tion model for the chance-constrained problem (6):

{

min
(𝐩,𝐪)∈𝑋

𝑓 (𝐩,𝐪)

s.t. 𝑐1(𝐩,𝐪) − 𝑐2(𝐩,𝐪) ≤ 0,
(10a)

where
𝑋 ∶= {(𝐩,𝐪) ∈ ℝ2𝑛 ∶ (6b) − (6f)} (10b)

is a polyhedral set. As discussed in Subsection 1.3, this
optimization problem fits the structure of (2), and we can
apply the DoC bundle method of [48] to tackle it.
3.3. DoC Bundle method

We start by highlighting that oracles for the functions
in problem (10) are readily available. Indeed, 𝑓 is a convex
function and thus simple. Furthermore, an oracle for 𝑐1and 𝑐2, providing their values and first-order information, is
readily implementable thanks to Oracle 1 and assumption
that we have finitely many 𝑁 scenarios to represent the
future random events: given 𝑥 ∶= (𝐩,𝐪) ∈ 𝑋, an oracle
provides (𝑐1(𝑥), 𝑠1 ∈ 𝜕𝑐1(𝑥)) and (𝑐2(𝑥), 𝑠2 ∈ 𝜕𝑐2(𝑥)). Note,
however, that such an oracle is not a straightforward one: it
requires calling Oracle 1 𝑁 times for the same 𝑥 = (𝐩,𝐪)
given. In other words, 𝑁 deterministic OPF (or load-flow
problem) must be solved by Oracle 1 to compute (via (9) the
function values and a pair of subgradients for 𝑐1 and 𝑐2.

Given these oracles, we can go further and briefly present
the solving methodology, which has many numerical advan-
tages: it does not require a feasible initial point, does not
need penalty parameters, and numerical experience suggests
that the approach is likely to escape bad-quality critical
points. The interested reader is referred to [48] for a detailed
presentation of DoC bundle method, as well as its mathe-
matical properties. In that paper, the algorithm is given for
a general case of DoC objective function, while the version
presented below is adapted for convex objective. We start

with the improvement function definition, an essential tool
for presenting the algorithm:

𝐻𝜏 (𝑥) = max{𝑓 (𝑥) − 𝜏𝑓 , 𝑐1(𝑥) − 𝑐2(𝑥) − 𝜏𝑐}. (11)
In this definition, 𝜏 ∈ ℝ2 is a parameter. The best choice for
its value is 𝜏 = (𝑓 ∗, 0), with 𝑓 ∗ the optimal value of (10):
in this case, any solution of the problem min𝑥∈𝑋 𝐻𝜏 (𝑥)solves (10). However, as 𝑓 ∗ is unknown we update 𝜏 it-
eratively as follows: given 𝑥̂ ∈ 𝑋, a candidate point to
solve (10) produced by the algorithm, we set

𝜏 ∶= (𝜏𝑓 , 𝜏𝑐) = (𝑓 (𝑥̂)+𝜌max{𝑐(𝑥̂), 0}, 𝜎max{𝑐(𝑥̂), 0}),
(12)

where 𝜌 > 0 and 𝜎 ∈ [0, 1) can be freely chosen. The DoC
bundle algorithm can be depicted as in Algorithm 1.
Algorithm 1 DoC bundle method

1: Given 𝑥0 ∈ 𝑋, 𝛼 ∈ [0, 1], choose 𝜇 > 0 and 𝜅 ∈ (0, 1).
Set 𝑥̂ ← 𝑥0 and 𝜏 as in (12)

2: Compute (𝑓 (𝑥0), 𝑠0𝑓 ∈ 𝜕𝑓 (𝑥0)) and (𝑐𝑖(𝑥0), 𝑠0𝑖 ∈
𝜕𝑐𝑖(𝑥0)), 𝑖 = 1, 2

3: for 𝑘 = 0, 1, 2… do
⊳ Trial point

4: Let 𝑥𝑘+1 be the 𝑥-part solution of the quadratic
program
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
𝑥∈𝑋,𝑟∈ℝ4

𝑟4 − ⟨𝑠𝑘2 , 𝑥⟩ + 𝜇
2 ‖𝑥 − 𝑥̂‖2

s.t. 𝑓 (𝑥𝑗) + ⟨𝑠𝑗𝑓 , 𝑥 − 𝑥𝑗⟩ ≤ 𝑟1, 𝑗 = 0,… , 𝑘
𝑐1(𝑥𝑗) + ⟨𝑠𝑗1, 𝑥 − 𝑥𝑗⟩ ≤ 𝑟2, 𝑗 = 0,… , 𝑘
𝑐2(𝑥𝑗) + ⟨𝑠𝑗2, 𝑥 − 𝑥𝑗⟩ ≤ 𝑟3, 𝑗 = 0,… , 𝑘
𝑟1 + 𝑟3 − 𝜏𝑓 ≤ 𝑟4
𝑟2 − 𝜏𝑐 ≤ 𝑟4

⊳ Stopping test
5: if ‖𝑥𝑘+1 − 𝑥̂‖ ≤ 𝚃𝚘𝚕 then
6: Stop and return 𝑥̂
7: end if

⊳ Oracles call
8: Compute (𝑓 (𝑥𝑘+1), 𝑠𝑘+1𝑓 ∈ 𝜕𝑓 (𝑥𝑘+1)) and

(𝑐𝑖(𝑥𝑘+1), 𝑠𝑘+1𝑖 ∈ 𝜕𝑐𝑖(𝑥𝑘+1)), 𝑖 = 1, 2
⊳ Descent test

9: if 𝐻𝜏 (𝑥𝑘+1) ≤ 𝐻𝜏 (𝑥̂) − 𝜅 𝜇
2 ‖𝑥

𝑘+1 − 𝑥̂‖2 then
10: Set 𝑥̂ ← 𝑥𝑘+1 and update 𝜏 as in (12).
11: end if

12: end for

We highlight that Algorithm 1 is a simplified version of
the one presented in [48]. For instance, the prox-parameter
𝜇 > 0 can be updated iteratively, the number of constraints
in the quadratic (master) program can be kept bounded,
and the objective function can be DoC. The convergence
analysis given in [48, Section 4] ensures that, under certain
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conditions, Algorithm 1 provides a critical point (i.e., a point
satisfying necessary optimality conditions) of problem (2).

4. Results
4.1. Network

The current research study utilizes a medium voltage dis-
tribution network, inspired by [4, 43], consisting of 33 buses,
accommodating 31 loads and with a total peak consumption
of approximately 16.6 MW. The network incorporates three
distributed generation (DG) units, comprising two biomass
plants (one with SCP contract connected in bus 12 with
an installed capacity of 6.97 MW and another with FiT
contract connected in bus 29 with an installed capacity of
3.86 MW), and one wind farm with a FiT contract connected
in bus 32 with an installed capacity of 0.47 MW. The
network is connected to the high-voltage network in bus 1
which is considered the slack bus in the present study. The
consumption and generation values were defined to have the
network operating near by their technical limits creating the
need for flexibility activation. The schematic representation
of the network is illustrated in Figure 3.

Figure 3: Medium voltage distribution network, 32 buses.

4.2. Scenario generation
In order to test the proposed DoC approach on the test

network described in Subsection 4.1, we use Enedis Open
Data [15] on July 27, 2020, to construct load and generation
profiles for 𝑁 = 1000 scenarios. Three types of grid users
are considered: biomass generation, wind generation and
consumption (data based on small and medium enterprises).
For each grid user 𝑖 ∈  , we denote the provided data
by (𝑝̃𝜙𝑖 , 𝑞

𝜙
𝑖 ). Next, we attribute an individual variance 𝜎2𝑖 :

0.0248 for biomass generation type, 0.01 for wind generation
type, and 4 different values in the range between 6.01 ⋅ 10−5
and 0.01 for consumers. Consider covariance matrix Σ with
Σ𝑖,𝑗 = 𝑟𝑖,𝑗𝜎𝑖 ⋅ 𝜎𝑗 , where 𝑟𝑖,𝑗 = 1 if the types of users 𝑖 and 𝑗
coincide, and 0 otherwise; and normalization matrix 𝐴 with
𝐴𝑖,𝑗 = 0.5 if the user 𝑖 = 𝑗 is a generator, 𝐴𝑖,𝑗 = 5000 if
the user 𝑖 = 𝑗 is a consumer, and 0 otherwise. Applying

the procedure described in [23], we calculate the nearest
symmetric positive semi-definite matrix Σ̃ to𝐴𝜎. Finally, we
generate vectors 𝑝𝜙 and 𝑞𝜙 following multivariate Gaussian
distributions with the means 𝑝̃𝜙 and 𝑞𝜙, respectively, and
covariance Σ̃.
4.3. Parameters of DoC approach

Here and in what follows 𝑃𝑏𝑎𝑠𝑒 = 1 MW, 𝑉𝑏𝑎𝑠𝑒 =
12.66 kV and 𝐼𝑏𝑎𝑠𝑒 = 78.99A.

The upper and lower bounds in (4b) are defined in the
network design manual of a French DSO [13, Annex 1.3]
specifically related to connection contracts for grid users,
and represent ±5% of nominal voltage for MV network. The
upper and low bounds on 𝛿 in (4a) are set to ±𝜋

2 . For all
(𝑖, 𝑗) ∈ , thermal constraints (4c) are reduced to |𝐼𝑖,𝑗|2 ≤
(𝐼max

𝑖,𝑗 )2. In order to simplify computations of Oracle 1, we
use a convexification of the feasible set 𝑠𝑏 in (4d), Figure
1. Such a convexification is defined by

 =

{

(𝑝𝑠𝑏, 𝑞𝑠𝑏) ∈ ℝ2 ∶ 𝑝min
𝑠𝑏 ≤ 𝑝𝑠𝑏 ≤ 𝑝max

𝑠𝑏 ,

𝑞min
𝑠𝑏 ≤ 𝑞𝑠𝑏 ≤ 𝑞max

𝑠𝑏 ,

𝑞𝑠𝑏 ≥
−0.48𝑝max

𝑠𝑏

−𝑝min
𝑠𝑏 + 0.25𝑝max

𝑠𝑏

𝑝𝑠𝑏 +
0.48𝑝max

𝑠𝑏 𝑝min
𝑠𝑏

−𝑝min
𝑠𝑏 + 0.25𝑝max

𝑠𝑏

}

.

and corresponds to the union of green and blue sets on Figure
4.

Figure 4: Convexification of the feasible set for slack-bus
constraint.

The objective function is convex and has the following
structure (all the coefficients are non-negative):

𝑓 (𝐩,𝐪) = 𝑓1(𝐩) + 𝑓2(𝐩), (13a)
where

𝑓1(𝐩) =
∑

𝑖∈𝑆𝐶𝑃

𝐶 𝑖
𝑆𝐶𝑃 |𝒑

𝜸
𝑖 |

+
∑

𝑖∈𝐹 𝑖𝑇 ∩
𝐶 𝑖
𝐹 𝑖𝑇 ,𝑔|𝒑

𝝂
𝑖 | +

∑

𝑖∈𝐹 𝑖𝑇 ∩
𝐶 𝑖
𝐹 𝑖𝑇 ,𝑙|𝒑

𝝂
𝑖 | (13b)
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Table 1
Coefficients in the objective function (13) for each grid user
(GU).

GU Contract Type Coeff. in
𝑓1(𝐩)

Coeff. in
𝑓2(𝐩)

12 SCP Biomass
generation

4.2 ⋅ 10−5 0

12, 29 FiT Biomass
generation

4.2 ⋅ 10−3 0.01

32 FiT Wind
generation

0.02 0.1

Others FiT Consumption 1 1

and
𝑓2(𝐩) =

∑

𝑖∈𝑆𝐶𝑃

𝑐𝑖𝑆𝐶𝑃 (𝒑
𝜸
𝑖 )

2

+
∑

𝑖∈𝐹 𝑖𝑇 ∩
𝑐𝑖𝐹 𝑖𝑇 ,𝑔(𝒑

𝝂
𝑖 )

2 +
∑

𝑖∈
𝑐𝑖𝐹 𝑖𝑇 ,𝑙(𝒑

𝝂
𝑖 )

2. (13c)

The values of coefficients in (13b) and (13c) are given in Ta-
ble 1. Our motivation for this choice is as follows. First, the
component 𝑓1(𝐩) reflects the cost of levers activation (since
coefficients in Table 1 are set as dimensionless quantities,
this cost is expressed in pu). As power modulation of a FiT
producer is more expensive compared to that of a SCP grid
user, the inequality 2 𝐶 𝑖

𝐹 𝑖𝑇 ,𝑔 ≫ 𝐶𝑗
𝑆𝐶𝑃 should be respected

for 𝑖, 𝑗 ∈ . Moreover, as limitation on power supply to
a consumer is more expensive than power curtailment of
producer, the inequality 𝐶 𝑖

𝐹 𝑖𝑇 ,𝑙 ≫ 𝐶𝑗
𝐹 𝑖𝑇 ,𝑔 should be satisfied

for 𝑖, 𝑗 ∈ 𝐹 𝑖𝑇 . Thus, the following relation 𝐶 𝑖
𝐹 𝑖𝑇 ,𝑙 ≫

𝐶𝑗
𝐹 𝑖𝑇 ,𝑔 ≫ 𝐶𝑘

𝑆𝐶𝑃 is respected in (13b). Further, as penalty
for the energy not supplied is defined by a regulator, we
set 𝐶 𝑖

𝐹 𝑖𝑇 ,𝑙 = 𝐶𝑗
𝐹 𝑖𝑇 ,𝑙 for all consumers 𝑖, 𝑗 ∈ . Since the

contracts may differ depending on generation technology,
we fix different coefficients for biomass generation and wind
generation. Meanwhile, the quadratic terms are introduced
as a penalty that encourages fairness in power modulation
among the same types of users, as the minimum in (13c) is
attained at a point where activation of levers is equal among
grid users with equal coefficients. Thus, we set 𝑐𝑖𝐹 𝑖𝑇 ,𝑙 =
𝑐𝑗𝐹 𝑖𝑇 ,𝑙 for 𝑖, 𝑗 ∈ 𝐹 𝑖𝑇 , i.e. we impose the coefficients to be
equal for FiT consumers. We also assume that the quadratic
coefficients are equal among FiT producers of the same
generation type.

Unless otherwise specified, the approximation parameter
𝑡 from (8) is set to 10−5. The choice of parameters in DoC
Bundle method [48] is as follows: 𝜌 = 107, 𝜎 = 0.5,
𝜅 = 0.9, 𝛿𝑇 𝑜𝑙 = 10−7, 𝜇min = 10−6 and 𝜇max = 106. To
test the performance of the presented DoC approach for the
chance-constrained problem (6), we set 11 values of safety
parameters 1 − 𝛼 ranging from 0.75 to 1 with a step size
of 0.025 (the case 𝛼 = 0 is tested as an extreme one, the
algorithm is not designed for deterministic framework). We

2The relation “𝑎 ≫ 𝑏" means that 𝑎 is much greater than 𝑏.

consider two cases: one where only voltage constraints are
detected (buses 9, 10, 11, 15, 16 and 17) in initial state of
the grid, i.e. without levers activation, and another with an
additional congestion constraint. For the second case, we set
an upper limit on current for the line connecting buses 2 and
19. The constraint value is chosen in such a way that it is
violated for 533 scenarios in initial state of the grid (without
levers activation).
4.4. Case 1: Voltage constraints

For each value of safety parameter, the algorithm man-
ages to find a feasible critical point with average execution
time of 1665 seconds (in a personal laptop) ranging from
1059 (1 − 𝛼 = 0.875) to 2279 (1 − 𝛼 = 0.775) seconds.
In order to check validation of the chance constraint, we
compare targeted value of safety parameter with the ratio
of scenarios satisfying load-flow equations. In initial state
of the grid, without levers activation, the latter is equal to
0.545. After the optimization is performed, it gets close to
targeted safety parameter with a tendency to approach it
as the parameter increases, Figure 5. It remains below the
targeted value due to approximation of probability function
used for DoC formulation (see Subsection 3.2). Varying
parameter 𝑡 that participates in DoC approximation of prob-
ability constraint (see eq. (8)), 𝑡 = 10−4, 10−5 and 10−6, for a
fixed safety parameter value 1− 𝛼 = 0.9, the ratio of scenar-
ios satisfying load-flow equations becomes 0.839, 0.876 and
0.893, respectively. This illustrates, as expected, an increase
in accuracy as 𝑡 goes to zero.

Figure 5: Comparison of targeted safety parameter 1 − 𝛼 with
the obtained one (for t=10−5).

The volume of active power modulation grows linearly
up to 1 − 𝛼 = 0.925 and accelerates afterwards, as il-
lustrated in Figure 6. The same tendency is valid for the
volume supplied by FiT grid users, whose share in total
power curtailment remains within 69 − 77%. Meanwhile,
a SCP grid user supplies the remaining part of the volume
within the bounds of her guaranteed power for all values
of safety parameter. Power modulation cost, represented by
(13b) in the objective function, follows the same upward
trend as power modulation volume. It is consistent with the
price formation, which is in linear dependence on the latter.
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Therefore, a slight decrease in safety parameter implies a
reduction in total cost of power modulation. This result
aligns with our expectations from probabilistic modelling of
power flow constraints.

Figure 6: Cost and volume of power modulation.

Computing maximum and average amplitudes of con-
straint violation over all scenarios where constraint viola-
tions are detected, we compare them with average volume of
power modulation supplied by one grid user. Without levers
activation, the maximum amplitude of constraint violation is
0.0339 pu, whereas the average is 0.0057 pu. Figure 7 reveals
a notable decrease in maximum amplitude of constraint
violation for 1 − 𝛼 > 0.825 up to 0.0102 pu (𝛼 = 0), and a
significant growth in average volume of power modulation
while increasing the system reliability. This confirms that
the higher volume of levers is activated, the less amplitude
of constraint violation is. To ensure the system reliability
with 1 − 𝛼 ≥ 0.9, average power modulation volume ex-
ceeds maximum amplitude of constraint violation. The gap
between two figures drastically increases as 1−𝛼 approaches
1 due to stochastic character of our problem: if we did not
have to deal with uncertainties and the scenario realization
was known, covering the maximum amplitude of constraint
violation would have been sufficient.

Meanwhile, the average amplitude of constraint violation
fluctuates near the value 0.0045 pu with a slight tendency to
decrease. These upward and downward trends in amplitude
of constraint violation lead to the following conclusions.
More reliable but costly solutions cover risky scenarios
which allow higher amplitude of constraint violation. At
the same time, they tolerate those where constraint viola-
tion amplitude is closer to average. This result is based on
simulations, and does not follow from chance-constrained
formulation as it says nothing about amplitude of constraint
violation. Moreover, this conclusion contradicts mathemat-
ical intuition that we would have had for a convex problem:
maximum amplitude of constraint violation grows, as risky
scenarios are more costly to cover.

Figure 7: Volume of power modulation and amplitudes of
constraint violation.

4.5. Case 2: Voltage and congestion constraints
The algorithm finds a critical point with average exe-

cution time of 1947 seconds ranging from 1353 (1 − 𝛼 =
0.85) to 2850 (1 − 𝛼 = 0.825) seconds. However, for
deterministic case 𝛼 = 0, the algorithm does not manage
to find a feasible solution. The ratio of scenarios satisfying
load-flow equations is equal to 0.266 for the initial state
of the grid. As Figure 8 shows, the latter approaches the
targeted value of safety parameter once levers activation is
optimized. However, for 1−𝛼 > 0.95, the difference between
targeted and obtained value of safety parameter increases.
This can be due to the fact that a robust solution may not
exist. The difference between targeted and obtained value of
safety parameter represents 4.6% of targeted value for 𝛼 = 0,
whereas, initially, it was only 3.4% for 1 − 𝛼 = 0.75. The
gap for 𝛼 = 0 is significant due to infeasibility of obtained
solution.

Figure 8: Comparison of targeted safety parameter 1 − 𝛼 with
the obtained one.

Similarly to the case without congestion constraint,
power modulation cost repeats the growth dynamics of
power modulation volume, Figure 9. The part supplied by
FiT grid users constitutes from 79% to 87% of total volume,
and the remaining part is due to a SCP grid user within the
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bounds of her guaranteed power. However, compared to the
previous case, the growth acceleration of power modulation
cost and volume is less pronounced as safety parameter
goes to 1. Moreover, these values become almost stable at
1 − 𝛼 = 0.975 and 𝛼 = 0, which is consistent with the fact
that the corresponding number of covered scenarios is very
close (953 for 1−𝛼 = 0.975 and 954 for 𝛼 = 0). Thus, except
the deterministic case with 𝛼 = 0 when obtained solution is
not feasible, a small decrease in safety parameter enables to
reduce the total cost of levers activation.

Figure 9: Cost and volume of power modulation.

As in the previous case, we compute average and maxi-
mum amplitudes of voltage constraint violation. These val-
ues are calculated over all scenarios where voltage constraint
violation is detected (scenarios where only congestion con-
straint is violated, are not included). Without levers activa-
tion, they remain the same as in the case without congestion
constraint. Meanwhile, maximum and average amplitudes
of congestion constraint violation calculated over all sce-
narios where congestion constraint violation is detected,
are 0.3851 pu and 1.5155 pu, respectively. As the order
of magnitude of congestion constraint violation is greater
than that of voltage constraint violation, the corresponding
values are plotted separately, Figure 10 and Figure 11. All
in all, they illustrate the same trends as in the previous case,
namely, a steady decrease in maximum amplitude of con-
straint violation, both for voltage and congestion constraints.
At the same time, Figure 10 reveals a significant growth
in average volume of power modulation while increasing
the system reliability. Thus, the conclusion that an increase
in volume of levers activation reduces the amplitude of
constraint violation, remains valid.

Comparing curves of average power modulation volume
on Figure 7 and Figure 10, we observe that it is higher for the
case with congestion constraint. Moreover, average power
modulation volume always exceeds maximum amplitude of
voltage constraint violation in the latter case. This is due to
stochastic character of our problem, but also to additional
amplitude of congestion constraint violation that should
be covered by power modulation. Meanwhile, we see the
opposite trend for the curves of maximum amplitude of

Figure 10: Volume of power modulation and amplitudes of con-
straint violation (excluding congestion constraint violation).

Figure 11: Amplitudes of congestion constraint violation.

constraint violation (without congestion constraint). It can
be explained by the curtailment of grid users downstream of
the congestion constraint for all values of safety parameter,
which is aimed to cover an essential part of scenarios where
congestion constraint is detected. This curtailment weakens
voltage constraints at other buses of the grid, and reduces
amplitude of their violation for not covered scenarios. Fur-
thermore, the ratio of scenarios where congestion constraint
is violated among all not covered scenarios, remains within
47 − 59%, and tends to slightly increase as safety parameter
goes to 1. In other words, more reliable but costly solutions
are more prone to cover scenarios without congestion con-
straints.

Comparing activation of levers for grid users down-
stream the line connecting buses 2 and 19 (congestion con-
straint in Case 2) in two considered use cases, we observe
that there is no power curtailment of those grid users for all
values of safety parameter 1−𝛼, 𝛼 > 0 in Case 1. This result
is coherent with the expectations, as they do not contribute to
resolution of existing voltage constraints. Meanwhile, they
are curtailed in Case 2 for all values of safety parameter
1 − 𝛼, 𝛼 > 0. As the voltages constraints are the same in
both use cases, we conclude that their curtailment resolve
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only the congestion constraint. Moreover, we also observe
that the power curtailment is not equal among those users,
although all of them are consumers. Consequently, the soft
constraint imposed by quadratic terms (13c) in the objective
function, is not sufficient to force an equal power curtailment
inside the same group of grid users. This is due to nonconvex
nature of the optimization model.

5. Conclusion
This paper presented a novel formulation of the distri-

bution network operational planning problem as a chance-
constrained AC-OPF modelled using a DoC approach. This
approach takes into account uncertainties related to nodal
production and consumption, and proposes solutions to the
chance-constrained problem through the activation of flex-
ibility (power modulation) from SCP and FiT grid users.
The solution methodology consists in model reformulation
as a DoC optimization problem with the use of a special
numerical procedure (oracle), and the subsequent use of
DoC Bundle method. The main advantages of the employed
approach are:

1. The joint probability constraint in the obtained chance-
constrained OPF model allows to take into account
correlation between RES generation profiles and load
profiles.

2. The use of DoC approach enables to solve the opti-
mization problem avoiding linearization and convexi-
fication of power flow equations.

3. The method allows to consider wide range of objective
functions and constraints, as long as they can be
represented as DoC functions. In particular, it can be
applied for modelling other DSO levers, e.g. reactive
power modulation.

4. Different OPF solvers/strategies can be employed in
the oracle that computes function values and subgra-
dients. Integration of an efficient solver improves the
numerical performance of DoC Bundle method.

The perspectives of this work include application of a
generalize version of DoC Bundle method presented in [45]
for solving DoC reformulation of the chance-constrained
OPF. From a theoretical point of view, this algorithm pro-
vides a solution satisfying stronger optimality condition, but
has potentially lower computational efficiency as no explicit
DoC decomposition of involved functions is used. Another
perspective consists in adjusting the objective function and
deterministic constraints of the model for the practical goals
of the DSO, as the solution methodology gives a large
spectre of options. However, the use of binary variable can
be required for modelling some of DSO rules, for instance,
an accurate requirement of the fairness in power modulation
among the same types of grid users. For these cases, a mod-
ification of the solution methodology is necessary, as DoC
Bundle method is adapted only for continuous variables.
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