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Abstract

This paper develops a novel approach to estimate how contract and principal-agent

characteristics influence a post-auction outcome when the matching between agents and

principals derives from an auction process. We propose a control-function approach to

account jointly for the endogeneity of contracts and matching. This consists of, first, es-

timating the primitives of an interdependent values auction model - which is shown to

be non-parametrically identified from the bidding data - second, constructing control func-

tions based on the distribution of the unobserved private signals conditional on the auction

outcome. A Monte Carlo study shows that our augmented outcome equation corrects the

endogeneity biases well, even in small samples. We apply our methodology to a labor mar-

ket application and estimate the effect of sports players’ auction-determined wages on their

individual performances. We also use our structural estimates to evaluate the strength of

matching inefficiencies and assess counterfactual reservation wage policies.

Keywords: Econometrics of Auctions; Econometrics of Contracts; Endogenous Matching;

Polychotomous Sample Selection; Price-performance Elasticity.

JEL classification: C34; C57; D44; M52; Z22.

1 Introduction

A central issue in the empirical literature on contracts concerns quantifying the effect of contract

characteristics on observed behavior. These characteristics influence ex post outcomes through

two kinds of channels: on the one hand, they offer a variety of incentives to elicit efforts from

the contracting parties; on the other, they play a key role in the way agents and principals

match together. For instance, to reduce the cost of monitoring, a firm can decide to raise

salaries, which, by making the unemployment threat more costly, should incite workers to exert

more effort (Shapiro and Stiglitz (1984)). At the same time the wage increase also changes

the pool of workers that are matched to the firm, in particular on the basis of unobserved
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agent characteristics, including those that create idiosyncratic synergies (Abowd et al. (1999)).

Similarly, an insurance company lowering the coverage of its auto-insurance contract could

motivate agents to drive more prudently, but this may also push out of its portfolio of customers

the riskiest agents. Both the incentive and selection effects of a less comprehensive coverage

are thus expected to reduce the number of claims per insured agent that the insurer receives

(Chiappori and Salanié (2003)).

The empirical literature mainly focuses on the “incentive effect” of contracts. Incentive

effects are typically identified using exogenous variations in contract characteristics, by way of

field or natural experiments. Such an approach is particularly popular in the labor literature,

e.g., to estimate whether better paid agents reciprocate (Gneezy and List (2006), Mas (2006)

and Lee and Rupp (2007))1, or to measure to what extent explicit incentives schemes like

piece-rates pay or sharecropping arrangements enhance output or productivity (Lazear (2000),

Shearer (2004), Burchardi et al. (2019)).2 Although quantifying incentive effects is admittedly

interesting, a precise assessment of the matching process that drives how agents self-select

into contracts is also important in practice, for instance to evaluate alternative counterfactual

policies.

Disentangling incentive from selection effects is, however, a challenging issue as stressed

by Chiappori and Salanié (2003). Most papers have addressed this issue when a monopolis-

tic principal posts a contract (or a menu of contracts) to the agents who decide first whether

to match with the principal and second chose their level of effort (or consumption), and this

optimally given their privately observed characteristics. To identify such models, two kinds of

approaches have been developed in this literature: One strand relies on exogenous variations

either of the contracts posted by the principal (d’Haultfoeuille and Février (2020), Powell and

Goldman (2021)) or of the agent’s preferences/costs (Abito (2020)).3 Another assumes that

the contract posted by the principal is optimal and relies then explicitly on the corresponding

first-order conditions. The seminal theoretical contribution in this field is Perrigne and Vuong

(2011) who establish the non-parametric identification of Laffont and Tirole (1986)’s procure-

ment model from the observation of the contract’s realization (the quantity demanded, the

observable production costs and the associated transfers).

In many environments, however, there are multiple principals who compete to be matched

with various agents. This paper develops a methodology to consistently estimate how contract

and principal-agent characteristics influence agents’ ex post outcome when the matching of

agents to principals and a contract characteristic are determined through auctions. We present

our methodology through the labor auction framework that we use later as an empirical illus-

tration: to hire workers (or agents according to our terminology above), firms (the principals)

1These empirical studies consider very different kinds of work (e.g., data entry for a university library in Gneezy
and List (2006), police investigation in Mas (2006), airline pilots in Lee and Rupp (2007)) and find that such
behavioral effects tend to decline over time.

2Lazear (2000) argues that the productivity rise of a firm switching to performance-based contracts comes also
from the fact that such contracts attract the most able workers.

3Abito (2020) exploits the institutional feature that regulation contracts for electric utilities remain fixed during
a predetermined period while their costs and efforts change.
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participate in various auctions which assign each worker to the winning bidder (if any) and

where the winning bid determines the wage. For each worker matched to a firm, a perfor-

mance measure is observed after the auction. This performance measure is allowed to depend

directly on the auction-determined wage: This is a reduced-form approach to reflect what we

refer to as the incentive effect and which can result from various channels. In our application,

under-performing workers risk a termination of their contract after one year (see section 6.2

for institutional details), implying that better paid workers have an incentive to exert more

effort, very much like in our opening example. Another channel is a behavioral reaction like

reciprocity in response to a wage that is perceived as fair or unfair (Akerlof and Yellen (1990)).

Our approach remains agnostic on the micro-foundation of the incentive effect.

The main features of our model are the following. Besides the auction-determined wage

and various firm-worker observable characteristics, the post-auction performance is assumed

to depend on two signals that are referred to as productivity signals. The first signal reflects

match-specific synergies, observed privately by the firm concerned. The second signal reflects

worker-specific attributes that are commonly valued by all firms, but observed only by the

incumbent, i.e., the firm previously matched with the worker (if there is one). At the auction

stage, firms are assumed to value a worker through their expectations regarding the post-

auction performance of this worker and also through two additional signals, which we refer to

as intrinsic signals. Adopting the same structure as for the productivity signals, one intrinsic

signal is match-specific, i.e., idiosyncratic to each firm-worker pair, and one is worker-specific,

i.e., is commonly valued by all firms but observed only by the incumbent. Regarding the auction

rules, we consider that workers are auctioned through separate English auctions. A publicly

observable reservation wage is also attached to each worker: it corresponds to the starting

price in the auction. The equilibrium bidding functions of our auction model determine then

the auction outcome, i.e., whether the worker is matched with a firm, and if so the wage and

the identity of the corresponding “winning” firm, as a function of this full set of productivity

and intrinsic signals.

The two productivity signals that enter the performance equation represent, from the econo-

metrician’s viewpoint, an error term capturing unobserved worker/firm heterogeneity. As de-

tailed in Section 2, they are a source of three kinds of endogeneity. First of all, they determine,

together with the intrinsic signals, for which workers there is bidding above the reservation

wages, and thereby the sample on which estimation is based. Second, if there is bidding above

the reservation wage, the winning bid is partly determined by these two productivity signals,

creating a correlation between the wage and the error term in the performance equation. Third,

each worker is not assigned randomly to a firm, but to the specific firm that wins the auction.

The process which determines the winning bidder’s identity is yet again partly determined by

the two productivity signals entering the performance equation, implying that there is endo-

geneity in the matching between workers and firms. Standard estimation of our performance

equation would therefore lead to biased parameter estimates.

To tackle the resulting endogeneity biases in the (post-auction) performance equation, we

proceed in the following way. First, we characterize the perfect Bayesian equilibrium of the
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bidding model. We show in particular that firms’ bidding strategies are increasing functions

of their aggregate signal, that is to say the sum of the signals they observe. Second, we pro-

vide conditions under which the distribution of the aggregate signals and the incentive effect

are non-parametrically identified. Third, the identification of our auction model allows us to

identify two types of control function terms for the performance equation: one type, referred

to as the match-specific control terms, is associated with the match-specific signals of the win-

ning bidder, while the other, referred to as the worker-specific terms, is associated with the

worker-specific signals received by the incumbent. A Monte Carlo study shows that estimation

of the performance equation by OLS leads to strongly biased estimates. On the contrary, our

endogeneity-corrected estimator is shown to be unbiased even in relatively small samples.

We illustrate our methodology using data on cricket players participating in a tournament

with a unique setting where team assignment and wage determination result from a sequence of

English auctions. We estimate the incentive effect and also the incumbency effect, i.e., whether

players perform better when staying in the same team ceteris paribus. We find important dif-

ferences between OLS and our bias-corrected estimates: both estimates of the incentive effect

are statistically significant but OLS leads to an upward bias; the incumbency effect is nega-

tive using both methods but is only statistically significant with our control function method.

These discrepancies are also reflected in a large and significant value of the worker-specific

control function term, confirming that endogeneity plays an important role in our data. Using

our parameter estimates, we also evaluate the degree of match inefficiencies induced by the

worker-specific attributes that are observed only by the incumbent and conduct counterfactuals

to evaluate alternative reservation wage policies. This illustrates how our methodology can be

used beyond the estimation of the (post-auction) performance equation.

While we frame our presentation through a labor auction model, our analysis is relevant

beyond labor environments. In the concluding section, we give a more detailed description of

how our method could be applied, in particular in auctions for procurement where competing

firms are bidding on the contract characteristics that can induce moral hazard effects and thus

impact post-procurement outcomes.4 Furthermore, our methodology can be applied even if

the matching mechanism is not explicitly an auction. In many matching markets (e.g. labor or

housing), formal auctions are not frequently used, but if we are prone to abstract from search

costs, auction models can be used as a first approximation to model informal search behavior

in these markets.

Our work contributes to the structural empirical literature that considers the joint modeling

of auction and post auction data (see Perrigne and Vuong (2021) for a review on the structural

econometrics of auction data). In the seminal contributions of Athey and Levin (2001) and

Hendricks et al. (2003), the linkage between the auction and the post auction data comes

from the fact that bidders are privately informed about the composition of timber species and

4Disentangling moral hazard from selection effects received attention in the procurement literature: Ryan (2020)
considers power procurement auctions in India and analyzes ex post renegotiation which is driven both by auction-
determined contract characteristics and by the producer’s idiosyncratic renegotiation abilities. Lewis and Bajari
(2011) consider highway procurement in US and analyze actual project-delivery time which is driven by a compo-
nent of the bid and the winning firm’s idiosyncratic ability to complete the project on time.
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the quantity of oil, respectively: informational asymmetries call for bidding cautiously to avoid

the so-called winner’s curse. More recent contributions develop models where the post auc-

tion realization is correlated not only to information held by the bidders but also to decisions

made ex post by the auction winner (i.e., a kind of moral hazard) and that are driven not

only by its privately observed type but also by its bid which determines part of the contract

characteristics.5 Bhattacharya et al. (2022) estimate the optimal royalty in oil lease auctions

through a common value model where the unique source of inefficiency comes from ex post

moral hazard (the drilling decision and its timing). Kong et al. (2022) also consider auctions

for the option to drill an oil field but through a bi-dimensional private value model which

opens the door to matching inefficiencies.6 As in Kong et al. (2022), we consider a model

where each bidder receives a private value signal that enters its valuation through the future

performance (the match-specific productivity signal) and one that is not related to future per-

formance (the match-specific intrinsic signal). On top of this structure, the worker-specific

signals involve an additional form of asymmetry. Overall, our analysis departs from the litera-

ture on the structural econometrics of auction data for two main reasons: 1) our auction model

involves interdependent values with asymmetric bidders; 2) we depart from the quasi-linear

payoff paradigm where the auction price enters linearly bidders’ payoff function.

We also contribute to the literature that uses a control function approach to correct for sam-

ple selection or endogeneous regressors. Heckman (1979)’s seminal contribution, extended to

polychotomous outcomes by Dubin and McFadden (1984), deals mainly with selection.7 The

literature on production function estimation, where inputs depend on the firm’s (unobserved)

productivity shock, offers also a similar approach: Olley and Pakes (1996) and Ackerberg et al.

(2015) address the resulting endogenity problem with a dynamic setup that captures capital

accumulation and time-correlation of the productivity shocks but rules out unobserved hetero-

geneity across firms. However, the vast majority of papers in this literature adopt a reduced

form approach to construct control functions (see Vella (1998) and Wooldridge (2015) for

surveys). The control functions we derive are instead micro-founded by explicitly relying on

auction theory and tackle the multiple sources of bias that occur simultaneously.8

5In a related vein, Bodoh-Creed and Hickman (2018) model the student-college match through an all-pay contest
(with private values) where selection is based on the student’s public academic score and an idiosyncratic matching
shock. Their structural approach allows to disentangle the effects of college quality, unobserved student character-
istics and pre-college human capital investment on earnings. An important technical difference with the auction
literature is that Bodoh-Creed and Hickman (2018) consider the equilibrium of the limit game with a continuum
of agents.

6Note that models involving multidimensional types receive also some attention in the empirical literature on
contracts with a monopolistic principal we mentioned earlier. Luo et al. (2012) consider e.g. consumers for
telecommunication services where the multidimensional types capture preferences for different products. In Aryal
et al. (2019)’s model with bi-dimensional types, the agents are drivers who differ in terms of expected number of
accidents and absolute risk aversion coefficient.

7Contrary to Heckman (1979) and Dubin and McFadden (1984) where matching is driven by a latent unobserved
variable, Akkus et al. (2021) consider an assortative matching model where the value of each realized match is
observed by the econometrian. The residual of the match value equation (which is estimated through a censored
regression given that the value of unrealized matches are unobserved) is then used as a control in the equation of
interest.

8Wooldridge (2002) and Das et al. (2003) propose a control function method to address jointly the problems
of endogeneous regressors and sample selection with a parametric and non parametric approach, respectively.
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The remainder of the paper is organized as follows. Section 2 presents the environment

and sources of bias. Section 3 derives how firms and agents are matched through an auction

model with interdependent values. Section 4 is devoted to the econometric methodology while

Section 5 presents the Monte Carlo simulations. Section 6 outlines the labor market applica-

tion and the empirical results. Section 7 concludes and discusses other possible applications.

Appendices A-C gather some proofs and technical details while supplementary material is avail-

able in a Supplementary Appendix (SA henceforth).

2 The Environment and the Endogeneity Problem

We consider a (small) collection of F ≥ 2 firms, indexed by f = 1, . . . , F , bidding for the services

of a (large) collection of workers, indexed by i = 1, . . . , N . According to the terminology in the

introduction, firms (resp. workers) correspond to the principals (resp. agents). The workers

are auctioned separately. In our application, the firms are the teams of the Indian Premier

League (IPL) and the workers are the cricket players hired by these teams through English

auctions. An observable reservation wage, denoted by W r
i ≥ 0, is attached to each worker i

before this worker comes up for auction: it corresponds to the wage below which the worker

cannot be sold. The winner of this auction (if there is one) is denoted f w
i , and the corresponding

(observable) final auction price determines the worker’s wage and is denoted wi ≥ W r
i . The

bidding rules are detailed in the next section and the associated equilibrium will then determine

both the auction price and the auction winner as a function of bidders’ private information. We

take into account the possibility that i worked for one of the firms prior to the auctions. In such

a case, the corresponding firm is referred to as the incumbent and denoted by f inc
i ∈ {1, . . . , F}.

Otherwise, if there is no incumbent, we let f inc
i = 0.

Before the auction for worker i starts, each firm f receives a one-dimensional private sig-

nal, denoted by sP,ms
i, f ∈ R. This signal is only observed by f and summarizes match-specific

attributes regarding the worker’s future post-auction performance if matched with f . There is

also another one-dimensional signal associated to i, denoted by sP,ws
i ∈ R, which captures at-

tributes relative to i’s future post-auction performance that are commonly valued by all firms.

This signal always exists but is observed only by the incumbent f inc
i if there is any (it is re-

vealed to the incumbent through earlier interaction with this worker). Since in our empirical

example workers’ outcomes correspond to measures of performance, we shall call these signals

the productivity signals. Furthermore, sP,ms
i, f will be referred to as a match-specific productivity

signal and sP,ws
i as the worker-specific productivity signal.

The post-auction performance of worker i if matched with firm f , denoted yi, f ∈ R, is

Their setups are not, however, easily generalized to solve the additional econometric difficulty we face, namely
endogenous matching.
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assumed to take the following separable form:

yi, f = β f +βx ·xi, f + βinc · INCi, f +τ(wi) + sP,ms
i, f + sP,ws

i + εi, f
︸ ︷︷ ︸

:=ui, f

(1)

where the function τ : [0,∞)→ R∪{−∞} captures the incentive effect. We make the normal-

ization τ(1) = 0. As outlined in the introduction, τ(.) is expected to be an increasing function

either because better paid workers have greater incentives to exert more effort or because of

reciprocity effects. The parameter β f represents a firm-specific fixed effect, INCi, f the dummy

variable that is equal to one if f = f inc
i and zero otherwise, βinc the parameter measuring the

effect of the incumbency indicator on post-auction performance, xi, f a vector of characteris-

tics associated to the match (i, f ) that are publicly observable before the auction starts, βx a

vector of parameters measuring the effects of the corresponding characteristics (all vectors are

in bold).9 The productivity signals sP,ws
i and sP,ms

i, f are normalized such that they are centered

around zero conditional on the characteristics xi, f ( f = 1, . . . , F). Finally, εi, f captures other

post-auction performance determinants (including luck) that are unobserved by the firms at

the bidding stage. We assume that the vectors (εi,1, ...,εi,F ) are drawn independently across i.

Furthermore, for each i, all F performance shocks are independent from all other variables in

our model. The econometrician neither observes the productivity signals nor the performance

shocks. From his/her perspective the error term in the post-auction performance equation is

thus the sum of these three components, denoted ui, f .

To estimate the post-auction performance equation (henceforth called shortly the perfor-

mance equation), we face three kinds of problems. The first is that estimation is based on a

selected sample. The selection arises because the wage and the post-auction performance of a

given worker i are only observed if at least one firm decides to submit a bid above the reser-

vation wage W r
i . Intuitively, when there is no incumbent for a given worker i, the presence

of this worker in the performance sample suggests that the match-specific productivity signal

received by the winner is sufficiently high (bids are increasing in the productivity signals as

formally shown in Section 3). Bearing in mind how ui, f is defined in terms of this signal, the

expectation of this error term is then likely to be higher for a worker who is in the sample than

for one who is not.

Second, and even more crucially, we face the problem that workers are matched to firms in

a non-random way. Indeed, if there is bidding at or above the reservation wage, only recorded

is the post-auction performance yi, f w
i

, while yi, f is naturally unknown and counterfactual for

all f 6= f w
i . But the winner f w

i is not an arbitrary firm. Instead, this is the firm whose bidding

behavior was the most aggressive during the auction for worker i. This in turn implies that

the winner’s expected error term (conditional on worker i being sold, and on all observable

variables in the performance equation), E[ui, f |wi ,xi, f , INCi, f , f = f w
i , wi ≥W r

i ], differs from

the analogue expected error term for non-winners ( f 6= f w
i ) (the former is likely to be larger

9Note that xi, f may include contract characteristics established prior to the auction in which case the associated
elements in βx could represent other incentive effects of interest as well.
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than the latter ceteris paribus). The matching of workers to firms is thus not random but is

partly determined by the productivity signals, and hence the error term appearing in (1).

The final problem is related to the previous ones, but is nonetheless distinct. It concerns

the fact that both wi and INCi, f w
i

are expected to be endogenous in (1). Large values of ui, f ,

for f = 1, . . . , F , most likely indicate large values of sP,ws
i and sP,ms

i, f , for f = 1, . . . , F , which

in turn should lead to a higher wage wi . We thus expect the winner’s expected error term

E[ui, f |wi ,xi, f , INCi, f , f = f w
i , wi ≥ W r

i ] to be positively related to wi . If we specify the in-

centive effect for example as τ(w) = τ log(w), a strong positive OLS estimate of τ could then

merely be an artefact caused by endogeneity bias. Similarly, the incumbent firm is expected

to win more often when it receives a large worker-specific productivity signal, such that we

expect the OLS estimator of βinc to be upward biased.

Estimating the performance equation (1) using standard methods that ignore these prob-

lems of selection, non-random matching, and endogeneity of wages and incumbency status,

would lead to biased estimates. Our Monte Carlo simulations confirm that the naive OLS esti-

mates tend to be far away from the true parameter values. Our econometric strategy consists

then in augmenting the performance equation with control terms that are explicitly micro-

founded by an auction model. In a nutshell the approach works as follows: Let Ii denote the

set of variables observed by the econometrician just after the auction for worker i ended. Rely-

ing on and extending techniques from the structural econometrics of auctions, we model and

estimate the expectations E[sP,ms
i, f w

i
|Ii] and E[sP,ws

i |Ii] up to a set of parameters, and then add

the corresponding estimates in the performance equation.

The set Ii includes the variables xi, f , W r
i , INCi, f , for all f , and the pair (wi , f w

i ) for each

worker i actually sold, but excludes the performance data. The set Ii also includes zi, f (for

all f ) which denotes a vector of variables observed by all bidders right before the auction for

worker i starts. These variables, referred to as “auction shifters”, are assumed to affect how

f values the services of i, but, crucially, they do not have a direct effect on i’s performance.

While the identification of our model does not hinge on the availability of such variables, they

will be helpful from an empirical perspective by playing the role of exogenous shifters, thereby

reducing the collinearity between our control terms and the explanatory variables appearing in

the performance equation. In Section 6, where we analyze sequential auctions for sport players,

zi, f includes, among others, the remaining budget available to team f to purchase players and

the characteristics of players already bought by this team once i is being auctioned. We will

explain there why it is credible to assume that our chosen auction shifters can be excluded from

the performance equation.

3 Matching through Auctions

Here we develop an auction model in which firms compete with each other to buy the ser-

vices of workers who are valued, among other things, according to their expected post-auction

performance. After having properly defined the auction rules and firms’ payoff functions, we
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characterize the equilibrium outcome as a function of the full set of signals.10

Auction rules Each worker is sold through an English auction with a public reservation

wage. We formalize the game with the English button auction model where bidders observe

when their opponents drop-out from the auction (Milgrom and Weber (1982)). For worker i,

the incumbent (if any) first decides whether to enter the auction at the reservation wage W r
i .

After having observed whether the incumbent has entered or not the auction, non-incumbents

then choose whether to enter the auction. There are now three possibilities. First, if there are

no entrants at all, the auction stops and the worker remains definitely unmatched. Second, if

there is a single entrant, the auction also stops but the worker is matched with this entrant and

gets paid the reservation wage. Finally, if there are multiple entrants, the auction clock starts

ticking at W r
i , and moves up continuously. As the price goes up, entrants decide constantly

whether to remain active in the auction, or to exit irrevocably. The clock stops when there is

only one remaining active bidder. This bidder becomes the winner, and the wage wi paid by

the winning bidder f w
i to worker i corresponds to the auction termination/final price.11 The

pair (wi , f w
i ) is referred to as the auction outcome. Throughout the paper, we call the bidding

history of a firm (for a given worker) whether it has entered the auction or not and the wage at

which it has dropped-out when it is not the winning firm. The bidding history is the collection

of the bidding histories for each firm.

Firms’ payoff functions We assume that firms are risk-neutral and hence maximize their

expected payoff. The payoff derived by firm f from losing the auction for worker i is normalized

to zero, while the payoff derived from winning the auction at wage w is assumed to take the

form

Vi, f −w= Eεi, f
[eλ·[V (xi, f ,zi, f ,INCi, f )+sI ,ms

i, f +sI ,ws
i +yi, f ]]−w (2)

where Vi, f designates how f values i as a function of w, the full set of signals, and the observable

covariates associated to firm f , and V is a function of these covariates. By replacing yi, f by

the expression in (1) and taking the expectation of Vi, f with regards to the ex post shock εi, f ,

we obtain then that

Vi, f = eλ·[V i, f +sI ,ms
i, f +sI ,ws

i +sP,ms
i, f +sP,ws

i +τ(w)] (3)

with V i, f := V (xi, f ,zi, f , INCi, f ) + β f + βx · xi, f + βinc · INCi, f + (ln(Eεi, f
[eλ·εi, f ])/λ). The

additional signals sI ,ms
i, f ∈ R (for f = 1, . . . , F) and sI ,ws

i ∈ R are one-dimensional and referred to

as the intrinsic signals: they are intrinsic to the firms insofar as they enter their payoff function

but do not directly affect the worker’s performance. The intrinsic signals reflect that firms may

value workers for other motives besides the individual performance measure. These signals

may for instance measure other individual performance measures that are unobserved to the

10We abstract from bid increments which are often implemented by auctioneers in English auctions. To deal
with increments, Haile and Tamer (2003) specify the auction model only partially, i.e., adopt an incomplete model
approach. Such an approach would prevent us to identify the expectations E[sP,ms

i, f w
i
|Ii] and E[sP,ws

i, f w
i
|Ii].

11The auction-determined wage wi is the sole source of revenue for worker i. In particular, there is no
performance-based remuneration. Although it is beyond the scope of this paper to account for such type of payment
structure, our methodology could be extended to contingent auctions.
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econometrician. They could also capture attributes that affect the global workplace conditions

of the firm where i is hired. The information structure concerning these additional signals is

analogous to the one adopted for the productivity signals: for any given worker i, each firm

f is assumed to receive the match-specific signal sI ,ms
i, f and the incumbent (if any) receives in

addition the worker-specific signal sI ,ws
i . Like the worker-specific productivity signal sP,ws

i , sI ,ws
i

reflects insider information held by the incumbent thanks to the previous relationship with the

worker. This signal always exists, even if there is no incumbent for worker i.

Since the function V depends on xi, f and INCi, f , these variables have a direct effect on

how f values i and an indirect effect through yi, f . This function also depends on zi, f , so the

auction shifters only have a direct effect because they are excluded from the performance equa-

tion. The exponential is used to guarantee that a firm’s payoff from winning at wage zero is

always positive. Firm f takes the expectation with respect to εi, f because at the bidding stage

this productivity shock is unknown; the signals and other variables can be taken outside the

expectation operator because they are independent of the shock. The parameter λ > 0 mea-

sures to which extent the post-auction performance yi, f matters in valuing agents in monetary

terms.12

We wish to make a few comments on the payoff function. 1) Because of the incentive

effect τ(w), our model departs from the quasi-linear paradigm generally adopted in both the

theoretical and empirical auction literature where the payoff of the winning bidder is assumed

to be linear in the auction price. 2) Our model involves interdependent values since the payoff

of each firm depends on the worker-specific signals, sI ,ws
i and sP,ws

i , which are observed only by

the incumbent. 3) Firm f ’s preferences depend on its own matching-specific signals and on

the worker-specific signals through their sum: this is a kind of separability assumption that is

crucial to deal with environments with multi-dimensional signals both from a theoretical and

econometric point of view.

Assumptions Before stating the assumptions that are needed, we introduce some additional

notations. For each worker i, we let si, f denote the vector of firm f ’s private signals, i.e.,

si, f inc
i
= (sI ,ms

i, f inc
i

, sP,ms
i, f inc

i
, sI ,ws

i , sP,ws
i ) for the incumbent (if any) and si, f = (s

I ,ms
i, f , sP,ms

i, f ) otherwise.

We also let si, f denote the sum of f ’s private signals which is referred to as f ’s aggregate signal.

For the incumbent, we have si, f inc
i
= sI ,ms

i, f inc
i
+sP,ms

i, f inc
i
+sI ,ws

i +sP,ws
i , and otherwise si, f = sI ,ms

i, f +sP,ms
i, f .

Throughout our analysis, we impose the following assumptions on the signals:

A1: i) The vector ((sI ,ms
i, f , sP,ms

i, f ,xi, f ,zi, f ) f=1,...,F , sI ,ws
i , sP,ws

i , f inc
i ) is i.i.d. across i. ii) For each i,

the F+1 pairs of signals (sI ,ms
i, f , sP,ms

i, f ) f=1,...,F and (sI ,ws
i , sP,ws

i ) are jointly independent, conditional

on (xi, f ,zi, f ) f=1,...,F and f inc
i . iii) For each i and f = 1, . . . , F , each signal belonging to si, f has

a mean equal to zero conditional on (xi, f ,zi, f ) f=1,...,F and f inc
i .

In the empirical auction literature, A1 i) is standard and guarantees that our estimators

have the usual asymptotic properties. The independence restrictions in A1 ii) are crucial for

two kinds of reasons: On the hand, they imply the independence of the aggregate signals

12The parameter λ also multiplies the intrinsic signals and the function V (.) in (2) but this is without loss of
generality once the intrinsic signals and the function V (.) are properly normalized up to multiplicative constants.
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si, f across all f which allows to identify non-parametrically the individual bid distributions

from the winning bid distribution in English auctions (Athey and Haile (2002)). On the other

hand, these restrictions imply that the sum of worker-specific signals sI ,ws
i +sP,ws

i is independent

of the sum of the incumbent’s match-specific signals sI ,ms
i, f inc

i
+ sP,ms

i, f inc
i

, which allows us to use a

deconvolution argument as a key step to obtain our non-parametric identification result. A1 ii)

coupled with the fact that signals enter the payoff function in an additive manner is reminiscent

of the restrictions used to deal with unobserved heterogeneity (see Perrigne and Vuong (2021)).

A1 i) and ii) are also crucial from a theoretical point of view: i) ensures that each auction can be

analyzed separately from the others, i.e., that the equilibrium strategy of firm f for worker i is

unrelated to the signals regarding workers i′ 6= i; ii) guarantees that all non-incumbents always

share the same beliefs about the distribution of both worker-specific signals (whether there is

an incumbent or not). A1 iii) is without loss of generality to identify causally the incentive

effect τ(.) (if the signals were not mean-independent of the observable covariates, we could

renormalize them by putting their mean in the term V i, f ).13 We emphasize that A1 does not

impose the pair of match-specific signals (sI ,ms
i, f , sP,ms

i, f ) to be identically distributed across firms,

nor does it restrict intrinsic and productivity signals to be independent. Thus, sI ,ms
i, f and sP,ms

i, f

may be correlated variables, and sI ,ws
i and sP,ws

i as well.14 The following assumption concerns

the incentive function τ(w).

A2: The function ψ : R+→ R+,15 defined by ψ(w) := w · e−λτ(w), is an increasing bijection.

This assumption guarantees that if a firm is prepared to pay a price w for a worker then this

firm would be prepared to pay any wage below w. When τ(w) = τ · log(w), the specification

chosen in our application, then A2 is equivalent to λ ·τ < 1.

Before turning to the equilibrium analysis, we introduce the notion of valuation, i.e., the

maximum wage that f would be prepared to bid under complete information regarding the

signals. If f could observe the worker-specific signals sP,ws
i and sI ,ws

i in addition to its match-

specific signals, then thanks to A2 this firm’s payoff function crosses zero only once, at w∗i, f ≡

ψ−1(eλ·[V i, f +sI ,ms
i, f +sI ,ws

i +sP,ms
i, f +sP,ws

i ]). At this cutoff wage, f is indifferent between winning or losing

the auction for worker i, and its payoff would be strictly positive (resp. negative) if the wage is

below (resp. above) w∗i, f . This cutoff wage is referred to next as firm f ’s valuation for worker

i.

Equilibrium analysis We report below informally the fundamental properties of the equilib-

rium that sustain our econometric methodology. The formal analysis is relegated to Appendix

A, in particular in Proposition A.1. Therein we show that, under A1, A2 and some technical

assumptions (TA1-TA3), there is a unique perfect Bayesian equilibrium. The equilibrium strate-

gies are described in a detailed manner since the Bayesian updating, required to compute our

control function terms, relies on the exact expression of these strategies.
13Once A1 ii) is strengthened by assuming that signals’ distributions do not depend on the variables INCi, f (as

we do later in A3), then A1 iii) is also without loss of generality to identify causally the parameter βinc . A1 iii) is
required, however, if one wishes to give a causal interpretation to the estimate of βx as well.

14For instance, a positive correlation between the latter two signals could reflect that the best workers in terms
of individual performance are also those that contribute most to a favorable workplace environment.

15We use the convention that R+ = (0,+∞).
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Since all N auctions can be analyzed independently thanks to A1, we can arbitrarily focus

on one of them, say the auction for worker i. The payoff function of the incumbent (if any)

depends on the vector of signals {si, f } f=1...,F only through its own signal si, f inc
i

. From the

incumbent’s perspective, the auction game is a private value English auction and, as usual, it is

then a dominant strategy to bid until its valuation: The equilibrium strategy of the incumbent

consists in not entering the auction if w∗
i, f inc

i
is strictly below W r

i , and otherwise remain active

until the clock reaches its valuation. Note that the incumbent’s strategy depends on its signal

solely through the aggregate signal si, f inc
i

.

The equilibrium strategies of non-incumbents are slightly more subtle because they do not

know their valuation. Since the payoff function of f for worker i depends on the vector of

match- and worker-specific signals only through si, f and sI ,ws
i + sP,ws

i , this firm’s bidding incen-

tives depend on its own aggregate signal and its beliefs regarding the sum of worker-specific

signals. Thanks to A1 all non-incumbents share the same beliefs, which depend on whether an

incumbent is present or not, and, if present, on the bidding history of f inc
i .

In the absence of an incumbent, the cutoff wage that makes a non-incumbent firm f in-

different between winning or losing the auction is ψ−1
�

eλ·[V i, f +si, f ] ·E[eλ·(s
I ,ws
i +sP,ws

i )]
�

, where

the expectation is with respect to sI ,ws
i + sP,ws

i .16 The equilibrium strategy for f is to enter the

auction if the cutoff wage exceeds W r
i , and then remain active until the clock has reached the

cutoff wage. Suppose now instead that there is an incumbent and that the current value of the

auction clock is w̃ ≥W r
i . If f inc

i dropped out of the auction somewhere before this value was

reached while at least two non-incumbents are still active, then the equilibrium strategy is simi-

lar as just before except that the expectation appearing in the cutoff wage is now conditional on

the incumbent’s bidding history.17 To complete the characterization of the equilibrium strate-

gies, there is a last remaining case, namely the one where f inc
i is still active at w̃ while there

is at least one active non-incumbent. As detailed in Appendix A, the analysis is then similar to

Milgrom and Weber (1982): a non-incumbent should remain active if and only if its expected

payoff at w̃ would be positive under the belief that f inc
i drops out immediately at this clock

value, that is to say under the belief that w∗
i, f inc

i
= w̃.

One of the main take-aways from the equilibrium analysis, and which will be used through-

out our econometric analysis, is that the equilibrium is unique and involves pure strategies that

are continuously increasing in firms’ aggregate signals. Those are key properties that need to

be derived to adapt our approach to other auction formats. Note that auctions with interde-

pendent values and multidimensional signals are known to raise important issues in terms of

equilibrium existence (Jackson (2009)) or equilibrium multiplicity (Heumann (2019)). Our

model where there is at most one bidder –the incumbent– who is informed about commonly

valued elements is a way to tackle these difficult issues while keeping a high degree of general-

ity regarding bidders’ signal distributions.18 For our econometric analysis, another important

16For simplicity we omit here that expectations with respect to signals are also conditional on (xi, f ,zi, f ) f=1,...,F .
17Each remaining non-incumbent thus calculates the expectation given w∗

i, f inc
i
≤ W r

i (if the incumbent did not

enter the auction at all) or given w∗
i, f inc

i
(if the incumbent quit somewhere between W r

i and w̃).
18In contrast, Goeree and Offerman (2003) and Heumann (2019) analyze models where all bidders receive
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property is Corollary 1 (in Appendix A). It states the model primitives that need to be identified

in order to characterize the equilibrium and the distribution of the bidding history.

Related models in the literature Our model is reminiscent of Goeree and Offerman (2003)

and Heumann (2019)’s models with bi-dimensional signals, one capturing privately valued at-

tributes and another commonly valued attributes. Their equilibrium characterization also relies

on projecting bidders’ multidimensional signals onto a one-dimensional aggregate signal.19 In

contrast to these papers, our model departs from the quasi-linear paradigm. Furthermore, we

consider that at most one bidder can receive commonly valued signals. Our auction model

is also related to models wherein a single bidder receives insider information. Engelbrecht-

Wiggans et al. (1983)’s analysis of the first price auction is the seminal contribution, later

extended by Hendricks et al. (1994) when the seller uses a secret reserve price. However,

both consider pure common value models while our setup also involves idiosyncratic private

signals. Finally, our paper is related to papers in the labor literature which consider auction

models with an incumbent (see Greenwald (1986) and Lazear (1986)). Such models have

been used to rationalize the lifetime dynamics of wages (Pinkston (2009)) or firms’ incentives

to train their employees (Acemoglu and Pischke (1998)).

4 The Econometric Methodology

This section is devoted to the econometric aspects of the paper. Section 4.1 presents the first

step of our econometric strategy: the non-parametric identification of the bidding model from

the auction data. Section 4.2 presents then the second step of our strategy: the identification

of the performance equation through control functions that are identified from the primitives

of the auction model. Section 4.3 presents our estimation method in the parametric setup we

use in both our Monte Carlo simulations and our empirical application. Section 4.4 discusses

how to adapt our methodology when the auction data never involves an incumbent. Finally,

discussions on related literature, alternative identification strategies and extensions to other

auction formats are relegated to the SA.

4.1 Identification of the auction model

We assume throughout this section that the reservation wage is always equal to zero: W r
i =

0 for all i. We discuss in the SA how identification can be achieved when this assumption

is relaxed. To obtain our identification result, we need a few additional assumptions, and

some new notations are required. Let COVi := (xi, f ,zi, f ) f=1,...,F be the vector of observable

covariates associated with worker i. According to A1, the distribution of the vector of private

private information about commonly valued elements. To guarantee equilibrium existence, Goeree and Offerman
(2003) consider a fully symmetric model while Heumann (2019) imposes a Gaussian information structure.

19Another motive for using such aggregation techniques is when the action space of each bidder is multidimen-
sional as in scoring auctions (Asker and Cantillon (2008)), where the equilibrium scores (which determine the
auction outcome) are functions of bidders’ aggregate signals.
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signals {si, f } f=1,...,F depends on i only through COVi and the identity of the incumbent f inc
i .

A3 below assumes in addition that these signal distributions do not depend on whether an

incumbent is present, nor on the incumbent’s identity if there is one.

A3: The distribution of the match-specific signals (sI ,ms
i, f , sP,ms

i, f ) (for each f = 1, . . . , F) and the

distribution of the worker-specific signals (sI ,ws
i , sP,ws

i ) only depend on COVi .

A3 is our main exclusion restriction for identification: the private signals are distributed

identically in the subsets with and without an incumbent.

Let Gws(.|COVi) denote the distribution of λ · (sI ,ws
i + sP,ws

i ) and Gms
f (.|COVi) (for all f ) the

distribution of λ · (sI ,ms
i, f + sP,ms

i, f ), conditional on COVi .
20 From our equilibrium analysis (see

Corollary 1 in Appendix A), the strategy of each firm f ∈ {1, . . . , F}, in the auction for worker

i, depends solely on λ ·si, f , the identity of the incumbent f inc
i and the following primitives: the

distributions {Gms
f (.|COVi)} f=1,...,F and Gws(.|COVi), the scalars λ · V i, f for each f = 1, . . . , F ,

and the function ψ. In order to identify the bidding model, these are thus the primitives of

interest we wish to identify. Since the scalars V i, f , f = 1, . . . , F , depend on i only through

COVi and INCi, f , f = 1, . . . , F , we get on the whole that the distribution of all cutoff wages

and hence the distribution of the bidding history depend on worker i only through COVi and

f inc
i . This is important for the Bayesian updating exercises in Section 4.2, but also because it

implies that the bid distributions defined right below need not be indexed by i.

Let H inc
f (.|COV, f inc) denote the distribution of firm f ’s valuation for worker i, w∗i, f , if

COVi = COV and f inc
i = f inc . For f = f inc , this corresponds to the incumbent’s bid distri-

bution. Let HN I
f (.|COV ) denote the bid distribution of firm f for worker i given COVi = COV

and when the auction involves no incumbent, that is to say the distribution of the cutoff wage

wi, f [N I](si, f ) :=ψ−1
�

eλ·[V i, f +si, f ] ·E[eλ·(s
I ,ws
i +sP,ws

i )|COVi = COV ]
�

. (4)

Similarly, let HAC T
f (.|COV, f inc) denote the distribution of the cutoff wage up to which f 6=

f inc
i remains active in equilibrium when the incumbent f inc

i = f inc is still active. This cutoff

wage is characterized (see Appendix A for details) as the unique solution, in u, of the equation

eλ·[V i, f +si, f ] ·E[eλ·[s
I ,ws
i +sP,ws

i ]|w∗
i, f inc

i
= u, COVi = COV, f inc

i = f inc] =ψ(u). (5)

Next we define Si ⊆ {1, . . . , F}, the publicly observable subset of firms that are potential

participants in the auction for worker i.21 In our equilibrium analysis in Section 3, we have

implicitly Si = {1, . . . , F}, but it is straightforward to adapt our equilibrium characterization for

any set Si . According to this perspective, we now say that the auction for worker i involves an

incumbent if f inc
i ∈ Si . Contrary to the distribution of the auction outcome (wi , f w

i ), the distri-

20A1 and A3 imply that these conditional distributions do not depend on worker i (apart from COVi), which is
why they are not indexed by i.

21As is common in the auction literature, a potential participant is defined as a firm that is allowed to bid in the
auction. In a procurement setup, for instance, Si would correspond to the set of firms having passed a qualification
phase in order to be allowed to submit an eligible bid.
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butions of the underlying cutoff wages H inc
f (.|COV, f inc), HN I

f (.|COV ) and HAC T
f (.|COV, f inc)

(for f inc , f ∈ S), do not depend on the set of potential participants Si .

The following assumption defines the set of variables observed by the econometrician.

A4: For each i, the information set Ii contains at least the following information: the covari-

ates COVi , the incumbency indicator f inc
i , the set of potential participants Si , and the auction

outcome (wi , f w
i ).

Note that Ii contains the explanatory variables appearing in the performance equation (1)

not only for the winning bidder but also for the losing bidders. Note also that we do not

assume here that the econometrician observes the full bidding history, i.e., the entry and drop-

out decisions of all potential participants: The econometrician thus may know less than the

firms since the latter are assumed to observe the bidding behavior of all competitors and in

particular of the incumbent.

The two following assumptions concern the distribution of Si , and the link between the

function ψ and the distributions HAC T
f (.|COV, f inc). From now on SCOV denotes the support

of the distribution of COV .

A5: Conditional on {COVi , f inc
i }i=1,...,N , the sets of potential participants (S1, . . . , SN ) are drawn

independently from the private signals, and they are drawn independently of each other.

A6: For any pair f̃ , f̃ ′ ∈ {1, . . . , F}, and given the distributions HN I
f (.|COV ) (for f = 1, . . . , F)

and H inc
f̃
(.|COV, f̃ ) for any COV ∈ SCOV , the function that maps ψ (from the set of increasing

bijections on R+ with ψ(1) = 1) into the set of distributions {HAC T
f̃ ′
(.|COV, f̃ )}COV∈SCOV

is

injective.

A5 guarantees that the set of participants Si is determined exogenously conditional on COVi

and f inc
i and is thus a complement to the independence restrictions in A1. How Si varies (or

not) across i appears through assumption TA4 in Appendix B. We emphasize that if F = 2, then

the set of assumptions we use for identifying the auction model is consistent with Si = {1,2}
for each i, i.e., identification does not rely on exogenous variations in the set of potential par-

ticipants. Whether A6 is satisfied is not easy to verify in general because the functionψ appears

in (5) not only explicitly but also implicitly through the term w∗i, f inc . Nevertheless, we do think

that this identification restriction is not very strong. In particular, under the linear-log paramet-

ric restriction τ(w) = τ · log(w) and assumptions A1-A5 and TA1-TA3, we show in Appendix B

that it will always be satisfied and this even if the set SCOV is a singleton. The logic of the proof

is instructive: the parameter θ := τ · λ (and hence ψ(w) = w1−θ ) is identified by comparing

the q-th bid quantile of HN I
f (.|COV ) and HAC T

f (.|COV, f̃ ) for an arbitrary quantile q, an arbi-

trary set of covariates COV and an arbitrary firm f 6= f̃ . Given that equilibrium bid functions

are increasing in firms’ aggregate signals and given A3, these bid-quantiles correspond to the

same aggregate signal for f . Fixing f ’s aggregate signal and conditional on COV , comparing

its equilibrium bid when there is no incumbent with the bid submitted when this firm competes

with one opponent, the incumbent f̃ , allows then to identify θ . Intuitively, this logic could be

extended to the case where the function τ(.) includes multiple unknown parameters by ex-

ploiting multiple quantiles of these distributions. Furthermore, variations in the covariates is

15



also expected to help to satisfy A6.

Two final assumptions are needed for identification of our bidding model. They are tech-

nical restrictions and therefore relegated to Appendix B (TA4 and TA5). We are now ready

to establish that the primitives of interest of our auction model are identified in the following

proposition.

Proposition 4.1. Assume A1-A6 and TA1-TA5. In the English auction without reservation wage,

the function ψ, the distributions Gws(.|COV ) and Gms
f (.|COV ), f = 1, . . . , F for any covariate

COV ∈ SCOV , and the scalars λ · V i, f , f = 1, . . . , F (for any i such that COVi ∈ SCOV and for

any realization of f inc
i ), are identified.

This is a non-parametric identification result in the sense that both the signal distributions

Gws(.|COV ) and Gms
f (.|COV ), f = 1, . . . , F , and the function ψ are left unspecified. Note,

however, that Proposition 4.1 does not state that λ is identified. Indeed, for two pairs (λ,ψ)

and (λ′,ψ′) such that λτ(.) = λ′τ′(.), the implied auction outcomes would be observationally

equivalent. In words, we can not disentangle from the bidding data alone the incentive effect

from the parameter λ.

The proof of Proposition 4.1 is relegated to Appendix B. Here we just sketch the main

ideas of the proof. The independence of the aggregate signals si, f across firms (conditional

on COV ) implies the independence of the equilibrium cutoff wages. Since we observe the

second highest cutoff wage (which corresponds to the final auction price in the English auc-

tion) and the identity of the bidder having the highest cutoff wage (which corresponds to the

auction winner), we can apply Athey and Haile (2002): for any COV ∈ SCOV , the distribu-

tions {HN I
f (.|COV )} f=1,...,F are identified from the sub-sample of workers i for which the set

of potential participants does not include an incumbent (i.e., f inc
i /∈ Si), and the distributions

H inc
f (.|COV, f ) and HAC T

f ′ (.|COV, f ) are identified from the auctions i for which Si = { f , f ′} and

f inc
i = f . From A6, ψ is then also identified. Using the functions that map firms’ aggregate

signals to their cutoff wage, we identify, for each f , Gms
f (.|COV ) the (zero-mean) distribution

of λ · (sI ,ms
i, f + sP,ms

i, f ) conditional on COVi = COV , from the distribution HN I
f (.|COV ), and the

(zero-mean) distribution of λ · (sI ,ms
i, f + sP,ms

i, f + sI ,ws
i + sP,ws

i ), conditional on COVi = COV , from

the distribution H inc
f (.|COV, f ). Since match-specific and worker-specific signals are assumed

to be independent (Assumption A1 ii)), and the distribution of λ · (sI ,ms
i, f + sP,ms

i, f ) is the same

both in auctions where f is the incumbent and in auctions where there is no incumbent (As-

sumption A3), we get from a deconvolution argument that Gws(.|COV ), i.e., the distribution

of λ · (sI ,ws
i + sP,ws

i ), is identified as well. Finally, we identify the scalars λ · V i, f for each i such

that COVi ∈ SCOV both when f = f inc
i and when f 6= f inc

i : when f 6= f inc
i , we identify λ · V i, f

from HN I
f (.|COV ) and ψ; when f = f inc we identify λ · V i, f from H inc

f (.|COV, f ), ψ and the

distribution Gws(.|COV ).

We emphasize that firms’ equilibrium bids for worker i (as a function of their private signals)

do not depend on Si but rather on COVi , f inc
i and whether f inc

i ∈ Si . Our identification result

thus does not exploit exogenous variations of the set of potential participants (as in Guerre
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et al. (2009)) but rather exogenous variations of the incumbency variable f inc
i paired with the

exclusion restriction A3.

4.2 Identification of the performance equation

The control function approach amounts to modeling the conditional expectation E[ui, f w
i
|Ii] =

E[sP,ms
i, f w

i
+sP,ws

i |Ii] using our auction model and bidding data. Since the distributions of sP,ms
i, f and

sP,ws
i are not identified from our first stage (not even up to a multiplicative constant), we impose

the following semiparametric restriction on the link between on the one hand the distributions

of sP,ms
i, f and sI ,ms

i, f + sP,ms
i, f for each f , and on the other the distributions of sP,ws

i and sI ,ws
i + sP,ws

i .

A7: For each COV ∈ SCOV , we have: E[sP,ms
i, f |s

I ,ms
i, f + sP,ms

i, f = x , COVi = COV ] =
∑L

l=1 γ
ms
l, f (COV ) · (λ · x)l and E[sP,ws

i |sI ,ws
i +sP,ws

i = x , COVi = COV ] =
∑L

l=1 γ
ws
l (COV ) · (λ · x)l ,

for any x ∈ R and each f ∈ {1, . . . , F}, and the functions x →
∑L

l=1 γ
ms
l, f (COV ) · (λ · x)l

( f = 1, . . . , F) and x →
∑L

l=1 γ
ws
l (COV ) · (λ · x)l are nondecreasing.

We do not impose any restriction on L, the order of the polynomial.22 The scalar parameters

γms
l, f (COV ), f = 1, . . . , F , and γws

l (COV ) depend non-parametrically on the vector of covariates

COV . The monotonicity restriction in A7 is mild23 and implies in particular that if a firm f is

a non-incumbent and bids more conditional on the observable covariates, then the worker is

expected to perform better if matched with f ceteris paribus. This restriction allows us to rely

on one-sided tests in our application. Note that we do not put any restriction on the sign of the

correlation between sI ,ms
i, f and sP,ms

i, f , or between sI ,ws
i and sP,ws

i .

Let us define the augmented performance equation:

yi, f w
i
= β f w

i
(COVi) + βinc · INCi, f w

i
+

1
λ
· log(

wi

ψ(wi)
)

+
L
∑

l=1

γms
l, f w

i
(COVi) · C F ms

i [l] +
L
∑

l=1

γws
l (COVi) · C F ws

i [l] + ξi, f w
i

(6)

where β f w
i
(COVi) := β f w

i
+ βx · xi, f w

i
, the match-specific control terms are C F ms

i [l] := E[[λ ·
(sI ,ms

i, f w
i
+ sP,ms

i, f w
i
)]l |Ii] (for l = 1, . . . , L), and the worker-specific control terms are C F ws

i [l] :=

E[[λ · (sI ,ws
i + sP,ws

i )]l |Ii] (for l = 1, . . . , L). In Appendix C, we show that these control terms

are identified from the auction data and that the error term ξi, f w
i

is equal to ui, f w
i
−E[ui, f w

i
|Ii]

and hence is uncorrelated to all regressors appearing in (6). How to compute the control terms

(which relies on tedious Bayesian updating exercises) is detailed in the SA.

Let us now discuss the identification of the augmented performance equation (6) conditional

22Instead of the univariate polynomials basis (x , x2, · · · , x L), we could also use an alternative basis of functions.
Following Komarova (2017)’s sieve estimators, Kong (2021) uses estimators based on the Bernstein polynomial
basis which allows to impose easily monotonicity constraints on the function one wishes to estimate.

23This restriction was implicitly made in our informal discussion (in Section 2) regarding the bias of the OLS
estimators of the incentive effect and the parameter βinc .
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on a given realization for the vector of covariates COV ∈ SCOV . For any given set of participants

S with |S| ≥ 2, our full support assumption in TA2 guarantees that the support of the auction

outcome (wi , f w
i ) is [0,+∞)×S: any potential participant may win the auction at any strictly

positive wage. Furthermore, given A5 (and also TA5 in Appendix B), all firms can be observed as

a participant in an auction without an incumbent and one of them, denoted next f̃ , is observed

also as an incumbent.

If we assume that for any given f ∈ {1, . . . , F}, the random vector

(1, log(wi/ψ(wi)), C F ms
i [1], . . . , C F ms

i [L]) is of full rank conditional on COVi = COV ,

f inc
i /∈ Si and f w

i = f (which is a reasonable assumption given that wi can take any value

on R+), then we identify the constants β f (COV ) +
∑L

l=1 γ
ws
l (COV ) · C F ws

i [l] for any given

f and the parameters 1/λ and γms
l, f (COV ) (for l = 1, . . . , L and f = 1, . . . , F).24 On the

other hand, the constant β f̃ (COV ) + βinc and the parameters γws
l (COV ) (l = 1, . . . , L) can be

identified from the sub-sample with COVi = COV and f w
i = f inc

i = f̃ once we assume that

the random vector (1, C F ws
i [1], . . . , C F ws

i [L]) is of full rank conditional on COVi = COV and

f w
i = f inc

i = f̃ . Once we have identified γws
l (COV ) (l = 1, . . . , L), we also identify β f (COV )

for each f = 1, . . . , F and then also βinc . We have thus identified all the coefficients in the

augmented performance equation for COV ∈ SCOV .

Now that the augmented performance equation is known, and given that ψ is identified

from the bidding data, the incentive effect is also identified since τ(w) = (log(w/ψ(w)))/λ.

Once β f (COV ) is known for each COV ∈ SCOV , we identify βx . Apart for the identification of

this latter vector of parameters, we do not rely on variations in the covariates: The augmented

performance equation (6) is identified for any given fixed set of covariates COV ∈ SCOV . Also

note that we are so far agnostic about how the covariates affect the distribution of signals and

the γ-coefficients.

4.3 Two-stage parametric estimation

We present below the two-stage estimation procedure that is used in both our Monte Carlo study

and empirical analysis. It relies on parametric assumptions regarding the incentive effect, the

signal distributions, and how the payoff function depends on the observable covariates. More

precisely, the following set of restrictions are imposed:

• The linear-log specification for the incentive effect: τ(w) = τ · log(w), or equivalently

ψ(w) = w1−θ with θ = λ ·τ < 1.

• Gaussian signals: the F +1 pairs of signal (sI ,ms
i, f , sP,ms

i, f ), f = 1, . . . , F and (sI ,ws
i , sP,ws

i ) are

distributed independently according to bivariate normal distributions that do not depend

on COVi .

• Symmetry across firms: the distributions (sI ,ms
i, f , sP,ms

i, f ), f = 1, . . . , F are identical across

f .

24We use here that the control terms C F ws
i [l] do not vary within the subsample with COVi = COV and f inc

i /∈ Si .
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• Linear payoff functions: V (xi, f ,zi, f , INCi, f ) = α+αx ·xi, f +αz · zi, f +αinc · INCi, f .

The multivariate normality assumption implies that both λ·(sI ,ms
i, f +sP,ms

i, f ) and λ·(sI ,ws
i, f +sP,ws

i, f )

are normally distributed. The distribution Gms
f (resp. Gws) is thus a centered normal distribu-

tion and its variance is denoted σ2
ms (resp. σ2

ws).
25 Our symmetric Gaussian structure also

implies that E[sP,ms
i, f |s

I ,ms
i, f + sP,ms

i, f = x] = γms · x and E[sP,ws
i |sI ,ws

i + sP,ws
i = x] = γws · x . Fur-

thermore, if the correlation coefficient between sI ,ms
i, f and sP,ms

i, f (resp. sI ,ws
i and sP,ws

i ) is positive,

then γms (resp. γws) is necessarily positive and A7 is satisfied with L = 1.26 The linear payoff

function structure implies that

V i, f = β
∗
f +β

∗
x ·xi, f +β

∗
z · zi, f + β

∗
inc · INCi, f (7)

where β∗f = α+ β f + (ln(Eεi, f
[eλ·εi, f ]))/λ, β∗x = αx +βx , β∗z = αz and β∗inc = αinc + βinc . The

primitives of interest of our auction model are thus fully determined by the (unconstrained)

vector of parameters (β∗f , β∗x , β∗z ,β∗inc), the coefficient θ < 1 and the variances σ2
ms and σ2

ws.

The first step of our estimation procedure consists in estimating these primitives through max-

imum likelihood, a procedure (detailed in the SA) which leads to the usual
p

n-asymptotic

normality of the estimators.

To implement the second step we have to compute two control terms for each worker i,

C F ms
i [1] and C F ws

i [1], shortly referred to as C F ms
i and C F ws

i from now on. Their precise forms

depend on whether an incumbent is present among the potential auction participants, and, if

there is an incumbent, on the identity of the winner. We start by detailing the computations

for the case where the auction for worker i does not include an incumbent.

Let Φ (resp. φ) denote the CDF (resp. PDF) of a standard normal distribution, and bsi, f (w)

the cutoff aggregate signal that makes firm f bid exactly until w. This cutoff aggregate signal

is thus the solution of wi, f [N I](bsi, f (w)) = w, where the cutoff wage function wi, f [N I] : R→
R+ is defined in (4). Under our parametric restrictions, the cutoff aggregate signal is thus

characterized by

λ ·bsi, f (w) = (1− θ ) log(w)−
σ2

ws

2
−λ · V i, f . (8)

If the auction outcome is (wi , f w
i ), we can infer that conditional on Ii , the aggregate signal

of the winning firm, si, f w
i

, is distributed according to a centered normal distribution (with

variance σ2
ms) truncated from below at λ ·bsi, f w

i
(wi). We obtain then:

C F ms
i =

∫ +∞

λ·bsi, f w
i
(wi)

u ·
dΦ( u

σms
)

1−Φ
�λ·bsi, f w

i
(wi)

σms

�

= σms ·
φ
� (1−θ ) log(w)−σ

2
ws
2 −λ·V i, f w

i
σms

�

1−Φ
� (1−θ ) log(w)−σ

2
ws
2 −λ·V i, f w

i
σms

�

. (9)

25The variance σ2
ms does not depend on f thanks to the symmetry restriction.

26The expression of the coefficient γms as a function of the variances of sI ,ms
i, f and sP,ms

i, f and their correlation coef-
ficient, is given in the SA, and similarly for γws.
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The match-specific control function term corresponds to an inverse Mills ratio multiplied by the

standard deviation σms, and is similar to the correction term (to correct for sample selection

bias) proposed originally by Heckman (1979). In auctions involving no incumbent, there is

no updating on (sI ,ws
i + sP,ws

i ), and hence we have C F ws
i =

∫ +∞
−∞ u · dΦ(u/σws) = 0. From (9)

we see that our control terms in the sub-sample of auctions without an incumbent depend on

λ · V i, f w
i

. This means that C F ms
i varies in particular with zi, f w

i
, contrary to the performance

equation itself which does not depend on the auction shifters.

Let us now discuss the cases involving an incumbent whose computations are detailed in

the SA. The subcase where the winner is the incumbent leads to control terms that are similar

to the one in (9). On the contrary, the subcase where the winner is not the incumbent is quite

different: on the one hand, the exact expressions of the control terms now depend on what

is observed regarding the bidding history (beyond wi and f w
i ); on the other hand, the control

terms do no longer solely depend on V i, f w
i

, implying that they vary with the covariates of non-

winning bidders as well. For example, when the wage winc
i where the incumbent has dropped-

out is publicly observed, we can infer that its aggregate signal is equal to (1−θ ) log(winc
i )−λ ·

V i, f inc
i

, which further implies the following expression of the worker-specific control term:

C F ws
i =

σ2
ws

σ2
ms +σ2

ws
· [(1− θ ) log(winc

i )−λ · V i, f inc
i
]. (10)

As detailed in the SA, the corresponding match-specific control term depends on both V i, f w
i

and V i, f inc
i

.

The second step of our estimation procedure consists in estimating, by OLS, the performance

equation augmented with the estimated control terms:

yi, f w
i
= β f w

i
+βx ·xi, f w

i
+ βinc · INCi, f w

i
+τ · log(wi) + γ

ms ·ÓC F
ms
i + γ

ws ·ÓC F
ws
i + ξi, f w

i
. (11)

Here ÓC F
ms
i and ÓC F

ws
i are the estimated control functions, i.e., the expressions obtained af-

ter replacing all unknown parameters in the control functions by their first-stage estimates.

The resulting estimator is consistent and asymptotically normally distributed (see Wooldridge

(2002)). The standard errors are obtained using a percentile bootstrap method.27 Combin-

ing our first-stage estimates of the β∗-coefficients with our second-stage estimates of the β-

coefficients, leads to estimates of αx , α∗z and αinc .

From the exact expression of the control terms in this parametric setting, we see that these

terms depend non-linearly on the regressors appearing in the performance equation (1), but

also on the covariates zi, f w
i

, and (xi, f inc
i

,zi, f inc
i
) (when f inc

i 6= f w
i and f inc

i ∈ Si). Their pres-

ence constitutes a source of variation in the control function terms which in practice reduces

27Alternatively, the standard errors could be obtained using the two-stage asymptotic variance expression (see
Wooldridge (2002)). The advantage of the percentile bootstrap method, when the sample size is small, is that it
does not assume normality of the estimated parameter distribution. Another advantage is that it does not require
a variance estimator.
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collinearity among the explanatory variables in the augmented performance equation, thereby

augmenting the precision of the estimates.

4.4 Our two-stage methodology under private values

Let us now briefly discuss how our methodology would change when the auction data never

involve an incumbent. Proposition G.1 in the SA establishes that the primitives of the bid-

ding model are no longer identified from the auction data: in particular, they can always be

rationalized by a private value model without any incentive effect (i.e., with sI ,ws
i = sP,ws

i = 0

and τ(.) ≡ 0). A possible avenue for identification is to impose a parametric restriction on

the incentive effect: if we assume the linear-log specification τ(w) = τ · log(w) as in Section

4.3, then we can develop a similar two-stage identification strategy as above. We can identify

the distribution of λ · si, f w
i
/(1 − θ ) conditional on Ii and, as argued in Section 4.2, plug the

corresponding moments of this conditional distribution as match-specific control terms in the

performance equation. We then identify βx and τ from the following augmented performance

equation:28

yi, f w
i
= β f w

i
+βx ·xi, f w

i
+τ · log(wi) +

L
∑

l=1

γms
l, f w

i
(COVi) · C F ms

i [l] + ξi, f w
i

. (12)

In our Monte Carlo simulations, this approach is referred to as the PV methodology. Note that,

if in addition τ= 0, then the PV methodology is highly related to the polychotomous selection

problem addressed by Dubin and McFadden (1984) through control functions.

The PV methodology leads to consistent estimates if the auctions never involve an incum-

bent. It also produces consistent estimates if the incumbent does participate but never observes

the worker-specific signals (or equivalently if sI ,ws
i = sP,ws

i = 0). However, there is no guaran-

tee that our general methodology (referred to next as the CV methodology) remains consis-

tent in these settings. The CV method may perform poorly because the control terms C F k
i [l],

k = ms, ws then fail to be identified from the bidding data. Whether it is better to use the PV

or CV methodology is an empirical question addressed in Section 5.

5 Simulation Study

The aim of the Monte Carlo exercise is to explore how our methodology performs in finite

samples. The simulation is designed to broadly match the setting of our empirical applica-

tion. There are eight firms (F = 8), the firm-worker characteristics are assumed to be uni-

dimensional and the same across all firms f , x i, f ≡ x i ∈ R, and the auction shifters are also

uni-dimensional but vary across firms, zi, f ∈ R. Half of each simulated sample is composed of

28Compared to (6), the term (log(wi/ψ(wi))/λ has been be replaced by τ · log(wi), and, naturally, the variable
INCi, f w

i
and the worker-specific control function term C F ws

i [l] are absent. Note that the parameter λ is no longer
identified from the second stage.
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auctions without incumbents while the other half is made up of auctions with an incumbent

(picked randomly). The main features of our calibration choices are as follows (some of the de-

tails are provided in the SA). We assume that the incentive effect takes the form τ(w) = τ log w,

where τ takes the values −0.8, −0.5, 0, 0.5 and 0.8. The variables x i and zi, f , f = 1, . . . , F

and the noise εi, f are assumed to be independently distributed according to a centered normal

distribution with variance equal to 1. We set β f = 0 for all bidders, βinc = 0 and βx = 1. We

assume that the intrinsic signals sI ,ms
i, f and sI ,ws

i are equal to zero while the productivity signals

sP,ms
i, f and sP,ws

i follow centered normal distributions with variances σms and σws, respectively.

For all simulations we set σms = 1 − τ (resp. σws = (1 − τ) · σ̃), while σ̃ takes the values

0, 1 and 2. The parameter σ̃ = σws/σms captures the relative strength of the common value

signal compared to the private value signal in bidders’ valuations (σ̃ = 0 corresponds to a pure

private value environment as discussed in Section 4.4).

Table 1A (resp. 1B) reports the mean estimates of the parameter τ (resp. βx) over 1,000

Monte Carlo replications of the parameters, using a sample size of N=300,29 for three method-

ologies: 1) standard OLS; 2) the PV methodology described in Section 4.4; and 3) our general

methodology incorporating both private and common values and which was described in Sec-

tion 4.3 (CV methodology). The PV methodology amounts to treating the incumbents in the

simulated samples as if they are non-incumbents, i.e., we apply the estimation strategy outlined

in Section 4.4 as if all firms are non-incumbents. For both the PV and CV methodology we fix

L = 1 which is consistent with the Gaussian structure. We also report the percentage of the

players that are sold: this percentage varies between 0.28 and 0.98 in our simulations. Table 1C

(resp. 1D) reports the estimated lower and upper bounds of the 95% confidence intervals for

τ (resp. βx) for the CV methodology. We estimate these bounds using the Warp-Speed method

developed by Giacomini et al. (2013) and briefly summarized in the SA.30 Also reported in

Table 1C and 1D are estimates of statistical power and the empirical coverage probabilities for

the parameters τ and βx .

We see from Table 1A that, as predicted in Section 2, the estimator of τ is upward biased.

From Table 1B we see that the bias is also very substantial for the parameter βx . For instance,

when τ = −0.8, the mean OLS estimate of τ ranges between -0.23 (when σ̃ = 0) and 0.16

(when σ̃ = 1), while the mean OLS estimate of βx (recall that its true value is 1) varies between

0.10 (σ̃ = 1) and 0.42 (σ̃ = 0). We also see that the smallest biases are always obtained when

σ̃ = 0. For τ≥ 0, the biases increase in σ̃, while for the cases τ= −0.5 and −0.8 the strongest

biases are obtained for the intermediary value σ̃ = 1. It is notable that the biases under OLS

for both τ and βx are strong when τ= 0, even if σ̃ = 0. They are comparable in magnitude to

the biases obtained with other values for τ: in the absence of wage endogeneity the bias due

to non-random matching and selection remains strong, even if the incumbency status plays no

role in the data generation process. The PV estimator performs well when σ̃ = 0, i.e., when

the data are generated with pure private values. By contrast, the results are biased when σ̃ > 0

29Additional results with N=1,000 are reported in Table K.1 in the SA.
30By relying on a single bootstrap sample for each replication, the Warp-Speed method reduces drastically the

computational cost of our simulations.
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but less so compared to OLS. The PV method reduces roughly by half (resp. two thirds) the

bias of the OLS estimator when σ̃ = 2 (resp. σ̃ = 1). Finally, we find that the performance of

the CV estimator is comparable to that of the PV estimator when σ̃ = 0, which is surprising as

there is no formal guarantee that our CV methodology is consistent when the true model is a

pure private value one, in particular because the function ψ (or equivalently the parameter θ

in our linear-log parametric specification) is no longer identified. However, the CV estimator

clearly outperforms the PV estimator in the case σ̃ > 0. When σ̃ = 1, the CV estimator of τ

is perfectly consistent for all simulations; the parameter βx is also well estimated albeit with a

small upward bias. When σ̃ = 2, the CV estimator of τ (resp. βx) is slightly downward (resp.

upward) biased, but the biases are much smaller than for the PV estimator.

Tables 1C and 1D show that the empirical coverage rates for the CV methodology are sat-

isfactory for both parameters: when the estimator produces an unbiased estimate, then the

rate ranges between 0.94 and 0.96. As expected, lower rates are obtained, however, whenever

the estimator performs less well. Our tests of the null hypothesis H0 : τ = 0 have also high

power. The size is adequate when σ̃ equals 0 or 1, but seems a bit too large (0.8) when σ̃ = 2.

This last result can be explained by the fact that, as mentioned above, the CV estimator of the

wage effect is slightly biased for this relatively high value of σws. The estimated lower-bounds

and upper-bounds of the CIs are symmetrically distributed around the estimated mean values.

We also observe that the CIs for βx become tighter as σ̃ gets smaller. In contrast, there is not

a clear-cut relationship between the CIs for τ and σ̃: for τ = −0.8,−0.5,0, the CI is tighter

as σ̃ gets smaller, while the reverse holds for τ = 0.5, 0.8. Intuitively, there are two counter-

vailing forces when σ̃, or equivalently σws for a given τ, gets larger: on the one hand, the

selection effect becomes more important (as illustrated by the stronger bias of OLS estimates)

and introduces thus additional noise in the performance equation reducing the precision of the

estimates. On the other hand, ÓC F
ws
i becomes a less noisy estimator of the control term C F ws

i (in

particular because common values helps the identification of ψ) thereby increasing precision.

Depending on the parameter being estimated one of these forces dominates the other.

6 Data and Empirical Application

6.1 Tournament and Player Performance

The Indian Premier League (IPL) is an annual cricket tournament where teams compete by

playing matches in a double round-robin format. At the end of this first stage, the four best

ranked teams compete in a playoff to determine the final winner of the tournament. In our

empirical analysis we focus on the 2014 IPL because it represents a year in which major player

auctions were held before the tournament, whereby players were (re)allocated to teams. In

that year, eight teams competed in the tournament and each team played between 14 and 16

matches depending on whether it qualified in the playoff. We obtained the performance data
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on all matches played in the tournament and the auction data from www.espncricinfo.com.31

A cricket match is played over a fixed time period (three hours in the IPL) between two

teams consisting of 11 players who are selected from the team squads. Cricket players are

categorized into four categories: batsman, bowler, wicket keeper and all-rounder. One feature

of cricket, as in a few other sports such as baseball, is that a large component of overall team

performance depends on individual specific performances. Since player skills are highly spe-

cialized, it is possible to observe a large set of individual measures of performance that are

idiosyncratic and largely independent of how other team members perform. In order to derive

a performance measure for each individual player from various batting and bowling statistics

observed individually during the tournament, we use an existing methodology which ranks

players in the IPL.32 The way this performance index is built is described in the SA where we

also give additional information on the rules of the cricket game. The main steps are as fol-

lows: 1) points are awarded to players separately for batting and bowling across every game; 2)

these points are then accumulated over the tournament and multiplied by a speciality specific

efficiency factor (the relative strike rate for batting and the relative economy rate for bowling,

respectively); 3) the resulting batting and bowling performance measures are then normalized

by the number of games played by each player.33

6.2 Player Auctions and Wage Contract

Beginning in 2008, once every three years, the IPL organizes auctions to (re)allocate players to

teams. This centralized market is the unique opportunity for teams to hire new players. Fur-

thermore, any player remaining unsold in the auctions does not participate in the tournament.

Player Contracts: The gross wage of a player is equal to his auction price.34. In the 2014

auction, player wage contracts were fixed for a one-year term with the option of renewal for

an additional one or two years. Players whose contracts were terminated at the end of the

first year would be pooled into a mini-auction in the subsequent year and re-allocated across

teams through this auction. As a result, the auctions and tournament present an ideal setting

for our analysis as we are able to examine player performance in the first season following the

auction, where players face a genuine incentive to perform that is effective immediately after

their wage-determination.

Auction format: The format of sale consists of a sequential procedure whereby players are

sold one after the other through a series of English auctions with public reserve prices. Prior to

the sale, each player is assigned a reserve price that represents the price at which bidding starts.

The reserve price is broadly determined by the auctioneer based on a variety of factors, primary

31All data on player auctions were manually compiled from the recordings and minutes of the (publicly broadcast)
auction proceedings.

32See https://bit.ly/2CvCB44 for a description.
33The performance measure for all-rounders (who both bat and bowl) is the sum of their batting and bowling

performance measure.
34All player salaries are taxed in India; however overseas players face a (uniformly) lower tax burden on their

salary compared to Indian players (approximately 10% compared to 40%) In the analysis, our measure of wages
are in gross terms, but we account for the tax-differential by including a dummy for Indian players.
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among them being the player’s past performance.35 In each of those independent auctions,

teams were invited to challenge the temporary winner by raising their paddle to indicate their

willingness to buy the player at the current price plus a predetermined increment. However,

our analysis abstracts from the bid increments and proceeds as if the bidding data is generated

from an English button auction (see Section 3.1).36 If a player played in one of the teams in the

previous IPL season, then he is declared to be RTM-eligible, where the RTM acronym stands

for “right-to-match”. In an auction for a player that is not RTM-eligible, then the provisional

winner (if any) was declared the final winner and the player’s salary for the IPL tournament

corresponds to the last bid submitted. If the player is RTM-eligible, then his team from the

previous year had the option to use one of its RTM cards and match the winning offer to buy-

back their player at the salary fixed by the auction.37 Next, to simplify, we do not put much

emphasis on the RTM option rule (which plays a role in about one fourth of our auction sample)

but we do take it into account in a structural way. See the SA for details.

The auctioneer arranges the players into different ‘sets’ by their cricketing speciality, quality,

and, to some extent, their reserve price. The sale of players proceeds according to a predeter-

mined sequence of these sets. The composition of the sets and the sequence in which they

are placed in the auction are announced ex ante. By contrast, the order in which players are

auctioned within each set is determined by random draws in the format of a lottery. In our

empirical specification, we explicitly control for the set in which each player appears (using a

dummy variable for the player’s set) which absorbs any player-quality specific effect that may

be related to the predetermined set ordering. This leaves, therefore, only the exogenous vari-

ation from the within-set player ordering which is uncorrelated with player quality given that

it is obtained from a (random) lottery.

Auction rules: The teams face a set of explicit rules with regard to both team composition

and bidding behavior. These rules play an important role in determining some constraints that

bidders face whilst bidding. These rules include: 1) A spending cap: in order to encourage

a balanced competition, the organizers imposed a spending cap on the total amount that any

bidder was allowed to spend in the auctions. The spending cap allocated to a bidder depends

on the number of players retained by the team from its previous year’s squad (the less players

retained, the higher the cap). Teams were allowed to retain a maximum of five players from

their previous year’s squad, and the spending cap varied from 245 to 700 Millions of Rupees.

2) An overseas player quota: to ensure a sufficient number of native players in the tournament,

the organizers imposed a maximum limit of 9 on the number of overseas (non-Indian) players

in any team.

Auction shifter variables: Our analysis deals with the sequential aspect of the game

through a reduced form approach by including the auction shifters zi, f into the specification

35In 2014, seven different reserve prices were used from 1 up to 20 Millions of Rupees.
36Lamy et al. (2016) do take into account increments in their auction model but at the cost of being not fully

structural.
37The RTM option is equivalent to what is called the “right-of-first-refusal” option in the auction literature (see

Bikhchandani et al. (2005) for an analysis of second-price/English auctions with such an option). Note that the
team which has the possibility to exert the RTM option was allowed to bid in the auction exactly as the other bidders.
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of Vi, f . This vector can include e.g. the amount of money spent by f in the auctions preceding

the auction for agent i, the number and characteristics of agents bought prior to i (capturing

possible substitutabilities or complementarities between different types of agents), the order in

the auction sequence and so forth. A priori there is no reason why these shifters would directly

affect player performance. For instance, the characteristics of previously purchased agents is

not expected to play a role given the individualized nature of cricket. Similarly, order of sale

(and hence the remaining budget which is a function of order) should not matter given that is

randomly drawn within each set.

6.3 Descriptive Statistics

A total of 317 players and 8 teams participated to the 2014 IPL auctions. Out of these 317

players, 122 received bids at or above the reserve prices and were actually sold. For all players

(including unsold players) we know a number of characteristics: their nationality, their cricket

speciality, and whether they are a so-called newcomer.38 We record, for every auction, whether

in the previous year the player was playing for one of the 8 teams, and, if this is the case, the

identity of the player’s previous team. Using the terminology previously used in the paper, the

corresponding team is referred to as the incumbent. We observe how players are pooled into

sets, the sequence of the sets, and the order in which players are auctioned within sets. We also

observe in the data all reserve prices attached to the players, and, for 105 players among those

sold, the composite performance measure defined in the SA.39 For each auction we observe all

submitted bids (i.e., all prices at which teams raised their paddles) together with the identities

of the corresponding bidders, and the identity of the team who has used a RTM card (if any).

Table 2 present summary statistics from the perspective of both teams and players.

The upper panel of Table 2 shows that approximately half of all auctions (156 out of 317) in-

volved an incumbent. The probability that the player is sold in an auction with (resp. without)

an incumbent equal to 58% (resp. 19%). Among auctions with an incumbent, the probability

that the incumbent (resp. a non-incumbent) becomes the winner is equal to 24% (5%). As

indicated in the first middle panel, a team purchased on average 15 players through the auc-

tions considered, comprising approximately of 3-4 batsmen, 6-7 bowlers, 1-2 wicket keepers,

and 3-4 all-rounders. Furthermore, about 10 of the newly purchased players were Indian, and

7 newcomers. Given the number of players retained by teams from their previous year’s squad

(these players do not appear in the auctions but have an indirect impact through the induced

constraints in the auction), teams were allocated an average budget of 5.65 million USD for

purchasing players. On average, bidders consume 90% of their allocated budget.

The two lower panels of Table 2 contain summary statistics on the auction data, first for

the full sample, and then for the players who were sold and performed on the field. For this

latter sample, we also reports statistics on our composite measure of performance and the wage

38A newcomer is a player who has never been called by his national team. Such players may have experience play-
ing in past IPL tournaments but we nonetheless use the terminology “Newcomer” as this is the official designation
for such players.

39For 17 sold players we do not observe the performance measure because they do not perform on the field.
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earned by the cricket players. Conditional on observing bids at or above the reserve price, the

average number of participants (i.e., the number of bidders having raised their paddle at some

moment) is 2.3. The reserve price for sold players is found to be not significantly different

compared to the sample average, in both cases it was set around 0.1 million USD. The fraction

of newcomers and the within-set order of player appearance in the auctions is also similar

across the two samples. The fraction of Indian players and the fraction of players eligible for

RTM are, however, slightly higher in the sold-players sample. The average winning price is

0.33 million USD. There is actually a huge heterogeneity in the wages: the ratio between the

highest and the lowest wage obtained in the auctions is as large as 140. Finally, we see that

the performance score on average equals 23.9, and there is much dispersion in this variable as

well since its standard deviation equals 14.55.

6.4 Empirical Specification and Estimation Results

We consider the parametric restrictions from Section 4.3. The variables we include in the vec-

tor of team-player characteristics xi, f are cricket-speciality dummies indicating whether i is of

a certain speciality,40 a dummy indicating whether i is of Indian nationality, a dummy indi-

cating whether he is a newcomer, and set-specific fixed effects. We also include two indicator

variables: Bidder is incumbent which corresponds to the variable INCi, f defined earlier and

Incumbent Present which is equal to 1 if one of the eight firms is the incumbent and 0 otherwise

(which thus corresponds to
∑

f INCi, f ). The vector of auction shifters zi, f contains the order

of sale of i within the set, the remaining budget of team f just before i is being auctioned,

and five backlog variables: # Batsman bought, # Bowlers bought, # Wicket-keepers bought, #

All-rounders bought and # Overseas players bought. Each of these variables is defined as the

interaction between a variable counting the number of players of a given type already bought

by f prior to the auction of i (including retained players), and a dummy indicating whether

i is of this type. Finally, we include the variable Incumbent present & no RTM card which is

equal to 1 if one of the eight firms is the incumbent and the incumbent has no RTM card, 0

otherwise. This variable aims to capture in a reduced form the dynamic effects coming from

the RTM option: due to the scarcity of RTM cards, exerting the RTM option or not induces dif-

ferent continuation values throughout the auction sequence and thus modifies current bidding

incentives.

40Included are dummies for batsman and bowler. There are too few wicket-keepers in the sold-player sample to
add yet another speciality dummy.
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Table 3: Empirical results

OLS First Stage Second Stage

Log Wage (τ) 5.80*** 4.14**
[2.50, 9.07] [0.15, 8.11]

Team-player characteristics (x):

Indian -4.68 -2.52*** -3.22
[-10.66, 1.30] [-3.35, -1.68] [-10.31, 4.48]

Newcomer -1.17 0.51 -2.43
[-9.54, 7.20] [-0.10, 1.13] [-11.58, 5.71]

Speciality: Batsman 2.16 2.16*** 3.82
[-5.76, 10.08] [1.12, 3.20] [-3.02, 11.88]

Speciality: Bowler 8.52** 3.01*** 10.15***
[1.64, 15.39] [2.01, 4.02] [3.47, 17.97]

Incumbent present 1.87 2.57*** 5.48
[-4.57, 8.31] [1.27, 3.87] [-3.05, 15.49]

Bidder is incumbent 2.23***
[1.23, 3.21]

Winner is incumbent -2.27 -15.27**
[-8.26, 3.71] [-30.80, -1.47]

Auction shifters (z):

Incumbent present & no RTM card -1.33***
[-2.01, -0.65]

Order of sale -0.01
[-0.06, 0.05]

Remaining budget (in logs) 0.55***
[0.29, 0.82]

# Batsman bought -0.36***
[-0.58, -1.14]

# Bowlers bought -0.48***
[-0.64, -0.32]

# Wicket-keepers bought 0.01
[-0.41, 0.42]

# All-rounders bought 0.41***
[0.24, 0.58]

# Overseas players bought -0.63***
[-0.80, -0.46]

Other Structural Parameters:

γms -0.47
[-3.82, 2.05]

γws 4.01**
[0.30, 16.80]

θ 0.77***
[0.60, 0.94]

σ∗ms ≡
σms
(1−θ ) 1.48***

[0.75, 2.92]
σ∗ws =≡

σws
(1−θ ) 2.22***

[1.72, 2.87]

Note: All specifications account for fixed effects with respect to the set in which the player was auctioned. Column 1
reports OLS estimates of the parameters in the performance equation (1), and 95% CIs based on the usual OLS standard
errors. Column 2 gives the ML estimates of the auction model primitives β∗x , β∗inc , β

∗
z , θ , σms , and σws , and 95% CIs

based on the asymptotic ML standard errors. Column 3 reports OLS estimates of the parameters in the augmented per-
formance equation (11), and 95% CIs based on a percentile bootstrapped procedure (with 1,000 bootstrapped samples).
∗ indicates significance at 10%; ** at 5%; *** at 1%. The level of significance is based on two-sided tests except for the
parameters γms and γws where it is one-sided given the restriction A9 and 90% CIs are reported in parentheses.



Table 3 contains our empirical results. The first column gives OLS estimates of the parame-

ters appearing in the uncorrected performance equation (1). The results indicate that a player’s

wage has a positive and statistically significant effect on his composite performance measure.

A 1% increase in a player’s wage is associated with a performance increase of 0.06 points. Al-

ternatively a one standard deviation increase in the wage increases player’s performance by

0.4 standard deviations. Regarding the team-player characteristics, we see that, except for

the player speciality bowler, the indicators for incumbency status, nationality, newcomers, and

batsmen are not significant.

The next two columns give the estimation results corresponding to our methodology. Col-

umn 2 contains the first stage results, i.e., the ML estimates of the auction primitives β∗inc , β
∗
x ,

β∗z , θ , σms/(1− θ ), and σws/(1− θ ), and the 95% CIs based on the asymptotic ML standard

errors. For the purpose of the discussion below, we recall that team f ’s valuation for player i

corresponds to w∗i, f , that is to say the amount that f is prepared to bid if it could observe the

worker-specific signals sP,ws
i and sI ,ws

i .

The lower panel of the table shows that the first stage estimate of θ is 0.77 (significant at

the 1% level). Furthermore, the estimates of σms/(1− θ ) and σws/(1− θ ) are 1.48 and 2.22.

From the estimated β∗-coefficients, our estimate for the standard deviation of λV i, f /(1−θ ) is

2.2. Since log(w∗i, f ) = λ[V i, f + sP,ms
i, f + sI ,ms

i, f + sP,ws
i + sI ,ws

i ]/(1−θ ), and using the independence

between the covariates (appearing in V i, f ), and the match-specific and worker-specific signals,

our estimate for the standard deviation of log(w∗i, f ) is equal to 3.4. On the whole, we obtain

that the variance of λV i, f /(1− θ ) explains about 40% of the variance of log(w∗i, f ), indicating

that private signals matter a lot in determining the variation in valuations. We also obtain

that that a standard deviation increase in the aggregate signal of a non-incumbent (resp. the

incumbent) increase the logarithm of its valuation by an amount which represents 0.44 (resp.

0.79) of its standard deviation.

All team-player characteristics are statistically significant except the newcomer indicator:

teams reduce their valuation for Indian players and increase it for certain player specialties

(batsmen, bowlers); our results also indicate that valuations are larger for players who be-

longed to one of the eight teams prior to the auctions (Incumbent present) and are even larger

for the incumbent team (Bidder is incumbent).41 Specifically, a player who participated in the

tournament previously significantly increases the associated teams’ valuation by 0.75 standard

deviations relative to other players when his incumbent team has still a RTM card.42 This is

consistent with the observation made earlier that the probability for a player to be sold is three

times larger when there is an incumbent. Furthermore, the average difference between the

incumbent’s valuation and the valuation of a non-incumbent corresponds to 0.4 standard de-

viations, which is consistent with the observation that the incumbent’s winning probability is

41Note that the coefficient β∗inc does not reflect the average difference between the logarithm of the bids of
the incumbent and a non-incumbent: the incumbency status drives bids not only through the valuations but also
through the asymmetric information across bidders w.r.t. commonly valued signals and possibly through the RTM
option.

42Given the estimated coefficient on the auction shifter ‘Incumbent present & no RTM card’, the corresponding
increase when the incumbent team has exhausted her RTM cards is only 0.37 standard deviations.

31



five times larger than for a given non-incumbent.

Let us next look at the results concerning the auction shifters z. The order of sale within the

set does not significantly affect teams’ valuations. The coefficient associated with the logarithm

of the remaining budget is highly significant, and is as expected positive, implying that teams

bid more aggressively when they have more money to spend: a 10% increase in a team’s

remaining budget at a given point in the auction sequence, increases its valuation for the given

player by 0.015 standard deviations. The five last auction shifters are our backlog variables

capturing the bidder’s past purchase behavior. Three of the backlog variables have, as one

might have anticipated, negative and statistically significant impacts: an additional batsman

(resp. bowler) acquired by a team reduces its valuation for such a player by 0.10 (resp. 0.14)

standard deviations; the reduction for an additional overseas player is 0.18 standard deviations,

reflecting the constraint imposed by the auction organizers on non-Indian cricket players. The

variable # Wicket-keepers bought is not significant, and # All-rounders bought is significant but

somewhat surprisingly positive.

Column 3 reports the second stage results, i.e., the estimates of all parameters appearing in

the augmented performance model (11), together with CIs based on standard errors obtained

by a percentile bootstrap method using 1,000 bootstrapped samples. Using our control function

approach, we find that the effect of wages is still significant (albeit now only at the 5% level),

but smaller in magnitude: a one standard deviation increase in wages leads to an increase of

performance by less than 0.3 standard deviations, that is to say only two thirds of the effect

estimated by uncorrected OLS. This confirms that, as predicted in Section 2, and in accordance

with our Monte Carlo results, naive OLS estimation leads to an upward bias of the wage effect.

The fact that wages still matter in explaining performance, even after controlling for sample

selection and omitted variables, is (weak) evidence in support of either efficiency wage (Shapiro

and Stiglitz (1984)) or fairness/reciprocity (Akerlof and Yellen (1990)) theories.

The estimated effects of the team-player characteristics are of the same sign as the OLS es-

timates reported in column 1 and, as predicted in Section 2, are larger in magnitude except for

the Indian player indicator. However, the implications of the significance tests do not change

much either compared to those reported earlier. A notable exception is the variable indicat-

ing whether the player is matched with his incumbent team: its estimated effect has sharply

declined relatively to the naive OLS estimate, and the variable is now statistically significant

(at the 5% level). In line with what we predicted in Section 2, OLS thus indeed leads to an

estimated impact of this variable which is biased towards zero. Note that, comparing columns

2 and 3, the incumbent indicator also happens to be the only variable for which the estimated

coefficients of β∗x and βx are (significantly) of different signs: while players perform less well

ceteris paribus when they are re-hired by their previous employer, the incumbent nonetheless

values such players more highly. Using the expression of αinc in terms of parameters that are

identified from our first and second stages, our estimate for αinc is 3.4 and is significant at 5%

level. It reflects that teams value their previous players for other reasons than their contribution

to performance.
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From the lower panel of the table we see that the coefficient on the control function C F ws

is statistically significant (at the 5% level with a one-sided test), but the one associated with

C F ms is not. The fact that (at least) one of our control functions is significant confirms that

endogeneity is an issue in our application.

As a robustness check, we also report results from specifications that include a player’s past

IPL performance in the set of player characteristics when this information is available.43 It

allows to control for player-specific signals commonly observed by all bidders that would chal-

lenge the independence assumption made in A1 ii) and on which our methodology is relying.

The results, reported in the SA Table M.2, are robust to the inclusion of such player’s past per-

formance and both the magnitude and direction of the incentive and selection effects remain

unchanged. It should be noted that, as discussed previously in section 6, that the newcomer and

set-specific fixed effects partly already account for a dimension of the player’s past performance

as players are organized into sets depending on their quality.

6.5 Counterfactuals

In this section we use the estimated parameters from the first-stage of our empirical exercise to

evaluate (i) the efficiency of matching between players and teams, (ii) the effect of changing

reservation wages on the probability that players are sold and their expected revenues, and

(iii) the effect of excluding the incumbent on the sale probability and expected revenues. In

all simulations presented below, we put aside the sub-sample of auctions wherein there is an

incumbent who benefits from an RTM option (but keep those wherein there is an incumbent

who does not benefit from this option).

6.5.1 Matching Efficiency under Asymmetric Information

We designate a team-player match as efficient if player i is matched to the team with the

highest valuation whenever it exceeds the reservation wage, or if i remains unsold whenever

it is below. Formally, following the notation introduced in Section 3, it is efficient to match

team f ′ ∈ {1, . . . , F} with player i if f ′ ∈ Argmax f ∈{1,...,F}w∗i, f and w∗i, f ′ ≥ W r
i , and to leave

player i unmatched if max f ∈{1,...,F}w∗i, f < W r
i . Note that our equilibrium analysis guarantees

that the winning bidder (if any) always belongs to Argmax f ∈{1,...,F}w∗i, f in auctions without

incumbents. In contrast, if there is an incumbent, this firm may win the auction although it

does not have the highest valuation and, conversely, a non-incumbent may win the auction

although the incumbent has a higher valuation.44 Auctions with an incumbent thus involve an

additional potential source of inefficiency that does not exist in auctions without an incumbent.

We estimate our (in)efficiency measure using simulations. For each i, we take the variables

(xi, f ,zi, f , INCi, f ) for all f , and W r
i , as actually observed in the data, and simulate the vector

43More precisely, we add two variables to the specification: (i) a dummy variable taking the value one if past IPL
performance is available for the player, and (ii) the interaction of this dummy variable and the previous three years’
average for past IPL performance.

44Nevertheless, when a non-incumbent wins, it has necessarily the highest valuation among all non-incumbents.
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Table 4: Percentage of inefficient matching

Inefficient Sources of Inefficiency

Sample: (A) (B) (C) (D)
Without Incumbent 0.27 0.11 – – 0.16
With Incumbent (and no RTM option) 0.22 0.04 0.04 0.04 0.09

Note: Sources of inefficiency are as follows - (A) sale whereas no-sale is efficient; (B) sale to incumbent whereas
sale to non-incumbent is efficient; (C) sale to non-incumbent whereas sale to incumbent is efficient; (D) no-sale
whereas sale is efficient.

of private signals {si, f } f=1,...,F 10,000 times. For each simulation, we compute the auction

outcome and teams’ valuations which enable us to determine whether the simulated match is

efficient or inefficient. We then calculate the fraction of times (across 10,000 simulations) that

the matching is inefficient for i. Table 4 gives then the average of these estimated probabilities

that the final assignment fails to be efficient for the sub-samples of auctions with and without

incumbents and details the sources of inefficiencies.

We observe that matching inefficiencies are not negligible: In the sample without incum-

bents, inefficiencies arise in 27% of our simulations. In the sample with an incumbent, we

find that the inefficiency probability is lower (22%). The fact that the latter type of auction

is relatively efficient results from two opposing effects. On the one hand, as remarked above,

auctions with an incumbent introduce an additional form of inefficiency. Indeed, columns B

and C in Table 4 indicate that for 8% of the outcomes in the sample with an incumbent, the

winning team is not the bidder having the highest valuation. On the other hand, the presence

of an incumbent allows to reduce the probability that a player remains unassigned although it

would have been efficient to assign him to a team (column D),45 and, conversely, the proba-

bility that the player is assigned to a team although it would have been efficient to keep him

unassigned (column A). These reductions arise thanks to the informational linkage conveyed

by Bayesian updating from observing the incumbent’s bidding behavior. Here the positive ef-

fect on efficiency due to the informational linkage thus dominates the negative effect due to

the inadequate selection of auction winners.

Note that our results strongly contrast with Carnehl and Weiergraeber (2022)’s structural

analysis of German procurement auctions for railway services. Their auctions for the so-called

net contracts (i.e., for which ticket revenues accrue to the contractor) involve informational

asymmetries (similarly as in our auctions with an incumbent), and they find a much higher

inefficiency rate than we do (their estimates exceed 80%). An explanation for this discrepancy

is that their study involves first-price auctions. In a first-price auction, poorly informed bid-

ders do not benefit from the aforementioned informational linkage as in an English auction,

explaining why Carnehl and Weiergraeber (2022)’s inefficiency is much stronger than ours.

45Column D corresponds actually to the probability of no-sale while a sale to a non-incumbent team would be
efficient since the possibility of an efficient sale to the incumbent team is ruled out by our equilibrium analysis.
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6.5.2 Reservation Wage Counterfactuals

Here we evaluate the effect of changing the reservation wage of a given player i on his expected

revenue46 and on his probability to be sold. For each i, we consider a baseline scenario and

various counterfactual scenarios. In all scenarios, the variables (xi, f ,zi, f , INCi, f ) for all f take

values as actually observed in the data. In the baseline scenario, the reservation wage also

takes the observed value W r
i , while in the counterfactual scenarios it either varies by -50 to

+50 percent of the observed value or it is fixed to the sample minimum mini=1,...,N W r
i (we

have a total of 11 counterfactual scenarios). As above, 10,000 simulations are used to estimate

the expected wages and sale probabilities under all scenarios.

Figure 1: Histogram of the Optimal Reserve

The figure shows the histograms of the optimal reserve (among the grid (5 + k) · 0.1 ·W r
i , k = 0, . . . , 10) across the

players i, by those who have an incumbent (incumbent) and those who do not (no incumbent). The optimal reserve
corresponds to the reservation wage change which generates the maximum expected wage.

Before turning to the average impact (across players) of changing the reservation wage, we

first compute for each player i the scenario that maximizes his expected wage. The reservation

wage that maximizes expected wage is referred to as the optimal reserve. Figure 1 reports the

distribution of the optimal reserve, first across the sub-sample of players with an incumbent

and second across the sub-sample of players without an incumbent. We see that the lowest

reservation wage (corresponding to the counterfactual scenario where the reserve is reduced

by 50%) is optimal for about 40% of players in the sub-sample without an incumbent, and 30%

in the sub-sample with an incumbent. The current reservation wage turns out to be optimal

for 2 and 8% of players in the respective sub-samples. Note that a for a non-negligible fraction

of players the optimal reserve is above the actually observed value.

Table 5 contains the average effects of modifying reservation wages. Column 1 reports, for

each possible counterfactual scenario, the relative effect on the expected wage, and column 2

the effect on the probability of sale. More precisely, our wage effect is calculated by computing,

for each i, the relative difference between the corresponding counterfactual expected wage and

the expected wage in the baseline scenario, and by then taking the average over all players in

46Player i’s revenue is equal to his auction-determined wage wi when he’s sold, and zero otherwise.
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the sample. Our sale probability effect is calculated similarly, i.e., we compute for each player

the absolute difference in the estimated counterfactual and baseline probabilities to be sold,

and then take the average over all players.47 We emphasize that our counterfactual exercises do

not consist in changing the reservation wages for all players simultaneously but rather in local

policy experiments where we change the reservation wage of a given player i (while keeping it

fixed for all others) and then calculate the resulting effect on the auction outcome for player i

only (we do not analyze the effect this change may have on other players).48 As Table 5 shows,

changing the reservation wage generally has a substantial effect on both the expected wage and

the probability to be sold. For instance, reducing the reserve by half is associated with a 13%

increase in the expected wage and a 12-point percentage increase in the probability of being

sold. Overall, we find that both the expected relative wage differential and the sale probability

decrease monotonically with the reservation wage chosen in our counterfactual scenarios.

Table 5: Counterfactual results

Outcome of interest: Final Wage Differential Selling Probability Differential
(in relative terms) (in absolute terms)

Counterfactual policy:
Change in reservation wage:
-50% 13.22 0.12
-40% 7.27 0.09
-30% 5.83 0.06
-20% 4.32 0.04
-10% 0.93 0.02
10% -3.94 -0.02
20% -2.02 -0.03
30% -1.28 -0.04
40% -4.33 -0.06
50% -4.15 -0.07
= sample minimum 14.57 0.17

Note: Column 1 of the table reports the final wage differential (as percent different) between the counterfactual and baseline:
1
N

∑N
i=1
E(wi ·1{i is sold}|Counterfactual)−E(wi ·1{i is sold}|Baseline)

E(wi ·1{i is sold}|Baseline) . Column 2 reports the difference is the probability of being sold between

the counterfactual and baseline: 1
N

∑N
i=1[E (1{i is sold}|Counterfactual)−E (1{i is sold}|Baseline)]

The results of Table 5 together with those reported in Figure 1 suggest that, from the per-

spective of an individual player, lower reservation wages are beneficial. This contrasts with

the empirical literature (starting with Paarsch (1997)) which typically finds that reserve prices

actually observed in real-world auctions are substantially lower than the theoretically optimal

ones. Individual deviations may of course be harmful for the group of players as a whole: e.g.,

if a wicket keeper i is getting hired by team f following a reduction in his reservation wage,

then this lowers f ’s valuations for the subsequent wicket keepers (through f ’s auction shifters

such as the backlog variable capturing the number of wicket-keepers previously bought and

47The exact formulas are given in the legend of Table 5.
48We prefer local counterfactual policies over global ones since the basic assumption required for correctly mea-

suring a policy change –namely that all true parameter values are identical under both baseline and counterfactual
configurations– is arguably less likely to hold in the latter case.
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the remaining budget), which in turn should reduce the expected wage and sale probability

of those wicket keepers that are sold after i. More generally, the fact that a reservation wage

cut may be harmful to fellow players comes from the fact that the players being auctioned are

partial substitutes. By setting reservation wages at a relative high level, the IPL avoids a pris-

oner’s dilemma (whereby individual players would like to post a lower reservation wage), and

appears to play a similar role as unions who negotiate for higher minimum wages in all sorts

of branches (Neumark and Wascher (2007)).

6.5.3 Excluding the Incumbent

In our setup, excluding a non-incumbent reduces both the probability of sale and the worker’s

wage for any realization of the signals of all bidders. This reflects the fact that excluding a non-

incumbent does not modify the bidding behavior of its opponents but reduces competition. On

the contrary, excluding the incumbent has ambiguous effects because it modifies the bidding

behavior of the non-incumbents. In particular, conditional on the incumbent’s signal being

such that its valuation is below the reservation wage, the cutoff wage of each non-incumbent is

always lower when the incumbent is excluded than when the incumbent is allowed to partic-

ipate. Some recent theoretical works have shown indeed that the exclusion of a bidder could

enhance the seller’s expected payoff (see, e.g., Bergemann et al. (2020) and Jehiel and Lamy

(2020)).

We have therefore considered a counterfactual policy experiment where the incumbent is

forbidden to participate in the auction. Expected wages and sale probabilities are estimated

as above except that simulations under the counterfactual scenario are based on 7 instead of

8 firms (and calculations only concern the 75 auctions for which an incumbent without the

RTM option is present). We find that excluding the incumbent reduces the expected wage by

more than 60% while the sale probability is raised by about 10%. The drastic wage reduction

occurs as in a private value model and is driven by the fact that the valuation of an incumbent

is larger than the valuation of a non-incumbent ceteris paribus (since our estimate for β∗inc is

large). However, excluding a bidder would never lead to an increase of the sale probability in a

private value environment, illustrating here the importance of the worker-specific signals: If the

incumbent is allowed to participate but decides not to enter the auction, then this sends a bad

signal to the non-incumbents who may be discouraged from entering the auction themselves.

7 Conclusion

This paper develops a novel approach to consistently estimate the effects of contract features

and principal-agent characteristics when the matching of principals to agents is determined by

an auction. Our methodological approach consists mainly in introducing unobserved signals

that jointly drive the auction and the post-auction outcomes, in developing an interdependent

value auction model where bidders anticipate the incentive effect of the auction price on the
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post-auction outcome, and last, in imposing restrictions guaranteeing that our auction model

is non-parametrically identified. We then propose to correct for the bias associated to the un-

derlying multiple sources of endogeneity by using micro-founded control functions. We apply

our methodology to a labor market application, analyzing how the auction-determined wages

of sports players affect their performance, disentangling incentive and selection effects. As

demonstrated by our application, our methodology also allows to develop rich counterfactual

exercises.

While we develop our methodology using a labor market set-up and for a specific auction

format – the English auction – our analysis can be easily adapted to other economic settings and

other single-unit auction formats. The most promising alternative setting where our methodol-

ogy can be applied is procurement auctions. Recent empirical works on procurement contracts

awarded through competitive tendering have stressed the importance of both ex post moral

hazard and adverse selection.49 Our methodology can be applied more generally in settings

wherein the remuneration rule that characterizes post-auction transfers depends on the auction

winning price (i.e., wi in equation (1)) but also on verifiable variables that could be used as

our post-auction outcome (i.e., yi, f w
i

in eq. (1)). If we take a quantity of outputs or inputs for

the latter, then the auction shifters zi, f could correspond to variables affecting the sunk costs

of bidder f for the contract i while the characteristics xi, f could capture variables affecting

marginal costs (or benefits).

The extension of our approach to multi-unit or share auctions is also feasible but more

challenging. For uniform and discriminatory auctions, we can apply results from econometrics

of the multi-unit auctions (see Hortaçsu (2011) for a survey), in particular under pure private

values. Multi-unit environments also open the door to novel post-auction specifications where

not only the price but also the quantity purchased plays an incentive role and would allow

to cover a broader class of applications, in particular involving the auctions organized by the

Treasury or central bank. An active research question in macro-finance deals with the impact

on macroeconomic outcomes of those auctions that are ubiquitous in the determination of

the prices and quantities of key economic variables (for e.g., amount of debt, exchange rate,

interest rates).50 For example, Joyce and Tong (2012) study the impact of an increase in

bond supply, through a quantitative easing program, on post-auction bond yields. Since both

quantities and prices of bonds are determined by auctions, analyzing post-auction outcomes

will be typically subject to both endogenity and selection concerns. A range of applications in

empirical corporate finance also examine post-acquisition outcomes of companies (e.g., firm

sales) when they are acquired through an auction procedure (see Eckbo (2009) and Dasgupta

and Hansen (2007) for reviews on auctions in corporate finance). For instance in bankruptcy

49E.g., Lewis and Bajari (2011) show that project-delivery time is driven by the contract characteristics both
directly through incentives schemes, and indirectly through the fact that contract characteristics have a screening
effect (e.g., the ability of a firm to complete the project on time may be correlated with its winning probability).

50Relatedly, Cassola et al. (2013) show that the regression of a bank’s post-auction profitability on auction-
determined measures supposed to be proxies of a bank’s short-term funding costs depends crucially on whether the
auction-based measure is the final bid or the bank’s willingness to pay (estimated by a structural approach). Note
that Cassola et al. (2013) abstract from any incentive effect linking the auction and post-auction stages.
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auctions, a question is whether recovery rates (the post-auction outcome yi, f w
i

in eq. (1))

are higher when the previous owner of the bankrupt firm wins the auction (i.e., when f w
i =

f inc
i ). The endogeneity and sample selection problems arise because previous owners tend

to repurchase the firm when they share good news on the quality of the firm (sP,ws
i ) and also

because recovery rates are only observed for firms who have been successful in selling their

assets.
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Appendices A-C

A Equilibrium analysis

In this appendix we formally derive the equilibrium strategy associated with the auction model
of Section 3. As a preliminary, let us present and discuss three additional technical assumptions
that are needed for the analysis.

TA1: For each auction i with an incumbent, the function κi : R+ → R, defined by κi(u) :=
log(ψ(u))− log(E[eλ·[s

I ,ws
i +sP,ws

i ]|w∗
i, f inc

i
= u]), is an increasing bijection.

TA2: For each i and f = 1, . . . , F , the commonly known CDF of f ’s aggregate signal si, f condi-
tional on (xi, f ,zi, f ) f=1,...,F and f inc

i , denoted Gi, f , is atomless and has full support on R.

TA3: In addition to the publicly observable covariates (xi, f ,zi, f , INCi, f ) f=1,...,F , firms’ payoff
functions and the joint distribution of the private signals are commonly known by all firms.

Given A1 ii), TA1 is equivalent to stating that the difference log(ψ(u)) −
log(E[ψ(w∗i, f )|w

∗
i, f inc

i
= u]) is increasing in u.51 Assumption TA1 imposes thus a restric-

tion on the relationship between the incumbent’s valuation w∗
i, f inc

i
and the valuation of any

given non-incumbent f : it says that the percentage increase of ψ(w∗
i, f inc

i
) is larger then the

percentage increase of E[ψ(w∗i, f )|w
∗
i, f inc

i
]) when the incumbent’s valuation increases. TA1

is analogous to the kind of assumptions typically made in the literature on auctions with
interdependent values (see, e.g., the “average crossing property” in Krishna (2002)). As
shown in the SA, TA1 holds when aggregate signals follow Gaussian distributions. Assumption
TA2 guarantees that the incumbent’s distribution has full support which ensures equilibrium
uniqueness. Regarding equilibrium uniqueness, note that Bikhchandani et al. (2002) has
shown that the symmetric model of Milgrom and Weber (1982) involves a continuum of perfect
Bayesian equilibria in weakly undominated strategies, except in the pure private value case
where such an equilibrium is unique. Here we establish uniqueness in an asymmetric model.
TA3 is a type of assumption usually made in the literature (explicitly or often implicitly). It
implies in particular that the scalars V i, f , λ and the function τ(.) are common knowledge.

We now turn to the equilibrium characterization. Given A1 i), the auctions for the various
workers i = 1, . . . , N can be analyzed separately from each other. We can thus focus the analysis
on one arbitrary auction, and for notational simplicity the index i is suppressed in the remainder
of this appendix.

Let us define the function w f inc : R → R+ by w f inc (x) := ψ−1(eλ·[V f inc+x]). Under A2
and since λ > 0, this function is an increasing bijection. We then use the notation w−1

f inc to

denote its inverse, so that w−1
f inc (u) = (log(ψ(u))/λ)− V f inc . The incumbent’s payoff function

when winning at the wage w takes the form eλ·[V f inc+s f inc+τ(w)] − w. Given A2, this payoff
multiplied by the strictly positive term e−λ·τ(w) is a decreasing function. As a consequence,
the payoff of the incumbent crosses zero only at the cutoff wage w f inc (s f inc ) = w∗f inc , and is

51Formally, we use that E[ψ(w∗i, f )|w
∗
i, f inc

i
= u] = E[eλ·[V i, f +si, f +sI ,ws

i +sP,ws
i ]|w∗

i, f inc
i
= u] = E[eλ·[V i, f +si, f ]] ·

E[eλ·[s
I ,ws
i +sP,ws

i ]|w∗
i, f inc

i
= u], where the last equality comes the fact that, under A1 ii), the signals si, f and si, f inc

i

are independent. We obtain then that the difference between log(ψ(u))− log(E[ψ(w∗i, f )|w
∗
i, f inc

i
= u]) and κi(u) is

equal to log(E[eλ·[V i, f +si, f ]]), which does not depend on u.
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positive (resp. negative) when the wage is below (resp. above) this cutoff wage. Therefore, a
weakly dominant strategy for the incumbent consists in entering the auction only if w∗f inc ≥W r ,
and, when this is so, in remaining active until the clock reaches the valuation w∗f inc . Given our
full support TA2, we can show that this strategy is actually the unique best-response for the
incumbent: if this firm adopts another strategy, it would raise a strictly lower expected payoff.
For any alternative strategy for the incumbent, we can develop exactly the same analysis as
below which establishes in particular that there is a positive probability to win the auction if
the incumbent bids slightly above its valuation.

To determine the best responses of non-incumbents, we need to distinguish four cases.
These four cases differ in the incumbent’s bidding history. Case A (resp. B) corresponds to
a bidding history wherein the incumbent is not present (resp. is present but chooses not to
enter the auction). Cases C and D consider bidding histories wherein the incumbent did par-
ticipate. C covers the case where the incumbent has decided to drop out prior to the current
value of the auction clock, while D the case where the incumbent is still active at the clock’s
current value.

In cases A, B, and C, the beliefs of non-incumbents regarding the sum of worker-specific
signals sI ,ws

i + sP,ws
i do not evolve but stay fixed during (the remainder of) the auction: This

property results from A1 ii) which guarantees that the non-incumbents share the same common
beliefs which are determined by Bayesian updating given that the incumbent follows its weakly
undominated strategy. The payoff function of f then takes the form

eλ·[V f +s f +τ(w)] ·H −w (A.1)

where H represents the expectation of eλ·[s
I ,ws+sP,ws] given the incumbent’s bidding history. This

expectation thus differs across the cases A, B and C, but under A1 ii) it does not depend on si, f .
Given A2, for the same reason as above, the expected payoff of the non-incumbent firm f (its
beliefs being captured by the constant H) crosses zero only at the cutoff wageψ−1(eλ·[V i, f +si, f ] ·
H). Below we detail the precise form of H for each of the three cases together with the optimal
strategies. In case D, the incumbent is still actively bidding and the equilibrium strategy of
non-incumbents is obtained in a similar manner as in Milgrom and Weber (1982).
Case A: there is no incumbent. The constant H in (A.1) is equal to the unconditional expecta-
tionE[eλ·[s

I ,ws+sP,ws]]. Let w f [N I](s f ) :=ψ−1(eλ·[V f +s f ]·E[eλ·[s
I ,ws+sP,ws]]) denote the correspond-

ing cutoff wage, where the acronym N I stands for No Incumbent. It is then a best-response for
f to enter the auction only if w f [N I](s f ) ≥W r , and then to remain active until the clock has
reached this cutoff wage otherwise. Under A2 and since λ > 0, the function w f [N I] : R→ R+
is an increasing bijection.

Case B: the incumbent has decided not to enter the auction. From Bayesian updating given
the incumbent’s equilibrium strategy, non-incumbents can then infer that w∗f inc < W r such

that the constant H in (A.1) is equal to E[eλ·[s
I ,ws+sP,ws]|s f inc < w−1

f inc (W
r)]. Let w f [N E](s f ) =

ψ−1(eλ·[V f +s f ] · H) denote the corresponding cutoff wage, where the acronym N E stands for
No Entry. It is then a best-response for f to enter the auction only if w f [N E](s f ) ≥ W r , and
then to remain active until the clock has reached this cutoff wage otherwise. Under A2 and
since λ > 0, the function w f [N E] : R→ R+ is an increasing bijection.

Case C: the incumbent has entered the auction and dropped out. Suppose that the current
value of the auction clock is w̃. In this case, the incumbent has necessarily dropped out from
the auction at w′ ∈ [W r , w̃). From Bayesian updating and given the incumbent’s equilibrium
strategy, non-incumbents can then infer that s f inc = w−1

f inc (w
′) and the constant H in (A.1) is
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thus equal to E[eλ·[s
I ,ws+sP,ws]|s f inc = w−1

f inc (w
′)]. Let w f [DROP](s f ; w′) = ψ−1(eλ·[V f +s f ] · H)

denote the corresponding cutoff wage. It is then a best-response for the non-incumbent f to
drop out immediately if this cutoff wage stands below the current wage w̃, and to remain active
until the clock has reached the cutoff wage otherwise. Under A2 and since λ > 0, the function
w f [DROP](.; w′) : R→ R+ is an increasing bijection.

So far we have studied situations where the incumbent is either absent or left the auction
at some point, implying that the incumbent’s bidding history is fixed, which in turn means
that beliefs of non-incumbents regarding the sum of worker-specific signals sI ,ws + sP,ws do not
evolve during the remainder of the auction. In those cases, the bidding incentives are the same
as to the ones under a pure private value environment and the equilibrium best-responses are
unique given the full support assumption TA2. Now we consider the remaining case where the
incumbent is still active in the auction and we establish that non-incumbents have a unique
best-response.

Case D: the incumbent has entered the auction and is still active. Let w f [AC T](s f ) be the
wage such that f ’s expected payoff is null conditional on winning the auction at w f [AC T](s f ),
and assuming that f inc drops out exactly at this value, from which we can infer that the in-
cumbent’s aggregate signal is equal to w−1

f inc (w f [AC T](s f )). The wage w f [AC T](s f ) depends
on f ’s vector of signals only through its aggregate signal and is characterized as the solution,
in u, of the equation eλ·[V f +s f ] ·E[eλ·[s

I ,ws+sP,ws]|w∗f inc = u] = ψ(u). Using the definition of κ(.),

this equation is equivalent to κ(u) = λ · [V f + s f ] and has a solution in u which is unique given
that κ is assumed to be a bijection (TA1). Furthermore, the function w f [AC T] : R→ R+ is an
increasing bijection since we have assumed that κ is also an increasing bijection and λ > 0. We
show below that f ’s unique best response is as follows: as long as f inc is active then f should
also remain active at the clock value w̃ if and only if w f [AC T](s f ) exceeds w̃; once f inc has
dropped out from the auction, the non-incumbent f should from that moment onward adopt
the strategy associated with case C.

For any u≥ 0, let Π f [ f inc](s f , u) denote the non-incumbent firm f ’s expected payoff condi-
tional on the incumbent f inc having entered the auction, and when it uses the following strat-
egy: remain active as long as the incumbent is active and provided the clock has not reached
the value u; drop out at u if f inc is still active at this value; if f inc drops out before u, then im-
mediately switch to the strategy of case C from that drop-out value onward. The expectation,
calculated at the start of the auction, is with respect to the drop-out value of f inc . To detail
the expression of Π f [ f inc](s f , u), let p f (x) denote the belief of firm f about the probability
that the auction stops at x if the incumbent f inc drops out at x ≥ W r (i.e., the probability
that all possible other competitors of f have dropped out before or exactly at x). From case
C we know that if the incumbent dropped out at x , then any non-incumbent f ′ with an ag-
gregate signal below [w f [DROP]]−1(x; x) should have dropped out before x or immediately
at this value. We thus have p f (x) ≥

∏

f ′ 6= f , f inc G f ′([w f [DROP]]−1(x; x)) where the function
w f [DROP]]−1(.; x) denotes the inverse of the function y → w f [DROP]](y; x). Thanks to our
full support assumption on the aggregate signals (TA2), the above product is strictly positive
and we have thus p f (x)> 0 for any x ≥W r . As we will see, the explicit form of p f (x) (which
depends on the number of other non-incumbents and their exact strategies) does not play any
role in characterizing f ’s optimal bidding strategy. However, the fact that this probability is
strictly positive guarantees that the equilibrium best-response is unique as shown below. We
also let Πcont

f (s f , x) denote the continuation payoff of f if the incumbent has dropped out at
x ≥ W r and if there is at least one other non-incumbent active at this value. Finally, for any
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x ≥W r , we also let

Π f (s f , x) =

�

E[eλ·[s
I ,ws+sP,ws]|w∗f inc = x] · eλ·[V f +s f +τ(x)] − x

�

· p f inc

f (x) +Π
cont
f (s f , x) · (1− p f inc

f (x)).

(A.2)
The term Π f (s f , x) corresponds to the expected payoff of f , calculated when the incumbent
quit the auction at x , and if f is still active at x and follows thereafter the (optimal) strategy
associated to case C.

We have then

Π f [ f
inc](s f , u) =

∫ w−1
f inc (u)

w−1
f inc (W

r )
Π f (s f , w∗f inc (s f inc )) ·

dG f inc (s f inc )

1− G f inc (w−1
f inc (W r))

. (A.3)

The lower limit of the integral in (A.3) follows from the fact that the incumbent is assumed
to have entered the auction, and the upper limit from the fact that f ’s payoff equals zero
if the incumbent quits the auction after this firm, that is to say drops out after u. In or-
der to show now that Arg maxu≥W r Π f [ f inc](s f , u) = w f [AC T](s f ), we establish below that
Π f (s f , w f [AC T](s f )) = 0, Π f (s f , u) > 0 for u < w f [AC T](s f ), and Π f (s f , u) < 0 for
u> w f [AC T](s f ) .

By definition of the function w f [AC T](.), the term within brackets in (A.2) is null if x =
w f [AC T](s f ). Furthermore, if the incumbent drops out exactly at w f [AC T](s f ), then firm f ’s
best continuation strategy is then to drop out immediately which yields a null payoff (the payoff
is null either if f loses the auction or if f wins at w f [AC T](s f )). ThusΠcont

f (s f , w f [AC T](s f )) =
0, and on the whole we have Π f (s f , w f [AC T](s f )) = 0. Next we check that Π f (s f , u′) is larger
than zero for all u′ < w f [AC T](s f ). Since w f [AC T] is an increasing bijection, there exists
an aggregate signal s′f < s f such that u′ = w f [AC T](s′f ). From the definition of w f [AC T], it

follows that E[eλ·[s
I ,ws+sP,ws]|w∗f inc = u′] · eλ·[V f +s′f +τ(u

′)] = u′. Given that λ > 0 and s′f < s f , we

have thus E[eλ·[s
I ,ws+sP,ws]|w∗f inc = u′] · eλ·[V f +s f +τ(u′)] − u′ > 0. We have also Πcont

f (s f , u′) ≥ 0
since firm f would guarantee itself a positive payoff by dropping out immediately at the wage
u′. Since p f (u′)> 0, we obtain finally that Π f (s f , u′)> 0 for any u′ < w f [AC T](s f ). Similarly,
we obtain that Π f (s f , u′)< 0 for any u′ > w f [AC T](s f ).

Hence we have established that Argmaxu≥W r Π f [ f inc](s f , u) = {w f [AC T](s f )}. Therefore,
as long as the incumbent is active in the auction, each non-incumbent f has a unique optimal
strategy (independently of the way the other non-incumbents are bidding) which consists in
staying in the auction until the cutoff wage w f [AC T](s f ).

The following proposition summarizes our equilibrium characterization and the key prop-
erties we use for identification.

Proposition A.1. Under A1, A2 and TA1-TA3, there is a unique perfect Bayesian equilibrium. The
strategy of the incumbent consists in not entering the auction if w f inc (s f inc ) is below W r , and in
remaining active until w f inc (s f inc ) otherwise. The strategy of a non-incumbent firm f depends on
its aggregate signal s f and on the incumbent’s bidding history as follows:

• Participation decision of non-incumbents: If there is no incumbent then firm f 6= f inc should
enter only if w f [N I](s f ) ≥ W r . If instead an incumbent is present and this firm entered
(resp. did not not enter) the auction, then f should enter only if w f [DROP](s f ; W r)≥W r

(resp. w f [N E](s f )≥W r).

• Drop-out decision of non-incumbents: Suppose firm f entered the auction and the auction
clock has reached w̃. If there is no incumbent (resp. the incumbent has not entered the
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auction), then f should exit instantly if w f [N I](s f ) < w̃ (resp. w f [N E](s f ) < w̃), and
should remain active otherwise; if the incumbent has dropped out at w∗f inc < w̃ then f
should exit instantly if w f [DROP](s f ; w∗f inc ) < w̃, and remain active otherwise; finally, if
the incumbent is still active at w̃, then f should exit instantly if w f [AC T](s f ) < w̃, and
remain active otherwise.

The cutoff wage functions w f inc (.), w f [N I](.), w f [N E](.), w f [DROP](.; x) (for any x ≥ W r)
and w f [AC T](.) are increasing bijections from R to R+.

The equilibrium strategies are such that, for any realization of bidders’ private signals, we
can recover in a deterministic way, the equilibrium outcome, i.e., whether the worker is sold
and if so, the identity of the winning firm and the wage paid to this worker. Note that our
model is thus a complete model in contrast to Haile and Tamer (2003)’s incomplete model.

A final result (used to establish the identification of our bidding model) concerns the way
in which firms’ equilibrium strategies depend on their private signals and the model primitives.
The equilibrium cutoff wage w f inc (s f inc ) for an incumbent firm is equal to ψ−1(λ · (V f inc +
s f inc )). This expression depends solely on λ · s f inc and two model primitives: λ · V f inc and the
function ψ. The equilibrium strategy of a non-incumbent firm f depends on whether there is
an incumbent and if so on what has been observed so far from the incumbent’s bidding history.
In case A, the expression of the cutoff wage w f [N I](s f ) for the non-incumbent firm f depends
solely on λ · s f and three model primitives: λ · V f , the function ψ and the distribution of
λ · (sI ,ws + sP,ws). In cases B, C and D, the expression of the corresponding cutoff wages of the
non-incumbent firm f depends solely on λ·s f , W r ,52 λ·V f , the functionψ and the distribution
of λ · (sI ,ws+ sP,ws) conditional on the incumbent’s bidding history (this conditional distribution
allows us to compute the term H in the expressions above). Given that the incumbent uses the
cutoff wage w f inc (s f inc ), and thanks to the independence assumption A1 ii), the distribution of
λ ·(sI ,ws+sP,ws) conditional on the incumbent’s bidding history can be expressed solely in terms
of λ · V f inc , ψ, and the (unconditional) distributions of λ · (sI ,ws + sP,ws) and λ · (sI ,ms

f inc + sP,ms
f inc ).

The following corollary summarizes the discussion above: it states which primitives of our
model need to be known in order to identify the equilibrium strategy of each firm, and hence
the distribution of the bidding history.

Corollary 1. The knowledge of the model primitives {λ · V f } f=1,...,F , the function ψ, and the
distributions of both λ · (sI ,ms

f + sP,ms
f ) (for each f ) and λ · (sI ,ws + sP,ws), is sufficient to identify

each firm’s equilibrium strategy as a function of λ · s f for any reservation wage W r , and hence the
distribution of the bidding history.

An implication of this corollary is that we do not need to identify the parameter λ in order to
identify the distribution of the bidding history and then the control terms that are included (in
our second step) into the performance equation. This is crucial for our two-stage identification
strategy since λ is not identified from the bidding data only.

B Proof of Proposition 4.1

Let us first present formally two additional technical assumptions that complete the assump-
tions needed for Proposition 4.1.

TA4: i) For any given vector of covariates COV ∈ SCOV and any given firm f = 1, . . . , F ,
then conditional on COVi = COV , there exists a set of potential participants S with f ∈ S and

52The dependence on W r arises only in case A.
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|S| ≥ 2 such that we have with positive probability Si = S, f ∈ Si and
∑

f ′∈Si
INCi, f ′ = 0; ii)

There exists a pair of firms ( f̃ , f̃ ′) such that for any vector of covariates COV ∈ SCOV , then
conditional on COVi = COV , there is a positive probability that f inc

i = f̃ and Si = { f̃ , f̃ ′}.
TA4 means that conditional on a given vector of covariates, we observe both auctions with

and without an incumbent. Furthermore, TA4 i) means that in the sub-sample of auctions
without an incumbent, each firm f participates with positive probability. TA4 ii) means there is
a positive probability that the auction involves only two firms one of which being an incumbent.
This assumption allows to identify HAC T

f̃ ′
(.|COV, f̃ ) and H inc

f̃
(.|COV, f̃ ) for any COV ∈ SCOV for

a given pair ( f̃ , f̃ ′).
In assumption A6, we consider a function that depends on two firms f̃ , f̃ ′ ∈ {1, . . . , F}, and

for any such pair we assume that the given function is injective. Indeed, we need this function
to be injective only for one pair: a pair ( f̃ , f̃ ′) that guarantees that TA4 ii) hold.

TA5: For any firm f ∈ {1, . . . , F} and any set of covariates COV = (x f ′ ,z f ′) f ′=1,...,F ∈ SCOV ,
then there exists COV ∗ = (x∗f ′ ,z

∗
f ′) f ′=1,...,F ∈ SCOV such that (x∗

f̃
,z∗

f̃
) = (x f ,z f ) where the

firm f̃ has been defined in TA4 ii).
In words, we need that the set of covariates that the special firm f̃ can have is larger than

the set of covariate than the other firms can have. E.g. TA5 hold if the set SCOV is symmetric
to permutation, in which cases those sets are equal.

Let us first identify the distributions H inc
f̃
(.|COV, f̃ ), {HN I

f (.|COV )} f=1,...,F and

HAC T
f̃ ′
(.|COV, f̃ ) for any COV ∈ SCOV . Take a given COV ∈ SCOV and a given firm

f ∗ ∈ {1, . . . , F}. TA4 i) guarantees that conditional on COV ∈ SCOV , there exists a set
of potential participants S f ∗ that contains at least two bidders including f ∗ and such that
Si = S f ∗ and f inc

i /∈ S f ∗ with a strictly positive probability. Consider first the sub-sample
of workers i for which the set of potential participants is equal to the set S f ∗ . Condi-
tional on COV and when there is no incumbent, our bidding model is observationally
equivalent to an independent pure private value model: thanks to A1 ii), the cutoff wages
wi, f [N I](si, f ) = ψ−1

�

eλ·[V i, f +si, f ] ·E[eλ·(s
I ,ws
i +sP,ws

i )|COVi = COV ]
�

are drawn independently
across the bidders f ∈ Si . We know from Athey and Haile (2002) that the independent
asymmetric private values model is non-parametrically identified under the English button
auction from the joint observation of the identity of the winner and the winning price if there
are at least two bidders, no reserve price and if the supports of the (atomless) distributions of
bidders’ private values are the same for all bidders.53 In our setup, TA2 guarantees that the
distribution of the cutoff wages wi, f [N I](si, f ) (for f ∈ S f ∗) are atomless and their supports
is R+ for all firms. Transposing this result to our setting (and the sub-sample where the set
of participants is S f ∗), we identify the distribution HN I

f ∗ (.|COV ). The argument works for any

f ∗ ∈ {1, . . . , F} and hence we identify {HN I
f (.|COV )} f=1,...,F .

Second, we consider the sub-sample of workers i for which the set of potential partici-
pants Si corresponds to ( f̃ , f̃ ′) and where f̃ is the incumbent (i.e. f inc

i = f̃ ). From TA4
ii), this arises with positive probability conditional on any COV ∈ SCOV . In this sub-sample,
the bidding model is also observationally equivalent to an independent pure private value
model: it is as if the incumbent f̃ and the non-incumbent f̃ ′ have the private values w∗

i, f̃
and

w f̃ ′[AC T](si, f̃ ′ |COVi , f̃ ), respectively, where for each firm f , w f [AC T](si, f |COVi , f inc
i ) denotes

53Formally, identification hinges on the following mathematical result: if a finite set of variables are drawn in-
dependently on R, then the underlying (atomless) CDFs of these variables can be recovered from the observation
of the second-order statistic coupled with the identity associated to the first-order statistic. Note that the atomless
assumption allows us to abstract from the way ties are solved.
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the cutoff wage which is the solution of (5). Applying again Athey and Haile (2002) allows to
identify the distributions H inc

f̃
(.|COV, f̃ ) and HAC T

f̃ ′
(.|COV, f̃ ).

Remark: In auctions with an incumbent and strictly more than two bidders, the bidding
data is no longer observationally equivalent to a pure private value model, i.e. to a model
where the strategy of each bidder reduces to a single cutoff wage up to which it remains active
which prevents to apply Athey and Haile (2002) if only the final wage and the identity of the
winner of observed. However, if the bidding behavior of the incumbent can be also observed by
the econometrician, then we do not longer need TA4 ii): it is sufficient to rely on the final step
of the auctions when there are only two active bidders one being the incumbent to identify the
bidding model. Instead of A5 and TA4 we could simply assume that the set of participants is
fixed, contains at least two firms and that both auctions with and without an incumbent occur
with positive probability.

Then A6 allows us to identify the function ψ. At the end of this Appendix we will show
that the condition A6 is automatically satisfied if we parameterize the function τ such that
τ(w) = τ · log(w).

Let us define the function ψ̄ : R+→ R by ψ̄(x) := log(ψ(x)). From A2, the function ψ̄ is an
increasing bijection and let ψ̄−1 denote its inverse function. Naturally ψ̄−1 is identified sinceψ
is identified. This allows us to identify the distribution of λ · (V i, f + sI ,ms

i, f + sP,ms
f + sI ,ws

i + sP,ws
i ) =

ψ̄(w∗i, f ) for f = f̃ : this distribution is equal to H inc
f̃
(ψ̄−1(.)|COV, f̃ ). From the normalization

A1 iii), we thus identify the scalar λ · V i, f̃ (for the workers i such that COVi = COV and

f inc
i = f̃ )54 and the distribution of λ · (sI ,ms

i, f + sP,ms
f + sI ,ws

i + sP,ws
i ), which depends solely on COV

thanks to A1 ii) and A3, and is denoted next by G f (.|COV ), for f = f̃ and for any vector of
covariates COV .

Similarly, from the sub-sample without an incumbent, the joint knowledge of HN I
f (.|COV )

(for each f ) and ψ allows to identify λ · V i, f + log[E[eλ·(s
I ,ws
i +sP,ws

i )|COVi = COV ]] (for the
workers i such that COVi = COV and f inc

i /∈ Si)
55 and the distribution of λ · (sI ,ms

i, f + sP,ms
f ) (for

each f ), i.e. the distribution Gms
f (.|COV ). We stress that A3 guarantees that the distribution of

λ · (sI ,ms
i, f + sP,ms

f ) depends solely on COV (as reflected in our notation).
From A1 ii), the worker-specific signals are drawn independently of the matching-specific

signals: a standard deconvolution argument now implies that Gws(.|COV ) is identified from
Gms

f (.|COV ) and G f (.|COV ) for a given firm f . The latter distributions are identified at least

for f = f̃ , which allows thus to identify Gws(.|COV ).
Formally, the deconvolution argument works as follows:56 For a given CDF H, let ÒH de-

note the Fourier transform of H. We have then a bijection between H and ÒH character-
ized by the two relations ÒH(ξ) =

∫ +∞
−∞ H(x)e−iξx d x and H(x) = (

∫ +∞
−∞

ÒH(ξ)e+iξx d x)/
p

2π.
The Fourier transform of the CDF of the sum of two independent variables is the product
of the Fourier transform of the two underlying variables. A1 ii) and A3 imply then that
bG f (ξ|COV ) = bGms

f (ξ|COV ) · bGws(ξ|COV ). Finally Gws(.|COV ) is formally characterized as
a function of the CDF G f (.|COV ) and Gms

f (.|COV ) by

54Given the structure of firms’ payoff function, the scalar λ · V i, f̃ depends on i only through COVi and the fact
that f inc

i = f̃ .
55Again, in such sub-sample, the scalar λ · V i, f depends on i only through COVi and the fact that f inc

i 6= f .
56In the structural econometrics of auctions, Li et al. (2000) are the first to develop a nonparametric estimation

procedure based on Fourier transformations.
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Gws(x |COV ) =
1
p

2π

∫ +∞

−∞

∫ +∞
−∞ G f (x ′|COV )e−iξx ′d x ′

∫ +∞
−∞ Gms

f (x
′′|COV )e−iξx ′′d x ′′

· e+iξx dξ.

From Gws(.|COV ), we identify log[E[eλ·(s
I ,ws
i +sP,ws

i )|COVi = COV ]] and then λ · V i, f (given
COVi = COV and f 6= f inc

i ).
So far, we have established that the function ψ, the distributions Gws(.|COV ) and

Gms
f (.|COV ), f = 1, . . . , F (for any covariate COV ∈ SCOV ), the scalars λ · V i, f , for any pair

(i, f ) such that COVi ∈ SCOV and f inc
i 6= f and also for the pairs (i, f̃ ) such that COVi ∈ SCOV

and f inc
i = f .

What remains to be checked is that we are able to identify λ · V i, f for the pairs (i, f ) with
f 6= f̃ such that COVi ∈ SCOV and f inc

i = f .

It is now that we use TA5 and the fact that our payoff structure in such that V i, f can be
expressed as β f +(ln(Eεi, f

[eλ·εi, f ]))/λ plus a term that depends on the pair (i, f ) only through
the covariates (xi, f ,zi, f ) and the incumbency indicator INCi, f .

Consider a pair (i, f ) with f 6= f̃ such that COVi = (xi, f ′ ,zi, f ′) f ′=1,...,F ∈ SCOV and f inc
i =

f . From TA5, there exits COV ′ = (x f ′ ,z f ′) f ′=1,...,F ∈ SCOV such that (x f̃ ,z f̃ ) = (xi, f ,zi, f ).
Furthermore, since COV ′ ∈ SCOV and given f̃ in TA4 ii), we have shown previously that for
any ĩ such that COṼi = COV ′ and f inc

ĩ
= f̃ , then V ĩ, f̃ is identified.

Consider then a pair (i∗, f ) with COVi∗ = COVi ∈ SCOV and f inc
i∗ 6= f and a pair (ĩ∗, f̃ )

with COṼi∗ = COV ′ ∈ SCOV and f inc
ĩ∗
6= f̃ . We have already shown that V i∗, f and V ĩ∗, f̃ are

identified. From our payoff structure in (3), we have then57

V i, f − V ĩ, f̃ = V i∗, f − V ĩ∗, f̃ (B.1)

and V i, f is thus identified which concludes the proof of Proposition 4.1.

Remark: The equality (B.1) remains valid if the vector βx is firm-specific.58 However, it
will not be satisfied if the parameter βinc is firm-specific. Fundamentally, if we only assume that
there is a single firm that is an incumbent (as it is assumed in TA4), then we have to assume
that the incumbency indicator INCi, f does not interact with the variable f .

Assumption A6 under the parametrization τ(w) = τ · log(w):
We consider below the linear-log specification for the incentive effect τ(w) = τ · log(w) and

let θ = λ ·τ.
Take a given covariate COV ∈ SCOV and let us assume that the following CDFs are known:

HN I
f (.|COV ) (for each f ), H inc

f̃
(.|COV, f̃ ) and HAC T

f̃ ′
(.|COV, f̃ ). Assume A1-A5 and TA1-TA3.

Then we show that the parameter θ or equivalently the function ψ is identified.
Let {G

ms
f (.|COV )} f=1,...,F and G

ws
(.|COV ) denote the distribution of λ(sI ,ms

i, f + sP,ms
i, f )/(1−θ )

and λ(sI ,ws
i + sP,ws

i )/(1 − θ ) conditional on COVi = COV , respectively. Let G
ws
(.|COV, f , x̃)

denote the distribution of λ(sI ,ws
i + sP,ws

i )/(1−θ ) conditional on λ(sI ,ms
i, f + sP,ms

i, f + sI ,ws
i + sP,ws

i ) =

57From (3), we get that both terms in (B.1) are equal to β f − β f̃ .
58If we use the natural corresponding notation β f

x and β f̃
x , then we get from (3) that both terms in (B.1) are

equal to β f − β f̃ + (β
f
x −β

f̃
x ) ·xi, f .
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(1− θ ) · x̃ . For any x̃ ∈ R, let

U f̃ ( x̃ |COV ) :=
�

log
�

∫ +∞

−∞
e(1−θ )·x dG

ws
(x |COV, f , x̃)

�

�

/(1− θ ). (B.2)

Remark: Note that we consider here the product of λ/(1 − θ ) times the aggregate sig-
nals si, f . This contrasts with our proof under the general case (and with A6) where we have
considered the distribution of the product of λ and the aggregate signals si, f .

In an auction for a given worker i without any incumbent and with COVi = COV , the
cutoff aggregate signal that makes firm f bid exactly until w, denoted next by bs[N I]

i, f (w), is
characterized by

λ

1− θ
·bs[N I]

i, f (w) = log(w)−
1

1− θ
· log(

∫ +∞

−∞
e(1−θ )·x · dG

ws
(x |COV ))−

λ

1− θ
· V i, f .

From the CDF HN I
f (.|COV ) and given the normalization A1 iii), then we identify the distribu-

tions {G
ms
f (.|COV )} f=1,...,F and the constants

�

log(
∫ +∞
−∞ e(1−θ )·x · dG

ws
(x |COV ))+λ·V i, f

�

/(1−
θ ) for each f .

In an auction for a given worker i with COVi = COV and with the set of participants Si =
{ f̃ , f̃ ′}where f inc

i = f̃ , the cutoff aggregate signal that makes the incumbent firm f̃ bid exactly
until w, denoted next by bsinc

i, f̃
(w), is characterized by

λ

(1− θ )
·bsinc

i, f̃
(w) = log(w)−

λ

(1− θ )
· V i, f̃

and the cutoff aggregate signal that makes the non-incumbent firm f̃ ′ bid exactly until w,
denoted next by bs[AC T]

i, f̃ ′
(w), is characterized by

λ

1− θ
·bs[AC T]

i, f̃ ′
(w) = log(w)− U f̃ (log(w)−

λ

1− θ
· V i, f̃ |COV )−

λ

1− θ
· V i, f̃ ′ (B.3)

where the function U f (|COV ) has been defined in (B.2).

From the CDF H inc
f̃
(.|COV, f̃ ) and given the normalization A1 iii), then we obtain that the

scalar λV i, f̃ /(1−θ ) and the distribution of λ[sI ,ms
i, f̃
+sI ,ms

i, f̃
+sI ,ms

i, f̃
+sI ,ms

i, f̃
]/(1−θ ) are identified and

then from the same deconvolution argument as in the proof for the general case, we identify
the CDFs G

ws
(.|COV ) and G

ws
(.|COV, f , x̃) for each x̃ ∈ R.

In equation (B.3), we have shown that the scalars λV i, f̃ ′/(1−θ ) and λV i, f̃ /(1−θ ) are iden-
tified. We have also shown that the distribution of the left-hand term λsi, f̃ ′/(1−θ ) is identified

since it corresponds to G
ms
f̃ ′ (.|COV ) thanks to the exclusion restriction A3 that guarantees that

for a given set of covariates COVi , the distribution of sI ,ms
i, f + sP,ms

i, f does not depend on f inc
i .

From the equilibrium equation (B.3), the equilibrium drop-out price of the non-incumbent
f̃ ′ facing only the incumbent f̃ as a function of λsi, f̃ ′/(1 − θ ) can thus be expressed as
Λ(λsi, f̃ ′/(1 − θ ),θ ), where the function Λ has been identified from our previous identifica-
tion steps.59 We then use the following result (see Proposition 2 in Gollier (2001)):

59Formally the function Λ(,θ ) which is defined by (B.3) depends on the scalars λ
1−θ · V i, f for f = f̃ ′, f̃ and on
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Lemma 1. If eY is a stochastic variable with Var(eY ) 6= 0, then the function z→ (log(E[ez·eY ]))/z
is (strictly) increasing on (0,+∞).

Take a given quantile of the distribution HAC T
f̃ ′
(.|COV, f̃ ) (which has been shown to be iden-

tified). Let w∗ denote the cutoff wage associated to this quantile.
Let us now consider the corresponding quantile of the distribution G

ms
f̃ ′ (.|COV ) (which has

been shown to be identified), denoted next by bs∗. The non-incumbent f̃ ′ facing the incumbent
f̃ and such that λsi, f̃ ′ = (1− θ )bs∗ should bid Λ(bs∗,θ )

Given the expression of U f̃ (.|COV ), the fact that G
ws
(.|COV, f , x̃) has a positive variance for

any x̃ ∈ R (thanks to our full support assumption TA2 and the independence assumption A1
ii) and Lemma 1, we get that Λ(bs∗,θ ) is increasing in θ . There is thus at most one value of θ
such that Λ(bs∗,θ ) = w∗ and θ is thus identified.

C Derivation of the augmented performance equation (6)

From the law of iterated expectations, we have E[sP,ms
i, f w

i
|Ii] = E[E[s

P,ms
i, f w

i
|Ii , sI ,ms

i, f w
i
+ sP,ms

i, f w
i
]|Ii]

and E[sP,ws
i |Ii] = E[E[s

P,ws
i |Ii , sI ,ws

i + bsP,ws
i |Ii]. Next we use that the bidding strategy of

each firm f for worker i depends on the vector of signals {si, f }i=1,...,N only through the ag-
gregate signal si, f (Proposition A.1). Furthermore, given A1, A3 and A5, the pair of sig-
nals (sI ,ms

i, f , sP,ms
i, f ) (resp. (sI ,ws

i , sP,ws
i )) is drawn independently of the other signals and of f inc

i
and Si: its distribution depends solely on COVi . We obtain then that the distribution of
sP,ms
i, f w

i
conditional on (Ii , sI ,ms

i, f w
i
+ sP,ms

i, f w
i
) (resp. sP,ws

i conditional on (Ii , sI ,ws
i + sP,ws

i )) is the same

as the distribution of sP,ms
i, f w

i
conditional on (COVi , sI ,ms

i, f w
i
+ sP,ms

i, f w
i
) (resp. sP,ws

i conditional on

(COVi , sI ,ws
i + sP,ws

i )). In particular, the auction outcome (wi , f w
i ) does not influence this con-

ditional distribution. We have thus shown that E[sP,ms
i, f w

i
|Ii] = E

�

E[sP,ms
i, f w

i
|COVi , sI ,ms

i, f w
i
+ sP,ms

i, f w
i
]|Ii

�

and E[sP,ws
i |Ii] = E

�

E[sP,ws
i |COVi , sI ,ws

i + bsP,ws
i ]|Ii

�

Given the expressions of E[sP,ms
i, f w

i
|COVi , sI ,ms

i, f w
i
+sP,ms

i, f w
i
] and E[sP,ws

i |COVi , sI ,ws
i +bsP,ws

i ] in A7, the

conditional expectation E[ui, f w
i
|Ii] = E[s

P,ms
i, f w

i
|Ii] +E[s

P,ws
i |Ii] now takes the following form

E[ui, f w
i
|Ii] =

L
∑

l=1

�

γms
l, f w

i
(COVi) · C F ms

i [l] + γ
ws
l (COVi) · C F ws

i [l]

�

. (C.1)

Combined with the performance equation (1) and the definition of the control terms in
the augmented performance equation (6), we obtain thus that the error term ξi, f w

i
is equal to

ui, f w
i
−E[ui, f w

i
|Ii].

Let us now show that the control terms C F ms
i [l] and C F ws

i [l], l = 1, . . . , L, are identified
from the auction data. Thanks to Proposition 4.1 and Corollary 1 (in Appendix A), we have
already identified from the bidding data the distribution of the bidders’ aggregate signals λ ·
si, f ,60 and the equilibrium strategy of each firm f ∈ Si in the auction for worker i as a function
of its signal λ ·si, f . Conditional on COVi , f inc

i and Si , the auction outcome (wi , f w
i ) is thus fully

the distribution G
ws
(.|COV, f̃ , x̃) for any x̃ ∈ R. Given those identified primitives, the dependence on θ of the

right-hand term is only through the function U f .
60If the auction i involves an incumbent, the distribution of λ·si, f inc

i
is identified as it is the sum of two independent

variables, λ · (sI ,ms
i, f inc

i
+ sP,ms

i, f inc
i
) and λ · (sI ,ws

i + sP,ws
i ), whose distributions, that is to say, Gms

f inc
i
(.|COVi) and Gws(.|COVi)

are identified from Proposition 4.1.
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determined as a function of the vector λ · si, f for f = 1, . . . , F . Formally, we thus identify the
joint distribution of {λ · si, f } f=1,...,F and (wi , f w

i ), conditional on COVi , f inc
i and Si . Bayesian

updating allows in turn to determine the distribution of λ · (sI ,ms
i, f w

i
+ sP,ms

i, f w
i
) and λ · (sI ,ws

i + sP,ws
i )

conditional on Ii . From the various moments of those conditional distributions, we identify
the control function terms C F k

i [l], for k = ms, ws and l = 1, . . . , L. Note that if the auction
involves a reservation wage, we still identify the distribution of the auction outcome and a
similar Bayesian updating exercise can be done to identify the control terms.

We conclude by noting that there is no correlation between the error term and the explana-
tory variables in (6) insofar as the set Ii includes all explanatory variables: either those ap-
pearing directly in the original performance equation (i.e., the variables f w

i , xi, f w
i

, INCi, f w
i

and

wi), or those appearing indirectly through the control terms C F k
i [l], k = ms, ws, l = 1, . . . , L

that have been shown to be known functions of Ii .
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Supplementary Appendix (for online
publication only)

D Assumption A7 under the Gaussian structure

If the vector (sI ,ms
f , sP,ms

f ) follows a bivariate normal distribution with the vari-
ances σI ,ms and σP,ms and the correlation coefficient ρms, then we have σms =
q

σ2
I ,ms +σ

2
P,ms + 2 ·ρmsσI ,msσP,ms and E[sP,ms

i, f |s
I ,ms
i, f + sP,ms

i, f = u] = γms · u with

γms =
[σP,ms]2+ρmsσ

I ,msσP,ms

σ2
ms

. Note that γms ∈ [0,1] if ρms ≥ 0.61 Analog results hold if

(sI ,ws, sP,ws) follow a bivariate normal distribution. On the whole, if both (sI ,ms
f , sP,ms

f ) and

(sI ,ws, sP,ws) follow bivariate normal distributions with positive correlation coefficients, then A7
hold automatically and with L = 1.

E Details on the computation of the control functions

In this section, we detail how the control terms C F k
i [l], l = 1, . . . L, k = ms, ws, are character-

ized when the bidding history of the incumbent is observed by the econometrician. To obtain
the precise expressions of these functions, we need to perform Bayesian updating conditional on
the information set Ii given the equilibrium behavior that is characterized in Proposition A.1.
We also illustrate our computations under the parametric specification introduced in Section
4.3. Here, to get explicit and tractable expressions, we use a series of well known properties
on (truncated) normally distributed variables (which can be found e.g. in Greene (2008)).

The precise form of the control functions depends on whether an incumbent is present
among the potential auction participants, and, if there is an incumbent, on its bidding history.
Following Appendix A’s nomenclature, we distinguish thus four cases: A) There is no incum-
bent; B) The winner is not the incumbent and the incumbent did not enter the auction (at the
reserve W r

i ); C) The winner is not the incumbent and the incumbent has dropped out at the
wage winc

i ∈ [W
r
i , wi]; D) The winner is the incumbent.

Below we then use some notation introduced in our equilibrium analysis in Appendix A.
Note that we restore the index i in the corresponding equilibrium cut-off strategies (as the
function of the bidder’s aggregate signal): wi, f (.), wi, f [N I](.), wi, f [N E](.), wi, f [DROP](; w′)
and wi, f [AC T].

Case A: In the absence of an incumbent, worker i is sold to firm f w
i at price wi >W r

i (resp.
wi = W r

i ) if and only if wi, f w
i
[N I](si, f w

i
) ≥ wi and max f ∈Si\{ f w

i }
{wi, f [N I](si, f )} = wi (resp.

max f ∈Si\{ f w
i }

wi, f [N I](si, f ) ≤ W r
i ). Given the independence assumptions in A1 and A5, we

have that conditional on Ii , λ · si, f w
i

is distributed according to the distribution Gms
f w
i
(.|COVi)

truncated from below at the signal [λ · wi, f w
i
[N I]]−1(wi), i.e., it has the distribution function

Gms
f w
i
(.|COVi)−Gms

f w
i
(λ·[wi, f w

i
[N I]]−1(wi)|COVi)

1−Gms
f w
i
(λ·[wi, f w

i
[N I]]−1(wi)|COVi)

on the interval [λ ·[wi, f w
i
[N I]]−1(wi),+∞). Since there is

no incumbent in this case, our independence assumptions guarantee that there is no updating
on sI ,ws

i + sP,ws
i and the terms C F ws

i [l], l = 1, . . . , L, depends thus on Ii only through COVi .

61If ρms < 0, then we may have γms /∈ [0,1]. The inequality γms < 0 holds if and only if ρms < −
σP,ms
σI ,ms

, which

can never occur if σP,ms ≥ σI ,ms. The inequality γms > 1 holds if and only if ρms < −
σI ,ms
σP,ms

, which can never occur if
σI ,ms ≥ σP,ms.
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More precisely, we have

C F ms
i [l] =

∫ +∞

λ·[wi, f w
i
[N I]]−1(wi)

ul ·
d[Gms

f w
i
(u|COVi)]

1− Gms
f w
i
(λ · [wi, f w

i
[N I]]−1(wi)|COVi)

and C F ws
i [l] =

∫ +∞

−∞
ul ·d[Gws(u|COVi)].

(E.1)

Under our parametric specification, and noting that log(
∫ +∞
−∞ eudΦ( u

σws
)) =

σ2
ws
2 , we obtain

the expression in (8).
The inverse Mills ratio in (9) is obtained from the well known expression of the mean of a

truncated normal distribution.
Case B: From Proposition A.1 we know that the incumbent f inc

i does not enter the auction
for worker i and that worker i is sold to firm f w

i at price wi >W r
i (resp. wi =W r

i ) if and only if
wi, f inc

i
(si, f inc

i
) ≡ w∗

i, f inc
i
<W r

i , wi, f w
i
[N E](si, f w

i
) ≥ wi and max f ∈Si\{ f w

i , f inc
i }
{wi, f [N E](si, f )} = wi

(resp. max f ∈Si\{ f w
i , f inc

i }
{wi, f [N E](si, f )} < W r

i ). Given the independence assumptions in A1
and A5, we have on the one hand that conditional on Ii , λ · si, f w

i
is distributed according to the

distribution Gms
f w
i
(.|COVi) truncated from below at the signal realization λ · [wi, f w

i
[N E]]−1(wi),

i.e., it has the distribution function
Gms

f w
i
(.|COVi)−Gms

f w
i
(λ·[wi, f w

i
[N E]]−1(wi)|COVi)

1−Gms
f w
i
(λ·[wi, f w

i
[N E]]−1(wi)|COVi)

on the interval [λ ·

[wi, f w
i
[N E]]−1(wi),+∞). On the other hand, we have that the distribution of λ · si, f inc

i
con-

ditional on Ii is distributed according to the distribution G f inc
i
(.|COVi) truncated from above

at the signal λ · w−1
i, f inc

i
(W r

i ), where the CDF G f inc
i
(.|COVi) denotes the distribution of λ · si, f inc

i

which depends on i only through f inc
i and COVi . We have then

C F ms
i [l] =

∫ +∞

λ·[wi, f w
i
[N E]]−1(wi)

ul ·
d[Gms

f w
i
(u|COVi)]

1− Gms
f w
i
(λ · [wi, f w

i
[N E]]−1(wi)|COVi)

(E.2)

and

C F ws
i [l] =

∫ λ·w−1
i, f inc

i
(W r

i )

−∞
E[(λ · (sI ,ws

i + sP,ws
i ))l |λ · si, f inc

i
= eu, COVi] ·

dG f inc
i
(eu|COVi)

G f inc
i
(λ ·w−1

i, f inc
i
(W r

i )|COVi))

=

∫ λ·w−1
i, f inc

i
(W r

i )

−∞

�

∫ +∞

−∞
ul ·

gws(u|COVi)gms
f inc
i
(eu− u|COVi)

G f inc
i
(λ ·w−1

i, f inc
i
(W r

i )|COVi)
du
�

· deu.

Under our parametric Gaussian structure and L = 1, we get the inverse Mills ratios:

C F ms
i [1] = σms ·

φ
�λ·[wi, f w

i
[N E]]−1(wi)

σms

�

1−Φ
�λ·[wi, f w

i
[N E]]−1(wi)

σms

�

and C F ws
i [1] = −

σ2
ws

Æ

σ2
ms +σ2

ws

·
φ
�λ·w−1

i, f inc
i
(W r

i )
p
σ2

ms+σ2
ws

�

Φ
�λ·w−1

i, f inc
i
(W r

i )
p
σ2

ms+σ2
ws

�

. (E.3)

To pursue the computation, let us derive the expressions of λ · [wi, f w
i
[N E]]−1(wi) and λ ·

w−1
i, f inc

i
(W r

i ), whose tractable expressions can then be plugged into (E.3).

First we note that λ ·w−1
i, f inc

i
(W r

i ) = (1− θ ) log(W r
i )−λ · V i, f inc

i
. Second, we have

λ·[wi, f w
i
[N E]]−1(wi) = (1−θ ) log(wi)−λ·V i, f w

i
−log(E[eλ·[s

I ,ws
i +sP,ws

i ]|λ·si, f inc < λ·w−1
i, f inc (W

r)]).
(E.4)
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The expectation appearing in (E.4) is of the form E[e y1 |y2 ≤ a] with (y1, y2) following a
bivariate centered normal distribution with the corresponding standard deviations σ1 = σws
and σ2 =

Æ

σ2
ms +σ2

ws and the coefficient of correlation ρ = σwsp
σ2

ms+σ2
ws

, and with a = (1 −

θ ) log(W r
i )−λ ·V i, f inc

i
. Conditional on y2 = a, y1 follows then a normal distribution with mean

ρ·σ1
σ2
·a and variance (1−ρ2)·σ2

1. We obtain then thatE[e y1 |y2 = a] = exp(ρ·σ1
σ2
·a+(1−ρ2)·σ

2
1

2 )

and then that E[e y1 |y2 ≤ a] = E[exp(ρ · σ1
σ2

y2)|y2 ≤ a] · exp((1 − ρ2) · σ
2
1

2 ). Then using the
formula of the expectation of the exponential of a truncated normal distribution (see chapter
24 in Greene (2008)), we obtain finally that

E[e y1 |y2 ≤ a] =
1−Φ(ρ ·σ1 −

a
σ2
)

Φ( a
σ2
)

· e
σ2

1
2 .

Replacing σ1, σ2, ρ and a by the aforementioned values, (E.4) becomes

λ · [wi, f w
i
[N E]]−1(wi) = (1− θ ) log(wi)−λ · V i, f w

i
− log

�

Φ(
[−σ2

ws+(1−θ ) log(W r
i )−λ·V i, f inc

i
]

p
σ2

ms+σ2
ws

)

Φ(
(1−θ ) log(W r

i )−λ·V i, f inc
ip

σ2
ms+σ2

ws

)

�

+
σ2

ws

2
(E.5)

Case C: From Proposition A.1, the incumbent exit the auction at winc
i ≥W r

i and the worker
i is sold to firm f w

i 6= f inc
i at wi > winc

i (resp. wi = winc
i ) if and only if wi, f inc

i
(si, f inc

i
) =

winc
i , wi, f w

i
[DROP](si, f w

i
; winc

i ) ≥ wi and max f ∈Si\{ f w
i , f inc

i }
{wi, f [DROP](si, f ; winc

i )} = wi (resp.

max f ∈Si\{ f w
i , f inc

i }
{wi, f [DROP](si, f ; winc

i )} ≤ wi . Given our independence assumptions, we ob-

tain that λ · si, f inc
i
= λ · [wi, f inc

i
]−1(winc

i ) and that λ · si, f w
i

is distributed according to the distri-

bution Gms
f w
i
(·|COVi) truncated from below at the signal λ · [wi, f [DROP]]−1(wi; winc

i ).

In general, we obtain then the following expressions for the control terms:

C F ms
i [l] =

∫ +∞

λ·[wi, f [DROP]]−1(wi ;w
inc
i )

ul ·
d[Gms

f w
i
(u|COVi)]

1− Gms
f w
i
(λ · [wi, f [DROP]]−1(wi; winc

i )|COVi)
(E.6)

and

C F ws
i [l] =

∫ +∞

−∞
ul ·

gws(u|COVi)gms
f inc
i
(λ · [wi, f inc

i
]−1(winc

i )− u|COVi)

G f inc
i
(λ ·w−1

i, f inc
i
(W r

i )|COVi)
du (E.7)

Let us now detail the computations under our parametric structure.
We have λ · [wi, f inc

i
]−1(winc

i ) = (1− θ ) log(winc
i )−λ · V i, f inc

i

From any f 6= f inc
i , we have also from our equilibrium analysis: λ ·

[wi, f [DROP]]−1(w, winc
i ) = (1− θ ) log(w)−λ · V i, f − log(E[eλ·[s

I ,ws
i +sP,ws

i ]|s f inc = w−1
f inc (w

inc
i )])

Note also that the term E[eλ·[s
I ,ws
i +sP,ws

i ]|λ ·s f inc = λ ·w−1
f inc (w

inc
i )] takes the form E[e y1 |y2 = a]

with (y1, y2) following a bivariate centered normal distribution with the corresponding stan-
dard deviations σ1 = σws and σ2 =

Æ

σ2
ms +σ2

ws and the coefficient of correlation ρ =
σwsp
σ2

ms+σ2
ws

and with a = (1 − θ ) log(winc
i ) − λ · V i, f inc

i
. Applying the computation presented

in Case B, we obtain that
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log(E[eλ·[s
I ,ws
i +sP,ws

i ]|s f inc = w−1
f inc (w

inc
i )]) =

σ2
ws

σ2
ms +σ2

ws
·[(1−θ ) log(winc

i )−λ·V i, f inc
i
]+

σ2
ms

σ2
ms +σ2

ws
·
σ2

ws

2
.

(E.8)
Under our parametric specification, we obtain then

λ ·[wi, f [DROP]]−1(w; winc
i ) = (1−θ )

σ2
ms

σ2
ms +σ2

ws

log(w)−λV i, f +
σ2

ws

σ2
ms +σ2

ws

·λ ·V i, f inc
i
−

σ2
ms

σ2
ms +σ2

ws

·
σ2

ws

2
.

Finally, we get the following expressions for the control terms

C F ms
i [1] = σms·

φ
�

λ · [wi, f w
i
[DROP]]−1(wi; winc

i )
�

1−Φ
�

λ · [wi, f w
i
[DROP]]−1(wi; winc

i )
� and C F ws

i [1] =
σ2

ws

σ2
ms +σ2

ws

·[(1−θ ) log(winc
i )−λ·V i, f inc

i
].

The expression for C F ws
i corresponds thus to (10).

Case D: From Proposition A.1, the incumbent wins the auction at wi > W r
i (resp.

wi = W r
i ) if and only if wi, f inc

i
(si, f inc

i
) ≥ wi and max f ∈Si\{ f inc

i }
{wi, f [AC T](si, f )} = wi (resp.

max f ∈Si\{ f inc
i }
{wi, f [AC T](si, f )} ≤ wi . Given our independence assumptions, we obtain that

conditional on Ii , the aggregate signal λ · si, f inc
i
= λ · [wi, f inc

i
]−1(winc

i ) is distributed accord-

ing to the distribution G f inc
i
(·|COVi) truncated from below at the signal λ · [wi, f inc

i
]−1(winc

i ).
Furthermore, conditional on a given realization for λ · si, f inc

i
, the distribution of the two inde-

pendent aggregate signal λ · (sI ,ms
i, f inc

i
+ sP,ms

i, f inc
i
) and λ · (sI ,ws

i + sP,ws
i ) depend on Ii only through

COVi and f inc
i .

From the independence between worker and match-specific signals, we obtain by deconvo-
lution:

C F ms
i [l] =

∫ λ·w−1
i, f inc

i
(wi)

−∞
E[(λ · (sI ,ms

i + sP,ms
i ))l |λ · si, f inc

i
= eu, COVi] ·

dG f inc
i
(eu|COVi)

G f inc
i
(λ ·w−1

i, f inc
i
(wi)|COVi))

=

∫ λ·w−1
i, f inc

i
(W r

i )

−∞

�

∫ +∞

−∞
ul ·

gms(u|COVi)gws
f inc
i
(eu− u|COVi)

G f inc
i
(λ ·w−1

i, f inc
i
(wi)|COVi)

du
�

· deu

and

C F ws
i [l] =

∫ λ·w−1
i, f inc

i
(wi)

−∞
E[(λ · (sI ,ws

i + sP,ws
i ))l |λ · si, f inc

i
= eu, COVi] ·

dG f inc
i
(eu|COVi)

G f inc
i
(λ ·w−1

i, f inc
i
(W r

i )|COVi))

=

∫ λ·w−1
i, f inc

i
(wi)

−∞

�

∫ +∞

−∞
ul ·

gws(u|COVi)gms
f inc
i
(eu− u|COVi)

G f inc
i
(λ ·w−1

i, f inc
i
(wi)|COVi)

du
�

· deu.

Under our parametric specification, the expression of the cutoff aggregate signal that makes
the incumbent firm bid exactly until w, denoted next by bsinc

i (w), is given by

λ ·bsinc
i (w) = (1− θ ) log(w)−λ · V i, f inc

i
. (E.9)

Under this parametric specification„ We can infer that conditional on Ii , the aggregate
signal of the winning firm, λ · si, f inc

i
, is distributed according to a centered normal distribution
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(with variance σ2
ms+σ

2
ws)

62 truncated from below at λ ·bsinc
i (wi). Furthermore, the distribution

of λ · (sI ,ms
i, f inc

i
+ sP,ms

i, f inc
i
) (resp. λ · (sI ,ws

i + sP,ws
i )) conditional on Ii and λ · si, f inc

i
= u is a normal

distribution with mean σ2
ms · u/(σ

2
ms +σ

2
ws) (resp. σ2

ws · u/(σ
2
ms +σ

2
ws)). Combining these two

facts gives the following control function terms: C F ws
i = σ

2
ws · C F ms

i /σ
2
ms and

C F ms
i =

∫ +∞

λ·bsinc
i (wi)

σ2
ms

σ2
ms +σ2

ws

· u ·
dΦ( up

σ2
ms+σ2

ws

)

1−Φ
�

λ·bsinc
i (wi)p
σ2

ms+σ2
ws

�
=

σ2
ms

Æ

σ2
ms +σ2

ws

·
φ
� (1−θ ) log(wi)−λ·V i, f inc

ip
σ2

ms+σ2
ws

�

1−Φ
� (1−θ ) log(wi)−λ·V i, f inc

ip
σ2

ms+σ2
ws

�

. (E.10)

F Assumption TA1 under Gaussian signals

Let us show that TA1 always holds if the signals sI ,ms
i, f + sP,ms

i, f , f = 1, . . . , F , and sI ,ws
i + sP,ws

i are
normally distributed. From A1, note first that these signals are independently distributed and
have zero mean. Following the notation used for our parametric specification (which relies on
many additional parametric restrictions), letσ2

f ,ms (resp. σ2
ws) denote the variance of sI ,ms

i, f +sP,ms
i, f

(resp. sI ,ws
i + sP,ws

i ).

Note that for the incumbent, w∗
i, f inc

i
= u is equivalent to λ · [sI ,ms

i, f inc
i
+ sP,ms

i, f inc
i
+ sI ,ws

i + sP,ws
i ] =

log(ψ(u))−λV i, f inc
i

.
Then according to the same calculation as the one developed to obtain (E.8), we have

log(E[eλ·[s
I ,ws
i +sP,ws

i ]|w∗
i, f inc

i
= u]) =

σ2
ws

σ2
f inc
i ,ms

+σ2
ws

·[log(ψ(u))−λ ·V i, f inc
i
]+

σ2
f inc
i ,ms

σ2
f inc
i ,ms

+σ2
ws

·
σ2

ws

2
.

(F.1)
Then according to the notation used for TA1, we get then that

κi(u) =
σ2

f inc
i ,ms

σ2
f inc
i ,ms

+σ2
ws

· log(ψ(u)) +
σ2

ws

σ2
f inc
i ,ms

+σ2
ws

· V i, f inc
i
−

σ2
f inc
i ,ms

σ2
f inc
i ,ms

+σ2
ws

·
σ2

ws

2
. (F.2)

Given A2, the function log(ψ(.)) : R+→ R is an increasing bijection. Finally, from (F.2), we
obtain that κi(u) : R+→ R is an increasing bijection.

G An impossibility result under private values

Proposition G.1. Suppose the auction data is generated by our model (with A1-A2 and TA2)
with the given (bijection) ψ on R+ and suppose that the auction never involves an incumbent.
For any given bijection ψ′ 6= ψ on R+, we can specify the remaining primitives (i.e. some zero-
mean distributions G′ws(.|COV ) and {G′ms

f (.|COV )} f=1,...,F for any covariate COV ∈ SCOV , and

the scalars {λ · V ′i, f } f=1,...,F for any i such that COVi ∈ SCOV ) such that our model with these
primitives generate the same auction data.

Proposition G.1 implies that we cannot implement our two-stage strategy. Note that we do
not claim here that the CDFs {Gms

f (.|COV )} f=1,...,F and the functionψ can not be identified non-

62The variance of si, f inc
i

is σ2
ms +σ

2
ws because the match-specific and worker-specific signals are drawn indepen-

dently.

58



parametrically. In particular, we do not rule out that these primitives can be identified by using
jointly the bidding and the performance data. The proposition also implies that regarding the
auction data, our model is observationally equivalent to a pure private auction model without
incentive effect (i.e., with sI ,ws

i = sP,ws
i = 0 and τ(.)≡ 0 in our setup). This result is reminiscent

of Guerre et al. (2009)’s impossibility result according to which the signal distribution and the
von Neumann-Morgenstern utility function are not identified.63

Proof of Proposition G.1: Suppose that the following set of primitives generates the auc-
tion data when there is no incumbent: the bijection ψ : R+ → R+, the (zero-mean) CDFs
Gms

f (.|COV ) and Gws(.|COV ) and the scalars {λ · V i, f } f=1,...,F for any i with COVi ∈ SCOV .64

Let Ai, f := λ · V i, f + log[E[eλ·(s
I ,ws
i +sP,ws

i )|COVi = COV ]]. For any COV ∈ SCOV , let Ḡ f (.|COV )
denote the distribution for Ai, f +λ · (s

I ,ms
i, f + sP,ms

i, f ).

As in the proof of Proposition 4.1, we have then HN I
f (.|COV ) = Ḡ f (log(ψ(.))|COV ) where

the CDF HN I
f (.|COV ) corresponds to the distribution of the cut-off wage of firm f when the set

of covariates is COV .
Consider now a bijection ψ′ : R+ → R+ and let ψ̄′ := log(ψ′(.)). Since ψ′ is a bijection,

the function ψ̄′ : R+ → R is also a bijection. Let Ḡ′f (.|COV ) := Ḡ f (log(ψ(ψ̄′−1(.)))|COV ).
Consider then the following set of primitives: the function ψ′, the distribution G′ms

f (.|COV )
defined as the CDF Ḡ′f (.|COV ) rescaled to have zero-mean and last the constant A′i, f equal to the

mean of the distribution Ḡ′f (.|COV ). Conditional on COV and the set of potential participants
S and for an auction without incumbent, we have then that the latter primitives lead to the
same distribution HN I

f (.|COV ), f = 1, . . . F for the cut-off wages as the ones generated by
the primitives ψ, Gms

f (.|COV ) and Ai, f and thus generate exactly the same auction data (in
particular the same distribution for the auction outcome (wi , f w

i )). Q.E.D.

H Related literature and alternative approaches to identification

Related literature on identification
The identification argument we have presented does not rely on exogenous variations of the

covariates or the reservation wages (as in Guerre et al. (2000)’s seminal contribution and in
many subsequent works on the econometrics of auctions (surveyed by Athey and Haile (2007)
and Perrigne and Vuong (2021))). Our identification result relies rather on three main restric-
tions: first, the independence of the signals across bidders; second, the independence between
the match-specific and the worker-specific signals; and third, an exclusion restriction stipulat-
ing that these signal distributions are identical in the subsamples with and without incumbents.
The first independence assumption is needed to apply Athey and Haile (2002), i.e., to iden-
tify the cutoff wage distribution of all bidders from the auction outcome. This independence
assumption would be sufficient if we were in a setup without incumbents (up to the limits
discussed in Section 4.4). The last two restrictions are crucial to deal with an interdependent
value model. Analogs of our second independence restriction are popular to deal with un-
observed heterogeneity thanks to a deconvolution argument: in first-price auctions where at
least two bids are observed for each given auction, Li et al. (2000) and Krasnokutskaya (2011)
identify and estimate private value models where bids are correlated through a common ad-
ditive independent shock. Restrictions that are similar to our exclusion restriction are used in

63There is an analogy between the role played by the functionψ, reflecting the incentive effect, and by the utility
function capturing risk aversion in Guerre et al. (2009), both capturing a departure from quasi-linear preferences.

64We do not specify the distribution of the covariates COVi and of the set of potential participants Si since it does
not play any role below.

59



the literature to test for common values (Haile et al. (2003)), to identify risk-aversion (Lu and
Perrigne (2008), Guerre et al. (2009))), or to account for correlated private values (Aradillas-
Lopez et al. (2013)). The identification idea consists in exploiting exogenous variations in the
environment that induce different bidding functions, while keeping the same signal distribu-
tions. For instance, Haile et al. (2003) and Guerre et al. (2009) consider exogenous variations
in the number of bidders. To the best of our knowledge, we are the first to exploit exogenous
variations in the incumbency status.

Identification of the auction model: Alternative approaches could consist in using ex-
ogenous variations of the covariates or the reservation wages. For example, the exclusion
restriction A3 could be substituted by an assumption stating that the signal distributions do
not depend on some covariates (as it is indeed the case in our specification in Section 4.3).
As explained in Athey and Haile (2007), such exogenous variations allow identification in a
much simpler manner (including when there is a binding reserve price). Intuitively, samples
without an incumbent could be substituted by samples with an incumbent having highly unfa-
vorable covariates (V i, f inc

i
going to minus infinity) so that the probability that the incumbent

enters the auction goes to zero. Our identification argument also abstracts from the presence
of reservation wages. Binding reservation wages may prevent to identify (non-parametrically)
the distributions Gms

f over their full support. This issue can be solved by assuming that there
is sufficient variations in the covariates that are orthogonal to the way private signals are dis-
tributed.65 We stress, however, that our primary goal is to control for wage endogeneity and
selection in the performance equation, and for this, full-support identification is not necessar-
ily required: if we are in a pure private value setup, for instance, then we do not care about
identifying the distribution Gms

f for the realization of λ · si, f such that wi, f [N I](si, f ) < W r
i

because we need to identify the control terms C F ms
i [l] only up to a constant. Binding reserve

prices could nevertheless be helpful for identification, in particular to identify richer models.
E.g., Roberts (2013) shows that variations in the reserve price allow to deal with unobserved
heterogeneity in the English auction when there is a monotonic relation between the reserve
and the “quality” of the good for sale that is observed by buyers and sellers but not by the
econometrician. We stress that A3 assumes implicitly that reservation wages are exogenous.
Dealing with endogenous reservation wage is an interesting avenue for further research.

Identification of the augmented performance equation: We have presented the iden-
tification of the augmented performance equation (6) for any given COV ∈ SCOV , i.e. by
exploiting the variation in the auction outcome (wi , f w

i ) and the identity of the incumbent
f inc
i .

An alternative path for identifying the augmented performance equation (6) could be to
assume that the signal distributions do not depend on the auction shifters zi, f , f = 1, . . . , F ,
such that the γ-coefficients in A7 do not depend on these auction shifters and that only the terms
C F ms

i [l] and C F ws
i [l] (l = 1, . . . , L) do depend on the auction shifters in (6) which would be a

way to guarantee the full rank condition:66 the auction shifters play the role of instruments.
Another related path for identification could be to assume that the distribution of firm f ’s

match-specific signals (sI ,ms
i, f , sP,ms

i, f ) depends on COV only through (xi, f ,zi, f ), such that the co-
efficients γms

l, f in A7 do not depend on (xi, f ′ ,zi, f ′) for f ′ 6= f . Relatedly we could assume that
the worker-specific signals do not depend on COV such that the coefficients γws

l in A7 do not

65E.g. if the distribution of private signals do not depend on COVi and if V i, f can be arbitrary large for all f
for some worker i, then we would be back to the case where the reservation wage is arbitrarily small and the
distributions of the aggregate signals λ · si, f are identified on their full support.

66We have seen in Section 4.3 and the related section in the SA how the control terms depend on zi, f and zi, f inc
i

under our special parametric specification. It is straightforward that this dependence goes beyond our parametric
specification provided that V i, f (for each f ) varies with zi, f .
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depend on COV . Then the only terms in (6) that depend on (xi, f ′ ,zi, f ′) for f ′ 6= f w
i are the

control terms C F ms
i [l] and C F ws

i [l] (l = 1, . . . , L). More precisely, the control terms does not
depend on (xi, f ′ ,zi, f ′) for f ′ 6= f w

i when f inc
i /∈ Si . On the contrary, in the sub-sample with

an incumbent, some control terms do depend on V i, f ′ for f ′ 6= f w
i as shown under our special

parametric specification. We use then the variation of the match-specific coviariates associated
to the winning bidder’s competitors as a source of identification. The latter source of identi-
fication is not specific to auction models but is pervasive to pricing models under imperfect
competition where the pricing/bidding strategy of a firm does not depend solely on its own
private characteristics (which drive its preferences) but also on the publicly observable char-
acteristics of its opponents. In our model, for example, if there is an incumbent in the auction
for a given worker i, then the bidding strategy of a non-incumbent f depends on V i, f inc

i
and

so does also the control terms C F ms
i when f wins the auction. Similar dependence also arises

in differentiated products market equilibrium as in Berry et al. (1995) where the price of a
product can be instrumented by the characteristics of the competing products in the analysis
of the market share equation. Nevertheless, note that in the second price or in English auc-
tions under private values, bidders’ equilibrium strategies do not depend on their opponents’
preferences/characteristics. This is the reason why the control terms C F ms

i [l] and C F ws
i [l]

(l = 1, . . . , L) do not depend on (xi, f ′ ,zi, f ′) for f ′ 6= f w
i if f inc

i /∈ Si .

I Identification under alternative formats and/or other informa-
tion structure

The auction format we consider (the English auction) and our assumption on what is observed
by the econometrician about bidding behaviors (only the transaction price and the winner’s
identity are observed) is known to be the most unfavorable case for identification (Perrigne
and Vuong (2021)). Under other auction formats, (like the first price auction that is commonly
used in procurement), we can easily adapt our methodology and possibly improve it. On the
one hand, the independence of the signals would translate immediately into the independence
of the bids (contrary to our setup where the auction dynamic assumed to be unobserved by the
econometrician can induce correlation among cutoff wages when F ≥ 3 which is the reason
why we have imposed TA4). On the other hand, observing bids from multiple bidders would
allow us to relax either our exclusion restrictions or the independence assumption A1 ii). E.g.,
Li et al. (2000) show how the observation of two bids allows to deal with a structure where
the correlation across bidders’ valuations results from a multiplicative common shock.67

Under private values, the second price auction and the English button auction format with
observable exits are strategically equivalent. Nevertheless it is no longer the case with interde-
pendent values, and thus in particular when there is an incumbent. The second price auction
is strategically equivalent to the English auction where exits are unobserved. In such a case,
the bidding strategy of a bidder can depend only on its own signal and bids are independently
distributed which is helpful for identification and would allow to apply Athey and Haile (2002)
without using the samples with only two potential participants.

Last, a natural extension would be to consider that in an auction for a worker that has played
before, and more generally in an auction for a contract that is renewed (as in Carnehl and
Weiergraeber (2022)), not only the incumbent is informed about common value component

67Similarly, an important caveat of our approach is that if the econometrician does not observe some public
covariates that enter the bidding equation, then it would induce implicitly a failure of the independence assumption
A1 ii) which would then bias our estimations of the control terms. As in Krasnokutskaya (2011), observing two
bids would allow to deal with such form of unobserved heterogeneity.
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but also the other bidders (to a lower extent). The main lock to adapt our methodology is
the existence of an equilibrium based on monotone biding function of the aggregate signals.
This problem has been solved by Heumann (2019) for the English auction under a Gaussian
information structure (and without any incentive effect), but is still an open question in general.
How to extent our methodology to environments where multiple bidders receive commonly
valued signals is left for further research.

J Likelihood estimation

The primitives of the auction model are estimated through maximum likelihood and the likeli-
hood function of the auction data is specified in the following way in general: The distribution
functions Gws(.|.) and GPV

f (.|.), f = 1, . . . , F , the increasing bijection ψ and the functions that

maps COVi into the term λ ·V i, f (for f = 1, . . . , F), are assumed to be known up to a parameter
belonging to Rd for some d ≥ 1. Given Corollary 1, these parameters, referred next to as the
auction parameters, altogether completely characterize how each firm f bid as a function of
their signal λ · si, f , and this for any worker i given the set of observable covariates COVi and
the identity of the incumbent f inc

i . The cutoff signal functions λ · w−1
i, f (.), λ · [wi, f [N I]]−1(.),

λ·[wi, f [N E]]−1(.), λ·[wi, f [DROP]]−1(.; w) (w≥W r
i ), λ·[wi, f [AC T]]−1(w) are thus functions

of the auction parameters. For notational simplicity we will not explicitly index these cutoff
signal functions and the other entities defined below, by the auction parameters.

Some remarks on the likelihood function that is detailed below: 1) In writing down the
likelihood, one should carefully pick the appropriate density or distribution functions of the
cutoff signals associated to observed bidding behavior, but otherwise its structure is relatively
simple and resembles some of the likelihoods derived in pure private value models (see Paarsch
and Hong (2006)). 2) Depending on the specific parametric distribution function chosen for the
signals, it may occur that the support of the observables depends on the vector of parameters,
or more generally that the conditional density suffers from discontinuities with respect to the
parameters. This would violate the regularity conditions required to derive the usual

p
n-

asymptotic normality of the ML estimators. The full support assumption TA2 guarantees that
the auction outcome (wi , f w

i ) has full support on R+×Si . Furthermore, in both our simulation
protocol and our empirical application, the signals are assumed to be normally distributed,
implying that there are no discontinuities in the conditional density. We will therefore abstract
from these potential additional complications (addressed by Chernozhukov and Hong (2004)).

Next we derive the likelihood function of the auction data for observations where there is
no RTM, where the set of potential participants is {1, . . . , F}, where an incumbent is present
among the potential bidders,68 and last assuming that the identity of the second-highest bidder
is observed by the econometrician (as is the case in our dataset) and denoted next f sh

i (if there
is a single entrant then we have f sh

i = 0).
Let Pi, f inc

i
(w) denote the ex ante probability that the incumbent prefers not to be matched

with worker i at wage w given the value of the auction parameters, i.e. that its valuations is

below w. We thus have Pi, f inc
i
(w) = G f inc

i
(λw−1

i, f inc
i
|COVi) and pi, f inc

i
(w) =

dPi, f inc
i
(w)

dw is the cor-

responding density evaluated at the corresponding cutoff signal of the incumbent. Using the
letters B and C associated with the various cases described in our equilibrium analysis, we simi-
larly define PB

i, f (w) (resp. PC
i, f (w, w′) for w′ ∈ [W r

i , w]) as the probability that firm f ( f 6= f inc
i )

prefers not to be matched with i at wage w, conditional on observing that the incumbent has not

68The likelihood for the sub-sample without an incumbent (i.e., f inc
i /∈ Si) corresponds to the likelihood for a

standard independent private value model and its form can be found in Paarsch and Hong (2006).
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entered the auction (resp. has entered and dropped out at wage w′). We have thus PB
i, f (w) =

Gms
f (λ · [wi, f [N E]]−1(w)|COVi) and PC

i, f (w, w′) = Gms
f (λ · [wi, f [DROP]]−1(w; w′)|COVi). We

also define PD
i, f (w) as the probability that firm f ( f 6= f inc

i ) does not wish to be matched with i
at w, given that the incumbent is still active in the auction at w and that this firm believes that
the incumbent is going to quit instantly at this wage. This probability can hence be written

as PD
i, f (w) = Gms

f (λ · [wi, f [AC T]]−1(w)|COVi). Finally, let pki, f (w) :=
dPk

i, f (w)
dw for k = B, D and

pCi, f (w, w′) :=
dPk

i, f (w,w′)
dw , the associated densities.

For a given value of the parameter vector, the likelihood associated with the event that
worker i remains unmatched conditional on Ii , is denoted Lunsold

i . Given Proposition A.1 and
the independence assumption A1, we have:

Lunsold
i =

F
∏

f=1
f 6= f inc

i

PB
i, f (W

r
i )× Pi, f inc

i
(W r

i ).

To write down the other terms of the likelihood function, we now use that the identity of
the second-highest bidder is assumed to be observed by the econometrician. The likelihood
associated with the event that worker i is matched with firm f w

i at wi , and the second highest
bidder is f sh

i , conditional on Ii , is denoted Lsold
i (wi , f w

i , f sh
i ). The precise form of this type of

likelihood contribution depends on whether the incumbent is the winner, the second highest
bidder, or neither of these two bidders. It also depends on whether i is sold at or strictly above
the reservation wage.

If there is a single entrant (so that wi =W r
i and f sh

i = 0), we have:

Lsold
i (wi , f w

i , f sh
i ) =

F
∏

f=1
f 6= f w

i

PD
i, f (W

r
i )×

�

1− Pi, f w
i
(W r

i )
�

if f w
i = f inc

i ,

and

Lsold
i (wi , f w

i , f sh
i ) = Pi, f inc

i
(W r

i )×
F
∏

f=1
f 6= f inc

i , f w
i

PB
i, f (W

r
i )×

�

1− PB
i, f w

i
(W r

i )
�

if f w
i 6= f inc

i .

If there are at least two entrants (so that wi >W r
i and f sh

i 6= 0), we have:

Lsold
i (wi , f w

i , f sh
i ) =

F
∏

f=1
f 6= f w

i , f sh
i

PD
i, f (wi)× pDi, f sh

i
(wi)×

�

1− Pi, f inc
i
(wi)

�

if f w
i = f inc

i ,

Lsold
i (wi , f w

i , f sh
i ) =

F
∏

f=1
f 6= f w

i , f sh
i

PD
i, f (wi)× pi, f sh

i
(wi)×

�

1− PD
i, f w

i
(wi)

�

if f sh
i = f inc

i ,

and
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Lsold
i (wi , f w

i , f sh
i ) =

F
∏

f=1
f 6= f w

i , f sh
i , f inc

i

PB
i, f (wi)× pBi, f sh

i
(wi)×

�

1− PB
i, f w

i
(wi)

�

× Pi, f inc
i
(ri)

+

∫ wi

W r
i

F
∏

f=1
f 6= f w

i , f sh
i , f inc

i

PC
i, f (wi , w)× pB

i, f sh
i
(wi , w)×

�

1− PB
i, f w

i
(wi , w)

�

× pi, f inc
i
(w)dw

if f inc
i 6= f w

i , f sh
i .

Remark: In our application, we assume that the drop-out wage of the incumbent winc
i

(when the latter enters the auction and is not the winner) is always observed and we exploit
this information to facilitate the maximisation of the likelihood function. Formally, when the
incumbent do no longer have a RTM-card, we take winc

i as the last wage at which the incumbent
has raised its paddle. We then infer from the auction data that λ · si, f inc

i
= λ · w−1

f inc
i
[W r

i ] if the

incumbent does not enter the auction and that λ · si, f inc
i
= λ · w−1

f inc
i
[winc

i ] if the incumbent

drop-out at winc
i .

K Monte Carlo: Further Details

K.1 Simulation Set-up

The aim of the simulation study is to show how our methodology performs in finite samples
(we pick N = 300 auctions, but also report results for N = 1, 000 auctions in Table K.1). The
parameters of our Monte Carlo protocol have been chosen as follows. As in our empirical
application, we set the total number of bidders to F = 8. Throughout, it is assumed that the set
of potential participants always coincides with the full set of eight bidders. In each simulated
data set, half of the sample is composed of auctions without incumbents while the other half
is made up of auctions with an incumbent (picked randomly among the 8 bidders). In all
simulations we fixλ= 1, while τ can take the values−0.8,−0.5, 0, 0.5 and 0.8 (these are hence
also the values taken by θ). We assume that the signals follow a symmetric Gaussian structure
as in Section 4.3. In addition, we assume that sI ,ms

i, f = sI ,ws
i = 0 for all i and f , implying that A7

holds with L = 1 and with γws
1 (COV ) ≡ γws = 1 and γms

l, f (COV ) ≡ γms
f = 1. For all simulations

we set σms = 1 − θ = 1 − τ, while σws
1−τ takes the values 0, 1 and 2 ( σws

1−τ = 0 corresponds to
the private value case considered in Section 4.4. We also assume that βinc = αinc = 0, i.e., the
incumbency-indicator INCi, f is included neither in the performance equation nor in the payoff
function V . The vectors of covariates x i, f and zi, f are both one-dimensional. In line with our
empirical application, the vector of firm-worker characteristics x i, f is assumed to be the same
across all bidders, but the auction shifter zi, f does vary with f . Those variables are assumed to
be i.i.d. according to a centered normal distribution with variance equal to 1. We set β f = 0 for
all bidders and βx = 1, while the noise εi, f is assumed to be distributed according to a centered
normal distribution with variance equal to 1. We also set V i, f = x i, f + zi, f , which amounts to
choosing β∗f = 0, β∗x = 1 and β∗z = 1. This corresponds to the following specifications for the

parameter values appearing in payoff function V : α f = −
1
2 , αx = −τ and αz = 1−τ. Finally,

the logarithm of the reservation wage W r
i is set to 3

1−τ . Note that this choice guarantees that the
same signal threshold (λ ·bsi, f (W r

i ) as defined in (8)) that makes indifferent between entering
or not the auction does not depend on τ when σws = 0. Nevertheless the probability of sale
(reported in the bottom line of Table 1) does depend on τ since we have specified σms = 1−τ.
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K.2 Warp-Speed Monte Carlo

The Warp-Speed method will be described by considering the parameter τ. The methodology is
strictly the same for any other parameter. From the k-th replication sample (k = 1, . . . , 1, 000),
we draw a single bootstrap sample of size N . Letting τ̂N ,k and τ̂∗N ,k be the second-stage esti-
mates using the k-th Monte Carlo sample and its associated bootstrap resample, respectively,
we can then construct a sequence of 95% confidence intervals for τ

C IN ,k(τ) = [τ̂N ,k − qN (0.975), τ̂N ,k − qN (0.025)], and k = 1, . . . , 1, 000,

where qN (0.025) and qN (0.975) are the 0.025-quantile and 0.975-quantile of the empirical
distribution of τ̂∗N ,k − τ̂N ,k, k = 1, . . . , 1, 000, respectively. We can now estimate the lower
bound (resp. upper bound) of the 95% confidence interval of τ by taking the mean over the
lower bounds (resp. upper bounds) of C IN ,k(τ), k = 1, . . . , 1, 000. Similarly, the power of
the t-test of the null hypothesis H0 : τ = 0 (against the bilateral alternative) can simply be
estimated by the fraction of times zero does not belong to C IN ,k(τ), k = 1, . . . , 1, 000, given
that the data are generated under a particular value of τ. The novelty of the method proposed
by Giacomini et al. (2013) is that only one bootstrap resample is required for each replication
(instead of some high number as in a standard Monte Carlo experiment), thereby drastically
reducing the computation time.

Power and Empirical Coverage: We calculate the power of the test of the null hypothesis
H0 : τ = 0 (resp. H0 : βx = 0), against the bilateral alternative, as the fraction of times zero
does not belong to the 1,000 CIs for τ (resp. βx), given that the data are generated under a
particular value of τ (resp. βx). Empirical coverage probabilities are reported as the probability
that the parameter’s true value lies in the confidence interval.
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L Format of the tournament and player performance measure

In the IPL, a match is generally completed in 3 hours. The match involves one team batting (striking
the ball) while the opposing team bowls (delivers the ball), followed by the opposing team batting.
The objective of the batting team is to post the maximum amount of score in a certain period of time
by striking the ball. The team that posts the highest score wins the match. A batsman is a player
who specializes in hitting or ‘striking’ the cricket ball in order to score runs. A bowler is a player who
specializes in delivering the ball to a batsman and whose primary aim is to dismiss the batsman or
concede minimal runs. A wicket-keeper is a batsman who holds a special position in the field; his role
is to stand behind the batsmen and guard the ‘wicket’ when a team is bowling, similar to the role of
a catcher in baseball. All-rounders are players who are specialized in, both, batting and bowling. The
general composition of a cricket team is three specialist batsmen, four all-rounders, three specialist
bowlers and a wicket-keeper. The player specialities are an important feature of our auction model,
because teams are implicitly constrained to select and bid in a way that optimizes their team composition
(i.e., they are unlikely to buy only bowlers).

Our composite performance measure is derived from various, batting and bowling statistics ob-
served for each player during the tournament and follows the index proposed by the website
https://bit.ly/2CvCB44.69. The first step in that process was to award points for each basic statistic ac-
cumulated by each player across every match of the tournament. The mapping of game-specific player
statistics to points is given in Table L.1.

Next, given the time constraints inherent in the format of the game and its emphasis on the rate
of scoring, the player’s total number of points was multiplied by a speciality specific factor. For batting,
the factor measures the player’s relative strike-rate in the tournament,70 as the higher the strike rate,
the more effective a player is at scoring quickly. For bowlers, the factor measures the bowler’s relative
economy-rate in the tournament,71 as the higher the economy rate, the more effective a player is at
limiting the opposition’s total score. Finally, each player’s adjusted points are divided by the number of
games they played in the tournament either as batsman or as bowlers so that player’s are judged on a per-
game basis. We have obtained then two performance measures: one for batting which the performance
measure we retain for batsmen and wicket-players, and one for bowling which the performance measure
we retain for bowlers. For all-rounders (who both bat and bowl), our performance measure is the sum
of the two bowling and batting performance measure.

M Complementary elements on the RTM option

In auctions with RTM-eligibility, the incumbent team may not be able to use the RTM-option because it
has exhausted all of its RTM cards. Depending on the number of retained players, each team received
from the organizers between 1 to 3 RTM cards. Then a RTM card allowed a team to exert the RTM
option for any player from its previous year’s squad. In our data set, the average number of retained
player per team is 3 and the average number of RTM cards received by teams at the beginning of the
auction sequence is 1.62. Summary statistics related to the RTM option are gathered in Table M.1. We
also observe that all teams have exhausted their RTM cards at the end of the auction sequence. In 75
of the 156 auctions with an incumbent, the incumbent was eligible to use a RTM card and did use it
in 17% of these cases, and in the remaining 81 auctions he did not because he did no longer possess a
RTM card.

The presence of the RTM option for some of the IPL auctions requires also to adapt slightly our
analysis. If we abstract from the fact that there is a limited number of RTM cards so that the use of a

69Note that the performance measure distinguishes only batting and bowling scores; since wicket-keepers and
all-rounders either bat (wicket-keepers) or bat and bowl (all-rounders), their performance is accounted through
their batting and/or bowling scores.

70A batsman’s strike-rate is defined as the average score of a player per 100 balls faced. Formally, this is equal
to [100*(Batsman score/# Balls faced)]. The batting factor of a player (either a batsman, a wicket-keeper or an
all-rounder) is then equal to his strike-rate divided by the average strike-rate of other batsmen in the tournament.

71A bowler’s economy-rate is defined as the average score conceded by a bowler per 6 balls. Formally, this is
equal to [Bowler Score/(# Balls delivered/6)]. The bowling factor of a player (either a bowler or an all-rounder)
is his economy-rate divided by the average economy-rate of other bowlers in the tournament.
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Table L.1: Conversion of performance statistics into points

Performance Statistic Points

# Runs - a batsman’s score from striking the ball in the tour-
nament

1 base points for each run

# 50s - Number of times a batsman ended the match with a
score equal to or above 50 in the tournament

25 bonus points for each 50

# 100s - Number of times a batsman ended the match with a
score equal to or above 100 in the tournament

50 bonus points for each 100

# Wickets - Number of batsman dismissed by a bowler in the
tournament

25 base point for each wicket

4 Wickets - Number of times in the tournament when a bowler
dismissed 4 batsman in one match

40 bonus points for 4-wicket haul

5 Wickets - Number of times in the tournament when a bowler
dismissed 5 batsman in one match

50 bonus points for 5-wicket haul

card is costly, then the optimal bidding strategy of the incumbent f inc
i consists in remaining silent in the

auction for worker i and then in using the RTM card if and only if λ · si, f inc
i

is larger than λ[wi, f inc
i
]−1(w)

where w is the termination wage in the auction. At a given wage w, non-incumbents should decide
whether or not to remain active as if they knew that the incumbent’s aggregate signal si, f inc

i
is below

[wi, f inc
i
]−1(w) (which reflects that the incumbent has not used its RTM card at w). Then, the cutoff

signal of a non-incumbent f that is indifferent between winning or losing the auction at the wage w,
denoted by bsRT M

i, f (w), can be expressed by72

λ ·bsRT M
i, f (w) = (1− θ ) log(w)−λV i, f − log(E[eλ·[s

I ,ws
i +sP,ws

i ]|λ · si, f inc < λ ·w−1
i, f inc (w)]).(M.1)

Under our parametric specification, we obtain then for f 6= f inc
i (with the same calculation as for

case B):

λ ·bsRT M
i, f (w) = (1− θ ) log(w)−λ · V i, f − log

�

Φ(
[−σ2

ws+(1−θ ) log(w)−λ·V i, f inc
i
]

p
σ2

ms+σ2
ws

)

Φ(
(1−θ ) log(w)−λ·V i, f inc

ip
σ2

ms+σ2
ws

)

�

+
σ2

ws

2
(M.2)

Equation (M.2) is the analog of (E.5) where the reservation wage W r
i has been replaced by w.

Consequently, accounting for RTM requires only small modifications in the likelihood function and
the control functions. From the perspective of the identification of the bidding model, note that the RTM
option would simplify a lot the argument: in this subsample, conditional on the observable covariates,
the signal of the incumbent is distributed independently of the auction termination wage (which is de-
termined from the competition between non-incumbents which is determined only by their own private
signals given the incumbent remain silent until the termination wage is reached). Finally, given our in-
dependence assumption A1 ii), the drop-out wages of the non-incumbents are independently distributed
and we can then apply Athey and Haile (2002) to recover the bid distribution of the non-incumbents.

To sum up, when the incumbent still has a RTM card, then we assume that the incumbent bid as if

72Under RTM, the characterization of a separating equilibrium as in Proposition A.1 requires to strengthen a bit
TA1 to guarantee that the cutoff signal is increasing in w. Intuitively, the strength of the informational externality
should not be too large.
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there were no RTM-card scarcity. Still in order to take into account this scarcity in a reduced form way,
then we include as an auction shifter the fact that the player is bought through an RTM through the
variable Incumbent present & no RTM card.
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Table M.2: Empirical results: specifications with past performance

OLS First Stage Second Stage

Log Wage (τ) 5.89*** 4.14*
[2.54, 9.24] [-0.45, 7.79]

Team-player characteristics (x):

Indian -3.51 -2.57*** -1.43
[-14.96, 7.94] [-3.41, -1.73] [-9.03, 6.06]

Newcomer -1.61 0.51* -3.38
[-10.19, 6.96] [-0.08, 1.12] [-12.31, 5.71]

Speciality: Batsman 1.52 2.24*** 3.27
[-6.87, 9.93] [1.21, 3.28] [-3.89, 12.44]

Speciality: Bowler 8.57** 2.84*** 10.16***
[1.57, 15.57] [1.85, 3.84] [3.15, 18.52]

Incumbent present 1.79 2.17*** 5.39
[-4.84, 8.43] [0.97, 3.38] [-3.03, 15.23]

Bidder is incumbent 2.04***
[1.03, 3.06]

Winner is incumbent -2.37 -16.08*
[-8.47, 3.73] [-31.85, 0.23]

Past Available -3.51 0.30 -6.21
[-14.96, 7.94] [-0.54, 1.13] [-17.91, 6.98]

Past Available * Past Performance 0.07 0.01 0.19
[-0.22, 0.37] [-0.02, 0.03] [-0.14, 0.52]

Other Structural Parameters:

γms -0.32
[-3.73, 2.67]

γws 4.86**
[0.68, 35.94]

θ 0.76***
[0.59, 0.93]

σ∗ms ≡
σms
(1−θ ) 1.63***

[0.77, 3.46]
σ∗ws ≡

σws
(1−θ ) 2.11***

[1.62, 2.74]

Note: All specifications account for fixed effects with respect to the set in which the player was auctioned. Column 1
reports OLS estimates of various parameters in the performance equation (1), and 95% CIs based on the usual OLS
standard errors. Column 2 gives the ML estimates of the auction model primitives β∗x , β∗inc , θ , σms , and σws , and 95%
CIs based on the asymptotic ML standard errors; the (unreported) auction shifters (β∗z ) have effects that are similar to
those reported in Table 3. Column 3 reports OLS estimates of the parameters in the augmented performance equation
(11), and 95% CIs based on a percentile bootstrapped procedure (with 1,000 bootstrapped samples). Past Available
is a dummy variable tahttps://www.overleaf.com/project/5fbfa55e03a2585062c90506king the value one if past IPL
performance is available for the player and Past Performance the previous three years’ average for a player’s past IPL
performance. ∗ indicates significance at 10%; ** at 5%; *** at 1%. The level of significance is based on two-sided tests
except for the parameters γms and γws where it is one-sided given the monotonicity restriction in A7 and 90% CIs are
reported in parentheses.
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