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1 Introduction

The average energy lost through gluon radiation by a high-energy parton as it traverses a
nuclear medium, and suffers small angle deflection (in the nuclear medium rest frame) due to
multiple elastic scatterings, is proportional to the incoming parton’s energy, ∆E ∝ E [1]. This
behaviour is a telltale sign of fully coherent energy loss (FCEL), the medium-induced energy
loss mechanism expected in all perturbative QCD (pQCD) processes with a fast incoming
parton and a colorful final state, which final state can be a single parton [1–3] or a composite
parton system [4, 5]. FCEL stems from an interference between the gluon emission amplitudes
off initial and final states, and the fully coherent regime is characterized by large induced
gluon formation times tf relative to the medium (target) size L , tf ∼ ω/k2

⊥ ≫ L (with ω

and k⊥ the energy and transverse momentum of the induced gluon, respectively). Although
the coherent radiation thus views the target nucleus as a single effective scatterer, the (k⊥-
integrated) radiation spectrum dI/dω ≡ dσrad/(σel dω) does depend on L via the accumulated
transverse momentum (or p⊥-broadening) suffered by the fast parton system when crossing the
target. At large E, FCEL surpasses parton energy loss in the Landau-Pomeranchuk-Migdal
(LPM) regime which has a milder E-dependence [6–10]. FCEL has been shown to be crucial
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in explaining quarkonium [11–13], light hadron [14, 15] and heavy meson [16, 17] nuclear
suppression in proton-nucleus (pA) collisions. It has also been shown to be an important
cold nuclear matter effect for quarkonium production in nucleus-nucleus (AA) collisions [18].

In these phenomenological studies, the FCEL effect was estimated using leading-order
pQCD, considering some 2 → 1 [11–13] or 2 → 2 [14–17] processes,1 and in the latter case
by assuming that the induced radiation does not resolve individual color charges but sees
the final parton pair effectively as a pointlike color charge. In this limit, referred to as
leading-logarithmic (LL), the FCEL spectrum dI/dω exhibits a large kinematic logarithm
(see first term of (2.23)), and a color dependence fully encoded in the ‘global’ Casimir charge
Cα, where α labels an allowed irreducible representation (irrep) of the final parton pair (or
more generally parton system) [5]. Thus, it was possible in refs. [14–17] to implement FCEL
as for 2 → 1 processes [11–13], by relating the differential cross section dσ/dE in pA collisions
to that in pp collisions by means of a certain probability distribution, or ‘quenching weight’,
accounting for the incurred energy loss ω. (The quenching weight can be constructed from
the process-dependent radiation spectrum dI/dx , where x ≃ ω/E is the fractional energy
loss.) In refs. [14–17], the logarithm of the FCEL spectrum was checked to be quite large
(∼ 3 . . . 4) for the typical kinematic configuration of parton pair production, namely, for
ξ ∼ ξ̄ ∼ 1

2 (with ξ and ξ̄ ≡ 1− ξ the light-cone longitudinal momentum fractions of the final
partons w.r.t. the incoming projectile parton), justifying a posteriori the LL approximation.

However, formalizing the role of FCEL in the phenomenology of nuclear collisions will
require systematically implementing FCEL in pQCD calculations of hadron production cross
sections. To that end, extending the accuracy of the FCEL spectrum beyond LL is imperative.
This is the first step before determining the quenching weight associated to this improved
spectrum, and eventually convoluting the quenching weight with the pp cross section in
the full phase space of the final pair, 0 ≤ ξ ≤ 1.2 This would make a number of model
assumptions in previous LL studies unnecessary, hence improving the accuracy of FCEL
estimations. More importantly, and as argued previously [15, 16], first implementing FCEL
in pQCD calculations and then performing nuclear PDF (nPDF) global fit analyses (using
the Hessian method [19] or reweighting techniques [20, 21]), would allow to justify the use of
hadron pA production data (which are sensitive to FCEL) in global fits, and thus to extract
more reliable (and possibly more precise) nPDF sets. The main purpose of our study is
to carry out the first stage of the aforementioned programme, namely, to derive the FCEL
spectrum beyond LL for all 2 → 2 parton processes (with massless initial particles).

Independently of its interest for phenomenology, calculating the FCEL spectrum beyond
LL for 2 → 2 processes is an interesting task in its own right, which highlights several
theoretical aspects of gluon radiation in the coherent regime. Firstly, the soft induced
radiation may probe individual color charges of the final parton pair (decomposed over

1Previous studies referred to 2 → n processes as ‘1 → n forward processes’, emphasizing the identity of the
incoming parton from the projectile. Presently, we adopt the 2 → n terminology, with the convention that the
first mentioned incoming parton is from the projectile and the second is from the target. This distinguishes,
e.g. qg → qg from gq → qg (which suffer FCEL differently).

2We will consider 2 → 2 parton processes with massless initial partons, as motivated in section 2.1. With
this condition, 0 ≤ ξ ≤ 1 is equivalent to 0 ≤ m2 − t ≤ s, with s and t Mandelstam variables of the 2 → 2
process and m the mass of the equally massive final partons.
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available irreps as a⊗ b =
∑

α Rα) and thus allow color transitions3 between different irreps,
α ↔ β, giving the spectrum a non-diagonal matrix structure in the space of irreps. The
physics is thus richer than the LL limit, whereby each α is associated to a partial spectrum
dIα/dx contributing with a certain probability ρα to the full spectrum dI/dx [5]. Secondly,
the FCEL spectrum can be negative, as previously found for the qg → q process [2, 3] and
similarly for qg → qg (in the LL approximation) with a color triplet final qg pair [5] (which
has non-negligible effects in phenomenology [14, 15]). Our study shows that this is not an
exceptional case: dI/dx < 0 is possible for other 2 → 2 processes, in a given range of the
kinematical parameters x and ξ. A negative FCEL, or fully coherent energy gain (FCEG),4

is an interesting feature of coherent induced radiation, allowed by first principles (see [2] for
a physical interpretation of FCEG). Lastly, we also stress that our beyond-LL calculation
is done for the SU(N) gauge group, with N ≥ 3 . In particular, in the LL limit our results
reproduce those of ref. [5], where N ≫ 1 was assumed and the results for finite N conjectured
on physical grounds. Our study thus proves this conjecture.

The paper is organized as follows. In section 2, after a preliminary discussion of the
kinematic setup and of the color structure of 2 → 2 parton processes, we derive the FCEL
spectrum beyond LL for each process. Of particular importance is the density matrix Φαβ

defined in eq. (2.14), which is constructed by decomposing the tree-level amplitude M into
its available color states. This matrix is a gauge invariant, dimensionless function of ξ , and is
given explicitly for each process in appendix A. Our main result for the FCEL spectrum dI/dx
is stated formally in the equivalent expressions (2.20) and (2.26), with details on the derivation
of (2.20) relegated to appendix B (where the spectrum is in fact derived more generally for
2 → n processes). This is followed by an elaboration of the color matrices Bαβ and Bαβ ,
which are listed explicitly in appendix C for each process. We stress that the result (2.26)
is valid in the full kinematic range of the underlying reaction, and for any finite number
of colors N ≥ 3. In section 3, we explain how the previously obtained spectra for 2 → 1
processes [1–3] and 2 → 2 processes in the logarithmic approximation [4, 5], which turn out to
be diagonal in a particular color basis, can be obtained from (2.26). As a simple illustration,
the case of quark-quark scattering is detailed in section 3.3. Finally, in section 4, we briefly
summarize our work, and present some phenomenological perspective while emphasizing the
broad validity domain of our results in terms of kinematical variables in the c.m. frame.

2 FCEL spectrum beyond leading logarithm in 2 → 2 processes

2.1 Setup for underlying hard partonic process

Let us consider a general 2 → 2 partonic process arising when an incoming fast parton crosses
a nuclear target,5 which process will be treated within a leading-order (LO) pQCD picture,
in a setup similar to that used in refs. [5, 15, 16, 18] (where however only processes involving

3The exact meaning of color transitions will come later, see the paragraphs following eqs. (2.22).
4Although the acronym FCEL is then a slight misnomer in general, we shall continue to use it as an

umbrella term for both energy loss/gain situations.
5There are various experimental situations in which this may occur, like pA or AA collisions. In the AA

case, one can view the 2 → 2 process with either nucleus as the target and the fast incoming parton originating
from the other nucleus. The equivalent pictures are related by a Lorentz transformation [18].
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p1

p2 p4
ξ,K

p3
ξ̄,−K

M

Figure 1. Scattering amplitude for a generic 2 → 2 partonic process. The final partons of momenta
p3 and p4 carry light-cone momentum fractions ξ̄ and ξ, and have transverse momenta −K and K,
respectively. A dashed line stands for a quark, antiquark or gluon.

a target gluon were addressed). In order to derive the medium-induced radiation associated
with a given 2 → 2 hard process, it is convenient (though not mandatory) to regard the
physics from the rest frame of the target. As illustrated in figure 1, an incident energetic
parton with light-cone momentum p1 ≡ (p+

1 , p
−
1 ,p1) = (2E, 0,0),6 scatters off a parton from

the nucleus with p2 = (0, p−2 ,0), to produce a pair of final partons with momenta p3 and p4.
We will consider all tree-level 2 → 2 partonic channels, except those involving initial

heavy quarks Q = c, b. Indeed, as previously argued [16], for our purpose processes such as
Qg → Qg should preferably be interpreted as higher order flavor-excitation processes [22],
where heavy quarks typically arise from g → QQ̄ perturbative splitting and actually belong
to the final state. This ‘fixed flavor number scheme’ allows one to keep track of the actual
hard parton system, whose properties (in particular its color structure) determine the FCEL
spectrum. In our study initial partons are thus massless,7 and final partons have the same
mass m ≡ m3 = m4, which is non-zero only in the case of heavy quark production (arising
from gg → QQ̄ and qq̄ → QQ̄ channels).

Using the Mandelstam variables

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 , (2.1)

we introduce the Lorentz-invariant quantities

ξ ≡ m2 − t

s
, ξ̄ ≡ m2 − u

s
= 1− ξ . (2.2)

Note that these variables coincide with the light-cone longitudinal momentum fractions of
the final partons, namely, ξ = p+

4 /p
+
1 and ξ̄ = p+

3 /p
+
1 , in all frames obtained from the nucleus

rest frame by a boost along the z-axis. The kinematical dependence of any 2 → 2 (and
thus dimensionless) scattering amplitude M considered in the following can be expressed
in terms of either the single variable ξ (for all processes with massless final partons), or ξ
and m2/s (for qq̄ → QQ̄ and gg → QQ̄ processes).

In the setup of figure 1, the final partons are back-to-back in the transverse plane,
p4 = −p3 ≡ K. The final pair invariant mass s and rapidity difference ∆y ≡ y4 − y3 are

6We define light-cone variables by p± = p0 ± pz, and denote transverse momenta by bold characters.
7However, note that the FCEL spectrum associated to partonic processes involving initial heavy quarks, e.g.

Qg → Qg, can be easily inferred from our study. But the initial heavy quark should be interpreted as some
non-perturbative, intrinsic heavy quark component in the projectile proton. (Otherwise, the accompanying
Q̄ arising from perturbative splitting would alter the structure of the hard process, resulting in a different
FCEL spectrum.) The effect of FCEL on such processes could be studied within the ‘variable flavor number
scheme’ [23], which uses input heavy quark PDFs.
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related to ξ and ξ̄ through

s = p+
1 p

−
2 =

m2
⊥

ξ ξ̄
; ∆y = ln

(
ξ

ξ̄

)
, (2.3)

where we introduced the transverse mass m2
⊥ ≡ K2

⊥ +m2. The typical scale of the hard
partonic process is given by m⊥ ∼ O (K⊥).

An essential assumption we make, as in previous FCEL studies, will be the kinematical
limit p+

1 = 2E → ∞ at fixed ξ and K⊥, corresponding to small angle, ‘forward scattering’ in
the nucleus rest frame. This limit is suitable for studying hadron production at moderate
p⊥ in high-energy pA collisions. Note that the assumption E, ξE, ξ̄E ≫ K⊥ is not very
demanding in practice (the incoming parton energy E in the nucleus rest frame being huge
at modern collider energies), and holds from large positive down to large negative rapidities
in the c.m. frame of the collision. (The assumption E ≫ K⊥ would start to be invalid only
at very large negative rapidities, close to the nucleus fragmentation region.)

The second relation from (2.3) can be rewritten as

ξ = 1
1 + e−∆y

; ξ̄ = 1
1 + e∆y

, (2.4)

relating explicitly ξ (and ξ̄ = 1− ξ) to ∆y. In previous studies of 2 → 2 processes [5, 14–17]
we considered the FCEL spectrum for a typical configuration of the parton subprocess,
|∆y| ≲ O (1) ⇔ ξ ∼ ξ̄ ∼ 1/2 . As we shall see, this latter approximation is closely connected
with the LL limit. In the present study, we generalize the calculation to any value of |∆y|
(including |∆y| ≫ 1), i.e. in the whole range 0 ≤ ξ ≤ 1.

2.2 Color density matrix

In order to derive the soft induced radiation associated with a given hard partonic process, we
need to decompose the 2 → 2 parton scattering amplitude M in terms of the available color
structures. At tree-level, M can be expressed as a linear combination of either Hermitian
color projectors Pα (for those channels where the initial and final parton pairs are of the same
type, gg → gg, qg → qg, qq̄ → qq̄, . . . , irrespective of quark flavors), or transition operators
Tα (for the remaining channels, namely, gg → qq̄ and qq̄ → gg).

The projectors Pα are represented graphically as

Pqq̄
α ≡ α , Pgg

α ≡ α , (2.5)

and similarly for other channels, where α denotes some available SU(N) irrep for the parton
pair under consideration. For convenience, we adopt color pictorial rules, cf. refs. [24–27], and
thus draw color graphs (referred to as ‘birdtracks’) instead of writing explicit color indices.8

8These rules slightly vary in the literature, depending on sign and notational conventions. The rules we
will use are as follows. Edges are used to identify color indices:

i j = δj
i ; a b = δab ,

where quark and antiquark indices are denoted by i, j ∈ {1, . . . , N} and gluon indices by a, b ∈ {1, . . . , N2−1} .
(The index of an outgoing quark or incoming antiquark is written as a raised index by convention.) The vertices
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This leads to the expressions of the projectors Pα displayed in table 1 below, for (flavor-blind)
qq, qq̄, qg, and gg pairs. Results for q̄q̄ and q̄g pairs follow trivially from complex conjugation.
In this table we also recall the dimensions Kα and Casimirs Cα of the corresponding irreps α.

The transition operators Tα for gg → qq̄, labelled by the gluon pair irreps which are
available in this channel, namely, α = {1,8a,8s}, read

T1 = 1√
N(N2 − 1)

, T8a =
√
2√
N

, T8s =
√
2N√

N2 − 4
. (2.6)

The transition operators for qq̄ → gg are given by T
†
α, and the Tα’s are normalized as

T†
α ·Tβ = δαβ P

gg
α ; Tα ·T†

β = δαβ P
qq̄
α̃ , (2.7)

where in the rightmost identity, α̃ ∈ {1,8} denotes the qq̄ irrep which is equivalent to the
gg irrep α ∈ {1,8a,8s}. (For example, α̃ = 8 if α = 8a or α = 8s.)

It will be convenient to trade Pα, Tα or T†
α (depending on the partonic process), viewed

as operators mapping the 12 and 34 parton pair color spaces, for the vectors

⟨α| = 1√
Kα

1̄
2̄

4
3

α , (2.8)

which are elements of the space of color singlet four-parton states (denoted as 1̄2̄34). In (2.8)
the blob α denotes Pα, Tα or T

†
α, corresponding to an s-channel irrep α of the 12 → 34

partonic process, and the factor 1/
√
Kα ensures that the vectors ⟨α| form an orthonormal

basis, ⟨α|β⟩ = δαβ . In the following, the basis (2.8) will be referred to as the ‘s-basis’ of the
12 → 34 process. Note that kets |α⟩ are obtained from bras ⟨α| by complex conjugation,
which corresponds pictorially to taking the mirror image and reversing quark arrows,9

|α⟩ ≡ ⟨α|∗ = 1√
Kα

1̄
2̄

4
3

α∗ . (2.9)

in a graph represent color tensors, associating a color index to each connecting edge. For any representation
α , let T a

α be the (Hermitian) generators of the associated Lie algebra. For the fundamental and adjoint
representations, let us denote their matrix elements by (ta)i

j ≡ (T a
F )i

j and −ifabc ≡ (T a
A)bc, respectively. We

thus introduce

i j

a
= (ta)j

i ;
i j

a
= (−ta)i

j ;
c • b

a
= −ifabc .

In addition, we need the 3-gluon ‘star’ vertex,

c b⋆

a
= dabc ≡ 2

∑
ijk

{
(ta)j

i(t
c)i

k(tb)k
j + (ta)j

i(t
b)i

k(tc)k
j

}
= 2

 c b

a

−
c b

a

 ,

which is fully symmetric in the permutation of two gluon lines. Note that for N = 2, quarks and antiquarks
are equivalent objects in terms of color, and the star vertex identically vanishes (as is pictorially clear from
the r.h.s. of the above equation). In this paper we consider N ≥ 3.

9Under complex conjugation, an outgoing parton in the bra (2.8) thus becomes an incoming parton of the
same type in the ket (2.9).
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system irrep α projector Pα dimension Kα Casimir Cα

3 ⊗ 3
3̄

6

1
2

[
−

]
1
2

[
+

] 1
2N(N − 1)

1
2N(N + 1)

2CF − N+1
N

2CF + N−1
N

3 ⊗ 3̄
1

8

1
N

2

1

N2 − 1

0

N

3 ⊗ 8

3

6̄

15

1
CF

1
2

−
N + 1

2
P3 +

1
2

+
N − 1

2
P3 −

N

1
2N(N + 1)(N − 2)

1
2N(N − 1)(N + 2)

CF

CF +N − 1

CF +N + 1

8a
1
N

N2 − 1 N

10 ⊕ 10 1
2

[
−

]
−P8a

1
2(N

2 − 1)(N2 − 4) 2N

1 1
N2 − 1

1 0
8 ⊗ 8

8s
N

N2 − 4
N2 − 1 N

27
(

1
2

+ 2
)
Q 1

4N
2(N − 1)(N + 3) 2(N + 1)

0
(

1
2

− 2
)
Q 1

4N
2(N + 1)(N − 3) 2(N − 1)

Table 1. Projectors, dimensions and quadratic Casimirs of the SU(N) irreps associated to the qq,
qq̄, qg and gg systems. An SU(N) irrep is labelled according to its dimension for N = 3. We express
the arising color factors via N and CF = (N2 − 1)/(2N) . In the last two rows of the table, for the
projectors P27 and P0 of a gg pair we use the shorthand notation Q ≡ 1

2

[
+

]
−P8s −P1.

The completeness relation

∑
α

|α⟩⟨α| =
∑

α

1
Kα

1̄
2̄

4
3

α∗

1̄
2̄

4
3

α = , (2.10)

simply follows from the fact that {pα ≡ |α⟩⟨α|} is a set of orthogonal projectors of rank 1
acting in the space spanned by the vectors ⟨α|, whose dimension is the number of possible
values of α.10

10Strictly speaking, the identity operator on the r.h.s. of (2.10) is the identity of the space V ≡ {⟨α|}
spanned by the vectors ⟨α|, rather than the identity of the space W of all color singlet four-parton states.
Indeed, at tree-level there is one process, namely, gg → gg, for which V ⊊W. In a study of gg → gg at NLO,
the label α in the blob of (2.8) should list, in addition to the projectors Pgg

α , two transition operators 8a ↔ 8s.
This would exhaust all linearly independent operators mapping gg → gg, implying V = W for all 2 → 2 parton
processes at NLO.
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The color decomposition of the amplitude M in the s-basis (2.8) reads

M12→34 =
∑

α

να ⟨α| , (2.11)

where the dependence of M on external color indices is contained in ⟨α|, and the kinematical,
spin and flavor dependence in the coefficients να. Those coefficients depend on the specific
partonic channel and are given in table 2 of appendix A. (Note that να may also depend on
the parameter N for some channels.) We expect να to satisfy the Ward identity, for physical
polarizations, and therefore to inherit the same gauge invariance as M at tree-level [28, 29].

Squaring the amplitude of figure 1, performing the sums over external color indices (by
connecting birdtrack lines) for fixed spins/polarizations, and using the decomposition (2.11)
we can write

M

M∗

≡ trc |M|2 =
∑
αβ

να ν
∗
β ⟨α|β⟩ =

∑
α

|να|2 , (2.12)

where the trc symbol indicates the sum over external color indices. In our study we focus on
the FCEL spectrum associated to unpolarized 2 → 2 parton processes. Denoting the sum
over external Dirac indices by the trd symbol, the total unpolarized squared amplitude is
given by trdtrc |M|2 which is the quantity listed in the third column of table 2 (appendix A),
for each parton process.

In what follows, we will need to evaluate ‘expectation values’ of some color operator
O (represented below by a hatched rectangle),

⟨O⟩12→34 ≡ 1
trdtrc |M|2

trd M M∗ =
∑
αβ

Φαβ Oαβ = Tr {Φ ·O} , (2.13)

where we used (2.11), and Φαβ and Oαβ are matrices in the space of irrep labels α for
the partonic channel under consideration (the symbol Tr denoting the color trace in this
space), defined by11

Φαβ =
trd(να ν

∗
β)

trdtrc |M|2
=

trd(να ν
∗
β)∑

γ trd |νγ |2
, (2.14)

and
Oαβ = ⟨α|O|β⟩ . (2.15)

For the color graph in (2.13), O should be viewed as an operator in the space of color
indices of the four-parton state 1̄2̄34, whereas on the r.h.s. of (2.13) [and in (2.15)], it is
an operator in the space of irrep labels α. Pictorially, this distinction is not so important
since the two ‘representations’ of the operator O are related with the help of the birdtrack
completeness relation (2.10), namely,

O
j1̄j2̄j3j4
i1̄i2̄i3i4

=
∑
αβ

|α⟩i1̄i2̄i3i4 ⟨α|O|β⟩ ⟨β|j1̄j2̄j3j4 , (2.16)

11Note that in (2.14), we display ναν∗
β , even though the να’s are real-valued for tree-level amplitudes.
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where the i’s and j’s are the color indices of the four-parton state 1̄2̄34 which are respectively
incoming and outgoing in the hatched rectangle of (2.13). Alternatively we have (with
repeated indices being summed over):

⟨α|i1̄i2̄i3i4O
j1̄j2̄j3j4
i1̄i2̄i3i4

|β⟩j1̄j2̄j3j4 = ⟨α|O|β⟩ . (2.17)

The matrix Φ defined in (2.14) is a crucial quantity in our study. It is a characteristic of
the hard partonic process, and may be computed directly from the coefficients να . These
coefficients are easily found in light-cone gauge (see appendix A), but we stress that Φ is gauge
invariant, as shown by a calculation in all covariant Rξ-gauges (namely, explicitly verifying that
there is no dependence on the gauge parameter). We supply a form [30] code implementation
as supplementary material attached to this paper, which uses tree-level graphs generated by
qgraf [31], to compute Φ in a general covariant gauge with Faddeev-Popov ghosts. Listed
in appendix A.2, are the expressions of the matrix Φ for all tree-level 2 → 2 QCD processes.

Before proceeding, let us remark that the matrix Φ exhibits the main features needed
to construct a quantum mechanical density operator

∑
αβ Φαβ |α⟩⟨β| [32], and we shall dub

Φ the color density matrix. In particular, Φ is Hermitian (being real and symmetric) and
satisfies Tr {Φ} =

∑
α Φαα = 1 , following directly from (2.14) and ensuring the normalization

in (2.13) is such that ⟨1⟩12→34 = 1. The diagonal element Φαα is the probability ρα for the
final parton pair to be produced through the color component α of the amplitude M,

ρα ≡ Φαα = trd |να|2∑
γ trd |νγ |2

. (2.18)

It also follows from the definition (2.14) that Φ is a positive semi-definite matrix. (Let us
remark that some off-diagonal elements of Φ can be negative, implying that Φ is not a Markov
matrix.) We see from table 2 of appendix A (last column), that for any 2 → 2 process
except qq → qq and qq̄ → qq̄, the spin dependence of the coefficient να factorizes (in the
same overall factor for each α). For those processes, the trd symbol appearing in (2.14) can
be formally dropped, and Φ acquires the exact form of an outer product of vectors. This
implies Φ2 = Φ, a criterion that characterizes a ‘pure’ (color) state [32]. For qq → qq and
qq̄ → qq̄ processes, the above-mentioned factorization does not hold, the sum over Dirac
indices in the numerator of (2.14) depends on the given values of α and β, and Φ is not an
outer product. In these two cases, Φ describes a ‘mixed’ state, of purity Tr {Φ2} < 1 . One
may evaluate, for example, the von Neumann entropy S = −Tr {Φ logΦ} to assess the degree
of color entanglement achieved by these particular processes.

2.3 Induced gluon radiation spectrum

We now discuss the fully coherent induced radiation associated to 2 → 2 processes beyond
the leading-logarithmic approximation.

The successive parton rescatterings responsible for nuclear p⊥-broadening are modelled
as rescatterings off screened Coulomb potentials [6, 7, 10, 33–35]. It is assumed that the
potential screening length 1/µ satisfies 1/µ≪ λ, where λ is the ‘color stripped’ elastic mean
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free path,12 allowing the successive rescatterings to be considered independent. The total
broadening ∆p⊥ delivered to the final parton pair, ∆p2

⊥ ∼ µ2(L/λ), is on the order of the
saturation scale Qs in the nucleus, and will be simply denoted by Qs in the following. Nuclear
p⊥-broadening induces radiation, and as a result the FCEL spectrum will depend on Qs.13

We will assume the hard scale K⊥ of the 2 → 2 process to satisfy K⊥ ≫ Qs. In this limit,
nuclear p⊥-broadening affects negligibly the hard process kinematics, which remains well
approximated by ‘back-to-back’ production in pA collisions.

Another approximation concerns the induced gluon radiation, which is considered soft
compared to the partons it is emitted from. Denoting by k ≡ (k+, k−,k) the radiated gluon
light-cone momentum, we have k+ ≃ 2ω ≪ p+

1 , p
+
3 , p

+
4 (implying x ≡ k+/p+

1 ≪ ξ̄, ξ), and
k⊥ ≡ |k| ≪ K⊥ . Like nuclear broadening, the induced soft radiation does not affect the
hard process kinematics. Moreover, the induced radiation formation time tf is kept larger
than the hard process production time thard [1],

tf ∼
ω

k2
⊥

≫ thard ∼ ξξ̄E

K2
⊥

⇐⇒ ξξ̄
k2
⊥

K2
⊥

≪ x . (2.19)

The detailed derivation of the induced radiation spectrum for 2 → 2 processes, within
the above approximations and beyond leading-logarithm, can be found in appendix B, with
the final result given by (B.33). Note that in this derivation, the spectrum is defined w.r.t. an
ideal target of zero size (in which no soft rescattering occurs), and thus vanishes when L→ 0.
In order to compare pA and pp collisions, we define the spectrum in a nucleus of size L
w.r.t. a proton target of size Lp, which is simply obtained from (B.33) by subtracting the
same expression evaluated at L = Lp. As explained in section 2.1, we will also restrict to
2 → 2 processes with massless incoming partons. In (B.33) we thus set m1 = 0 [implying
m̃1 → 0 in (B.22)] and m3 = m4 = m (with m ̸= 0 when a heavy QQ̄ pair is produced, in
either gg → QQ̄ or qq̄ → QQ̄, and m = 0 in all other 2 → 2 processes).

The induced spectrum associated to a 2 → 2 process of amplitude M is thus

dI
dx = αs

π x

(
Lξ Θ4 + Lξ̄ Θ3

)
, (2.20)

the effect of multiple soft scatterings by the medium being encapsulated in the function

Lξ ≡ F

(
xK⊥
ξµ

,
xm

ξµ
; L
λg

)
−
(
L→ Lp

)
, (2.21)

where F (x, y; r) = 2y
∫∞

0 dB J0(xB)K1(yB)
[
1 − exp{−r(1 − BK1(B))}

]
(with Jν and Kν

Bessel functions), and λg = λ/N is the gluon mean free path.
12Let us recall that µ is on the order of the typical transverse momentum exchange in a single scattering,

and that the elastic mean free path of a parton (or pointlike parton system) of Casimir charge Cα is related to
λ as λα = λ/Cα.

13To avoid any confusion that might result from the use of the word ‘saturation’ in our study, let us stress
that FCEL is fully determined by ∆p⊥ viewed as a theoretical input, independently of the details of this
input. Saturation or small-x evolution effects [36] are responsible for the x2 -dependence of ∆p⊥ ∼ Qs at small
x2 < 10−2, modifying the magnitude of ∆p⊥ in this domain of x2 , but are not responsible for the presence of
FCEL. In particular, FCEL is also present at x2 ≳ 10−2, where saturation effects are absent (and ∆p⊥ thus
independent of x2 ), emphasizing that FCEL and saturation are different physical effects.
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The coefficients Θ3 and Θ4 originate from the two possible soft color connections to
the final parton pair:

Θ4 = 2
trdtrc |M|2

trd

M

M∗

; Θ3 = 2
trdtrc |M|2

trd

M

M∗

, (2.22)

where the radiated gluon line carries only color indices. We stress that the spectrum (2.20) is
valid at finite N and beyond LL (a limit to be properly defined below), thus generalizing
the result of ref. [5] obtained in the LL and large N limits. Note that the function F can
be approximated by a logarithm (which can be shown to arise from the integration over the
soft radiated gluon k⊥) [2], allowing to rewrite (2.21) as

Lξ ≃ log
(
1 + ξ2 Q2

s

x2m2
⊥

)
− log

(
1 + ξ2 Q2

s,p
x2m2

⊥

)
, (2.23)

where m⊥ was defined below (2.3), Q2
s = µ2(L/λg) log (L/λg), and Qs,p denotes the saturation

scale in a proton.
As should be clear from appendix B, the factors Lξ and Lξ̄ in (2.20) are ‘soft factors’

which arise by dressing the squared radiation amplitude by any number of soft rescatterings.
They also include the Lorentz part of the initial and final soft gluon emission vertices (leading
to the above-mentioned logarithm when integrating over k⊥). As for the associated factors
Θ4 and Θ3, they are entirely determined by the 2 → 2 amplitude M, although their precise
color structure depends on how the soft gluon line is connected to the final state. We readily
see that the induced radiation may probe the color structure of the hard process, and the
spectrum can be expected to depend on the irrep of the produced parton pair.

By rotating the graphs in the expression (2.22) of Θ4 and Θ3 (by 90◦), and stretching
the soft gluon to a straight line, we see that Θ4 and Θ3 are of the form (2.13), namely,
Θ4 = Tr {Φ ·B} and Θ3 = Tr

{
Φ ·B

}
, where Φ is defined by (2.14) and the color matrices

B and B read [see (2.15)]

Bαβ ≡ ⟨α|B|β⟩ = ⟨α|2T1T4|β⟩ =
2√
KαKβ

α β , (2.24)

Bαβ ≡ ⟨α|B|β⟩ = ⟨α|2T1T3|β⟩ =
2√
KαKβ

α β , (2.25)

with Ti ≡ T a
i the SU(N) generators of parton i. For each partonic process, the explicit form

of the matrices B± ≡ B ± B = 2T1(T4 ± T3) can be found in appendix C.14 The physical
relevance of B± will be made clear shortly.

The spectrum (2.20) can thus be expressed as

dI
dx = Tr {Φ · S(x)} ; S(x) ≡ αs

π x

(
Lξ B+ Lξ̄ B

)
, (2.26)

14We also include the calculation of B± in the supplementary material form code supplied with this paper.
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in terms of the density matrix Φ and of the ‘soft color matrix’ S(x), for each 2 → 2 process.
For the sake of the following discussion, the two bracketed terms in (2.26) are rewritten as

Lξ B+ Lξ̄ B =
Lξ + Lξ̄

2 B+ +
Lξ − Lξ̄

2 B− . (2.27)

It is evident that B and B add coherently if Lξ = Lξ̄, implying that the soft gluon sees
the final parton pair as a pointlike object and cannot change its color state. In this case, the
spectrum proportional to B+ must arise only from contributions with α = β, and depend on
the final parton pair only through its global color charge Cα. Indeed, adding (2.24) and (2.25)
and using color conservation T1 + T2 = T3 + T4 = Tα (with Tα ≡ T a

α the SU(N) generators
in the irrep α), we directly find that B+ is a diagonal matrix,

(B+ )αβ = ⟨α|2T1 Tα|β⟩ = ⟨α|T 2
1 + T 2

α − T 2
2 |β⟩ = (C1 + Cα − C2) δαβ , (2.28)

where Ci is the Casimir charge of parton i.
If, on the other hand, B and B do not add coherently, i.e. Lξ ̸= Lξ̄, the soft gluon

can probe the individual colors of the parton pair, and thus allow color transitions between
different irreps of the pair. From (2.27) we see that color transitions are encoded in B− .
The matrices B− for all partonic processes are listed in appendix C, see eqs. (C.7)–(C.11).
For each process, some (if not all) non-diagonal elements of B− are non-zero, confirming
the presence of color transitions contributing to the spectrum when Lξ ̸= Lξ̄. Let us point
out that some color transition may be allowed by the structure of B−, but not contribute
to the spectrum (2.26) simply because the amplitude M vetoes some particular irrep. For
instance, for gg → gg, (B− )αβ with α or β = 10 ⊕ 10 can be non-zero [see (C.10)], but the
corresponding amplitude να (or νβ) vanishes (see table 2), leading to vanishing rows and
columns of the matrix Φ for α, β = 10 ⊕ 10 [see (A.18)].

Note that color transitions are absent if ξ = ξ̄ = 1
2 (implying Lξ = Lξ̄), but may also

be neglected for asymmetric final parton pairs (ξ ̸= 1
2) in the logarithmic approximation

Lξ ≃ Lξ̄ ≫ 1, where |Lξ − Lξ̄| ≪ Lξ + Lξ̄ and the B+ part of the spectrum dominates.
Previous calculations of the FCEL spectrum for 2 → 2 processes [4, 5] were performed using
such approximations, and were thus insensitive to color transitions. The spectrum (2.26)
is valid beyond LL accuracy and can be used for any ξ. In particular, this will allow us
in section 3 to show that in the limit ξ → 0 (where parton 3 carries most of the energy),
the spectrum (2.26) matches with the results obtained previously for 2 → 1 processes [1–3].
Interestingly, having a proper matching requires keeping the B− part of the spectrum, and
thus considering color transitions.

Let us mention that the matrices B and B defined by (2.24)–(2.25) also appear in the
study of parton pair transverse momentum broadening [37] and, more generally, are related
to the soft anomalous dimension matrix Q of 2 → 2 processes [38–50]. The relation between
Q and B− is given in section C.2 of appendix C, see eq. (C.16).

2.4 Validity domain

We now specify the conditions under which the spectrum (2.26) is valid. Firstly, we mentioned
before that the radiated gluon should be soft compared to both final partons, x ≪ ξ and
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x≪ ξ̄. However, the condition x≪ ξ (resp. x≪ ξ̄) is only required to derive the first term
∼ Lξ (resp. second term ∼ Lξ̄) of the spectrum, arising from a final emission off parton 4
(resp. off parton 3), see appendix B.2. When ξ → 0 at fixed x, the condition x≪ ξ is violated,
but this is irrelevant since the term ∼ Lξ formally vanishes and the spectrum is dominated by
the term ∼ Lξ̄, with ξ̄ → 1. Thus, the condition for the gluon to be soft enough for (2.26) to
be valid is simply x≪ max(ξ, ξ̄), i.e. x≪ 1, for any ξ. Secondly, the result (2.26) has been
obtained under the condition tf ≫ thard, see (2.19). When ξ is finite (typically ξ ∼ 1

2), i.e.
when the condition (2.19) is the most restrictive, it can be shown that (2.19) holds provided
Q2

s/K
2
⊥ ≪ x.15 Finally, the calculation of the spectrum (2.20) performed in appendix B uses

the fact that in the fully coherent regime, there is a cancellation of purely initial-state and
purely final-state radiation, as demonstrated in ref. [2]. Strictly speaking, this cancellation
is not exact [3], leading to corrections to the spectrum for x ≳ 1/ log (K⊥/µ).

Ultimately, the validity range of the spectrum (2.26) reads, for any ξ:

Q2
s

K2
⊥

≪ x≪ 1
log (K⊥/µ)

. (2.29)

In the limit K⊥ ≫ Qs we are considering, we have Q2
s/K

2
⊥ ≪ Qs/K⊥ ≪ 1/ log (K⊥/µ),

and the domain (2.29) has an overlap with the regions x ≪ Qs/K⊥ (where at least one
of the two terms of (2.26) is a large logarithm) and x ≫ Qs/K⊥ [where both Lξ and Lξ̄

are smaller than unity, see (2.23)]. In practice, due to the rapid decrease of (2.23) when
x≫ Qs/K⊥, the typical values of x may be on the order of the average fractional energy loss,
x ∼ ⟨x⟩ ∼ Qs/K⊥, in which domain max(Lξ,Lξ̄) ∼ O (1). Being conservative, the above
discussion shows that the spectrum (2.26) is valid beyond leading-logarithmic accuracy, which
does not imply (nor exclude) the presence of a large logarithm, and is formally defined by:

max(Lξ,Lξ̄) ≳ O (1) . (2.30)

3 Matching with FCEL spectrum for 2 → 1 processes

Here we show that the spectrum (2.26) reduces to the FCEL spectra obtained previously
for 2 → 1 processes [1–3] and for 2 → 2 processes in the logarithmic approximation [4, 5].
The former are obtained from (2.26) by taking the limit ξ → 0 (or ξ → 1), and the latter
by taking ξ → 1

2 . As mentioned in the Introduction, the spectrum (2.26) should thus
allow implementing FCEL in the full phase space of the produced parton pair (0 ≤ ξ ≤ 1),
improving the accuracy of phenomenological studies of the FCEL effect.16 As we shall see,
the above correspondence with previous results is not entirely trivial, and relies on the precise

15See section C.2 of ref. [2]. The typical k⊥ (contributing to (2.21) or equivalently (2.23)) satisfies
k⊥ ≲ max(Qs, xK⊥). Thus, when Qs/K⊥ ≪ x ≪ 1, we have x ≫ x2 ≳ k2

⊥/K2
⊥, and (2.19) is automatically

satisfied. When x ≲ Qs/K⊥ however, (2.19) holds only if Q2
s/K2

⊥ ≪ x.
16In particular, previous studies of the FCEL effect on 2 → 2 processes [15, 16] focussed on the typical

kinematic configuration ξ ≃ 1
2 , thus using the LL form (proportional to B+) of the FCEL spectrum. To

estimate the theoretical uncertainty associated with this assumption, ξ was varied as ξ = 0.50 ± 0.25 [15, 16],
however by still assuming the LL form of the spectrum, with the recipe of using the pair invariant mass [given
in (2.3)] in the logarithm. In the ξ → 0 limit, this recipe amounts to neglect FCEL, and thus cannot match
with the FCEL spectrum associated with 2 → 1 processes [correctly captured by (2.26)].
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color structure of (2.26). In order to discuss the matching, it will be useful to first introduce
general orthonormal color bases.

3.1 Orthonormal color bases, and rotations between them

Let us define a rotated orthonormal basis [w.r.t. to the s-channel basis (2.8)] by

⟨α̃| =
∑

β

Aα̃β ⟨β| , (3.1)

where A is an orthogonal matrix, i.e. A−1 = A⊺ . We use the ‘tilde’ notation to distinguish
the sets of states {⟨α̃|} and {⟨β|} which may be different. (This happens for instance when
the available irreps in the s and t-channels are different and A is the matrix rotating between
the s and t-bases, see (3.6) below.)

The amplitude M being independent of the color basis, using (2.11) we have∑
α̃

ν̃α̃ ⟨α̃| =
∑

α

να ⟨α| . (3.2)

This shows that the coefficients να transform as the vectors ⟨α|, namely,

ν̃ = A · ν . (3.3)

The matrices Φ and S(x) , defined in (2.14) and (2.26) respectively, transform as

S̃ = A · S ·A−1 ; Φ̃ = A · Φ ·A−1 . (3.4)

Obviously, the spectrum (2.26), dI/dx = Tr {Φ · S(x)}, being a trace, is independent of
the color basis.

In addition to the s-basis (2.8), we introduce the t-basis and the u-basis by exchanging
certain lines but keeping fixed the external color indices of partons 1, 2, 3 and 4. To be
concrete, define

⟨αt| ≡ 1√
Kαt

1̄
2̄

4
3

αt , ⟨αu| ≡ 1√
Kαu

1̄
2̄

4
3

αu , (3.5)

where the blob αt (resp. αu) now indicates a projector or transition operator17 relevant to
the t-channel 13̄ → 2̄4 (resp. u-channel 14̄ → 2̄3) partonic process, with Kαt (resp. Kαu)
the dimension of the corresponding t-channel (resp. u-channel) irrep. With this convention,
the orthonormality condition ⟨αt|βt⟩ = δαtβt (resp. ⟨αu|βu⟩ = δαuβu) directly follows from
the pictorial expression (3.5) of the basis vectors.

17In some cases, the directions of quark lines and/or the position of gluons may appear incompatible with
the explicit projectors Pα listed in table 1 [or transition operators Tα defined in (2.6)]. For such cases, it is
implicit that Pα (or Tα) should be supplemented by a permutation of lines, e.g.

α = α ,

which arises in the t-channel basis for qq → qq .
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The matrices that rotate between the s, t, u color bases directly follow from (3.1):(
Ats

)
αtβ

= ⟨αt|β⟩ ;
(
Aus

)
αuβ

= ⟨αu|β⟩ ;
(
Atu

)
αtβu = ⟨αt|βu⟩ . (3.6)

These matrices are orthogonal and, denoting Ast ≡ A−1
ts = A⊺

ts , satisfy the ‘composition
relation’ Atu = Ats ·Asu , which implies that only two of the matrices (3.6) are independent.
Some of these color matrices have already been computed in the literature (e.g. appendix A of
ref. [48]). We don’t list them here, but our attached form code may be adjusted to compute
them all, using (3.6) and the birdtracks (2.8) and (3.5).

3.2 Compatibility with 2 → 1 processes

There are three special values of ξ, namely, ξ = {0, 1
2 , 1}, for which the spectrum (2.26) is

effectively equivalent to the FCEL spectrum associated with 2 → 1 processes. For these
values of ξ, S(x) is diagonal in the same basis for any x. The basis {⟨α̃|} which diagonalizes
S(x) is the t-basis, s-basis and u-basis for ξ = 0, ξ = 1

2 and ξ = 1, respectively. In each
of these cases, the spectrum (2.26) takes the form

∑
α̃ Φα̃α̃S(x)α̃α̃ , where ρα̃(ξ) ≡ Φα̃α̃ can

be interpreted as the probability associated with the irrep α̃, and S(x)α̃α̃ provides a color
factor ∼ Ca + Cc − Cb characteristic of 2 → 1 processes. (For other values of ξ, the basis
diagonalizing S(x) depends on x, the above simple interpretation does not hold, and there is
no basis where the spectrum is effectively the same as for 2 → 1 processes.)

3.2.1 Matching for ξ = 1
2

As we have seen in section 2.3, for a final parton pair in a symmetric configuration, ξ = 1
2 ,

we have Lξ = Lξ̄ = L1/2, and the matrix S(x) defined in (2.26) is proportional to B+ [given
in (2.28)] and thus diagonal in the s-basis,

S(x)αβ = δαβ (C1 + Cα − C2)
αs

π x
L1/2 . (3.7)

The spectrum (2.26) thus becomes

dI
dx

∣∣∣∣
ξ= 1

2

= Tr {Φ · S(x)} =
∑

α

ρα (C1 + Cα − C2)
αs

π x
L1/2 , (3.8)

where ρα is the probability of the s-channel irrep α (evaluated at ξ = 1
2).

The expression (3.8) corresponds to the spectrum associated to 2 → 2 processes obtained
in ref. [5] to LL accuracy.18 This spectrum depends only on the global charge Cα of the final
parton pair, and this situation is thus analogous to 2 → 1 scattering (with a color charge
C2 exchanged in the t-channel), up to the average over α (with weights ρα) to be performed
in (3.8). Let us recall that the LL result of ref. [5] was rigorously obtained in the large N
limit and conjectured, on physical grounds, to be valid for any N . The present study holds
for any N and provides a proof of this conjecture.

18Note that in this limit, the precise value of ξ in the argument of the logarithm of ref. [5] is not important,
but setting ξ = 1

2 is a natural choice in phenomenological studies [14–17].
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3.2.2 Matching in ξ → 0 and ξ → 1 limits

When ξ → 0, we set Lξ → 0 and Lξ̄ → L1 in the spectrum (2.26), which reads

dI
dx

∣∣∣∣
ξ→0

= αs

π x
L1 Tr

{
Φ ·B

}
. (3.9)

Using the basis-independent form of B [see eq. (2.25)],

B = 2T1T3 = T 2
1 + T 2

3 − T 2
t = C1 + C3 − T 2

t , (3.10)

with Tt ≡ T1−T3 the t-channel color exchange, we readily see that B is diagonal in the t-basis
⟨αt| introduced in section 3.1. Using (3.5) we obtain the matrix elements of B in the t-basis:

B
t
αtβt ≡ ⟨αt|B |βt⟩ = (C1 + C3 − Cαt) δαtβt , (3.11)

where αt labels the various t-channel irreps, and Cαt their Casimir charges.
The basis-independent spectrum (3.9) is conveniently expressed in the t-basis as

dI
dx

∣∣∣∣
ξ→0

= αs

π x
L1
∑
αt

Φ t
αtαt B

t
αtαt =

∑
αt

ρt
αt (C1 + C3 − Cαt) αs

π x
L1 , (3.12)

where ρt
αt ≡ Φ t

αtαt is the probability for the t-channel parton pair to be produced through
the irrep αt. This probability is provided by the density matrix Φ t in the t-basis, which is
obtained from eq. (3.4) by using the matrix Φ in the s-basis (defined in (2.14), and listed
in appendix A.2 for each process) and the rotation matrix Ats relating the s and t-bases.
(See section 3.3 for some practical examples.)

The expression (3.12) encompasses the FCEL spectra associated with 2 → 1 processes
previously derived in [1–3] and used in phenomenology in [11–13]. In these studies, the
spectrum was derived assuming a single color state in the t-channel, i.e., ρt

αt = 1 for some
αt. Equation (3.12) is a generalization to cases where several t-channel irreps contribute
to the production amplitude M.

When ξ → 1, we have Lξ → L1 and Lξ̄ → 0 in (2.26), which thus reads as for ξ → 0,
up to the replacement B → B. The matrix B is diagonal in the u-basis ⟨αu| (αu labelling
a u-channel irrep of Casimir Cαu),

Bu
αuβu ≡ ⟨αu|B |βu⟩ = (C1 + C4 − Cαu) δαuβu . (3.13)

Expressing the spectrum in the u-basis we obtain

dI
dx

∣∣∣∣
ξ→1

= αs

π x
L1
∑
αu

Φu
αuαu Bu

αuαu =
∑
αu

ρu
αu (C1 + C4 − Cαu) αs

π x
L1 . (3.14)

Let us remark that the spectra (3.8), (3.12), (3.14) corresponding to the cases ξ = 1
2 , 0, 1

all contain a color factor of the form Ca + Cc − Cb expected in a + b → c processes [2].
Indeed, the effective 2 → 1 process at play for ξ = 1

2 , 0, 1 is, respectively, 1 + 2 → [34]α,
1 + [24̄]αt → 3, and 1 + [23̄]αu → 4 (see figure 1), where [ab]α̃ refers to an effectively pointlike
ab parton pair in color state α̃.
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3.3 Example: quark-quark scattering

Let us study two specific partonic channels, namely, qq′ → qq′ and qq → qq, to illustrate the
general expressions above. For both these channels, in the preferred basis for each of the
limiting cases ξ = 1

2 , ξ = 0, and ξ = 1, the spectrum takes the form specified by (3.8), (3.12)
and (3.14), where the corresponding available irreps are α = {3̄,6}, αt = {1,8}, and
αu = {1,8} in the s, t or u-channel, respectively. To be specific, we have

dI
dx

∣∣∣∣
ξ= 1

2

= αs

π x
L1/2

[
ρ3̄C3̄ + ρ6C6

]
, (3.15)

dI
dx

∣∣∣∣
ξ→0

= αs

π x
L1
[
ρt

1(2CF ) + ρt
8(2CF −N)

]
, (3.16)

dI
dx

∣∣∣∣
ξ→1

= αs

π x
L1
[
ρu

1(2CF ) + ρu
8(2CF −N)

]
. (3.17)

The expressions above highlight the characteristic structure of spectra associated to 2 → 1
processes, showing explicitly, for the specific cases of the qq′ → qq′ and qq → qq processes,
the matching demonstrated in general in section 3.2. Moreover, they allow one to observe
an interesting effect. For ξ → 0 and ξ → 1, the spectrum expressed in the t- and u-basis
contains some component proportional to the color factor 2CF −N = − 1

N < 0. This can be
attributed to a negative FCEL, or fully coherent energy gain (FCEG), as previously observed
for the qg → q process [2, 3, 5]. For ξ = 1

2 , each contribution to the FCEL spectrum (for
any of the s-channel irreps, α = 3̄ or α = 6) is positive.

Let us first focus on the scattering of quarks of different flavors, qq′ → qq′ , for which the
ingredients needed to evaluate eq. (2.26) are the matrix Φ in (A.12), the matrix B+ in (C.1)
and the matrix B− in (C.7). Direct evaluation gives

dI
dx = αs

π x

[ (
N − 2

N

)
Lξ −

Lξ̄

N

]
, (3.18)

from which one can readily obtain the spectra for ξ = 1
2 , ξ = 0, and ξ = 1:

dI
dx

∣∣∣∣
ξ= 1

2

= αs

π x
L1/2

(
N − 3

N

)
, (3.19)

dI
dx

∣∣∣∣
ξ→0

= αs

π x
L1

(
− 1
N

)
, (3.20)

dI
dx

∣∣∣∣
ξ→1

= αs

π x
L1

(
N − 2

N

)
. (3.21)

In the s-basis, the diagonal entries of the matrix Φ [see (A.12)] yield the s-channel
probabilities ρ3̄ = N+1

2N and ρ6 = N−1
2N , which corroborates eq. (3.19). To obtain the

probabilities in the other bases, and thus verify that eqs. (3.20)–(3.21) are indeed of the
form (3.16) or (3.17), one needs the (flavor-blind) rotation matrices Ats and Aus obtainable
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0.0

0.25

0.5

0.75

1.0
ξ

0.0 0.1 0.2 0.3 0.4 0.5
x

channel: q q′ → q q′

dI/dx < 0

dI/dx > 0

0.0 0.1 0.2 0.3 0.4 0.5
x

channel: q q → q q

dI/dx < 0

dI/dx > 0

Figure 2. Regions in the (x, ξ)-plane, corresponding to energy-loss (solid gray) or energy-gain
(hatched purple). In this figure, N = 3, Qs,A = 1

4m⊥ and Qs,p = 1
10m⊥ .

from (3.6). Explicitly, they read19

Ats = 1√
2N

(
D1 U1
−U1 D1

)
; Aus = 1√

2N

(
−D1 U1
U1 D1

)
, (3.22)

where we use the shorthand notation Uk ≡
√
N + k and Dk ≡

√
N − k [48]. Using these

matrices, one can rotate Φ to the t and u-bases:

Φ(t) = Ats · Φ ·A−1
ts =

(
0 0
0 1

)
; Φ(u) = Aus · Φ ·A−1

us = 1
N2

(
KA −

√
KA

−
√
KA 1

)
,

(3.23)
where KA ≡ N2 − 1 . From the above, we infer the probabilities ρt

1 = 0, ρt
8 = 1, and

ρu
1 = KA/N

2, ρu
8 = 1/N2. (The fact that the color exchange in the t-channel is purely octet

is pictorially obvious from the expression of M for qq′ → qq′, see table 2 of appendix A.)
For ξ → 0, the spectrum (3.20) expressed in the t-basis [and thus of the form (3.16)]

depends only on the t-channel irrep α = 8, and is proportional to the negative color factor − 1
N

leading to FCEG. A similar effect is visible in the ξ → 1 limit [see (3.17)], when the u-channel
qq̄ pair is color octet (with probability ρu

8 = 1/N2). However, this negative contribution to
the spectrum is in that case overcome by a positive contribution when the qq̄ pair is color
singlet (with probability ρu

1 = KA/N
2), leading to the positive spectrum (3.21). In figure 2

(left) we give a more detailed chart of the sign of dI/dx in the (x, ξ)-plane, showing the
domains where medium-induced radiation can be interpreted as actual (positive) FCEL, or
FCEG, with a boundary between them where the induced radiation spectrum vanishes.

We now consider the scattering of quarks of identical flavor, qq → qq , and repeat the
above discussion. The matrices B+, B−, Ats, Aus are flavor-blind and thus the same as for

19The birdtrack expressions of (3.6) make it clear that Ats and Aus are related by permuting two incoming
quark lines in the blob defining the ket |β⟩. Therefore, since the irrep 3̄ is antisymmetric, the first columns of
the two matrices in (3.22) are related by a minus sign: ⟨αt|3̄⟩ = −⟨αu|3̄⟩ . The second columns are identical
because 6 is symmetric.
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qq′ → qq′, but the matrix Φ is now given by (A.13), yielding the s-channel probabilities
(which now depend on ξ),

ρ3̄(ξ) =
(N + 1)

[
(ξ − ξ̄)2 + ξ4 + ξ̄4]

2N
(
ξ4 + ξ̄4 + ξ2 + ξ̄2

)
− 4ξξ̄

; ρ6(ξ) =
(N − 1)

[
1 + ξ4 + ξ̄4]

2N
(
ξ4 + ξ̄4 + ξ2 + ξ̄2

)
− 4ξξ̄

.

(3.24)
For ξ = 1

2 , this gives: ρ3̄(1
2) =

N+1
10N−8 , ρ6(1

2) =
9(N−1)
10N−8 . For ξ → 0, we find the same t-channel

probabilities as for qq′ → qq′: ρt
1 = 0, ρt

8 = 1. (This follows from the fact that the contribution
to Mqq→qq of the exchange diagram proportional to Bu, see table 2, vanishes when ξ → 0.)
Due to the symmetry in ξ ↔ ξ̄ of the qq → qq process, for ξ → 1 we find the same u-channel
probabilities: ρu

1 = 0, ρu
8 = 1. Using (3.8), (3.12), (3.14), the spectra associated to qq → qq

and corresponding to ξ = {1
2 , 0, 1} read:

dI
dx

∣∣∣∣
ξ= 1

2

= αs

π x
L1/2

(
8− 15N + 5N3

N(5N − 4)

)
, (3.25)

dI
dx

∣∣∣∣
ξ→0

= αs

π x
L1

(
− 1
N

)
, (3.26)

dI
dx

∣∣∣∣
ξ→1

= αs

π x
L1

(
− 1
N

)
. (3.27)

For ξ → 0 , we get energy gain with probability ρt
8 = 1 (as for qq′ → qq′). Due to the

aforementioned symmetry under ξ ↔ ξ̄, when ξ → 1 the spectrum has the same limit, and thus
corresponds to FCEG (with probability ρu

8 = 1). Again, all those features are contained in the
spectrum (2.26), which is fully determined for any ξ once the matrices Φ, B+, B− are given.
We show in figure 2 (right) the chart of the sign of dI/dx in the (x, ξ)-plane, for the qq → qq

process. Due to the symmetry in ξ ↔ ξ̄, we now have two regions corresponding to FCEG.
The above discussion of qq′ → qq′ and qq → qq processes can be done for any 2 → 2

partonic process, highlighting the structure of the FCEL spectra for ξ = {1
2 , 0, 1}, and

providing — in those three limits — a physical interpretation of the various contributions
to dI/dx (including FCEG-type contributions which occur for some partonic channels and
some values of ξ) in terms of the available irreps in the s, t, and u-bases.

4 Discussion

We have derived the medium-induced gluon radiation spectrum in the fully coherent regime
for all 2 → 2 partonic scatterings (with massless initial partons). Using (2.26), the matrix Φ
given in appendix A.2, and the matrices B+ and B− given in appendix C, the spectrum can
be obtained for any 2 → 2 channel. The spectrum (2.26) is independent of the color basis
used to decompose the hard subprocess 2 → 2 amplitude, is valid beyond leading-logarithmic
accuracy,20 for any number of colors N , and in the full kinematic range of the underlying
process. We have noted that for ξ ̸= 1

2 , soft gluon radiation can probe the individual color
charges of the pair constituents (provided the two logarithms in (2.26) are not simultaneously
large, otherwise the first term of (2.27) would dominate), and the spectrum (2.26) thus

20The precise domain of validity, and the formal accuracy of our result, is explained in section 2.4.
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involves color transitions between different irreps of the parton pair. Another feature of the
spectrum (2.26) is the exact matching with known limits for ξ = 1

2 , ξ → 0 and ξ → 1, for
which the spectrum is effectively the same as for 2 → 1 processes.

We thus expect the spectrum (2.26) to be applicable in phenomenology across the entire
ξ range, 0 < ξ < 1. Strictly speaking, the formal limit ξ → 0 (resp. ξ̄ ≡ 1− ξ → 0) should
be understood as ξ ≪ 1 (resp. ξ̄ ≪ 1) at finite ξ (resp. ξ̄), due to the kinematic limit we
considered, namely, E → ∞ at fixed ξ and K⊥, ensuring E, ξE, ξ̄E ≫ K⊥ , i.e. small angle
scattering in the nucleus rest frame. (As mentioned earlier, this setup encompasses the
situation of production at mid-rapidity in the c.m. frame.) In the limit where ξ or ξ̄ becomes
very small, some final parton has a very little longitudinal momentum even in the nucleus
frame (corresponding to a very large negative rapidity in the c.m. frame), invalidating the
assumption ξE ≫ K⊥ . In practice, however, the drastic ξ → 0 limit (or ξ̄ → 0) is irrelevant.

By way of illustration, let’s consider one of the simplest situations where FCEL is at
work, namely, single inclusive hadron production in pA collisions. We view this process within
collinear factorization, assuming the tagged hadron arises in our setup from the fragmentation
of parton 4 of the 2 → 2 partonic subprocess (see figure 1), with given transverse momentum
p⊥ = zK⊥ and rapidity y = y4 (in the proton-nucleon c.m. frame). The hadron cross section
dσ/(dp⊥dy) involves an integral over the fragmentation variable z, as well as an integral
over the rapidity y3 = y4 −∆y of the unobserved parton 3, which using (2.3) can be traded
for an integral over ξ . In the LO kinematics, the longitudinal momentum fractions x1 and
x2 of the incoming partons from the projectile and target are not independent variables:
they are related to z and ξ as x1 = m⊥ e

+y/(ξ√sNN) and x2 = m⊥ e
−y/((1 − ξ)√sNN) ,

where m⊥ =
√
m2 + (p⊥/z)2.

It follows that in the LO kinematics, ξmin ≤ ξ ≤ ξmax where ξmin ≡ m⊥e
y/
√
sNN and

ξmax ≡ 1−m⊥e
−y/

√
sNN . The exact matching limits for the spectrum at ξ = 0 and ξ = 1

therefore cannot be reached, so long as we are considering single hadron production with
a non-zero m⊥. In other words, the limit where the spectrum (2.26) exactly matches with
2 → 1 processes is only accessible asymptotically at large |y| . As an example, let us consider
√
sNN = O(10TeV), taking m⊥ = 3GeV and y = −5, to represent values attainable at

the LHC. This gives ξmin ≃ 2 × 10−6, showing that the asymptotic 2 → 1 case is not
merely academic for the observable under consideration, and emphasizing the relevance of
the spectrum (2.26) (which encompasses this limiting case). Furthermore, the longitudinal
momentum of parton 4 (in the nuclear rest frame) is then pz

4 ≃ ξx1Ep = ξminEp ∼ 100GeV
[using Ep = sNN/(2mp) ≃ 5× 107 GeV]. Thus, parton 4 is fast in the nuclear target down to
quite large negative rapidities. This validates the use of the spectrum, which was calculated
assuming both final partons to be fast in the nuclear target, in a broad rapidity range. We
stress that this rapidity range encompasses mid-rapidities as well as negative rapidities (defined
in the c.m. frame), where the hard process looks like 90◦ scattering and backward scattering,
respectively. However, as mentioned in section 2.1, both these situations correspond to
small angle, forward scattering in the nucleus rest frame, which is the main condition for
the validity of our results.

As mentioned in the introduction, the induced spectrum dI/dx should ultimately be
used to determine the specific energy loss probability distribution (or quenching weight) valid
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beyond LL, in order to predict the effect of FCEL on hadron production pA (or AA) cross
sections without restricting to a typical ξ value as in previous LL studies. The new features
of the spectrum that arise beyond LL, in particular the presence of color transitions, will need
to be incorporated. The explicit construction of the quenching weight and its consequences
for phenomenology will be addressed in later studies.
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A Color structure of 2 → 2 partonic channels

In this appendix, we discuss the SU(N) structure of the hard, leading-order 2 → 2 scattering
amplitudes, and how to construct the matrix Φ defined in eq. (2.14). The calculation of Φ
and of the required coefficients να in (2.11) is a self-contained task, unrelated to the physics
of soft gluon radiation discussed in the main text.

A.1 Color decomposition of amplitudes

In table 2 we give the color decomposition of the amplitude M for each partonic channel. In
contrast with table 1, here flavor matters, and we denote by q and q′ different quark flavors.
Observe that for qg → qg , gg → gg and gg → qq̄ channels, for the pictorial form of M given
in the second column of table 1 we chose the s-channel and t-channel color graphs as the
independent color structures to express it. (Of course, using color conservation another choice
could be made to obtain equivalent expressions of M.)

As an illustration of how the coefficients να of the last column of table 2 are obtained,
we consider below the case of a few specific channels.

Example 1: qq → qq channel. The amplitude for the scattering of two quarks of same
flavor reads

M = Bt + Bu , (A.1)

where the graphs stand for color factors only, and Bt and Bu are given by:

Bt =
g2

t
[ū(p3)γµu(p1)] [ū(p4)γµu(p2)] ; Bu = −g

2

u
[ū(p4)γµu(p1)] [ū(p3)γµu(p2)] , (A.2)

with u(pi) and ū(pi) the usual Dirac spinors for particle i. Using the Fierz identity

2 = − + 1
N

, (A.3)
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we can express the color graphs of (A.1) as linear combinations of the projectors P3̄ and P6

of a qq pair (given in table 1 in the 3 ⊗ 3 entry). One obtains

M = −1
2

{
N + 1
2N (Bu − Bt)P3̄ + N − 1

2N (Bt + Bu)P6

}
, (A.4)

which yields the coefficients να (last column of table 2) for this channel.

Example 2: qg → qg, gg → gg and gg → qq̄ channels. These three processes, for
which the incoming parton from the target (parton 2) is a gluon, can be treated on the
same footing. The gauge invariant amplitude M is most easily derived in A+ = 0 gauge,
and for each process, there are a priori three possible different color graphs in M. As is
readily obtained from color conservation (viewing the target gluon as the generator of an
infinitesimal color rotation), only two of the latter are independent, leading to the entries of
the second column of table 2 for those processes. In addition, the spin/helicity dependence
factors out and is encoded in the factors F ,G,H given by

F = g2√
ξξ̄

ε · U g
q ; G = g2√

ξξ̄
ε · U g

g ; H = g2√
ξξ̄

ε · U q̄
g . (A.5)

Here ε ≡ ελ (λ = ±1) is the target gluon transverse polarization vector (taken to be
orthogonal to the z-axis in A+ = 0 gauge), and Ua3

a1 is also orthogonal to the z-axis.
The vector U (which depends on ξ and on the helicities of partons a1, a3 and a4) is

different for the three processes, but it satisfies the general property∑
hel.

U iU j ∗ = 2V a3
a1 (ξ) δ

ij , (A.6)

where V a3
a1 (ξ) is the ‘color-stripped’ splitting function of parton a1 into parton a3, namely,

V g
q (ξ) = V q

q (ξ̄) = 2 1 + ξ̄2

ξ
; V g

g (ξ) = 4 (1− ξξ̄)2

ξξ̄
; V q̄

g (ξ) = V q
g (ξ̄) = 2 (ξ2 + ξ̄2) . (A.7)

Using (A.5), (A.6) and (A.7), one easily recovers the textbook expressions of tr |M|2 for the
three processes, given for convenience in the third column of table 2.

In order to obtain the coefficients να of the color decomposition (2.11) of M, we proceed
as in the qq → qq case described previously. For each channel we express the color graphs
appearing in M (second column of table 2) as a linear combination of the projectors Pα (given
in table 1) or transition operators Tα [given in (2.6)] corresponding to the accessible color
states in that channel. For the qg → qg channel, this is straightforward. For gg → gg, we use

= N P8a
and =

∑
α

bα Pα , (A.8)

where by projecting the latter equation on Pα, we readily interpret −2bα as the ‘color
interaction potential’ of a gluon pair in color state α [25] and thus get

bα = −1
2(Cα − 2N) . (A.9)
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channel M trdtrc |M|2

4g4(N2 − 1) α
να√
Kα

qq′ → qq′ A 1 + ξ̄2

2ξ2

3̄

6

A N+1
2N

−A N−1
2N

qq → qq Bt + Bu
1 + ξ2

2ξ̄2 + 1 + ξ̄2

2ξ2 − 1
Nξξ̄

3̄

6

N+1
4N (Bt − Bu)

−N−1
4N (Bt + Bu)

qq̄′ → qq̄′ C 1 + ξ̄2

2ξ2

1

8

CF C

− 1
2N C

qq̄ → q′q̄′ D ξ2 + ξ̄2

2
1

8

0
1
2 D

qq̄ → qq̄ Es + Et
ξ2 + ξ̄2

2 + 1 + ξ̄2

2ξ2 + ξ̄2

Nξ

1

8

CF Et

1
2
(
Es − 1

N Et

)

qg → qg F
[

− ξ

]
(1 + ξ̄2)

(N
ξ2 + CF

ξ̄

) 3

6̄

15

( 1
2N + ξ̄CF

)
F

1
2 F

−1
2 F

gg → gg G
[

− ξ

]
4N2 (1− ξξ̄)3

ξ2ξ̄2

8a

10 ⊕ 10

1

8s

27

0

N
2 (ξ̄ − ξ)G

0

N G
N
2 G

−G

G

gg → qq̄ H
[

− ξ

]
(ξ2 + ξ̄2)

(CF

ξξ̄
−N

) 1

8a

8s

√
N2−1
2
√

N
H

1
2
(
ξ̄ − ξ

) √
N√
2 H

√
N2−4

2
√

2N
H

Table 2. For each partonic channel, we give the production amplitude M, where the graphs stand
for color factors only, and the coefficients A, Bt, Bu, C, . . . for the Lorentz structure. In the next
column, we give the square of the amplitude, trdtrc |M|2, summed over spins, helicities and colors of
all partons. We then list the coefficients να (normalized by

√
Kα) of the color decomposition (2.11) of

M, for each irrep α of the channel under consideration.
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From the above equations we readily obtain the coefficients να of the gg → gg amplitude.
Note that the coefficient of the antisymmetric octet (α = 8a) is odd under the exchange
ξ ↔ ξ̄ of the two final state partons, and the coefficient of 10 ⊕ 10 identically vanishes (for
the gg → gg amplitude at leading-order). For the gg → qq̄ amplitude, the coefficients να of
the decomposition (2.11) in terms of the transition operators (2.6) are obtained by using

= 1
2N + 1

2 + 1
2

=
√
N2−1
2
√
N

T1 +
√
N

2
√
2 T8a

+
√
N2−4
2
√
2N T8s

. (A.10)

The derivation of the coefficients να for all other channels of table 2 goes along the
same lines.

Let us mention that for the process gg → QQ̄ with massive quarks (not listed in table 2)
the results are the same as for gg → qq̄ (last row of table 2), up to a modification of the
helicity dependent factor, H → H′, leading to a modification of the squared amplitude:

1
4g4(N2−1) tr |M(gg → QQ̄)|2 =

[
1 +

4m2K2
⊥

ξξ̄(ξ2 + ξ̄2)s2

]
(ξ2 + ξ̄2)

(
CF

ξξ̄
−N

)
. (A.11)

Here ξ and ξ̄ are still given by their Lorentz-invariant definition (2.2) (with now m ̸= 0),
and K2

⊥ = ξξ̄s−m2 [see (2.3)]. In the present study we only need the coefficients να, to be
used in the expression of the density matrix Φ defined in eq. (2.14). Since for gg → QQ̄, all
να’s are proportional to the same helicity dependent factor H′, the latter drops out in the
expression of Φ, which is thus the same for gg → QQ̄ and gg → qq̄. A similar remark applies
to qq̄ → QQ̄ as compared to qq̄ → q′q̄′, due to the triviality of this process: the amplitude
being given by a single Feynman diagram, there is only one helicity dependent factor (say, D
for qq̄ → q′q̄′ and D′ for qq̄ → QQ̄), leading to the same density matrix for the two processes.

Finally, let us recall that in our setup (see section 2.1), we do not need to consider those
2 → 2 processes where some of the initial parton is a heavy quark. For our purpose, the
list of channels in table 2, complemented by qq̄ → QQ̄ and gg → QQ̄, is thus complete.
(The processes q̄q̄ ′ → q̄q̄ ′, q̄q̄ → q̄q̄, q̄g → q̄g are trivially obtained from qq′ → qq′, qq → qq,
qg → qg by complex conjugation, and the process qq̄ → gg from gg → qq̄ by time reversal.)

A.2 Explicit form of matrix Φ

Here we give the density matrix Φ defined in (2.14), for each of the partonic channels of
table 2. Note also that the diagonal elements of Φ are the probabilities ρα defined in (2.18),
which for some of the processes (namely, qg → qg, gg → gg and gg → qq̄) were evaluated
previously [5, 15, 16].

For each partonic channel, we define the matrix Φ by ordering the irreps α as in the second
to last column of table 2. The hard production amplitudes M are given in lightcone gauge,
but the gauge invariance of the expressions below may be demonstrated in a general covariant
gauge. A form [30] code implementation is attached as supplementary material attached to
this paper, using tree-level graphs generated by qgraf [31] and including Faddeev-Popov
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ghosts. With the notation Uk ≡
√
N + k , Dk ≡

√
N − k and KA ≡ N2 − 1 , the matrices

are given by (recall that q and q′ denote distinct quark flavors)

Φqq′→qq′ = 1
2N

(
N + 1 −

√
KA

−
√
KA N − 1

)
, (A.12)

Φqq→qq = 1
N
(
ξ4 + ξ̄4 + ξ2 + ξ̄2

)
− 2ξξ̄

×

(
1
2(N + 1)

[
(ξ − ξ̄)2 + ξ4 + ξ̄4] −

√
KA(ξ̄ − ξ)(1− ξξ̄)

−
√
KA(ξ̄ − ξ)(1− ξξ̄) 1

2(N − 1)
[
1 + ξ4 + ξ̄4]

)
, (A.13)

Φqq̄′→qq̄′ = 1
N2

(
KA −

√
KA

−
√
KA 1

)
, (A.14)

Φqq̄→q′q̄′ =
(
0 0
0 1

)
, (A.15)

Φqq̄→qq̄ = 1
N
[
1 + ξ̄2 + ξ2(ξ2 + ξ̄2)

]
+ 2ξξ̄2

×

(
2CF

(
ξ̄2 + 1

)
−

√
KA

N

[
1 + (1 +Nξ)ξ̄2]

−
√

KA

N

[
1 + (1 +Nξ)ξ̄2] 1

N

[
1 + ξ̄2(1 +Nξ)2 +N2ξ4]

)
, (A.16)

Φqg→qg = 1
CF ξ2 +Nξ̄

×


CF

(
ξ̄ + 1

KA

)2
U1D2
2
√

2

(
ξ̄ + 1

KA

)
−U2D1

2
√

2

(
ξ̄ + 1

KA

)
U1D2
2
√

2

(
ξ̄ + 1

KA

)
N(N−2)
4(N−1) −N

4
U2D2
U1D1

−U2D1
2
√

2

(
ξ̄ + 1

KA

)
−N

4
U2D2
U1D1

N(N+2)
4(N+1)

 , (A.17)

Φgg→gg = 1
2
(
1 + ξ2 + ξ̄2

)

×



(
ξ̄ − ξ

)2 0 2(ξ̄−ξ)√
KA

(ξ̄ − ξ) U3(ξ−ξ̄)
U1

D3(ξ̄−ξ)
D1

0 0 0 0 0 0
2(ξ̄−ξ)√

KA
0 4

KA

2√
KA

− 2U3
U1

√
KA

2D3
D1

√
KA

(ξ̄ − ξ) 0 2√
KA

1 −U3
U1

D3
D1

U3(ξ−ξ̄)
U1

0 − 2U3
U1

√
KA

−U3
U1

N+3
N+1 −U3D3

U1D1

D3(ξ̄−ξ)
D1

0 2D3
D1

√
KA

D3
D1

−U3D3
U1D1

N−3
N−1


, (A.18)

Φgg→qq̄ = 1
N2
(
ξ2 + ξ̄2

)
− 1

×


1 N(ξ̄−ξ)√

2
U2D2√

2
N(ξ̄−ξ)√

2
1
2N

2(ξ − ξ̄)2 1
2NU2D2(ξ̄ − ξ)

U2D2√
2

1
2NU2D2(ξ̄ − ξ) 1

2(N
2 − 4)

 . (A.19)
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It is apparent from eqs. (A.12)–(A.19) that all the matrices Φ satisfy Tr Φ = 1 , as they
should. Furthermore, for the channels which depend on a single helicity-dependent factor
(i.e., all channels but qq → qq and qq̄ → qq̄) the matrix Φ has the property that every 2× 2
‘sub-determinant’ vanishes (implying DetΦ = 0). This directly follows from (2.14) because,
for those channels, the sum over quark helicities acts similarly for any matrix element and can
thus be effectively removed. In those cases Φ can be rapidly constructed from the knowledge
of its diagonal elements, and by noting that the sign of a non-diagonal element Φαβ is given
by the sign of ν∗α νβ, which is directly inferred from the last column of table 2.

The 2 → 2 matrix elements obey crossing symmetries which enable certain matrices
to be related to one another by interchanging external particles. Specifically, using ī to
denote the antiparticle of i , one has

M12→34(p1, p2; p3, p4) = M13̄→2̄4(p1,−p3;−p2, p4) (A.20)
= M14̄→32̄(p1,−p4; p3,−p2) . (A.21)

The first equality (A.20) amounts to exchange s ↔ t (or ξ → 1
ξ ) in the original scattering

amplitude, and the second equality (A.21) amounts to exchange s↔ u (or ξ → ξ
ξ−1). However,

when it comes to Φ we also need to change the orthonormal color basis in accordance
with (3.4). Hence we obtain, for example,

Φ13̄→2̄4(ξ) = Ats · Φ12→34

(1
ξ

)
·A−1

ts , (A.22)

where Ats is the rotation matrix relating the appropriate bases as discussed in section 3.
What plays the role of the s-channel basis for 12 → 34 , is the t-channel basis for 13̄ → 2̄4 .
Similarly, the second crossing relation (A.21) leads to

Φ14̄→32̄(ξ) = Aus · Φ12→34

(
ξ

ξ − 1

)
·A−1

us . (A.23)

Another trivial crossing relation stems from exchanging particle 3 with particle 4, which
does not require any change of color basis:

Φ12→43(ξ) = Φ12→34(1− ξ) , (A.24)

corresponding to t ↔ u .

B FCEL spectrum beyond leading-log for 2 → n processes

The purpose of this appendix is to derive the expression (2.20) of the FCEL spectrum
associated to hard 2 → 2 partonic processes (viewed as 1 → 2 forward processes) studied in
this paper. We first rederive (section B.1) the medium-induced spectrum found in ref. [2]
for hard 2 → 1 (i.e., 1 → 1 forward) processes in a more synthetic way, in particular by
making use of color conservation at a certain stage of the calculation. We then show how
this generalizes to 2 → 2 processes (section B.2), thus obtaining the associated induced
spectrum beyond logarithmic accuracy (2.20), as well as to 2 → n processes with n > 2. In
particular, a conjecture of ref. [5] made within logarithmic accuracy for the induced spectrum
of the latter processes is validated.
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B.1 Reminder of 2 → 1 processes

Here we consider a simple theoretical setup where the underlying hard partonic process is
qg → q , viewed as forward quark scattering mediated by a single t-channel gluon exchange [2].
This case will be sufficient to infer the FCEL spectrum associated to any 2 → 1 process, given
by eqs. (B.21)–(B.22). The derivation below follows the lines of ref. [2], but presents several
simplications, which will make the generalization to 2 → n processes quite straightforward.

First, we define the qg → q process as a special kinematic limit of the qg → qg pro-
cess, namely, when the final gluon (corresponding to parton 4 of figure 1) has a negligible
longitudinal momentum, p+

4 ≃ 0 :

Mvac
qg→q ≡ lim

ξ→0

(
Mvac

qg→qg

)
=

q

−q
p+

4 ≃0

q↑
p2

. (B.1)

In the ξ → 0 limit, the qg → qg amplitude is dominated by a single diagram corresponding to
a gluon exchange in the t-channel. (This is consistent with the color structure of the qg → qg

amplitude when ξ → 0, see the first column of table 2.) The “qg → q amplitude” (B.1) is
thus well-defined and, in particular, gauge-invariant. In (B.1) and the following, a red gluon
will always denote a gluon carrying the hard transverse momentum scale. For example, the
final gluon in (B.1) has p+

4 ≃ 0 but carries the hard transverse momentum −q.
Due to the presence of only one energetic parton in the final state, the calculation of the

induced spectrum associated to qg → q is simpler than in the general case of 2 → 2 processes
(with no kinematic restriction) addressed in the next section. In particular, we may think
of (B.1), viewed in the target rest frame, as an incoming quark with light-cone momentum
p1 = (2E, 0,0) undergoing a transfer of momentum q = (0, q−, q),21 drawn as

Mvac
qg→q ≡ q↑ . (B.2)

Here the red gluon highlights the hard transverse exchange with the incoming quark, which is
crucial to keep track of the color structure of the process, and the red blob hides partons 2 and
4 [parton 4 being the final recoil gluon of transverse momentum −q in (B.1)], whose kinematic
details are irrelevant for the calculation of the radiation spectrum in the present section.

The final quark of momentum p3 = p1 + q is assumed to hadronize into a tagged
hadron of sufficiently hard transverse momentum p, implying that q = p/z (with z the
fragmentation variable) is hard, |q| ≡ q⊥ ≫ ΛQCD . However, throughout this study we focus
on moderately large q⊥, namely, q⊥ ≪ E, corresponding to small angle (forward) scattering
in the target rest frame.

The squared matrix element for the hard qg → q process (referred to as the ‘vacuum’
process in what follows) may be illustrated as∣∣Mvac

qg→q

∣∣2 =
q

, (B.3)

where the upper and lower halfs (separated by the dashed horizontal line) represent the
amplitude and conjugate amplitude respectively.

21Unlike p2 and p4, which are on-shell, the four-momentum q is virtual.
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In the case of a nuclear target of finite size L, the above picture for qg → q scattering is
altered by multiple rescatterings, contributing to the final hadron transverse momentum p.
However, when p⊥ is much larger than the average transverse momentum broadening, the
parent quark with K = p/z must undergo a single hard exchange q (since the probability of
a second hard exchange is power suppressed), accompanied by in-medium soft rescatterings
ℓi such that ℓ ≡

∑
i ℓi satisfies |ℓ| ≪ q⊥, implying K = q + ℓ ≃ q . This is the regime

entailed by our initial assumption Qs ≪ K⊥ (see section 2.3), where the saturation scale Qs

is of the same order as |ℓ| . Although soft rescatterings modify negligibly the kinematics of
the vacuum process, they affect the color field of the energetic parton, resulting in induced
gluon radiation. Compared with (B.3), in-medium parton propagation will be denoted by a
blue rectangle, encoding the additional rescatterings ℓi (which may occur in any ordering
w.r.t. to the hard exchange q),

∣∣Mmed
qg→q

∣∣2 =
q

. (B.4)

For the next step, consider gluon radiation associated with this specific process and
kinematics, carrying away a momentum k = (k+,k2/k+,k), and assumed to be soft (x ≡
k+/(2E) ≪ 1) and emitted at small angle (|k| ≡ k⊥ ≪ k+). The radiation spectrum can be
obtained by resumming to all orders, as done in the BDMPS-Z [7, 9] and AMY [51] formalisms,
the number ñ of scattering centers (located at longitudinal positions zi) on which the energetic
quark has rescattered. The zeroth order term corresponds to the spectrum associated with
the vacuum process, and the expansion in terms of ñ is called the opacity expansion [33].
Here we are looking for the additional, medium-induced spectrum, obtained by summing over
ñ ≥ 1 the radiation spectrum for a given ñ, which reads (see appendix A of ref. [2])

x
dI(ñ)

dx = αs

π

∫ d2k

π

[
ñ∏

i=1

∫ dzi

Nλg

∫
d2ℓi V (ℓi)

]
Cñ(k, q) , (B.5)

Cñ(k, q) = 2∣∣Mvac
qg→q

∣∣2 × × × ×

k

qℓ1 ℓi

. (B.6)

In eq. (B.6) and in the following, within any blue rectangle a sum is implicitly performed
over all possible connections of rescattering gluons to the hard quark and antiquark lines
and to the soft radiated gluon. Note that the color structure of graphs is evaluated using
the pictorial rules recalled in footnote 8.

A few comments on eqs. (B.5)–(B.6) are in order [2]:

(1) The rescatterings ℓi are modelled as a sequence of individual scatterings off static
centers [denoted by crosses in (B.6)], typically separated by the elastic mean free path
λ1 of the fast parton of Casimir C1 [52]. An average over ℓi is performed using the
screened Coulomb potential V (ℓi) = µ2/[π(ℓ2

i + µ2)2] (normalized as
∫
d2ℓV (ℓ) = 1).
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With the screening length 1/µ of the medium satisfying 1/µ ≪ λ1, the potential is
screened enough so that successive rescatterings may be treated independently. Note
that µ is the typical magnitude of a single transfer, |ℓi| ∼ µ. Averages over the ℓi’s will
be implicit in the following.

(2) We do not need to assume L≫ λ1. Resumming all orders in opacity should encompass
the typical cases of a large nuclear target (L ≫ λ1) and of a small proton target
(L ∼ λ1). In the latter case, the spectrum will be simply dominated by the first term
(linear in L) of the opacity expansion. Note that defining q̂ ≡ µ2/λg, with λg the gluon
mean free path, the estimate of the average broadening

√
q̂L = µ

√
L/λg holds at both

small and large L.

(3) The factor Nλg in (B.5) arises independently of the type of parton which propagates
in the medium [2], and can be viewed as the ‘color stripped’ elastic mean free path
λ ≡ Nλg = CFλq. This explains why the spectrum (B.20) below turns out to depend on
the gluon mean free path (due to the fact that Cñ(k, q) ∝ N ñ, see eqs. (B.8) and (B.16)),
for any partonic process.

(4) The specific setup under consideration leads to important simplifications [2]: i) the
induced radiation spectrum arises from large gluon formation times tf ≫ L, corre-
sponding to the emission vertices in the amplitude and its conjugate being outside
the nuclear medium, ii) diagrams where the hard t-channel gluon couples to the soft
radiation are negligible (which follows from k⊥ ≪ q⊥), and iii) purely initial and purely
final state radiation cancels out in the induced spectrum, leaving only a contribution
from interference terms [of the form drawn in (B.6)].

For a given ñ ≥ 1, we now derive the quantity Cñ defined by (B.6). The derivation is
similar to that of ref. [2], but with important technical simplifications. First, there is no
need to consider quantities depending on the medium size L, since the integrals over the
longitudinal positions of the scattering centers in (B.5) are trivial, and just provide a factor
Lñ/(ñ!) . We simply draw crosses [in (B.6) and the diagrams below] to remind that the
ñ rescatterings are ordered. Second, the treatment of the color structure of (B.6) will be
simplified, making the generalization to 2 → n processes easier (see section B.2).

Since the soft scatterings ℓi affect negligibly the final quark momentum, Cñ(k, q) is
always proportional to the factor −ψ0(k − xq)∗ (arising from the final gluon emission vertex
in the conjugate amplitude), where ψ0(k − xq) is the light-cone wavefunction of the final
quark-gluon fluctuation (in a parent quark of momentum q). For a quark of mass m the
function ψ0(k) reads

ψ0(k) ≡
k · ε

k2 + x2m2 , (B.7)

with ε the polarization of the radiated gluon. Importantly, the wavefunction of g → g + g(k)
is given by (B.7) with m = 0 and the variable x appearing in ψ0(k − xq) and in (B.7) is
the radiated gluon momentum fraction w.r.t. the parent parton.
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We can thus rewrite Cñ as

Cñ(k, q) = −ψ0(k − xq)∗ · Γñ(k) , (B.8)

Γñ(k) ≡ 2∣∣Mvac
qg→q

∣∣2 × × × ×

k

qℓ1 ℓi

, (B.9)

where the small circular blob outside the blue rectangle indicates that the final emission
vertex now depends only on color indices, and we also anticipate that Γñ depends only on k.
Γñ(k) can be obtained recursively as follows. First, in absence of rescatterings we find:

Γ0(k) =
2∣∣Mvac

qg→q

∣∣2
k

= 2
ψ0(k)

k

. (B.10)

In the latter graph the only remaining Lorentz dependence is the factor V (q), which cancels
with the same factor contained in

∣∣Mvac
qg→q

∣∣2. Thus Γ0(k) is independent of q and reads

Γ0(k) = ψ0(k) 2T1T3 = ψ0(k) (C1 + C3 − C2) , (B.11)

where T1 and C1 = T 2
1 (resp. T3 and C3 = T 2

3 ) denote the SU(N) generator and Casimir of
the incoming (resp. outgoing) parton, and C2 = (T1 − T3)2 the Casimir of the color exchange
in the t-channel. (In the particular case qg → q, we have C1 = C3 = CF and C2 = N .) Then,
supposing Γñ(k) is known, Γñ+1(k) can be obtained by inserting an additional rescattering just
after the last one in the graphical representation (B.9) of Γñ(k), namely, by inserting the blob:

k

≡
k−ℓ k

×
+

k−ℓ k

×
+

k k

×
+

k k

×
+

k k

×
+

k k

×
. (B.12)

Here the graphs only represent color connections, but the momenta of the radiated gluon
entering and exiting the blog are also indicated, to properly keep track of the transverse
momentum flow when inserting (B.12) in (B.9). The last soft exchange ℓñ+1 ≡ ℓ is attached to
the blue cross which denotes the last scattering center. The diagrams where this attachment
occurs either only above the cross (in the amplitude) or only below the cross (in the conjugate
amplitude) correspond to the so-called virtual corrections in the multiple scattering process.
Inserting (B.12) in (B.9) we obtain

Γñ+1(k) = N

∫
d2ℓV (ℓ)

[
Γñ(k − ℓ)− Γñ(k)

]
, (B.13)

where on the r.h.s. the first term arises from the first two terms of (B.12) and the second term
arises from the last four terms of (B.12). To reach (B.13) we used the fact that at any given
time (specified by a vertical line) between two successive rescatterings in the blue rectangle
of (B.9), the overall qq̄g state is color singlet, Tg +

∑
i Ti = 0, where Tg and Ti denote the
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SU(N) generators of the gluon and of all other partons (here i = q, q̄), respectively. Thus,
the first two terms of (B.12) sum up to the color factor (recall our conventions in footnote 8)

×
+

×
= −Tg ·

∑
i

Ti = T 2
g = N , (B.14)

and the last four terms of (B.12) sum up to

×
+

×
+

×
+

×
= −1

2

[
T 2

g +
∑

i

T 2
i

]
−
∑
i ̸=j

TiTj

= −1
2

(
Tg +

∑
i

Ti

)2

+ Tg ·
∑

i

Ti

= −T 2
g = −N . (B.15)

Using (B.11) and (B.13), it is clear that Γñ(k) is of the form

Γñ(k) = 2T1T3N
ñ ψñ(k) , (B.16)

where ψñ(k) satisfies the recurrence relation

ψñ+1(k) =
∫

d2ℓV (ℓ)
[
ψñ(k − ℓ)− ψñ(k)

]
, (B.17)

with initial condition ψ0(k). Equation (B.17) can be solved exactly by going to impact
parameter space to obtain:

ψñ(k) =
∫ d2b

(2π)2 ψ0(b) [V (b)− 1]ñ eik·b , (B.18)

where V (b) = bµK1(bµ) and ψ0(b) is given by

ψ0(b) =
∫

d2kψ0(k) e−ik·b = −2iπb · ε

b2 xmbK1(xmb) . (B.19)

Using (B.8), (B.16) and (B.18) in the expression (B.5) of the spectrum at order ñ in opacity,
and then summing over ñ ≥ 1, we obtain for the medium-induced spectrum (with r ≡ L/λg),

x
dI
dx = αs

π2 2T1T3

∫ d2b

(2π)2 e
ixq·b ψ0(b)∗ψ0(b)

[
1− e−r (1−V (b))

]
. (B.20)

The summation carried out above is valid for all r, which supports item (2) on page 29.
This is very different from the case of parton energy loss in the LPM regime, where the
opacity expansion may not converge at large-L [53, 54]. Using now (B.19), summing over
the radiated gluon polarization, and attributing masses m1 and m3 to the incoming and
outgoing quark, we get

x
dI
dx = αs

π

(
C3 + C1 − C2

)
σ(q̃⊥, m̃1, m̃3, r) ; q̃⊥ ≡ xq⊥

µ
; m̃i ≡

xmi

µ
, (B.21)
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where the function σ(q̃⊥, m̃1, m̃3, r) is defined as

σ(q̃⊥, m̃1, m̃3, r) =
∫ ∞

0

dB2

B2 J0(q̃⊥B) m̃1BK1(m̃1B) m̃3BK1(m̃3B)
[
1− e−r (1−B K1(B))

]
.

(B.22)
In the case of qg → q scattering, we have m1 = m3. But it should be clear from the derivation
that the result (B.21)–(B.22) holds for any 2 → 1 scattering (including cases where the
initial and final partons have different masses). In particular, using m̃iBK1(m̃iB) → 1
when mi → 0, we check that (B.21)–(B.22) encompasses the results of ref. [2] for qg → q

(m1 = m2 = m3 = 0) and gg → Q (m1 = m2 = 0 and m3 ̸= 0).

B.2 Generalization to 2 → n processes

Here we derive the FCEL spectrum for n ≥ 2 particles in the final state, confirming a
conjecture in ref. [5]. For illustration we consider the same 2 → 2 process as in ref. [5] (called
1 → 2 forward scattering in that reference), namely, qg → qg scattering, however without
restricting to the large N limit, and in a way that makes obvious the generalization to any
2 → 2 partonic process, as well as to 2 → n processes with n > 2.

The picture for qg → qg scattering simply follows from the model for qg → q scattering
considered in section B.1, by promoting the recoil gluon drawn in eq. (B.1) (and carrying the
transverse momentum −q) to an energetic gluon. The qg → qg amplitude is of the form

Mvac
qg→qg ≡ M =

p3

p4 + + , (B.23)

where the final quark and gluon transverse momenta are denoted as p3 ≡ −K and p4 ≃ K

(K⊥ playing the role of the hard scale), and their longitudinal momentum fractions as
ξ3 = 1 − ξ ≡ ξ̄, ξ4 ≡ ξ (in conformity with the notations of section 2.1, see figure 1). In
eq. (B.23) (as in eq. (B.1)), the gluon in black is the incoming gluon from the target. As
mentioned earlier, when ξ → 0 the first (t-channel) term of (B.23) dominates, and (B.23)
then coincides with the “2 → 1 amplitude” (B.1).

The square of (B.23) is given by the sum of graphs

|M|2 = + +

+ 2
(

+ +
)
. (B.24)

Similarly to (B.4), in a medium the hard process is supplemented by additional rescatter-
ings, denoted by a blue rectangle. The rescatterings ℓi [averaged with the Coulomb potential
V (ℓi)] being soft compared to the inverse transverse size of the qg pair, |ℓi| ∼ µ≪ K⊥ ∼ 1/r⊥,
the pair behaves as a pointlike object w.r.t. soft rescatterings. The derivation made in ap-
pendix A of ref. [2] for 2 → 1 processes also applies to 2 → 2 (and 2 → n) processes,
resulting in an expression for the medium-induced spectrum similar to (B.5)–(B.6), up to
the following modifications: the graph in the denominator of (B.6) is now replaced by the
sum of graphs (B.24), and in the numerator of (B.6) the additional soft radiated gluon
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k (with x ≡ k+/p+
1 ≪ 1) can be added to any of the diagrams contributing to the hard

process. equation (B.6) thus becomes:

Cñ(k,K) = 2
|M|2


× × × ×

k

K
−K

ℓ1 ℓi

+ . . .


, (B.25)

where inside the bracket we have drawn the contribution associated to the last diagram
of (B.24), and the dots stand for the contributions arising from the other diagrams. The small
ellipse denotes the two possible attachments of the soft gluon in the conjugate amplitude,
either to the hard gluon or to the hard quark. Finally, as in section B.1, all connections
of rescattering gluons ℓi to the hard partons and to the soft radiated gluon are implicitly
accounted for in the blue rectangle.

Let us now focus on the first term in the bracket of (B.25) and its contribution to
Cñ(k,K), and see how the hard part of this diagram [given by the last diagram of (B.24)] is
‘dressed’ by multiple soft rescatterings. We first consider the attachment of the soft gluon
to the final hard gluon in the conjugate amplitude. Factoring out the final emission vertex
in the conjugate amplitude and using the notational convention of section B.1, this specific
contribution to (B.25) reads

−Γñ(k,K) · ψg
0

(
k − x

ξ
K

)∗
, (B.26)

where the upper script g on ψg
0 indicates that we should use here the g → gg wavefunction,

given by (B.7) for m = 0, and Γñ(k,K) is defined by

Γñ(k,K) = 2
|M|2

× × × ×

k

K
−K

ℓ1 ℓi

, (B.27)

where the circular blob represents the final emission vertex as in the 2 → 1 processes. One
can show similarly to section B.1 that Γñ(k,K) obeys the recurrence relation (B.13), however
with the initial condition

Γ0(k,K) = ψ0(k)
2

|M|2
, (B.28)

where ψ0(k) is the initial q → qg wavefunction, obtained also from (B.7) by setting m = 0.
The crucial point in proving that Γñ(k,K) obeys (B.13) is that the systematics of

eqs. (B.14) and (B.15) holds independently of the number and type of hard partons accom-
panying the soft radiated gluon. Each rescattering will always provide a factor N in the
recurrence relation (B.13). This is a consequence of color conservation: the energetic parton
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system in the amplitude and that in the conjugate amplitude, together with the radiated
gluon k, always form an overall color singlet system.

Since Γñ(k,K) satisfies (B.13) we define, analogously to (B.16),

Γñ(k,K) = N ñ ψñ(k)
2

|M|2
, (B.29)

and observe that ψñ(k) obeys (B.17) with initial condition ψ0(k), and is thus given by (B.18).
The specific contribution under consideration thus contributes to the spectrum as

αs

π
σ

(
xK⊥
ξµ

,
xm1
µ

,
xm4
ξµ

, r

) 2
|M|2

. (B.30)

Here m4 = 0, but we keep it to make the generalization to any 2 → 2 scattering transparent.
Let us emphasize that the variable x appearing in the final g → gg wavefunction ψ0(k−xK),
with ψ0 defined by (B.7), should be interpreted here as x/ξ. Thus, ψ0(k−xK) → ψ0(k−xK/ξ)
and x→ x/ξ in the denominator of (B.7). Thus, when m4 ̸= 0 both K⊥ and m4 are rescaled
by ξ in (B.30).

Adding now to (B.30) similar contributions (with the soft gluon still attached to the final
hard gluon in the conjugate amplitude) arising from the other terms of (B.25) (represented
by the dots), we obtain

αs

π
σ

(
xK⊥
ξµ

,
xm1
µ

,
xm4
ξµ

, r

) 2
|M|2

M

M∗
, (B.31)

where the opaque grey rectangles stand for the complete hard amplitude (B.23).
The calculation of the contribution to the spectrum arising from the attachment of the

soft gluon k to the final quark (in the conjugate amplitude) is completely analogous, up to
the change −ψg

0(k − xK/ξ)∗ → −ψ0(k + xK/ξ̄)∗ for the final emission vertex. Adding this
to the previous contribution we obtain (for a final quark mass m3 ̸= 0):

x
dI
dx = αs

π

2∣∣M∣∣2
 σ

(
xK⊥
ξµ

,
xm1
µ

,
xm4
ξµ

, r

) M

M∗

+σ
(
xK⊥

ξ̄µ
,
xm1
µ

,
xm3

ξ̄µ
, r

) M

M∗

 . (B.32)

Clearly, the derivation of the spectrum (B.32) associated to qg → qg would be exactly
the same for any other type of 2 → 2 process. The spectrum associated to a generic 2 → 2
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p2
p1

p3

pn+2

Figure 3. Labelling convention for 2 → n processes.

partonic process thus reads

x
dI
dx = αs

π

2∣∣M∣∣2
 σ

(
xK⊥
ξµ

,
xm1
µ

,
xm4
ξµ

, r

) M

M∗

+σ
(
xK⊥

ξ̄µ
,
xm1
µ

,
xm3

ξ̄µ
, r

) M

M∗

 , (B.33)

where parton 2 from the target is now drawn entering from the left, to emphasize that the
spectrum, although derived in the target rest frame, is actually frame independent and can
be used e.g. in the c.m. frame of the collision. It is also understood that in (B.33), the soft
radiated gluon line carries only color indices, all the Lorentz (kinematical, spin) dependence
being confined to the amplitude M. Setting m1 → 0 and m3 = m4 = m in (B.33) leads to
the initial expression of the spectrum used in our study, eqs. (2.20)–(2.22).

Finally, the generalization of (B.33) to any 2 → n process with n > 2 (as depicted in
figure 3) is straightforward,

x
dI
dx

∣∣∣∣
2→n

= αs

π

n+2∑
i=3

σ

(
xpi⊥
ξiµ

,
xm1
µ

,
xmi

ξiµ
, r

)
Θi , (B.34)

where ξi ≡ p+
i /p

+
1 and pi are the longitudinal momentum fraction and transverse momentum

of parton i in the multi-parton final state (with
∑n+2

i=3 ξi = 1 and
∑n+2

i=3 pi = 0), and Θi

is a graph analogous to the graphs appearing in (B.32) (multiplied by 2/|M
∣∣2, with M

the 2 → n amplitude), with the line of the soft radiated gluon attached to parton i in
the conjugate amplitude. equation (B.34) shows how the Lorentz structure of the soft
radiation can be ‘factorized’ from the hard scattering, provided that the hard scattering
amplitude (embedded in Θi or Φ) is known. We stress, however, that evaluating Θi is
itself a non-trivial task in general.

In this respect, let us mention that for 2 → n processes with n ≥ 2, the Lorentz
dependence does not fully cancel between the numerator of Θi and its denominator |M|2.
This is because already for 2 → 2 processes, (B.24) contains several terms [in contrast
with (B.3)], which have different Lorentz dependences. For 2 → 2 processes, the Lorentz
dependence can be fully encompassed by one scale (e.g. p1⊥) and one dimensionless parameter
(ξ), and the scale dependence does cancel between each graph of (B.32) and the denominator
|M|2. This is why in the present study, the color density matrix Φ defined by (2.14) may only
depend on the kinematical variable ξ (see appendix A.2). However, for 2 → n processes with
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n ≥ 3, the partonic final state depends on at least two independent transverse momentum
scales, and we expect the generalization of the Φ-matrices to depend not only on the ξi’s,
but also on ratios like p2⊥/p1⊥, for instance.

C Color matrices B±

Since B and B are pure color matrices, the calculation of B± ≡ B±B only requires specifying
the type of process under consideration, namely, qq → qq, qq̄ → qq̄, qg → qg, gg → gg or
gg → qq̄, irrespectively of quark flavors. In addition, B and B are symmetric, real matrices,
and the expressions of B± for q̄q̄ → q̄q̄, q̄g → q̄g, qq̄ → gg, are easily shown to be the same
as for qq → qq, qg → qg, gg → qq̄, respectively.22

We first recall that B+ is a diagonal matrix for all channels, see eq. (2.28), where Cα

may be copied from table 1. For convenience, we explicitly list them here:

B
qq→qq
+ = diag

(
2CF − N+1

N , 2CF + N−1
N

)
, (C.1)

B
qq̄→qq̄
+ = diag

(
0 , N

)
, (C.2)

B
qg→qg
+ = diag

(
2CF −N , 2CF − 1 , 2CF + 1

)
, (C.3)

B
gg→gg
+ = diag

(
N , 2N , 0 , N , 2(N + 1) , 2(N − 1)

)
, (C.4)

B
gg→qq̄
+ = diag

(
0 , N , N

)
, (C.5)

with the ordering of irreps according to table 2.
Note that the process gq → gq, corresponding in our notational convention to an incoming

gluon from the projectile proton, is associated to a matrix B+ which is different from the
process qg → qg (where the incoming gluon is from the target nucleus), because the incoming
partons have different Casimir charges. We thus complement the above list with the matrix
B+ for this process:

B
gq→gq
+ = diag

(
N , 2N − 1 , 2N + 1

)
. (C.6)

As for B−, its expression following from (2.24)–(2.25), for each 2 → 2 partonic process, can
be obtained using the birdtrack pictorial technique [24–27], or alternatively using form [30].
(Note that the birdtracks (2.24)–(2.25) also appear in ref. [37], from which the expression of
B− can be borrowed for most partonic channels.) The matrices B− are listed in section C.1,
and we recall the relation of B− to the soft anomalous dimension matrix in section C.2.

C.1 B− for all partonic channels

We list below the matrices B− for each process (recall that Uk ≡
√
N + k , Dk ≡

√
N − k

and KA ≡ N2 − 1), with an ordering in α that follows the layout of table 2.

B
qq→qq
− =

(
0 −

√
KA

−
√
KA 0

)
, (C.7)

22More precisely: B
qq→qq
αβ = B

q̄q̄→q̄q̄

ᾱβ̄
(with α, β ∈ {3, 6} and ᾱ, β̄ ∈ {3, 6}); B

qg→qg
αβ = B

q̄g→q̄g

ᾱβ̄
(with

α, β ∈ {3, 6, 15} and ᾱ, β̄ ∈ {3, 6, 15}); Bgg→qq̄
αβ = B

qq̄→gg
αβ (with α, β ∈ {1, 8a, 8s}).

– 36 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
7

B
qq̄→qq̄
− = − 1

N

(
0 2

√
KA

2
√
KA N2 − 4

)
, (C.8)

B
qg→qg
− =


−N2+1

NKA
−

√
2NU1D2

KA
−

√
2ND1U2

KA

−
√

2NU1D2
KA

2N−1
N(N−1) −NU2D2

U1D1

−
√

2ND1U2
KA

−NU2D2
U1D1

2N+1
N(N+1)

 , (C.9)

B
gg→gg
− = −2



0 0 2N
U1D1

N
2

U3
U1

D3
D1

0 0 0
√

2N
U2D2

U1D2U3
U2

√
2

D1U2D3
D2

√
2

2N
U1D1

0 0 0 0 0
N
2

√
2N

U2D2
0 0 0 0

U3
U1

U1D2U3
U2

√
2 0 0 0 0

D3
D1

D1U2D3
D2

√
2 0 0 0 0


, (C.10)

B
gg→qq̄
− =


0 −2

√
2 0

−2
√
2 0 −

√
N2 − 4

0 −
√
N2 − 4 0

 . (C.11)

Finally, as far as the process gq → gq is concerned, by examining the birdtracks involved
one easily finds that its matrix B ≡ 1

2(B+ + B−) is the same as for the process qg → qg.
Thus, its matrix B− directly follows from (C.3), (C.9) and (C.6):

B
gq→gq
− = B

qg→qg
+ +B

qg→qg
− −B

gq→gq
+ . (C.12)

C.2 Correspondence of B− with the soft anomalous dimension matrix

For a given 2 → 2 process, the matrix B− is directly related to the soft anomalous dimension
matrix [38–50], which reads [48]

Q = 1
2N

[
T 2

t + T 2
u + b (T 2

t − T 2
u )
]
, (C.13)

where Tt ≡ T1 − T3 and Tu ≡ T1 − T4 are the color exchanges in the t-channel and u-channel,
respectively, and b some ratio of logarithms [48]. Indeed, using

T 2
t = T 2

1 + T 2
3 − 2T1T3 = C1 + C3 −B , (C.14)

T 2
u = T 2

1 + T 2
4 − 2T1T4 = C1 + C4 −B , (C.15)

and the relation (2.28), we obtain (in the orthonormal s-basis |α⟩)

Qαβ ≡⟨α|Q|β⟩= 1
2N

{
b(B− )αβ+δαβ [C1+C2+(1+b)C3+(1−b)C4−Cα]

}
. (C.16)

Thus, using the expressions of B− listed in section C.1, one can recover the soft anomalous
dimension matrix for any 2 → 2 partonic process. (For instance, for the gg → gg process,
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using Ci = N for i = 1 . . . 4 and B− given by (C.10), the expression (C.16) coincides with the
Q-matrix derived in ref. [48] for this process.) Note that since B− is a symmetric matrix, the
matrix Q defined by (C.16) is also symmetric, as must be the case for anomalous dimension
matrices when expressed in an orthonormal basis [55, 56].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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