
HAL Id: hal-04381996
https://hal.science/hal-04381996

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Bus Scheduling using a Distributed Game
Model Approach

Perla Hajjar, Leïla Kloul, Dominique Barth

To cite this version:
Perla Hajjar, Leïla Kloul, Dominique Barth. Optimal Bus Scheduling using a Distributed Game Model
Approach. 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023),
Sep 2023, Bilabo, Spain. �10.1109/ITSC57777.2023.10422224�. �hal-04381996�

https://hal.science/hal-04381996
https://hal.archives-ouvertes.fr

Optimal Bus Scheduling using a Distributed Game Model Approach

Perla Hajjar1, Leı̈la Kloul2, and Dominique Barth 2

Abstract— The efficiency of the transport system depends on
the planning and control strategies applied. The satisfaction
of both the operator and the passenger in transport systems
is challenging and determines the level of service of the
system. In order to adapt to disruptions in the transport
system which influence the traveled time by the buses, the
stop skipping control strategy is adopted. The goal is to serve
all the passengers waiting at stops by minimizing the total
delay in a known static system. Because of the NP-Hardness
of minimizing the real total delay of the system, a new delay
based on the notion of balancing the load inside the buses,
denoted as load− delay, is defined. A distributed game model
is proposed to solve the delay minimization problem using stop
skipping control strategy. Finally, the distributed game is solved
by Linear Reward Inaction algorithm (LRI) and its results are
compared with the Simulated Annealing meta-heuristic results.

Index Terms— Public transport scheduling, Stop-Skipping,
NP-Hardness, Game model, Delay

I. INTRODUCTION

The public transport system is considered as the backbone
of sustainable urban development since it allows more effi-
cient movements in cities. It is the most popular form of
public transport as it operates on a fixed route and serves a
defined set of stops. Various factors such as dynamic changes
in traffic congestion, weather conditions, and unstable de-
mand patterns lead to uncomfortable travel time for both
the passengers and the operators [1]. Thus, It is critical that
bus services run on time for the convenience of passengers
and to be able to provide a dependable public transportation
service for them. A delay in the arrival time of a bus at a
station may lead to a longer waiting time for passengers and
a deterioration of the service.

To provide more flexibility, a variety of innovative trans-
portation services, such as on-demand services, ride-sharing,
and autonomous public transportation have recently appeared
in urban areas. Moreover, solutions such as the increase of
the frequency of the bus lines and bus control strategies,
i.e dedicated bus lanes and signals, vehicle holding, stop-
skipping and deadheading that have been proposed in the
literature are not enough to improve the efficiency and the
reliability of the bus systems [2].

*This work was not supported by any organization
1Perla Hajjar, is with DAVID Laboratory, Universite de Ver-

sailles Saint-Quentin-en-Yvelines/ Paris Saclay, Versailles, France in
collaboration with Communauté d’Agglomération de Saint Quentin
en Yvelines, Trappes, France perla.hajjar@uvsq.fr amd
perla.hajjar@sqy.fr

2Dominique Barth is with Universite de Versailles
Saint-Quentin-en-Yvelines/ Paris Saclay, Versailles, France
dominique.barth@@uvsq.fr

2Leı̈la Kloul is with Universite de Versailles Saint-Quentin-en-Yvelines/
Paris Saclay, Versailles, France leila.kloul@uvsq.fr

In today’s situation, buses of the same line stop at all
stations forming a schedule of served stations. The stop-
skipping (also known as expressing, or limited-stop service)
is a control measure that allows a vehicle to skip a stop (or a
series of stops) of the same line if it is running behind sched-
ule [3] [13]. To provide a resilient and a dynamic service,
we adopt the stop skipping strategy in order to minimize
the time until the last passenger reaches his/her destination,
which is the delay. Considering that we are in a static system
where the demand, the number of buses, the number of stops,
and the time to move on the route are known and fixed, our
purpose is to decide at the beginning of each turn which sta-
tions to be served by each bus that lead to the minimization
of the delay. In this context, we propose a distributed game
model to solve the delay minimization problem using the
stop skipping control strategy in the static system. The Linear
Reward Inaction (LRI), a reinforcement learning algorithm,
is adopted to solve the distributed game model. Then we
analyse and compare the system performance and results in
an offline context with complete information optimisation
meta-heuristics: Simulated annealing and Descent Algorithm.

The remainder of this paper is organized as follows.
Section 2 contains reviews of available control strategies.
In Section 3, defines the bus transport system model with
the stop skipping strategy. Section 4 describes the delay
minimization problem, shows its NP-Hardness and defines
the load-delay notion. In Section 5 we model our problem
as a distributed game and propose a reinforcement learning
approach, specifically Linear reward Inaction, to solve the
minimization problem in a static environment. Section 6
verifies the correlation between the real delay and the new
defined load-delay parameter and provides the performance
evaluation of the descent algorithm, Simulated Annealing,
and reinforcement learning algorithms.

II. RELATED WORK

There is a handful of works that have studied and proposed
optimization techniques for the stop skipping problem. The
stop skipping decreases the service time of buses by allowing
them to skip one or more stations either entirely or after
allowing alighting only.

Stop skipping is formulated as an optimization problem
and is often proposed at the planning level. In the study of
[4], a new stop-skipping strategy is proposed, where it is
applied to alternate buses and is fixed once the bus departs
from the starting terminal. The objective is to minimize
the total cost of passenger waiting time, in-vehicle time
and vehicle travel time. They used real data in SimTransit
simulation model. The analysis showed that stop-skipping

control is effective in reducing the passenger in-vehicle time,
waiting time, and operational vehicle trip time.

To address the problem of determining the skipped stops of
multiple trips in a rolling horizon, the author in [5] suggested
dividing the day into discrete time windows. The decision
is taken at the start of the rolling horizon and cannot be
modified. The main objective is to minimize the weighted
cost of passenger waiting time, passenger in-vehicle time,
and vehicle travel time. The author tested three solution
methods: Brute force, sequential hill climbing, and genetic
algorithm. Real data were used with 5 stops as stop-skipping
candidates to be able to determine a stop-skipping solution
in near real-time. Results have showed that the stop-skipping
control in rolling horizon is beneficial in scenarios with mild
travel time variations.

The authors in [2] identified the deadheading strategy as
a part of the stop skipping strategy. They aim to minimize
the sum of the total travel time, the waiting time of all the
bus passengers, and the total bus travel time. They assumed
that prescribed stops cannot be changed after dispatching
and that if a bus is allowed to skip stations, the following
bus should serve all the stations. The authors adopted the
Genetic Algorithm as a solution method and the Monte Carlo
Simulation to estimate the objective function. They verified
the proposed mathematical model using abstracted data from
real bus line in Suzhou city of China.

A new modification for the stop skipping control strategy
was introduced by [11] as they considered that the bus can
still drop off passengers at stops in the skipping segment
since the decision is in real time. This approach is proposed
to respond to disruptions in real time. They compared this
approach with the original stop skipping control by applying
an exhaustive search method on a small scale network.

The advantage of fixed stop skipping control is that it can
be communicated to bus drivers and passengers in advance.
The authors in [4], [2], and [6] assumed of that if one bus
skips any stop(s), then the next bus of the same line should
serve all the intermediate stops along the bus line. However,
next bus should also be allowed to skip stops as long as the
service is maintained and the demand is served. In addition
to that, the determination of the skipped stop for each trip is
done in isolation to reduce the computation complexity [5].

Most of these previous studies do not take into considera-
tion that the stop skipping affects the total trip time of other
buses and focus only on minimizing the waiting time con-
sidering they have previous knowledge of this information.
These models will be hard to implement in real life scenarios
to adapt to dynamic changes.

In this paper, we adopt the stop skipping control to decide
at the beginning of each turn which stations to be served
by each bus that lead to the minimization of the delay.
We consider that our system is static and thus we have
previous knowledge of all the needed parameters for this
minimization. A reinforcement learning approach is tested
to solve the proposed distributed game model of the delay
minimization problem.

III. MODELING THE TRANSPORTATION SYSTEM

A first theoretical simplified model of the public transport
corridor is represented as a ring R made of N consecutive
cyclic slots numbered from 0 to N−1 that represent discrete
events as shown in Fig 1. Each slot is the possible position
of a bus moving and can be occupied by only one bus. The
public transport system is defined as follows:

• N consecutive cyclic slots on ring R.
• A set of K stations s1,...sK , with 2 ≤ K < N . Each

station si is associated with a slot (with at most one
station per slot).

• A set of B buses having the same capacity Cap such
that B < N . Each bus bj ∈ B has an initial starting
position initj . At time step t, the position of bus bj is
denoted by Postj . Each bus bj has a serving vector Dj

that indicates the stations served: Dj [i] = 1 means that
bus bj will stop at station si, 0 otherwise.

Fig. 1. Model architecture of the transport system

A. Bus Movement Definition

At every time step t, each bus bj ∈ B is in state Statetj ∈
{MOV,STP}.
The following state transitions are allowed:

• If at time step t− 1, the state of bus bj is Statet−1
j =

STP then, at time step t, Statetj = MOV . This
indicates that the bus can only stop for 1 time step at a
station for passengers to alight and board.

• If at time step t− 1, the state of bus bj is Statet−1
j =

MOV then Statetj = STP if and only if bj is at a
station si and Dj [i] = 1. This means that the bus’s
state can change from state MOV to STP only if the
slot at the next time step is a station where the bus is
set to stop.

If bus bj at time t− 1 is in position Post−1
j , then:

• Postj = Post−1
j if and only if Statet−1

j = STP .
• Postj = Post−1

j + 1 if and only if Statet−1
j = MOV

and :

– ∄ bus bj′ such that Postj′ = Post−1
j′ + 1 and

Statetj′ = MOV .
– ∃ bus bj′ such that Postj′ is at station si and

Dj′ [i] = 1 and Dj [i] = 0.
In all other cases Postj = Post−1

j .

Note that with B < N , the system is deterministic and
there is always at least one bus for which the decision of the
next position does not depend on the other buses.

B. Assumptions

The proposed model is based on the following assump-
tions: (1) the origin-destination demand matrix M [O,D] is
given at the beginning, specifying the number of passengers
waiting at each station at time step t = 0 and having a
specific destination. Note that this demand matrix is given at
the beginning of the simulation (time step t = 0 and does not
change. (2) Passengers board the first arriving bus serving
their destination without interconnections while respecting
the bus capacity constraint. (3) Passengers waiting at a station
with different destinations board the stopping bus based on
a uniform distribution. (4) The buses stop for one time step
only for passengers to board and alight. If a bus is stopped
at a station and a following bus wants to stop at the same
station, the following bus will be blocked on the ring. (5) For
each bus, the starting and ending stations of the route can
be any station on the ring. (6) The route is a one direction
route with no passengers alighting at first station (s1) and no
passengers boarding at last station (sK).

IV. PROBLEM DEFINITION

The solution we want to obtain is a schedule that defines
the stopping patterns of buses in stations with a minimum
delay. A schedule is defined as a set of serving stops vectors
Sch = {D1, . . . , DB}. Each Dj corresponds to one bus
bj such that for any 1 ≤ i < K, Dj [i] = 1 iff bj stops
at station si, else Dj [i] = 0. The delay of a schedule is
the maximum time needed until the last passenger reaches
his/her destination.

A schedule is feasible, if and only if , for all couples
of stations sx, sy such that x, y ∈ {1...K}, M [x, y] > 0 and
sx ̸= sy , there exists at least one bus bj such that Dj [x] =
Dj [y] = 1. We denote by Stpj the sum of elements of vector
Dj , i.e., the number of stations that bj serves.

Given the number of buses, the number of stations, and
the static demand origin-destination matrix, the goal is to
find a schedule that serves all passengers waiting at stops
with minimum expected delay. Calculating the real delay
value is time consuming considering the large number of
constraints in our model to be evaluated at every time step.
This minimization problem is NP-Hard even if |B|=2, and we
consider a polynomial transformation from the Set Partition
Problem (SPP). Thus, we define a new notion which is the
load− delay and prove that the problem of minimizing the
load−delay gives a rise to a problem in NP for any schedule
of any instance of this problem.

“The more balanced and full the buses are, the smaller
the delay”. Based on this proposition, we define the bus
load − delay as follows. For any instance (R,K,B,M)
with a feasible schedule, we calculate first the bus load
at every station as defined in Definition 1. For each bus
bj at each station si, we define the load of bj at si as
loadj(i). If Dj [i] = 1, then loadj(i) is the sum of the total
number of waiting passengers that can get into bus bj based
on the serving vector Dj [i] and the passengers already on-
board, divided by the number of buses serving every origin
destination station denoted as deg(x, y). If Dj [i] = 0, then
loadj(i) = loadj(i− 1).

Definition 1: For any station si ∈ {1...K} and any bus
bj ∈ {1...B}, we define the load of bj on si by :

loadj(i) =
∑

x ̸=y crossing si
s.t. Dj [x]=Dj [y]=1

M [x, y]

deg(x, y)
(1)

Then, we compute the maximum load of bus bj along all
the stations si for 1 ≤ i ≤ K, denoted by MAXloadj , as
defined in Definition 2.

Definition 2: The maximum load of bus bj is defined as:

MAXloadj = max
1≤i≤K

b− loadj(i) (2)

Finally, the load− delay of a schedule LD(Sch) is used
to indicate how many time steps are needed for all the
passengers to be served and reach their destination. Hence,
the bus that has the highest load requires the largest time
to serve all the demand. The load − delay of a schedule,
LD(Sch), is calculated as in Definition 3. The expression
⌈MAXloadj

Cap ⌉ represents the number of turns needed by bus
bj to serve the passenger load that it will carry. Since any
bus bj needs one time step to move between slots and stops
also for one time step at each station for passengers to
board and alight, then the expression (N + Stpj) is used to
express the delay of the schedule in time steps.

Definition 3: The load-delay of Sch is

LD(Sch) = max
bj∈B

(⌈
MAXloadj

Cap

⌉
× (N + Stpj)

)
(3)

V. MODELING THE PROBLEM AS A
DISTRIBUTED GAME

A. Game model definition

This game model is the one on which the reinforcement
learning approach that we propose is based. We suppose that
the stations are the players and the choices of bus stops at
each station are the strategies (i.e., 2B strategies for each of
the K player).

First, given an instance (R,K,B,M) with a feasible
schedule Sch, for any station si, we define a local load
parameter related to the maximum load of a bus stopping
in si. The station local load denoted by SJN in (4) for each
station si corresponds to the maximum load of bus bj , such
that Dj [i] = 1 multiplied by the number of slots and stations

to stop at which represents the time units needed to serve the
demand:

SJN = max
j s.t. Dj [i]=1

(

∑
x ̸=y crossing si

s.t. Dj [x]=Dj [y]=1

M [x,y]
deg(x,y)

Cap

× (N + Stpj)) (4)

We consider also an upper bound, denoted as WST , of
the load-delay of any schedule as defined in (5). This upper
bound is considered as if we have only one bus serving the
stops.

WST =

max
si∈L

(∑
x̸=y crossing si

M [x, y]

)
cap

×(N+K+1)

(5)
We define a game called St-Load-Game as follows.

• The set of players is K.
• The action set Ai of each player si ∈ {1...K} is all

possible combinations of stopping patterns of the buses
at this station, that is |Ai|= 2B .

• A strategy profile π = a1, . . . , aB implies a unique
schedule Schπ , that is Dj [i] = 1 if bj ∈ ai and
reciprocally.

The purpose of each player is to minimize its cost. The cost
Ci of a player si for the strategy profile π is defined as:
C(i) = γ × TOT − α× Soli, where:

• TOT = WST if Schπ is not feasible, else TOT =
LD(Schπ),

• Soli = 0 if there exists i′ such that M [i, i′] > 0 and
deg(i, i′) = 0, else Soli = SJNi,

and γ ≥ 1 and α ≥ 0 are two tuning parameters of the game
indicating the weight of the global and local loads.

B. Distributed reinforcement learning approach

To solve the game defined above, we consider a dis-
tributed reinforcement learning approach based on the Linear
Reward-Inaction (LRI) algorithm [8]. LRI is a reinforcement
learning method based on a reward system where players
aim to minimize or maximize a common cost. Each player
has a stochastic vector of actions called strategy vector. This
vector represents the possibilities of actions that a player si
has. Every action ai ∈ Ai has an initial probability value
to be selected qi,a. The players learn at the same time and
try actions in order to achieve their objective. A solution is
said to be good given a strategy profile π, if it improves the
utility. At each iteration, each player randomly chooses an
action among its own strategy vector. For each player, we
calculate its utility which is based on the action chosen. At
the end of each iteration, each player updates its strategy
vector following the update rule of LRI presented in (6).

qt+1
i,a = qti,a + b ∗ U t

i ∗ (1− qti,a) If a = ati

qt+1
i,a′ = qti,a′ −

(
qt
i,a′

1−qt+1
i,a

× b ∗ U t
i ∗ (1− qti,a)

)
∀ a′ ̸= ati

(6)
b: learning parameter with 0 < b < 1.
qti,a: the probability that player i plays action a at iteration
t.
qti,a′ : the probability that player i plays action a′ for a′ ̸= a
at iteration t.
U t: utility function.

Consider the time step t of the learning process (i.e., round
t of the simultaneous game in the learning), and let ati ∈ Ai

be the action played by si and Ct(i) be the cost of player
si at this step. Then the utility function to be considered for
si at this step is

U t
i =

Cmax
ai

(i)− Ct(i)

Cmax
ai

(i)− Cmin
ai

(i)
(7)

with Cmax
ai

(i) (resp. Cmin
ai

(i)) being the maximum (resp.
minimum) cost impacted to si when choosing action ai in
a step between 1 and t. The design of the utility function
is critical for the player’s learning of optimal stop skipping
pattern. It should be both broad enough to capture the impact
of the chosen action, but specific enough to not cause noise
during learning.

VI. PERFORMANCE EVALUATION

In this section, we experimentally evaluate the correlation
between the delay and the load-delay for all schedules
of a same problem instance. We will also compare the
results of the LRI algorithm to the results of two meta-
heuristic algorithms: Simulated Annealing (SA) and Descent
Algorithm.

A. Correlation between real delay and load-delay:

We consider here an instance (R,K,B,M) obtained from
real data measured on a bus line of the urban community of
Saint-Quentin-en-Yvelines, France (a Paris suburban area).
The data were collected in 2011. The bus line 414 was
divided into 8 sectors and for each sector the in going and out
going demand of the buses were analyzed. Based on that, we
consider each sector as a station. Hence, our study is based
on 8 stations served by 3 buses of identical capacity of 22
passengers each. The demand matrix M [O,D] is provided in
Table I representing the demand for every origin destination
station at time step t = 0.

For each possible feasible schedule Sch for this instance,
we measure by simulation using SUMO simulator [12] the
real delay Delay(Sch) and we calculate its corresponding
load− delay LD(Sch) as defined in Definition 3. Figure 2
plots the values of the real deal and the load− delay for all
of the obtained feasible schedules Sch, sorted in increasing
order of LD(Sch). The x − axis represents the schedule
number and the y−axis represents its corresponding delay in
time steps. The blue curve (upper dense curve) represents the

TABLE I
ORIGIN-DESTINATION(O/D) DEMAND MATRIX OF LINE 414 IN

SAINT-QUENTIN-EN-YVELINES IN ONE DIRECTION

O/D 1 2 3 4 5 6 7 8
1 0 77 34 6 14 3 3 2
2 0 0 55 43 89 17 31 6
3 0 0 0 22 53 20 57 7
4 0 0 0 0 5 4 8 2
5 0 0 0 0 0 6 20 8
6 0 0 0 0 0 0 43 9
7 0 0 0 0 0 0 0 40
8 0 0 0 0 0 0 0 0

real delay values obtained using SUMO and the orange curve
(linear line) represents their corresponding load − delay
values. These curves show a real correlation between these
two measurements. Although the real delay calculated by
SUMO increases slightly in a quicker manner than the load-
delay, we still consider that there exists a correlation between
these two values. Thus we are going to focus the algorithmic
approaches on the optimization of LD(Sch), a problem
which is in NP.

Fig. 2. Correlation between the real delay obtained by SUMO and the
defined load-delay LD(Sch) sorted by LD(Sch)

B. Solution Methods:

In this section, we compare the performance of the LRI ap-
proach with two neighborhood meta-heuristics: (1) Descent
search algorithm and (2) Simulated Annealing in a static
environment. For the meta-heuristics, we use the same neigh-
borhood definition between two schedules defined as follows.
A schedule Sch is considered as the concatenation of the
schedule binary vectors VSch of all buses b1, b2, . . . , bB , i.e.,
a binary vector of size B × L. A neighbor of a schedule
Sch is a feasible schedule Sch′ such that VSch′ = VSch⊕µ,
where µ is a binary vector of size B×L and with Hamming
weight w. It determines the number of stops we are allowed
to alter their values.

1) Simulated Annealing: Simulated Annealing (SA) Al-
gorithm is a probabilistic method proposed by [9]. SA can
be used to estimate the global minimum for a function
with many variables. SA can produce a good local though
not necessarily global optimal solution within a reasonable
computing time. Essentially speaking, simulated annealing

can be seen as a “randomized variation” of the local search
method [10].

2) Descent Algorithm: An approach inspired by the Gra-
dient descent algorithm is adopted. For this algorithm, the
Hamming weight w is set to one. Starting from an initial
schedule Schinit that serves all stations by all buses, we gen-
erate all possible neighbor schedules using w based on the
definition above. Among the neighbor schedules, we select
the schedule that has the minimum delay LD(Schneighs).
We continue this process until there is no more feasible
neighbors. This method has showed that if we start from
a schedule that serves all stops, it does not find a better
schedule in terms of load − delay. For that, we investigate
the nature of the data. Almost 15% of the feasible sched-
ules are local minimums. Hence the descent algorithm will
not converge as expected starting from an initial schedules
Schinit that serves all stations, knowing that this schedule
is a local minimum.

Since the SA algorithm is guaranteed to converge to at
least a good local minimum, it is the one we consider to
compare the LRI algorithm with in the following.

C. Comparison between SA and LRI:
After setting the initial temperature Tinitial to 150000

iterations and the cooling rate to 0.85 for the SA algorithm,
we test the algorithm with Hamming weight w = 1 and
w = 2. For each value, we run the algorithm 30 times. With
an average number of iterations 35000, the SA meta-heuristic
shows that it can converge to a schedule near the optimal
one in both cases. It also shows that the Hamming weight
does not affect the speed of convergence, since in the two
cases, the algorithm starts to converge between the 30000
and the 35000 iteration. For Hamming weight w = 1, the
mode schedule that the algorithm stabilizes on is a schedule
that serves the demand without each bus stopping at every
station as shown in Table II with an average delay of 247
time steps, while with hamming weight w = 2 (see Table
III), the mode schedule has an average delay of 260 time
steps and not every bus stops at all stations.

TABLE II
THE RESULTING SCHEDULE OF THE SA ALGORITHM WITH w=1

Bus/Stop 1 2 3 4 5 6 7 8
B1 0 1 1 1 0 1 1 1
B2 1 1 0 0 1 1 1 0
B3 1 0 1 1 1 1 1 1

TABLE III
THE RESULTING SCHEDULE OF THE SA ALGORITHM WITH w=2

Bus/Stop 1 2 3 4 5 6 7 8
B1 1 1 1 0 1 1 1 1
B2 1 1 1 1 1 0 1 0
B3 1 1 1 1 1 1 0 1

For the LRI algorithm, we are interested in testing the
impact of γ and α in the player cost Ci on the schedule

convergence of the LRI algorithm. For this reason, we test:
(1) γ = 1 and α = 0 and (2) γ = 2 and α = 1. Clearly,
from the expression of Ci that with γ = 1 and α = 0,
the local load on the station is neglected and only the global
load−delay of the schedule is taken into consideration. The
algorithm in this case converges to a schedule that serves all
the stations with a delay of 260 time steps.

For γ = 2 and α = 1, we run the algorithm several times
and each run for three hours producing around 6 million
iterations. The LRI algorithm converges and stabilize on
a schedule that serves the demand without stopping at all
stations and with 268 time steps as a delay. We note that the
players (stations) have learned their best moves and stabilize
to an action that gives them the best benefit as shown in
Table IV.

TABLE IV
THE RESULTING SCHEDULE OF THE LRI ALGORITHM WITH γ=2, α=1

Bus/Stop 1 2 3 4 5 6 7 8
B1 1 1 1 1 1 1 0 1
B2 0 1 1 1 1 1 1 0
B3 1 1 1 1 1 0 1 1

Figure 3 represents the probability evolution of the best
chosen action per player and how it affects the converge
of the load − delay value. The x − axis is the number of
iterations (in millions) and the y − axis is the probability
of the actions in the upper part of the figure and the load
delay of the schedule in the second part of the figure. We
notice that most of the stations learn their best action when
the algorithm stabilizes on the schedule presented in Table
IV after 400 thousand iterations. Some players try to choose
different actions at some point, but as seen in the lower graph
of Fig 3, this does not affect the convergence and stabilization
of the algorithm.

VII. CONCLUSIONS

In this paper, we define a load − delay notion based
on the concept of balancing the load inside the buses.
We propose modeling our problem as a distributed game
in the context of a static environment and we consider a
distributed reinforcement learning approach based on Linear
Reward Inaction algorithm to implement it. We validate the
correlation between the proposed load−delay and real delay
of every instance using real data. Results have showed that
the LRI performs well and converges to a near optimal
schedule in a well known static system. The SA algorithm
has showed that it converges to a near optimal schedule
with minimizing the load-delay value better than LRI. In
the proposed static test case scenario, both the Simulated
Annealing and the Linear Reward Inaction algorithms show
that they are able to converge to a schedule that minimizes
the load− delay. Since the presented approaches results in
a near optimal schedule in a static environment, we plan in
the future to dynamically adjust the schedules of the buses
to adapt to real road conditions and passengers demands.

Fig. 3. Probability evolution of the best action per player

REFERENCES

[1] H. Kei and A. Takehiro and K. Nobuo, Simulation for Passengers
Convenience Using Actual Bus Traffic Data (Book) , July, 2019 , pp.
175-194.

[2] Z. Liu , Y. Yan , X. Qu and Y. Zhang , Bus stop-skipping scheme
with random travel time, Journal of Transportation Research Part C:
Emerging Technologies, vol. 35, pp. 46-56, 2013.

[3] H. Larrain and J. C. Muñoz, When and where are limited-stop bus
services justified?, Journal of Transportmetrica A Transport Science,
vol. 12, no. 9, pp. 811-831, 2016.

[4] L.Fu, Q. Liu and P. H. Calamai, Real-Time Optimization Model for
Dynamic Scheduling of Transit Operations, Journal of Transportation
Research Record, vol. 1857, pp. 48 - 55, 2003.

[5] K. Gkiotsalitis, Stop-skipping in Rolling Horizons, Journal of Trans-
portmetrica: A Transport Service, 2020.

[6] N. Khoat and D. Bernard, THE REAL-TIME STOP-SKIPPING IN
THE URBAN TRANSPORTATION NETWORKS, Journal of IFAC
Proceedings Volumes, vol 40, no. 18, pp. 637-642, 2007.

[7] O.J. Ibarra-Rojas and F. Delgado and R. Giesen and J.C. Muñoz,
Planning, operation, and control of bus transport systems: A literature
review, Journal of Transportation Research Part B: Methodological,
vol. 77, pp. 38-75, 2015.

[8] P.S. Sastry, V.V. Phansalkar, M.A.L. Thathachar, Decentralized learn-
ing of Nash equilibria in multi-person stochastic games with incom-
plete information, Journal of IEEE Transactions on Systems, Man, and
Cybernetics, vol. 24, pp. 769-777, 1994.

[9] S. Kirkpatrick , C. D. Gelatt , and M. P. Vecchi , Optimization by
Simulated Annealing, Journal of Science, vol. 220 , pp. 671- 680,
1983.

[10] W. FanRandy and B. Machemehl , Using a Simulated Annealing
Algorithm to Solve the Transit Route Network Design Problem,
Journal of Transportation Engineering , vol. 132, no. 2 ,February 1,
2006.

[11] A. Sun and M. Hickman, The Real–Time Stop–Skipping Problem,
Journal of Intelligent Transportation Systems: Technology, Planning,
and Operations, vol. 9, 26 Jan 2007.

[12] Behrisch, Michael and Bieker-Walz, Laura and Erdmann, Jakob and
Krajzewicz, Daniel. (2011). SUMO – Simulation of Urban MObility:
An Overview. Proceedings of SIMUL. 2011.

[13] K. Gkiotsalitis, O. Cats, At-stop control measures in public transport:
Literature review and research agenda, Transportation Research Part
E: Logistics and Transportation Review, Volume 145, 2021

