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A B S T R A C T   

Identifying the location, the spatial extent and the electrical activity of distributed brain sources in the context of 
epilepsy through ElectroEncephaloGraphy (EEG) recordings is a challenging task because of the highly ill-posed 
nature of the underlying Electrophysiological Source Imaging (ESI) problem. To guarantee a unique solution, 
most existing ESI methods pay more attention to solve this inverse problem by imposing physiological con-
straints. This paper proposes an efficient ESI approach based on simulation-driven deep learning. Epileptic High- 
resolution 256-channels scalp EEG (Hr-EEG) signals are simulated in a realistic manner to train the proposed 
patient-specific model. More particularly, a computational neural mass model developed in our team is used to 
generate the temporal dynamics of the activity of each dipole while the forward problem is solved using a 
patient-specific three-shell realistic head model and the boundary element method. A Temporal Convolutional 
Network (TCN) is considered in the proposed model to capture local spatial patterns. To enable the model to 
observe the EEG signals from different scale levels, the multi-scale strategy is leveraged to capture the overall 
features and fine-grain features by adjusting the convolutional kernel size. Then, the Long Short-Term Memory 
(LSTM) is used to extract temporal dependencies among the computed spatial features. The performance of the 
proposed method is evaluated through three different scenarios of realistic synthetic interictal Hr-EEG data as 
well as on real interictal Hr-EEG data acquired in three patients with drug-resistant partial epilepsy, during their 
presurgical evaluation. A performance comparison study is also conducted with two other deep learning-based 
methods and four classical ESI techniques. The proposed model achieved a Dipole Localization Error (DLE) of 
1.39 and Normalized Hamming Distance (NHD) of 0.28 in the case of one patch with SNR of 10 dB. In the case of 
two uncorrelated patches with an SNR of 10 dB, obtained DLE and NHD were respectively 1.50 and 0.28. Even in 
the more challenging scenario of two correlated patches with an SNR of 10 dB, the proposed approach still 
achieved a DLE of 3.74 and an NHD of 0.43. The results obtained on simulated data demonstrate that the 
proposed method outperforms the existing methods for different signal-to-noise and source configurations. The 
good behavior of the proposed method is also confirmed on real interictal EEG data. The robustness with respect 
to noise makes it a promising and alternative tool to localize epileptic brain areas and to reconstruct their 
electrical activities from EEG signals.   

1. Introduction 

ElectroEncephaloGraphy (EEG) is a non-invasive and safe tool to 

measure synchronized brain activities, which uses an array of electrodes 
to record voltage fluctuations (Busch and VanRullen, 2010; Sun et al., 
2022; Yu et al., 2022). The distribution of the scalp potential differences 
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can be visualized by establishing topographical maps. The high temporal 
resolution of EEG makes it attractive and leads to broad applications in 
the areas of diagnosis and brain-computer interface devices (Numata 
et al., 2019). However, the low spatial resolution of EEG is a significant 
technical limitation caused by the differences of conductivity between 
brain tissues (He et al., 2018). To address this limitation, Electrophysi-
ological Source Imaging (ESI), which is also known as the EEG inverse 
problem, can help to improve the spatial resolution of EEG significantly 
and bridge the gap between scalp recordings and neural generators by 
inferring the active brain source distributions from the external mea-
surements on the scalp (Gross et al., 2001; Bore et al., 2021; He et al., 
2011; Baillet et al., 2001; Martínez-Vargas et al., 2019). Moreover, ESI 
can help neuroscientists to better understand the brain mechanisms and 
help practitioners to plan surgery of epileptogenic areas in 
drug-resistant patients (Liu et al., 2018). However, it is challenging to 
solve the EEG inverse problem without adding further constraints as it is 
highly ill-posed and different source distributions can produce same 
topographies of EEG activity on the scalp (He et al., 1987; Scherg and 
Von Cramon, 1986). 

Previous ESI methods proposed in the EEG community have focused 
on regularization techniques or a priori assumptions to face limitations 
induced by the relatively small number of electrodes and the volume 
conduction (Pascual-Marqui, 2002; Dale and Sereno, 1993; Van Veen 
et al., 1997). Specifically, the equivalent current dipole model requires 
making an assumption on the number of sources, which is suitable to 
estimate the locations of focal cortical activities (Kiebel et al., 2008). But 
this model is limited in generating detectable scalp potentials and 
providing information on source extents due to its reliance on single or 
few dipoles. In contrast, the distributed dipole model, which enforces 
regularization constraints to restrict the solution space, is a widely-used 
and more realistic approach (Liu et al., 2015; Cai et al., 2018). This 
model divides the cortical surface into thousands of triangles, which are 
represented by dipoles. This dipolar grid is dedicated to reconstruct the 
3D distribution of the neural activity based on the assumption that EEG 
measures the summation of the synchronous activity of millions of 
neurons, which is modeled by one or several clusters (patches) of brain 
dipoles (Wu et al., 2015; Abeyratne et al., 2001). 

To obtain a unique solution, various methods employing regulari-
zation techniques in both deterministic and probabilistic frameworks 
have been proposed. The foremost and most commonly used distributed 
inverse solution is the Minimum Norm Estimates (MNE). This approach, 
MNE (Hämäläinen and Ilmoniemi, 1994), involves the utilization of the 
L2-norm as a regularizer to meet the hypothesis of minimizing the 
sources with minimum energy. However, MNE tends to produce sources 
situated on the cortical surface while overlook deeper sources. A vari-
ation of MNE, known as Weighted MNE (wMNE) (Dale and Sereno, 
1993), addressed this issue by weighting the sources differently ac-
cording to their respective distance from the scalp electrodes. Another 
variation of the MNE solution is the Low Resolution Electromagnetic 
Tomography (LORETA) (Pascual-Marqui et al., 1994) method, where a 
Tikhonov regularization-based on the Laplacian operator of the sources 
was employed. This resulted in a smoother source distribution. In 
addition, Linearly Constrained Minimum Variance (LCMV) beamform-
ing (Van Veen et al., 1997), which is the most widely employed beam-
forming technique, has also been utilized to tackle the ESI problem. This 
method functions as a spatial filter, enabling the passage of signals 
originating from specific brain locations, typically represented by di-
poles, while simultaneously attenuating signals from other locations. 
However, the LCMV approach cannot accurately locate correlated 
sources. Regarding the Bayesian framework, the Maximum Entropy on 
the Mean (MEM) technique (Grova et al., 2006) can be accounted for. In 
fact, the MEM technique aims to identify the most spread-out distribu-
tion by maximizing entropy. However, MEM does not take into account 
the valuable temporal information in EEG signals. 

With the rapid development of computing power, the deep learning 
concept has been widely used in various fields including image 

classification (Krizhevsky et al., 2017), natural language processing 
(Nadkarni et al., 2011) and biomedical signals analysis (Li et al., 2020). 
But such an approach seems to have attracted little attention from re-
searchers in the field of ESI. The deep learning concept, as a data-driven 
approach, allows us to capture the sophisticated mapping between 
source and scalp spaces through large-scale training data (Awan et al., 
2019). Although the training process is time consuming to obtain suit-
able weights for the ESI task, this technique can predict the position of 
active sources efficiently and quickly (Zorzos et al., 2021). Recently, a 
model named Deep Brain Neural Network (DeepBraiNNet), based on the 
Long Short-Term Memory (LSTM) architecture, has been used to solve 
the EEG inverse problem, which avoids the explicit inversion of the lead 
field matrix and outperforms the classical methods (Bore et al., 2021). 
But a single type of LSTM network may lack sufficient robustness for 
complex noisy EEG signals, whereas such a robustness is an essential 
property in clinical applications. Sun et al. (2022) proposed a Deep 
learning-based Source Imaging Framework (DeepSIF) consisting of 
multiple fully connected layers and LSTM, which shows an effective 
performance for source imaging. 

This paper proposes a novel simulation-driven deep learning-based 
method, named MS-ESI (Multi-Scale network for Electrophysiological 
Source Imaging), which can precisely delineate the epileptogenic zone. 
Epileptic High-resolution 256-channels scalp EEG (Hr-EEG) signals are 
simulated in a realistic manner to train the proposed patient-specific 
model. More particularly, a computational neural mass model devel-
oped in our team is used to generate the temporal dynamics of the ac-
tivity of each dipole while the forward problem is solved using a patient- 
specific three-shell realistic head model and the boundary element 
method. A Temporal Convolutional Network (TCN) is considered in the 
proposed model to capture local spatial patterns. To enable the model to 
observe the EEG signals from different scale levels, the multi-scale 
strategy is leveraged to capture the overall features and fine-grain fea-
tures by adjusting the convolutional kernel size. Then, the LSTM is used 
to extract temporal dependencies among the computed spatial features. 
The performance of the proposed method is evaluated through three 
different scenarios of realistic synthetic interictal Hr-EEG data as well as 
on real interictal Hr-EEG data acquired in three patients with drug- 
resistant partial epilepsy, during their presurgical evaluation. A perfor-
mance comparison study is also conducted with two other deep 
learning-based methods, namely DeepSIF (Sun et al., 2022) and Deep-
BraiNNet (Bore et al., 2021), three classical regularized minimum norm 
estimates, namely SISSY (Source Imaging based on Structured SparsitY) 
(Becker et al., 2017), wMNE (weighted Minimum Norm Estimate) (Dale 
and Sereno, 1993) and sLORETA (standardized Low Resolution Elec-
tromagnetic Tomography) (Pascual-Marqui, 2002), and the probabilistic 
source imaging technique cMEM (coherent Maximum Entropy on the 
Mean) (Chowdhury et al., 2013). The results obtained on simulated data 
demonstrate that the proposed method outperforms the existing 
methods for different signal-to-noise and source configurations. The 
good behavior of the proposed method is also confirmed on real inter-
ictal EEG data. The robustness with respect to noise makes it a promising 
and alternative tool to localize epileptic brain areas and to reconstruct 
their electrical activities from EEG signals. 

The remainder of this paper is organized as follows: The proposed 
method is described in Section II. Section III is devoted to the experi-
mental results. The efficiency of the proposed method is discussed in 
Section IV and Section V gives a conclusion of this work. 

2. Material and methods 

2.1. Problem formulation 

EEG is a noninvasive method to record the electrical activity of the 
brain using an array of N sensors placed on the scalp. The electric po-
tential generated by pyramidal cortical neurons propagates to the scalp 
surface through the head which is a conducting medium, and the current 
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lead to electric potential differences, which are collected by surface 
electrodes. A specific number of simultaneously active neuronal pop-
ulations, which can be modeled by a grid of contiguous dipoles located 
on the cortex surface, is necessary to achieve a measurable signal with 
sufficient amplitude on the scalp surface. The EEG forward problem is 
commonly defined as the process of calculating the scalp potentials 
generated by pyramidal neurons, which can be formulated as: 

X = GS (1)  

where X = [x1,…,xt ,…,xT] ∈ RN×Tis the observed EEG signals recorded 
by N electrodes at T time points, S = [s1,…,st ,…,sT] ∈ RM×Tdenotes the 
source signals on the cortical surface, M denotes the number of dipoles, 
G ∈ RN×Mgives the lead field matrix which describes the complex rela-
tionship between the source signal at a certain location and the observed 
scalp signals. 

An extended source is defined as the union of clusters of grid dipoles, 
called patches, with fully correlated signals. We will consider several 
extended sources if they are not fully correlated. To differentiate the 
extended sources of interest and the noisy background activity, the data 
model can be rewritten as: 

x(t) =
∑

k=Ωe

sk(t)gk +
∑

c=Ωb

sc(t)gc = Xe + Xb (2)  

where x(t) ∈ RT is the observed EEG signal recorded at t time point, Ωe 
denotes the index set of dipoles forming the eth extended source, gk and 
sk represent the kth column of G and the kth row of S, respectively. 
Similarly, Ωb denotes the index set of dipoles forming the background 
area, gc and sc represent the cth column of G and the cth row of S, 
respectively. The matrix Xe denotes the EEG data generated from the 
extended sources of interest and Xb represents the background activity. 
The adjective “extended” will be omitted in the sequel for the sake of 
simplicity. 

2.2. Multi-Scale network for Electrophysiological Source Imaging (MS- 
ESI) 

Our ultimate goal is to establish a patient-specific deep learning 
model for brain source imaging in the context of epilepsy using HR-EEG 
recordings. While real Hr-EEG, i.e. 256 channels, data can be intuitively 
considered for training the model in a supervised learning manner, there 
are several challenges to overcome: (i) the lack of simultaneous 

acquisition of Hr-EEG and Stereotactic EEG (SEEG) in clinical routine 
and (ii) the lack of a precise location of the epileptic sources in clinical 
practice even supposing that such a joint acquisition is supposed to be 
accessible. To overcome these limitations, one potential alternative so-
lution worth considering is the use of simulated HR-EEG recordings that 
are generated in a realistic manner. This approach can provide a larger 
and more diverse dataset for training the deep learning model, 
compensating for the scarcity of real epileptic EEG data. By simulating 
EEG recordings that closely resemble real-world scenarios, we can 
improve the training process and enhance the ability of the model to 
adjust well to different source positions and cortical areas. To sum up, 
fully simulated HR-EEG recordings representing precise locations of the 
underlying epileptic sources in the cortical surface were used here 
together with simulated intracerebral electrical activity to train the 
proposed patient-specific model as illustrated in Fig. 1 (Training stage). 
More precisely, realistic interictal epileptiform spikes, as relevant bio-
markers of epileptic zones, generated using a neural mass model, 
developed in our team for several years (Wendling et al., 2002; Wen-
dling et al., 2005), were considered as source neural activities. These 
simulated sources, along with a patient-specific head model, were used 
to solve the forward problem in EEG. Hence, the obtained simulated 
patient-specific Hr-EEG data and the simulated intracerebral electrical 
activity were considered for the training step. Finally, the clinical 
epileptic Hr-EEG data were employed to evaluate the performance of the 
model as also shown in Fig. 1 (Testing stage). However, it is crucial to 
bear in mind that when dealing with a new patient, the only necessary 
adjustment is to replace the current head model with the patient’s own, 
as the simulated intracerebral electrical activity remains consistent, 
regardless of the specific patient under study. Although the training 
process of deep learning is relatively time-consuming, it is an offline 
process, and once the model is trained; it can be saved for processing any 
new data. More comprehensive information regarding the generation of 
training data are provided in Section 2.3. 

The proposed MS-ESI model, detailed in Fig. 2, for brain source 
imaging from Hr-EEG recordings comprises three essential stages: 
spatial feature extraction using TCN, temporal dependency revealing 
through LSTM and linear regression using dense neural network. It relies 
mainly on the combination of TCN and LSTM to assess reliable charac-
terization of each time sample and to emphasize their temporal corre-
lation in the feature space. In fact, the combination of TCN and LSTM in 
the proposed model results in a hierarchical representation of EEG sig-
nals: TCN captures local spatial patterns, while LSTM extracts temporal 

Fig. 1. The global patient-specific flow of the proposed ESI procedure.  
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dependencies among these spatial features. This integration enables the 
model to enhance its ability to adjust and to improve the overall per-
formance of brain source imaging. 

TCN is a type of deep learning architecture that is specifically 
designed for sequential data processing such as time series or natural 
language sequences. TCN captures long-term trends using a hierarchy of 
temporal convolutional filters. Two types of TCN can be found: (i) 
Encoder-Decoder TCN (ED-TCN) which uses temporal convolutions, 
pooling, and up-sampling to capture long-range temporal patterns and 
(ii) dilated TCN where dilated convolutions and skip connections across 
layers are used instead of pooling and up-sampling. Dilated convolutions 
apply filters across larger regions by skipping input values with a spe-
cific step defined using a dilatation factor. This approach which is used 
in our proposed model efficiently handles large amounts of data 
sequence (Lea et al., 2017). Regarding the LSTM model, it is a type of 
recurrent neural network that predicts sequences using feedback con-
nections. It consists of a chain of repeated cells with three inter-
connected layers: forget gate, input gate and output gate. These gates are 
composed of a sigmoid neural network layer, followed by point-wise 
multiplication operations (Hochreiter and Schmidhuber, 1997). This 
design allows the LSTM model to selectively remove or add information 
to the flow of data through each cell. The LSTM cell’s first layer is the 
"forget gate layer", which determines whether certain information 
should be disregarded. The subsequent "input gate layer," coupled with a 
"tanh" layer, filters and updates new input data, contributing to the cell 
state’s update. The "tanh" layer combines information from previous 
layers and modifies each state value accordingly. Lastly, the "output gate 
layer" produces the final output based on the cell state (Hochreiter and 
Schmidhuber, 1997). 

More precisely, the proposed neural network structure consists, for 
each time sample in the Hr-EEG recordings of length T, of a set of three 
TCN layers, which are employed to perform a multi-scale spatial feature 
extraction using a set of 64 kernels with varying size: 3, 5 and 7 as 
illustrated in Fig. 2. These multiple filters allow us to capture both local 
and global spatial features, through dilated spatial convolutions with 
zero-padding and multiple dilatation factors taken in the set D = {1,2,4,
8,16}. Next, the set of generated feature maps for each time sample are 
concatenated to form a sample feature map of size 256 × 64. Finally, to 
encompass the entire EEG input signal, the T sample feature maps are 
stacked in such a way a global feature map of size 256 × 192 × T is 
obtained. As far as the temporal-dependency extraction stage is 

concerned, a LSTM model with T LSTM cells (each cell comprises 128 
units) are used to capture a long-range temporal dependency among the 
T computed sample feature maps. The LSTM output is then introduced to 
a dense layer with a number of neurons equals to the number D of grid 
dipoles on the cortical surface (source space) as shown in Fig. 2. The 
Minimum Squared Error (MSE) criterion is exploited as a cost function 
during the backpropagation phase using the Adam algorithm, with 
learning rate of 0.001, as optimizer. Table 1 recapitulates the key pa-
rameters of the proposed model. 

To avoid the model overfitting a 5 % dropout layer was incorporated 
into our designed model. Besides, 10 % of the training samples were 
used as a validation set to monitor the model’s performance during the 
training process. Together with the dropout method, an early stop 
strategy was also used to prevent the model overfitting. 

2.3. Simulated data generation 

Realistic synthetic data are simulated in order to train the MS-ESI 
model and to quantitatively evaluate the performance of our approach 
in particular context of extended interictal epileptic sources. We 
generated a High-resolution 256-channels scalp EEG (Hr-EEG) using a 
three-shell realistic head model including the brain, the skull and the 
scalp, whose conductivity are 0.33 Ω− 1m− 1, 0.00825 Ω− 1m− 1, and 0.33 
Ω− 1m− 1, respectively. The high-resolution 15,002 vertices cortical mesh 
was built from the segmentation of the gray-white matter interface from 
a patient 3D T1-weighted MRI using Brain Visa software (Rivière et al., 
2009). Each vertex of the mesh has been associated with an elementary 

Fig. 2. The schematic diagram of the proposed model. TCN (#K, KS, D) stands for a TCN layer with #K, KS and D denoting the number of used kernels, the kernel 
size and the set of used dilatation factors (here D = {1,2, 4,8, 16}), respectively. 

Table 1 
The key parameters of the proposed model.  

Configuration Value 

Dilated conv1D Kernel number=64; Kernel_size=1 × 3; 1 × 5; 1 × 7 
Dilation factors 1, 2, 4, 8, and 16 
Dropout layer 0.05 
LSTM Unit=128 
Fully connected layer Neurons_number = 128; 15,002 
Learning rate 0.001 
Batch_size 64 
Epochs 100 
Optimizer Adam 
Loss MSE 
Monitor-metric val_loss  
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current dipole. The mesh comes from the segmentation of the cortex 
(gray matter). This cortical surface includes the insula, the basal frontal 
and part of the interhemispheric structures (commissures). It mainly 
models the basal part of the hippocampal structure, entorhinal and 
parahippocampal cortex. But the hippocampus itself is not part of the 
mesh nor the internal nuclei. The 256-channel Biosemi system was used 
as the electrode template. Besides, the forward problem was solved 
using the Boundary Element Method (Gramfort et al., 2010) (BEM) to 
calculate the lead field matrix G (256 × 15,002), which quantifies the 
contribution of each dipole of the mesh at the level of 256 scalp elec-
trode positions. The temporal dynamics of the activity of each dipole, 
were simulated using a computational neural mass model developed in 
our team for several years (Wendling et al., 2005). The parameters of 
this model can be adjusted to generate either background-like activity or 
interictal-spikes. To model an extended source (or patch), the Brain-
storm software was used to randomly select a triangular grid on the 
cortical surface as a centered seed. Then, the patch size was iteratively 
increased until it reached the desired extent as per the requirements. 
These steps were then replicated to generate a sufficient number of 
epileptic source locations for both the training and testing stages. Di-
poles associated to triangles within the patch were assigned with highly 
correlated interictal spike activities using an appropriate setting of 
coupling parameters between populations. Dipoles that do not belong to 
a patch were attributed background activity with an amplitude that is 
adjusted to the amplitude of the epileptic spikes, where the SNR was 

computed as SNR = 10log10
‖Xe ||

2

‖Xb ||
2. 

2.4. Clinical data 

A 256-channel Hr-EEG was recorded in three patients for one hour, at 
1000 Hz following the procedure approved by the National Ethics 
Committee for the Protection of Persons (CPP, agreement number 2012- 
A01227–36). Patients gave their written informed consent to participate 
in this study. For each patient, a specific head model is derived by 
segmenting the surfaces of the brain, the skull, and the scalp from the 
patient MRI. As for simulated data, the source space was composed of 
15,000 dipoles corresponding to the vertices of the cortical surface 
mesh. The lead field matrix of each patient is computed using the BEM 
method implemented in OpenMEEG (Gramfort et al., 2010). For each 
patient, spikes were characterized according to their voltage distribu-
tion and averaged to improve SNR.  

• Patient 1: The scalp EEG recordings showed interictal spike activity 
with maximal amplitude at the dorsal frontal left electrode AF5h. 
Twenty-three spikes centered in a 1 s epoch were considered: they 
were classified by shape leading to three groups of spikes and to three 
averaged spikes. Source imaging was performed on each of the three 
spikes. A weighted average of the three solutions was considered as 
result at the output of each of the seven methods.  

• Patient 2: The scalp EEG recordings indicated that interictal spike 
activity maximal amplitude occurred at the frontal basal electrode 
AFP9h, located above the subject’s left eyebrow. Eight spikes away 
from the artefacts were visually selected from the interictal epileptic 
activity. Each of them was extracted using a one-second window 
centered on the maximum point and these eight windows were 
averaged.  

• Patient 3: The maximal spike activity occurred at the left parietal 
electrode CP1. Eighteen spikes centered in a 1 s epoch were 
averaged. 

2.5. Model training and testing 

According to the studied clinical context (partial epilepsy) three 
scenarios corresponding to three different source configurations were 
considered to train the MS-ESI model: (i) single patch sources, (ii) two 

distant uncorrelated patches where Euclidean and Geodesic mean dis-
tance between all vertices of the two uncorrelated patches were 9.41 cm 
and 10.41 cm, respectively, and iii) two close correlated patches 
configuration where the mean Euclidean and Geodesic distance between 
the two patches were 4.60 cm and 5.58 cm, respectively. 

To ensure the robustness of the three-deep learning-based methods, 
namely MS-ESI, DeepSIF, and DeepBraiNNet, in different scenarios, the 
training dataset was carefully constructed by blending realizations from 
scenarios (i), (ii), and (iii) with SNR equal to 10 dB. The SNR level of 10 
dB, in the training set, is chosen to mimic the realistic SNR of denoised 
interictal EEG data. More precisely, the training dataset is composed of 
440 realizations of each scenario, which gives a total of 1320 examples. 
In addition, 10 % of these realizations were randomly kept for the 
validation stage to avoid the model overfitting. As far as the evaluation 
on simulated data is concerned, 100 realizations, for each scenario and 
each SNR level (from − 15 to +10 dB by a step of 5 dB), were used as 
testing set to assess the performance of the proposed method and the six 
other state-of-art algorithms considered in this study. In order to prevent 
information leakage, the data employed in the training set is not recy-
cled in the testing set. This strict demarcation guarantees that the per-
formance of the learning-based methods is evaluated using completely 
novel and separate data, preserving the integrity of the assessment 
process. It is important to note that all parameters of DeepSIF, Deep-
BraiNNet and SISSY were rigorously fixed in accordance to the original 
papers (Sun et al., 2022; Bore et al., 2021; Becker et al., 2017), 
respectively. Regarding the wMNE, sLORETA and cMEM approaches, 
they were used as suggested by one of the most commonly used 
open-source Matlab toolbox: Brainstorm (Tadel et al., 2011). Regarding 
the performance evaluation on real data, a patient-specific approach is 
adopted, as pointed out before, to learn the MS-ESI, DeepSIF, and 
DeepBraiNNet models. This entails that for each tested patient, a new 
model was learned using the same training set of simulated intracerebral 
electrical activity with a patient-specific head model. Finally, all con-
ducted experiments were carried out on a PC with an Intel Xero W-2295 
CPU and an NVIDIA RTX A5000 GPU. 

2.6. Performance metrics 

The proposed framework is quantitatively evaluated in terms of 
source localization and the source reconstruction. To calculate the 
performance criteria, we first determine the active patch by thresh-
olding the intensity of the estimated sources at the time sample with the 
highest power, which corresponds to the maximum of the epileptic spike 
in our context. To do so, a suitable threshold β (between 0 and 1) is 
applied for each evaluated ESI approach for which all sources of in-
tensity superior or equal to β times the absolute maximal intensity is 
retained; i.e. if the amplitude of a reconstructed source exceeds the fixed 
threshold β, it is then considered as an epileptic source, otherwise, it is 
regarded as background. 

The localization performance is assessed using two criteria: the 
Dipole Localization Error (DLE) (Becker et al., 2017) and the Normalized 
Hamming Distance (NHD). Other usual classification scores, namely, 
sensitivity (Sen) specificity (Spe), False Detection Rate (FDR) and 
F1-score are also provided in supplementary material. The DLE mea-
sures the similarity between the original and estimated sources config-
uration, and is defined as: 

DLE =
1

2N
∑

m∈Ω
min
n∈Ω̂

‖pm − pn‖ +
1

2N̂

∑

n∈Ω̂

min
m∈Ω

‖ pm − pn ‖ (3)  

where Ωand Ω̂ denote, respectively, the original and estimated sets of 
indices of all dipoles of an active patch. Nand N̂are the numbers of 
original and estimated active dipoles whilepmandpnstand respectively 
for the position of the m-th and the n-th source dipoles. Regarding the 
NHD-based metric, after a suitable thresholding, we derive for each 
method a binary map, by setting to one all the retained dipoles, 
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otherwise they are set to zero. Mathematically, the NHD is defined as 
follows: 

NHD =

∑Q

i=1
|α(i) − α̂(i)|

∑Q

i=1
|α(i) + α̂(i)|

(4)  

where α and α̂ stand, respectively, for a vector representation of the true 
binary map (ground truth) and the estimated one and Q denotes the total 
number of dipoles constituting the cortical surface. 

Regarding the construction of the sources times courses, the Pearson 
Correlation Coefficients (PCCs) between the estimated time courses and 
the true ones are considered as an evaluation criterion. More precisely, 
the Averaged PCC is calculated by averaging the PCCs computed on the 
times courses associated to the overlapped dipoles between the esti-
mated patches and the those for the original patches. In the experiments 
where we have more than one patch, the mean of the PCCs for all 
patches is computed. Finally, all the results are averaged over 100 re-
alizations of the testing set with different patch signals configurations 
and SNRs. 

To evaluate the statistical significance of the obtained results in 
terms of source localization and source reconstruction, a one-tailed t-test 
was conducted. Statistical significance was determined at p < 0.05. This 
analysis compared the results of the proposed MS-ESI in terms of DLE, 
NHD, and APCCS with the corresponding values of the six other methods 
(obtained from the 100 realizations of the testing set). 

3. Results 

A precise knowledge about the epileptogenic zones is generally un-
available for real data, performance evaluations are mostly based on 
realistic simulated data for which the ground truth is known and 
controlled. Thus, in this section, we firstly study the effectiveness of the 
proposed MS-ESI method in the context of interictal epileptic extended 
sources localization, by using realistic synthetic data (100 realizations). 
Besides, the well-known inverse crime issue and the impact of the 
limited number of surface electrodes were also discussed. Additionally, 
to corroborate the effectiveness of the proposed pipeline, real EEG 
measurements are also included. Finally, the MS-ESI algorithm was 
compared with several existing ESI algorithms, including DeepSIF, (Sun 
et al., 2022) DeepBraiNNet (Bore et al., 2021), SISSY (Becker et al., 
2017), wMNE (Dale and Sereno, 1993), sLORETA (Pascual-Marqui, 
2002) and cMEM (Chowdhury et al., 2013), for all experiments. 

3.1. Application on realistic synthetic interictal EEG data 

3.1.1. Thresholds selection 
As pointed out before, for the localization of the epileptogenic zone, 

all the PCCs of grid dipoles that exceed a certain threshold are associated 
to the extended source. Thus, the selection of a suitable threshold for 
each method is crucial in determining the performance of source im-
aging. A subjective threshold will lead to an unfair performance com-
parison between different methods, particularly as their performance 
can vary significantly with the chosen threshold. While determining the 
best threshold may be challenging, it is possible to identify a suitable 
relative threshold for all the methods under study. Such a suitable 
relative threshold will be the one that provides the best compromise 
between the source localization and source reconstruction. To set this 
suitable threshold, a set of threshold candidates is evaluated in the 
context of a single patch scenario for an SNR of 10 dB. Fig. 3 illustrates 
the line charts for the two metrics, DLE and NHD, as a function of the 
threshold β. Except for sLORETA, the DLE and the NHD curves show an 
almost equivalent trend. However, in the case of sLORETA, the DLE is 
inversely proportional to the value of β, whereas the NHD tends to 
deteriorate when the threshold is set to 0.8 and 0.9. Fig. 3, shows also 
that the optimal thresholds β for MS-ESI, DeepSIF, DeepBraiNNet, SISSY, 
wMNE, sLORETA, and cMEM are 0.4, 0.4, 0.4, 0.4, 0.4, 0.7, and 0.2, 
respectively. Thus, for all the results that will be presented hereafter, the 
threshold β is fixed accordingly. Note also that a study for the choice of 
the optimal threshold for the SNRs of 0 dB and − 10 dB was also carried 
out (see supplementary material). The curves of the DLEs and NHDs 
present similar trends as those observed in the scenario with an SNR of 
10 dB. Additionally, we also used the well-known Otsu’s method (Otsu, 
1979) to determine the optimal threshold for each algorithm. The results 
obtained, as elaborated in the supplementary materials, distinctly 
demonstrate that when utilizing the optimal Otsu’s threshold, the DLEs 
and NHDs for each method were lower than when employing our 
thresholding approach. Consequently, for all the results presented 
below, the threshold β was determined in accordance with the proposed 
methodology. 

3.1.2. Experiment I: single patch scenario 
Once the adequate threshold is fixed for each method, the proposed 

model is firstly evaluated in the case of one patch as a function of SNR. 
Fig. 4(a)–(c) present the boxplot of the DLE, the NHD and the APCC 
metrics, respectively, for an SNR varying in a range from − 15 dB to 10 
dB. As expected, the performance of all methods is affected by increasing 
the noise, but the MS-ESI method exhibits the best behavior, in terms of 
source localization, compared to the other ones. Indeed, it can be 

Fig. 3. The line charts for two metrics with different thresholds under one patch scenario with SNR of 10 dB. (a) DLE and (b) NHD.  
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Fig. 4. Boxplot of DLE (a), NHD (b) and APCC (c) metrics for the proposed MS-ESI and other six existing ESI ones for different SNR values. Case of a single 
epileptic patch. 
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noticed from Fig. 4 that the performance of the MS-ESI method is rela-
tively stable from − 10 dB to 10 dB. For a very low SNR (e.g. − 15 dB), 
despite the fact that the performance of the MS-ESI exhibits in this case a 
minor decrease, it continues to outperform the other techniques, espe-
cially for source localization metrics (i.e. DLE and NHD). Even if 
sLORETA seems robust against noise, its performance remains low in 
terms of NHD. The aforementioned algorithms show also a consistent 
behavior in terms of other statistical metrics (e.g. F1-score) as shown in 
the provided supplementary material (see Fig. S1). The results, sup-
ported by statistical analysis using t-test, indicate good statistical sig-
nificance with a confidence level of 95 %, whatever the compared 
method and the studied SNRs (see Tables S1 and S2 in the supplemen-
tary material for more details). Concerning the APCC, all methods 
demonstrate a good performance for an SNR greater or equal to − 5 dB. 
For low SNR values (e.g. − 10 and − 15 dB), MS-ESI, DeepSIF, Deep-
BraiNNet, wMNE and sLORETA are still robust, whereas SISSY and 
cMEM seem to be less effective. Also, it can be generally noticed that the 
performance of MS-ESI is globally quasi equivalent compared with the 
commonly used methods, namely sLORETA and wMNE, for any SNR 
level. This demonstrates that the MS-ESI method is also very competitive 
in reconstructing the source signal. In relation to the APCC metric, the 
study showed significant superiority (with a p-value < 0.05) of the MS- 
ESI over the other methods considered, except for DeepBraiNNet, wMNE 
and sLORETA, as indicated in Table S3 of the supplementary materials. 

To complete our performance analysis study, a visual inspection on 
the performance of each ESI method is provided in Fig. 5. This figure 
shows two examples of source imaging in the case of a single epileptic 
source (for SNR= 5 dB) with two different locations on the cortex: (i) a 
superficial patch and (ii) a deep patch. In accordance with the overall 
results presented in Fig. 4(a) and 4(b), deep learning-based methods, 
especially DeepSIF and the proposed method MS-ESI are very effective, 
regardless the patch location. The SISSY algorithm, which employs two 
sparsity constraints on the target sources, presents a very good behavior 
for the superficial patch but its performance seems less relevant in the 
case of deep sources. Regarding wMNE, sLORETA and cMEM, even if 
these methods target well the epileptic zone, they lead to blurred source 
localization results for both cases. Furthermore, the signals recon-
structed by the seven methods together with their corresponding ground 
truth signal being randomly selected from testing samples under − 5 dB 
SNR are shown in Fig. 6. According to the latter figure, it can be noticed 
that the performance of all methods remains acceptable even for a 
relatively bad SNR of − 5 dB. It’s worth noting that, as depicted in 
Table 2, with the exception of the cMEM algorithm, all the methods 
employed in this study exhibited short execution times for localizing 
epileptic sources and reconstructing their time courses. For instance, for 
Hr-EEG signals comprising 256 channels and 200 time samples, MS-ESI, 
DeepSIF, DeepBraiNNet, and sLORETA required less than 0.6 s for 
execution, while SISSY and cMEM took a longer time to complete the 

process. 

3.1.3. Experiment II: two uncorrelated patches with different source vertices 
and large distance 

To deal with a multi-focal epilepsy context, the proposed model is 
evaluated on Scenario 2, which consists of two uncorrelated patches 
with different source vertices and a large distance. Fig. 7 shows the 
boxplot of three metrics for the proposed method and the other six state- 
of-art ones. The MS-ESI method significantly outperforms the other 
methods whatever the metrics as shown in Fig. 7 (all the p-values of 
Tables S4 and S5 of supplementary materials are lower than 0.05). This 
fact confirms the stability and robustness of MS-ESI even with multiple 
uncorrelated sources. In fact, even in such a scenario, which is clearly 
more complex than the one including one patch, the MS-ESI method still 
maintains a stable performance across an SNR range from − 5 dB to 10 
dB. In contrast to MS-ESI, the methods wMNE, sLORETA and cMEM do 
not maintain the same level of stability as observed in the single patch 
scenario. In fact, the performance of these methods shows relatively a 
large fluctuation under different SNRs. In terms of APCC, it is worth 
noting that the MS-ESI method consistently achieves the excellent APCC 
across all SNR values. This confirms again its ability to accurately 
reconstruct the source signal even in difficult scenarios such as for a low 
SNR value together with two highly distant coactivated sources. 
Regarding the significant improvement of the time course reconstruc-
tion, i.e. APCC, of the MS-ESI model, the p-values given in Table S6 are 
in line with the boxplot of Fig. 7(c), i.e., MS-ESI exhibited significant 
differences compared to DeepSIF, SISSY, and cMEM. However, this 
significant is not always demonstrated for DeepBraiNNet, wMNE, and 
sLORETA. 

Fig. 8 illustrates examples of source imaging for two uncorrelated 
source patches which are randomly selected from the testing samples for 
an SNR of 5 dB. All methods globally target the location of the source 
patches. Compared with the MS-ESI method, DeepSIF and Deep-
BraiNNet lead to a more extensive reconstruction. Under the condition 
of two uncorrelated source patches, SISSY is unable to maintain high 
performance. For instance, in the case where we have at least one deep 
patch (Case 2 in the Fig. 8), SISSY overestimates the spatial extent of the 
deep source. As in the single patch case, the remaining methods 
including wMNE, sLORETA, and cMEM cannot accurately delimitate the 
spatial location and tend to give blurred source localization results (as 
for Scenario 1). Additionally, we conducted random inspections of 
multiple trials in Scenario 2 and computed, for each method, the success 
rate of detecting two uncorrelated patches (as presented in Table 3). 
Successful detection was determined based on two criteria: i) the 
reconstructed sources needed to have an overlap with the ground truth 
sources exceeding 70 %, and ii) both patches had to be detected 
regardless of their position in the source space. Table 3 illustrates that 
MS-ESI achieved a 95 % success rate, fulfilling both of these conditions, 

Fig. 5. Source imaging for single source patch under 5 dB SNR. Case 1: superficial source patch. Case 2: deep source patch.  
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followed by DeepSIF (90 %) and DeepBraiNNet (85 %). Among the 
traditional methods, only SISSY demonstrated the ability to correctly 
detect both uncorrelated patches with a 60 % success rate. It is impor-
tant to note that, due to their inherently blurry solutions, methods like 
wMNE, sLORETA, and cMEM never met the criteria for a successful 
detection. 

3.1.4. Experiment III: two correlated patches with different source vertices 
and short distance 

A more challenging scenario is considered here to test the ability of 
the considered ESI methods to separate two correlated relatively close 
patches with different source vertices. The performance of the proposed 
method and other baseline methods is evaluated using the previous 
three metrics, DLE, NHD and APCC, and the boxplot of these three 
metrics presented in Fig. 9. Even in this challenging scenario, the MS-ESI 
method still exhibits the best performance among all the methods as 
shown in Fig. 9. It is worth noting that SISSY yields a relatively better 
DLE than DeepSIF and DeepBraiNNet across an SNR range from 0 dB to 
− 10 dB. This is probably due to the fact that DeepSIF and DeepBraiNNet 
focus only on single-scale features and cannot effectively characterize 
EEG signals from different scales. Similar to Scenario 2, although the 
APCC of wMNE and sLORETA is slightly higher than that of the proposed 
MS-ESI method in scenarios with an SNR of 0 dB, 5 dB and 10 dB, the 
performance of these conventional methods declines drastically with an 
increasing noise level. This results in a much lower APCC compared to 
the MS-ESI method across an SNR range from − 5 dB to − 15 dB. These 
results demonstrate the robust performance of the MS-ESI method 
regardless the distance or the correlation among simultaneously active 
sources. Note that a similar behavior of the methods under study is also 
observed using other statistical metrics as shown in the provided sup-
plementary materials (Fig. S3). Tables S7, S8 and S9, in the supple-
mentary material, showed that the proposed method significantly 
outperforms other methods in terms of DLE and NHD. Concerning the 
APCC metric, except for wMNE and sLORETA methods (for some SNR 

levels), a significant improvement of the results obtained with MS-ESI 
was also observed. 

Similarly to Scenario 1 and Scenario 2, two examples of source im-
aging for two correlated source patches are also given in Fig. 10. These 
examples are randomly selected from the testing dataset. Even if we 
observe a slight degradation in the reconstruction quality of MS-ESI 
under this more challenging scenario, this approach still outperforms 
the other ESI methods and is able to separate the two closest patches in 
both cases. Interestingly, contrary to the other methods, the DeepSIF one 
shows inability to localize one of the two deep patches as shown in 
Fig. 10 (Case 2). Additionally, depending on the specific case being 
studied, DeepBrainNNet and SISSY are not be able to distinguish be-
tween the two patches, as they treat them as a single large patch. As far 
as wMNE and sLORETA are considered, they fail to recover all patches. 
Finally, in both studied cases, the solutions of cMEM include high 
amplitude at a position that does not correspond to the initial source 
configuration. In the context of Scenario 3, we also examined the success 
rate of detecting two correlated patches. In this case, a successful 
detection required the considered methods to meet not only the previ-
ously mentioned conditions (i) and (ii) from Experiment II but also a 
third condition: (iii) the capability to distinguish between closely 
correlated sources. Even in this challenging scenario, as shown in 
Table 4, the MS-ESI approach displayed promising results with a success 
rate of 60 %, outperforming all the other methods considered in the 
study (the highest success rate of 45 % was achieved by DeepBraiNNet). 

3.1.5. Experiment IV: model errors 
In the preceding experiment, we addressed the EEG inverse problem, 

where the same model parameters were utilized for both forward and 
inverse modeling, a situation commonly referred to as the "inverse 
crime". To mitigate this concern, we employed a lead field matrix to 
simulate scalp EEG signals (for the forward problem) that differed from 
the one used to solve the EEG inverse problem. This was achieved by 
making slight adjustments to the positions of the scalp electrodes. It’s 

Fig. 6. Reconstructed signal of all methods and their corresponding ground truth signal which are randomly selected from the testing samples for an SNR of − 5 dB. 
(a) MS-ESI. (b) DeepSIF. (c) DeepBraiNNet. (d) SISSY. (e) wMNE. (f) sLORETA. (g) cMEM. 

Table 2 
Executive time for all ESI methods.   

MS-ESI DeepSIF DeepBraiNNet SISSY wMNE sLORETA cMEM 

Executive time (s) 0.2063 0.5981 0.1101 13.3016 0.1674 0.1929 2824.3667  
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Fig. 7. Boxplot of DLE (a), NHD (b) and APCC (c) metrics for the proposed MS-ESI and other six existing ESI ones for different SNR values. Case of two uncorre-
lated patches. 
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important to note that there are alternative methods to circumvent this 
inverse crime, such as employing distinct grids for the forward model 
and the inverse one, or modifying the skull conductivity between the 
forward model and the source localization solution. To be specific, for 
each of the 100 realizations in the testing set, a new lead field matrix was 
generated by randomly shifting the electrode positions by approxi-
mately 1 centimeter. The resulting DLEs and NHDs, with an SNR value of 
10 dB, for all methods across the three studied scenarios were provided 
in Figs. 11 and 12, respectively. It’s evident that, as in the three prior 
experiments, the DL-based methods outperformed the classical ones in 
all scenarios. Specifically, the obtained results were nearly indistin-
guishable with and without the inverse crime for the easier scenarios 1 
and 2. As for the challenging scenario 3 (involving 2 correlated sources), 
all methods exhibited slightly reduced efficiency. Notably, the proposed 
MS-ESI method maintained its superior performance in this context 
compared to the other methods. 

3.1.6. Experiment V: influence of the number of scalp EEG electrodes 
Even if the HR-EEG is increasingly used in clinical settings, the 

standard EEG systems in medical applications generally have 19 to 32 
channels. Thus, to evaluate the effectiveness of the proposed MS-ESI 
approach on low-resolution EEG data, the experiments I to III are 
reproduced for a limited number of electrodes equal 32 and a realistic 
SNR of 10 dB. Figs. 13 and 14 showed the obtained results for DLE and 
NHD metrics. Similarly to the experiment IV, the obtained result for 
scenarios 1 and 2 were globally equivalent than those obtained from HR- 
EEG (256 electrodes). As far as the scenario 3 was concerned, all 
methods exhibit reduced performances when only 32 electrodes were 
exploited. However, the MS-ESI model was still the more efficient 
method with a reasonable performance. 

3.2. Application on clinical data 

The above experimental results on simulated signals showed that the 

MS-ESI method accurately localized the source position and recon-
structed the spatial extent, whatever the studied scenario. To further 
verify whether the MS-ESI method can maintain its good performance 
on real data, we propose to qualitatively measure the efficiency of the 
commonly used pipelines on real Hr-EEG data acquired in patients with 
drug-resistant partial epilepsy, during their presurgical evaluation. 

For the three patients, Fig. 15 illustrates source imaging of real EEG 
interictal spikes, the reconstructed interictal spike activity at the elec-
trode for which it has maximal amplitude as well as the PCC between the 
latter and the corresponding recorded interictal spike. The magenta dots 
indicate SEEG contacts with interictal activity and the black circle 
indicate the maximum of amplitude of the reconstructed brain sources. 
For patients 2 and 1, the implantation was in Frontal and temporal re-
gions, for patient 3 it was in frontal and parietal regions. For all patients, 
both orthogonal and oblique trajectories were considered for the elec-
trode implantation (Rollo et al., 2020). In addition, all these three pa-
tients have SEEG recordings. The top view of source imaging for patients 
1 and 3 using cMEM is provided in Fig. S4 of the supplementary 
materials. 

Patient 1: The most circumscribed solutions were observed with MS- 
ESI, DeepSIF, DeepBraiNNet, and SISSY. More extended solutions were 
obtained with wMNE, sLORETA and cMEM which also showed activa-
tions in the contralateral hemisphere. These activations were in the left 
frontal pole, i.e. the closest to SEEG contacts that showed the maximal 
intracerebral spike activity with DeepSIF and SISSY. The solution ob-
tained with MS-ESI, DeepBraiNNet, and MS-ESI localizes a well cir-
cumscribed region, posterior to the contacts showing the maximal 
intracerebral spike activity. There was no implanted electrode in this 
region. MS-ESI, DeepBraiNNet, DeepSIF and SISSY exhibited a good 
performance. On the contrary, sLORETA and cMEM showed activated 
areas away from the maximal intracerebral activity, and wMNE gener-
ated large activation including the contralateral frontal region. All the 
PCCs are high, showing a good EEG signal reconstruction for all the 
methods, with a slightly higher PCC for SISSY and wMNE. Patient 2: 

Fig. 8. Source imaging for two uncorrelated source patches under 5 dB SNR. Case 1: superficial source patch. Case 2 includes one superficial and deep source patch, 
which are shown in the top view and bottom view. 

Table 3 
Successful detection rate, DLE and NHD at the output of all ESI methods for the two uncorrelated sources scenario.   

MS-ESI DeepSIF DeepBraiNNet SISSY wMNE sLORETA cMEM 

Successful detection rate 95 % 90 % 85 % 60 % 0 % 0 % 0 % 
DLE 1.2735±0.8276 1.9670±1.9509 2.1698±1.2265 2.3722±2.0206 – – – 
NHD 0.2612±0.1115 0.3317±0.1931 0.3600±0.1394 0.3682±0.1780 – – –  
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Fig. 9. Boxplot of DLE (a), NHD (b) and APCC (c) metrics for the proposed MS-ESI and other six existing ESI ones for different SNR values. Case of two corre-
lated patches. 
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Spatially limited solutions were obtained with MS-ESI, DeepSIF, Deep-
BraiNNet while larger activations appeared with SISSY, wMNE, sLOR-
ETA and cMEM. The maximal amplitude of solutions from MS-ESI, 
DeepSIF and DeepBraiNNet were the closest to the maximal intracere-
bral spike activity located in the left mesial orbitofrontal region. 

Relatively close source activity was also obtained using cMEM, SISSY 
and sLORETA regarding the maximal amplitude of their solution. The 
solution of wMNE was localized in the lateral orbitofrontal region, 
remotely from the main interictal SEEG activity. All the PCCs are very 
high, showing a very good EEG signal reconstruction for all the methods, 

Fig. 10. Source imaging for two correlated source patches under 5 dB SNR. Case 1: superficial source patch. Case 2: deep source patch.  

Table 4 
Successful detection rate, DLE and NHD of all ESI methods under two correlated sources scenario.   

MS-ESI DeepSIF DeepBraiNNet SISSY wMNE sLORETA cMEM 

Successful detection rate 60 % 25 % 45 % 40 % 0 % 0 % 0 % 
DLE 2.7687±2.7195 5.3079±2.8948 4.3067±3.1396 2.8346±2.6474 – – – 
NHD 0.3489±0.1258 0.5214±0.1683 0.4431±0.1260 0.4245±0.0925 – – –  

Fig. 11. Boxplot of DLE for each method based on new testing samples with 10 dB SNR. (a) one patch. (b) two uncorrelated patches. (c) two correlated patches.  

Fig. 12. Boxplot of NHD for each method based on new testing samples with 10 dB SNR. (a) one patch. (b) two uncorrelated patches. (c) two correlated patches.  
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with a slightly higher PCC for MS-ESI, SISSY and sLORETA. Patient 3: 
The most restricted solutions were obtained with MS-ESI and cMEM. 
Unfortunately, SISSY, DeepSIF and DeepBraiNNet showed bilateral ac-
tivations and wMNE and sLORETA gave extended solutions. The most 
accurate localization with respect to the maximal intracerebral spike 
activity was obtained with MS-ESI in the postcentral gyrus. Similarly, 
the maximal activation obtained with DeepBraiNNet also collocated 
with SEEG interictal activity but the solution was more extended than 
with MS-ESI. The results obtained with the other approaches were less 
congruent with SEEG, with a maximal activation in the left inferior 
parietal, left precentral, left prefrontal or right basal temporal regions 
for DeepSIF, wMNE, sLORETA and cMEM respectively. A good EEG 
signal reconstruction was obtained by MS-ESI, DeepBrainNet, WMNE 
and sLORETA with high PCC values. 

4. Discussion 

To reduce the number of feasible solutions and achieve a relatively 
optimal one for the inverse problem, the conventional numerical ESI 
methods explicitly incorporate prior information into the objective 
equation in the form of regularization terms. The sparsity constraints 
introduced by SISSY (Becker et al., 2017) effectively enhance the 
capability to obtain focused and sparse solutions, but its performance is 
often limited to locating superficial epileptic sources and is less efficient 
for deep sources. wMNE (Dale and Sereno, 1993) addresses the problem 
of MNE favoring cortical surface sources by weighting different sources 
based on their distances from scalp electrodes, providing a solid math-
ematical foundation and clear formulation. However, its estimated 
source localizations are still blurred. sLORETA (Pascual-Marqui, 2002) 
is renowned for its robustness to noise in EEG signals and has a solid 

theoretical foundation, but it suffers from spatial blurring and generates 
overly diffuse estimates. cMEM (Chowdhury et al., 2013) imposes 
spatial constraints derived from anatomical or physiological consider-
ations of the brain to guide the solution toward realistic source config-
urations. However, it may be sensitive to the selection of some 
parameters, and its computational complexity is relatively high. The 
effectiveness of these conventional ESI methods depends on the accu-
racy of their assumptions and their ability to define additional mathe-
matical terms accurately based on prior information. Recent advances in 
DL framework have confirmed the power of this technique in tackling 
various real-life applications among which biomedical engineering. 
However, it is commonly known that the performance of such technique 
is heavily subject to the size of the training dataset. In many applica-
tions, such a constraint is however not always fulfilled. For instance, in 
the context of epilepsy, as stated before, the availability of a joint 
registration of surface EEG and SEEG signals, which is mandatory for 
DL-based ESI, is infeasible in clinical routine. In this paper, this limita-
tion is addressed by means of realistic simulated EEG and intracerebral 
electrical activity as training dataset generated using a neural mass 
model developed in our group. (Wendling et al., 2002; Wendling et al., 
2005) It worth noting here that the only clinical parameter used in our 
method is the one of the patient lead field matrix which is systematically 
computed from the available patient’s MRIs. Recently, a DL-based ESI 
approach has been introduced in (Bore et al., 2021) where a LSTM 
model was mainly employed. Despite its promising results, such models 
capture only time dependence among time samples where possible 
spatial dependencies are omitted. To simultaneously extract spatial and 
temporal information, the DeepSIF (Sun et al., 2022) model that incor-
porated both fully connected networks and LSTM was proposed to 
implicitly learn rich characteristics of underlying brain sources. 

Fig. 13. Boxplot of DLE for each method under three scenarios with 32 electrodes and 10 dB SNR. (a) one patch. (b) two uncorrelated patches. (c) two corre-
lated patches. 

Fig. 14. Boxplot of NHD for each method under three scenarios with 32 electrodes and 10 dB SNR. (a) one patch. (b) two uncorrelated patches. (c) two corre-
lated patches. 
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However, the drawbacks of the fully connected network in acquiring 
spatial information and its high number of training parameters to some 
extent limit the performance of this model in extracting spatiotemporal 
information. The spatial dependency is relevant in EEG inverse problem 
as they permit to establish the appropriate spatial filter that targets 
epileptic sources. To this end, our approach takes advantage of both 

spatial and temporal dependencies by combining TCN with LSTM: the 
goal of TCN is to capture local spatial patterns whereas the role of LSTM 
is to reveal temporal dependencies. 

As shown in Section 3.1 giving results on realistic synthetic interictal 
EEG data, while the time course reconstruction of epileptic sources 
seems to be slightly better for the proposed MS-ESI method compared to 

Fig. 15. Source imaging of real EEG recordings, the reconstructed interictal spike activity at the electrode for which it has maximal amplitude as well as the PCC 
between the latter and the corresponding recorded interictal spike. (a) Patient 1. (b) Patient 2. (c) Patient 3. 
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the other considered DL-based methods, MS-ESI significantly improved 
the performance in terms of source localization especially for chal-
lenging scenarios (Scenarios 2 and 3). 

Three challenges in ESI framework are commonly known and worth 
to be discussed here: localizing i) focal epileptic sources, ii) deep 
epileptic sources and iii) close correlated epileptic sources. 

Localization of focal epileptic sources: as can be stated from the ob-
tained results, all DL-based methods together with SISSY generally 
succeed in localizing focal superficial epileptic sources. This is contrary 
to the other considered methods, namely wMNE, sLORETA and cMEM 
which to a large extent provide blurred solutions, for all conducted 
experiments. 

Localization of deep epileptic sources: As shown in Table 3, the pro-
posed MS-ESI method shows surprisingly its superiority in targeting 
deep epileptic patches compared to all the methods under study. In fact, 
rather than the proposed MS-ESI model, several inadequate outcomes 
can be observed for the other six tested methods. Some of them over 
estimate the spatial extent of the epileptic patch location while others 
entirely miss this deep patch. 

Recognizing close correlated sources: As stated before, this case stands 
for the most challenging situation being faced in the framework of EEG 
inverse problem. Traditional numerical methods often face challenges 
when it comes to distinguishing and separating two closely correlated 
epileptic sources. As mentioned earlier, the proposed MS-ESI model 
stands out as the only approach achieving a detection rate exceeding 50 
% among all the methods tested. The MS-ESI model’s ability to gain a 
more profound insight into complex EEG characteristics and relation-
ships from various perspectives leads to improved accuracy in source 
localization. This advancement holds significant importance for both 
neuroscientific research and clinical diagnostic applications. 

Accurate source localization and source signal reconstruction are 
two desirable goals for the ESI techniques. It is generally believed that 
precise source signal reconstruction for dipoles within the source patch 
is a prerequisite for source localization. However, if the ESI methods, 
such as wMNE, sLORETA and cMEM, can only reconstruct the source 
signal for a very small number of dipoles within the source patch, the 
spatial extent of the source will be underestimated no matter how ac-
curate its reconstructed signal is. On the contrary, although the signal 
reconstruction of the proposed method is slightly lower than that of the 
classical methods, it can reconstruct the signal of equivalent quality for 
the majority of dipoles within the source patch. This demonstrates that 
the proposed method can make a trade-off between the accurate source 
localization and satisfactory source signal reconstruction. In addition, 
our statistical analysis showed that the proposed method significantly 
outperforms the baseline methods in terms of DLE and NHD, whatever 
the SNR level. 

Moreover, note that the choice of an optimal threshold that gua-
rantees the best localization results is crucial in the ESI framework. 
Optimally, the best method is the one for which no thresholding is 
applied or at least a low threshold is to be used. Regarding this 
constraint, the proposed MS-ESI method is very competitive especially 
for real data where no ground truth is available. Clearly, MS-ESI belongs 
to the set of methods that give more focal solutions whatever the 
analyzed patient. As pointed out previously, a good localization of 
epileptic patches is mandatory for clinical perspective, but being able to 
have a good reconstruction of the neural activities of the current dipoles 
constituting these patches is also of great importance for a deep inves-
tigation of brain behavior, for instance through the inference of brain 
connectivity. Thus, the most effective ESI method stands for the one that 
provides the best source localization-time course reconstruction trade- 
off. In view of this criterion, and according to our obtained results, the 
proposed MS-ESI approach is the one for which the latter trade-off is 
maximized. 

As shown in Section 3.2, the MS-ESI method maintains its good 
performance on real Hr-EEG data acquired in three patients with drug- 
resistant partial epilepsy, during their presurgical evaluation. By 

considering simultaneously the results obtained for the three patients, 
the three methods based on deep learning provide a better source 
localization-time course reconstruction trade-off than SISSY, wMNE, 
sLORETA and cMEM. The APCCs computed over the three patients are 
equal to 0.9122, 0.8782 and 0,9306 for MS-ESI, DeepSIF and Deep-
BrainNNet, respectively, showing a good EEG signal reconstruction. But 
MS-ESI is the only one which localizes a well circumscribed region 
whatever the considered patient, hence the best source localization-time 
course reconstruction trade-off offered by MS-ESI. Finally, regarding the 
execution time shown in Table 2, it should be noted that even significant 
learning time is required to learn the model, in an offline mode, this 
issue is not a matter when the model is applied on new data. Indeed, 
once a deep learning model is trained offline, it can rapidly process new 
scalp data in real-time or near-real-time to determine the location of the 
epileptic source. This makes it a potential candidate for real-time source 
imaging in clinical practice. 

The limitations of the proposed work primarily revolve around two 
key aspects: the availability of experimental data and the deep learning 
model used. In terms of experimental data, validating the proposed 
method with real data presented a challenge. It is indeed a complex task 
to assess the accuracy of source localization solutions when simulta-
neous EEG/SEEG recordings are not available. Determining the precise 
locations of these remote regions remains subjective, making the use of 
realistic simulated data, where ground-truth information is accessible, a 
reasonable approach. In this study, the effectiveness of the proposed 
method was confirmed on a limited scale, involving only three patients 
for whom clinical experts provided some indications of ground truth. 
These promising results must be validated on a larger dataset before 
considering clinical application. Moreover, the current work utilized 
HR-EEG data with 256 channels, as high-density electrodes enhance 
spatial resolution, the availability of such HR-EEG system may not be 
consistent across all clinical settings. Future work will necessitate sys-
tematic validation of the model’s performance under different electrode 
configurations to assess its applicability in various clinical conditions. 
Regarding the deep learning model, different deep learning architec-
tures will influence the performance of source EEG signal reconstruc-
tion. In future work, comprehensive comparative experiments will be 
constructed to obtain a relatively optimal model. This will include sys-
tematic testing of encoding-decoding, autoencoder, and attention 
mechanisms. An additional effort will concern the question of our model 
explainability as an emerging topic to enhance transparency of DL 
models. 

5. Conclusion 

This paper introduces a novel neural network framework, MS-ESI, 
designed for the identification and reconstruction of extended 
epileptic sources. MS-ESI leverages TCN for extracting relevant spatial 
features and LSTM for capturing temporal characteristics from high- 
resolution scalp EEG signals. A pivotal aspect of our study is the use of 
realistic simulated data for model training, addressing the challenge of 
lacking co-registration between EEG and SEEG signals. In comparison to 
traditional numerical methods, our deep learning-based approach 
autonomously learns prior information and potential features from a 
large training dataset. Experimental results on simulated data show-
cased that, when compared to state-of-the-art methods, MS-ESI excelled 
in efficiently localizing the source position, particularly for deep and 
correlated epileptic sources. This superior performance was further 
validated on real high-resolution EEG data obtained from three patients 
with drug-resistant partial epilepsy during their presurgical evaluation. 
Given its impressive capabilities, MS-ESI shows promise for clinical EEG 
applications. Future work will focus on evaluating the proposed 
approach on a broader real-world dataset and exploring its 
explainability. 
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